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Abstract—As synthetic aperture radar (SAR) imaging technol-
ogy continues to evolve, the growing repository of SAR images
depicting diverse types of observed targets has sparked rising
interest in SAR target incremental recognition techniques. How-
ever, most existing SAR target incremental recognition algorithms
typically require an ample amount of training data. In urgent
scenarios such as emergency response and disaster relief, there
may be a necessity to identify targets for which a substantial
amount of data has not been previously accumulated. Algorithms
designed for general scenarios often fail to achieve satisfactory
performance in such situations. To tackle the aforementioned issues,
this paper presents a few-shot incremental recognition algorithm for
SAR targets based on orthogonal distributed features. Specifically,
an orthogonal distribution optimization method for features is
designed, which not only mitigates the feature confusion in few-
shot incremental learning, but also reserves space for features of
potential unseen classes. A random augmentation method for high-
dimensional features is proposed to improve the overfitting problem
while assisting in strengthening the boundaries between features of
different classes. Furthermore, a joint decision criterion based on
Euclidean distance and cosine distance is introduced, enabling the
classifier to possess sufficient generalization ability and robustness
in handling dynamic data. Experimental results on the MSTAR
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dataset show that the algorithm outlined in this paper outperforms
existing methods in SAR target few-shot incremental recognition
tasks, demonstrating its superior effectiveness.

Index Terms—SAR automatic target recognition, Few-shot in-
cremental learning, Orthogonal distribution, Random augmenta-
tion.

I. INTRODUCTION

Target detection and recognition are pivotal in the
intelligent interpretation of Synthetic Aperture Radar
(SAR) images [1], [2]. Specifically, target recognition can
provide crucial category information, holding significant
value. Over recent years, convolutional Neural Network
(CNN) based automatic target recognition (ATR) algo-
rithms for SAR have showcased exceptional performance
on numerous SAR datasets [3], [4], [5], [6]. However,
conventional neural network models are designed for
static tasks, which means they learn on fixed data to
acquire recognition capabilities for the current task [7].
When faced with new tasks, they encounter ”catastrophic
forgetting,” leading to a notable deterioration in classifi-
cation performance for previously learned tasks [8], [9].
In real-world applications, the number of SAR targets to
be recognized gradually accumulates, which necessitates
the model to continually learn new classes while retain-
ing recognition capabilities for old ones [10], [11]. To
meet this practical demand, researchers are increasingly
focusing on the field of incremental learning.

Incremental learning algorithms aim to facilitate mod-
els in continuously acquiring new knowledge while re-
taining previously attained knowledge. Initially, the neu-
ral network undergoes training on a base task with a
certain set of classes to obtain a foundational model.
Subsequently, new tasks, each including several new
classes, arrive over time. As new tasks emerge, the model
continually learns new knowledge, enabling it to identify
an increasing number of classes. The main challenge
faced by incremental learning is the stability-plasticity
dilemma [12], [13]. Stability denotes the model’s ca-
pacity to maintain previously acquired knowledge, while
plasticity pertains to its ability to learn new knowledge.
This dilemma implies that if the algorithm focuses on
maintaining classification performance on old tasks, the
model will struggle to adapt to new knowledge. Con-
versely, prioritizing the learning of new tasks may result
in the model forgetting a significant amount of previously
learned knowledge—both scenarios are unacceptable in
incremental learning. Moreover, according to [14], inter-
class confusion poses a significant challenge in SAR
target incremental recognition. Images of the same target
under different azimuth angles can vary significantly,
while different targets under the same azimuth angle may
appear more similar. Therefore, intra-class differences in
SAR target images are relatively large, while inter-class
differences are the opposite, making it easier for features
of different classes to be confused in the feature space.
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Currently, researchers have proposed SAR target in-
cremental recognition algorithms from different perspec-
tives to address the aforementioned issues [15], [16].
However, most existing SAR target incremental recogni-
tion algorithms are designed under the condition of abun-
dant training data. In emergency scenarios such as disaster
relief, it may be necessary to identify targets for which
sufficient data has not been accumulated. In such cases,
SAR target incremental recognition algorithms proposed
for general situations often fail to achieve satisfactory
performance, with a significant decrease in recognition
accuracy. Therefore, studying SAR target incremental
recognition algorithms tailored for few-shot conditions is
of significant importance for better addressing complex
real-world scenarios.

The general procedure of Few-Shot Class-Incremental
Learning (FSCIL) is depicted in Fig. 1. The neural
network is first trained on a foundational task with an
ample number of samples to obtain the base model.
Subsequently, few-shot tasks, each containing N classes
with K samples, arrive sequentially over time. The model
from the previous stage is used to initialize a new model.
Then, the new model undergoes training with a few-
shot incremental learning strategy to acquire recognition
capabilities for the newly added classes, thus enabling
continual learning under few-shot condition.

Fig. 1. The General Process of FSCIL

In the FSCIL task, the stability-plasticity dilemma
becomes increasingly pronounced. The scarcity of sam-
ples increases the likelihood of neural network parameters
overfitting during updates, thus diminishing the model’s
generalization ability, and compromising its stability.
Conversely, freezing network parameters will lead to the
model encountering difficulties in adapting to new classes,
significantly reducing its plasticity [17], [18]. The few-
shot new classes also results in a significant imbalance
between the number of training samples available for base
classes and those for new classes. Retraining the model
with samples from both base and new classes introduces
severe bias in classification. Moreover, due to constraints
of data security or privacy, the training data of previously
learned classes may not be accessible when the model
learns new classes [12]. Therefore, retraining the model
is not the most effective approach to address the continual
emergence of new classes in FSCIL tasks. Additionally,
under the few-shot condition, neural networks struggle to
acquire sufficient knowledge to fully distinguish between
different classes, further exacerbating feature confusion

among various SAR targets. To tackle the stability-
plasticity balance challenge and the feature confusion
issue of similar classes in SAR target FSCIL tasks, we
propose a few-shot incremental recognition algorithm for
SAR targets, focusing on the feature distribution. The
main contributions of this paper are outlined as follows:

(1) A feature space optimization process via orthog-
onal distribution is proposed, whereby features from
various classes are constrained to predefined orthogonal
directions, and intra-class differences are jointly reduced
from both Euclidean and cosine distance perspectives.
This approach not only effectively reduces mutual con-
fusion among learned classes but also crucially reserves
space for the incorporation of features from new classes.

(2) A high-dimensional feature random augmenta-
tion method is devised, wherein a series of pseudo-
features is generated by applying random biases to
real high-dimensional features. This method is employed
to reinforce the representational capacity of real high-
dimensional features for their respective classes under
few-shot conditions, assisting in establishing more reli-
able classification boundaries among features of various
classes.

II. RELATED WORKS

A. SAR Target Incremental Recognition

Recently, with the continuous development of SAR
technology, there has been a steady increase in the num-
ber of high-resolution SAR images of various targets.
This trend has imposed new demands on SAR ATR
algorithms, namely, the ability to continuously learn new
data. Motivated by the necessity to process dynamic data,
researchers have shifted their focus towards SAR target
incremental recognition.

Currently, the field of SAR target incremental recog-
nition has seen some development, with researchers
proposing various algorithms from perspectives such as
data replay, regularization, and bias correction. From the
data replay perspective, Dang et al. [16] proposed to
select samples in intersecting and boundary regions as
exemplars to enhance the recognition of easily confused
samples. From the regularization perspective, Tang et
al. [15] introduced a knowledge distillation technique
leveraging models from several prior tasks, aimed at
minimizing cumulative errors in incremental learning. Li
et al. [14] utilized anchored feature centers in incremental
learning process to reduce intra-class differences and
increase inter-class differences, consequently aiding the
model in discerning between new and previously learned
classes. From the bias correction perspective, Huang et
al. [19] advanced a memory-enhanced module to refine
the network weights, which balances biases between new
and old classes by extracting typical representations from
the weights of old classes.

Although the aforementioned algorithms have demon-
strated impressive performance in conventional SAR tar-
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get incremental recognition tasks, the reality is that not
all targets have an ample supply of training samples
available. In certain urgent scenarios, such as emergency
response and disaster relief, practical tasks may necessi-
tate the identification of targets for which an adequate
amount of data has not been accumulated. Therefore,
the research on SAR target incremental recognition algo-
rithms under few-shot conditions holds great significance
for effectively addressing complex and diverse tasks.

B. Few-Shot Class-Incremental Learning

FSCIL is a focal point garnering attention from nu-
merous researchers. It requires the model to continually
learn new classes with a limited number of labeled
samples while maintaining its classification capability for
previously learned classes. Due to the insufficient training
data, the stability-plasticity dilemma faced by conven-
tional incremental learning becomes even more prominent
under few-shot conditions, making the design of FSCIL
algorithms highly challenging. Existing FSCIL algorithms
are broadly classified into four categories: those based
on replay mechanisms, weight regularization, dynamic
network, and meta-learning techniques [18], [20].

Replay-based FSCIL algorithms typically store a few
representative instances for each previously learned class.
These examples are then employed to provide supervisory
information for model updates, encompassing features
of intermediate layers, output logits, and other relevant
aspects [21]. For instance, Dong et al. [22] employed
a knowledge distillation approach based on graph re-
lation, maintaining a graph that expresses relationships
between different classes to transfer previously learned
knowledge. Cheraghian et al. [23] presented a semantic-
aware knowledge distillation approach that incorporates
semantic information from word embeddings to enhance
the distillation process. Tai et al. [24] introduced a proto-
type distillation network, refining features and prototypes
into a reduced-dimensional space to compress channels
hindering the discrimination of different classes.

Weight regularization aims to control the updates
of neural network parameters, preserving the model’s
classification capability for old classes by reducing devi-
ations of important weights. Currently, researchers have
proposed various weight-regularization-based FSCIL al-
gorithms from different perspectives [25]. Shi et al. [26]
struck an effective equilibrium between model stability
and plasticity by designing a loss function that remains
flat near the minimum, preventing model parameters from
deviating from the optimal solution learned on old tasks.
Zhou et al. [27] introduced a forward compatible FSCIL
method that utilizes virtual prototypes to occupy part of
the feature space during training. This method compresses
the spatial distribution of learned classes, thereby enhanc-
ing the model’s plasticity to accept subsequent updates.
Zhao et al. [28] discovered that low-frequency compo-
nents in the feature space are more important for retaining
learned knowledge. Hence, discrete cosine transform is

introduced to separate different frequency components
of features, which reduces the mutual influence between
knowledge of new and old classes. Akyürek et al. [29]
proposed a subspace regularization method, constraining
the weights of new classes to align closely with the sub-
space generated by the weights of old classes, thus better
utilizing prior knowledge to distinguish between new and
previously learned classes. Kim et al. [30] advanced a
weight space rotation method, transforming the original
model parameters into a new space and estimating the
importance of different parameters to determine the flat
direction in the loss function. The model is then fine-tuned
along the flat direction to adapt to new classes.

The FSCIL algorithm based on dynamic networks au-
tomatically adjusts the network structure during the incre-
mental learning process to better balance model stability
and plasticity [31]. Specifically, Tao et al. [32] employed
a neural gas network to maintain the spatial topological
structure of old class features and address catastrophic
forgetting in FSCIL tasks. Zhang et al. [33] introduced
a graph attention network, treating the classifier weights
as nodes in a graph. By aggregating information from
different nodes and fusing it, the updated classification
weights are obtained. This enables the classifier to con-
tinuously update its decision boundaries to adapt to new
class features. Yang et al. [34] put forward a dynamic
support network, initially expanding network nodes to
accommodate knowledge from new classes, and then de-
termining which expanded nodes to retain through a node
self-activation mechanism. SoftNet, proposed by Yoon et
al. [35], evaluates the importance of network parameters
using a non-binary mask. During the incremental learning
process, it freezes primary parameters while updating
secondary parameters, effectively balancing catastrophic
forgetting and overfitting issues.

Meta-learning aims to leverage existing knowledge to
solve new problems [36]. During meta-training phase,
models continuously learn how to recognize targets in
few-shot scenarios by constructing multiple few-shot
tasks. During meta-testing phase, novel samples are iden-
tified by forming few-shot incremental tasks similar to
those encountered during training phase. Within the meta-
learning framework, researchers have proposed various
FSCIL algorithms. Zhu et al. [37] proposed a contin-
ual prototype learning strategy for FSCIL. On on hand,
Random episode selection is used to enhance scalability
by adapting feature representations to generated incre-
mental episodes. On the other hand, dynamic relation
projection is designed to calculate the prototypes’ cor-
relation matrix in a shared feature space for the self-
promotion of prototypes. Hersche et al. [38] employed
a meta-learning feature extractor with fixed parameters
and trainable fully connected layers in the Constrained
Few-shot Class-incremental Learning (C-FSCIL). They
minimized the cosine similarity among prototypes through
a nudging process and then fine-tuned the fully connected
layers to align output features with nudged prototypes,
facilitating feature separability among different classes.
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Zou et al. [39] designed a margin-based FSCIL algorithm,
which alleviates class-level overfitting issues by imposing
additional constraints on margin-based patterns.

In the field of SAR ATR, research on few-shot target
recognition for static tasks has been well-developed, with
recent algorithms demonstrating excellent performance.
For instance, Zhang and his team proposed two dis-
tinct few-shot recognition methods from the perspectives
of azimuth-aware discriminative representation learning
and domain knowledge-driven dual-stream network, both
achieving high recognition accuracy [40], [41]. Yang et
al. [42] presented a few-shot fine-grained classification
method based on hierarchical embedding network and
center calibration, which achieves high-precision recog-
nition for targets from similar classes. Bai et al. [43]
introduced an approach based on robust embedding and
manifold inference, which fully exploits the information
within high-dimensional features, thereby enabling accu-
rate recognition. However, research on target recognition
for dynamic tasks under few-shot conditions is relatively
scarce. Existing work includes a cosine prototype learning
framework proposed by Zhao et al. [18], an incremen-
tal evolutionary network with hierarchical embedding
advanced by Wang et al. [17], and an azimuth-aware
subspace classifier for FSCIL proposed by Zhao et al.
[44]. Overall, the research on FSCIL for SAR images is
still in its infancy, with the target recognition accuracy
being relatively low. Many issues remain to be resolved.

III. METHODS

In this section, we first outline the problem setup of
the FSCIL task. Then, we proceed to introduce our FSCIL
methodology based on Orthogonal Distributed Features
(ODF) by sequentially presenting the overall framework,
algorithmic details, and implementation process.

A. Problem Setup

FSCIL aims to incrementally acquire knowledge from
novel classes with only a limited number of labeled sam-
ples while maintaining the model’s classification ability
for previously learned classes.

{
T 0, T 1, · · · , Tn

}
rep-

resents incremental learning tasks at each stage, and{
D0, D1, · · · , Dn

}
corresponds to the respective training

set. Dn = {(xn
i , y

n
i )}

|Dn|
i=1 includes |Dn| training samples

from task Tn, where xn
i is a sample of class yni ∈ Cn,

and Cn represents the classes encompassed within task
Tn. It’s important to note that classes from different tasks
do not overlap, meaning that when i ̸= k, Ci ∩ Ck = ϕ.
The training set D0 for the base task T 0 contains several
classes, each with an ample amount of training samples,
which are utilized to train the base model. The few-shot
training set Dn for the incremental task Tn (n ≥ 1) is
commonly described using N-way K-shot notation, which
means Dn contains N classes, with each class having
only K training samples. N is typically set to 1, 2, or
5, with a typical value for K being 5. In consideration

of potential constraints on data security or data privacy
in real-world application scenarios, the FSCIL process
typically mandates the exclusion of complete data from
previous tasks. Instead, only new class data, along with a
minimal amount of old class exemplars as necessary, are
permissible for learning. After the incremental training,
the CNN model is evaluated using a test set containing
all previously learned classes, i.e., Cn

test = ∪ni=0Ci.

B. Overall Framework

The diagram of ODF proposed in this paper is de-
picted in Fig. 2. Incremental learning tasks arrive contin-
uously over time. The base task comprises several classes
with an ample number of training instances, whereas ev-
ery incremental task comprises N classes, each with only
K training samples. SAR images are input into the neural
network model fθ to obtain features and classification
predictions. fθ consists of a feature extractor fφ and a
dimensionality reduction layer σ. Specifically, fφ repre-
sents a ResNet-18 model [45], utilized for mapping input
images to high-dimensional features of 512 dimensions. σ
denotes a fully connected layer responsible for reducing
the dimensionality of the 512-dimensional features to 64
dimensions, aiming to eliminate redundant information
within the features.

In the FSCIL process, an orthogonal distribution opti-
mization method for features and a random augmentation
method for high-dimensional features are employed to
optimize the model. Before training begins, a set of
orthogonal vectors is established in the feature space
to reserve positions for all potential classes. During
the base training stage, prototypes of all base classes
are assigned to predefined orthogonal directions, and
intra-class differences in features are reduced from both
Euclidean and cosine distance perspectives. After base
training, prototypes of base classes and a small subset
of high-dimensional features are preserved. During the
incremental learning stage, parameters of the feature ex-
tractor are frozen while the dimensionality reduction layer
remains trainable. High-dimensional features of new class
images are extracted by the feature extractor and merged
with high-dimensional features preserved in all previous
stages. Subsequently, the parameters of the dimensionality
reduction layer are updated to allocate prototypes for
new classes onto unused orthogonal directions, while
minimizing the offset of prototypes from the old classes as
much as possible. Additionally, random bias is applied to
each preserved high-dimensional feature to perform ran-
dom augmentation, generating pseudo high-dimensional
features of both old and new classes to collectively update
parameters of the dimensionality reduction layer along
with real high-dimensional features. When calculating
classification confidences, predictions derived from Eu-
clidean distance criterion and cosine distance criterion
are fused to enhance the generalization and robustness of
the classifier, rendering the calculation of classification
confidences for few-shot incremental recognition more
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Fig. 2. The Framework of ODF Algorithm

rational. The principles and effects of the aforementioned
methods are elaborated in Sections III-C, III-D, and III-E,
while the implementation details of ODF are outlined in
Section III-F.

C. Feature Orthogonal Distribution Optimization

In FSCIL tasks, the neural network model maps
input images of different classes to discriminable fea-
tures in feature space to distinguish between different
classes. Therefore, the spatial distribution of features is
an important factor influencing recognition results. If the
prototypes of new classes resemble those of previously
learned classes, distinguishing between samples from
these classes becomes challenging. Some existing FS-
CIL algorithms propose continuously adjusting prototypes
during the incremental learning to increase the distance
between prototypes of different classes. However, such
prototype fine-tuning necessitates simultaneous considera-
tion of the positional relationships between the prototypes
of the new class and all previously learned classes. When
the task involves multiple new classes, consideration of
the relative positions of different new class prototypes
is also necessary. Excessive influencing factors make it
difficult to strike a balance between a sufficiently large
spatial distance among prototypes and leaving room to
accommodate the new classes. Therefore, the model’s
stability and plasticity fail to achieve a satisfactory equi-
librium.

To achieve a more reasonable feature space distribu-
tion in the SAR target few-shot incremental recognition
task, this paper proposes an orthogonal distribution opti-

mization method for features. As depicted in Fig. 3, the
feature orthogonal distribution optimization method first
allocates prototypes of different classes to predefined or-
thogonal directions. Subsequently, it reduces the distance
between features and their respective prototypes, thereby
approximating orthogonality among features of different
classes overall. Considering the feature drift caused by
model updates in the FSCIL process, as well as the large
intra-class differences in SAR images, constraints based
on a single distance criterion struggle to maintain the
orthogonality of features. Therefore, we simultaneously
employ Euclidean distance and cosine distance to ob-
tain stronger constraints on the intra-class distribution of
features. The feature orthogonal distribution optimization,
through the orthogonal constraint of inter-class distribu-
tion and the dual-distance criterion constraint of intra-
class distribution, not only reduces inter-class feature
confusion but also endows features of different classes
with good separability under both the cosine distance
and Euclidean distance, which are commonly used clas-
sification criteria in few-shot learning. More importantly,
the unallocated target directions reserve sufficient space
for potential new classes, thereby facilitating the model’s
adaptation to new class knowledge. Ultimately, the model
achieves a better balance between stability and plasticity
under few-shot conditions.

Based on the above analysis, the specific implemen-
tation of feature orthogonal distribution optimization is
described as follows. Before the start of incremental
learning, a set of orthogonal vectors {o1, o2, · · · , om} is
predefined according to the dimension of output features
of the dimensionality reduction layer, where m represents
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Fig. 3. Schematic Diagram of the Orthogonal Distribution
Optimization Method for Features

the total number of classes that may emerge during the
incremental learning process. These predefined vectors
help delineate target directions in the feature space. In the
base training stage, the base task consists of N classes,
and prototypes of these classes will be assigned to the
target directions delineated by the orthogonal vectors
{o1, · · · , oN}. For any class k (k = 1, 2, · · · , N) in the
base training set, the training samples are denoted as
D0

k =
{(

x0
ik
, y0ik

)}|D0
k|

ik=1
. To align the base training process

with the incremental training process, episodic training is
employed during base training to simulate the few-shot
condition encountered in incremental training. In each
training epoch, S samples are randomly drawn from D0

k

to construct a support set
{(

x0
is
, y0is

)}S

is=1
, and Q samples

are randomly sampled from D0
k to form a query set{(

x0
iq
, y0iq

)}Q

iq=1
. Initially, the neural network fθ extracts

features from samples in both the support set and the
query set. The prototype pk is derived by calculating the
average of the support set features:

pk =
1

S

S∑
is=1

fθ
(
x0
is

)
(1)

The cosine distance between pk and its corresponding or-
thogonal vector ok is calculated, serving as the orthogonal
distribution loss:

Lorthogonal =

N∑
k=1

dcos

(
pk
|pk|

,
ok
|ok|

)
(2)

Here, dcos (·) represents the cosine distance. Subsequently,
the intra-class loss of features is jointly calculated from
both the Euclidean distance and cosine distance aspects
using the query set features of each class and the proto-
types:

Lintra = α · 1
Q

N∑
k=1

Q∑
iq=1

(
fθ

(
x0
iq

)
− pk

)2

+
1

Q

N∑
k=1

Q∑
iq=1

dcos

 fθ

(
x0
iq

)
∣∣∣fθ (x0

iq

)∣∣∣ , pk
|pk|

 (3)

As a scale factor, α is used to balance the constraints of
Euclidean distance and cosine distance. Finally, the cross-
entropy loss is calculated using the classification predic-
tions of the query set samples and their corresponding
labels as the classification loss Lcls. Combining the three
aforementioned losses, the total loss for the base training
is calculated as:

Lbase = βLcls + γLorthogonal + Lintra (4)

β and γ are hyperparameters used to regulate the strength
of the constraints for Lcls and Lorthogonal. After base
training, the prototypes for all classes are saved. Simul-
taneously, S support set samples for each class are input
into the feature extractor fφ, yielding corresponding S
high-dimensional features, which are then saved.

When the model learns the incremental task
Tn (n ≥ 1), the feature extractor fφ is frozen, while
the parameters of the dimensionality reduction layer σ
remain trainable. Assuming the number of previously
learned classes is Mn and the number of classes in Tn

is Cn, the predefined first Mn target directions have
already been allocated. The prototypes of the new classes
will be assigned to the target directions corresponding
to the orthogonal vectors {oMn+1, · · · , oMn+Cn}. For
the k (k = 1, 2, · · · , Cn)th new class in the incremental
dataset, the training samples are represented by Dn

k ={(
xn
ik
, ynik

)}|Dn
k |

ik=1
. The training samples of each class

are first input into the feature extractor to obtain high-
dimensional features:

εcnew

ik
=fφ

(
xn
ik

)
(5)

Next, the high-dimensional features of the new classes are
merged with those of the old classes εcold to update the
saved high-dimensional feature set:

εc = εcnew ∪ εcold (6)

Finally, all features from the updated high-dimensional
feature set are simultaneously fed into the dimensionality
reduction layer to calculate low-dimensional features. For
the new classes, the low-dimensional features are used to
compute the prototypes through mean calculation, which,
along with the corresponding orthogonal vectors, are used
to compute the orthogonal distribution loss Lorthogonal

according to Eq. 2. Simultaneously, the intra-class loss
Lintra is calculated using Eq. 3 with the low-dimensional
features of the new classes and their corresponding proto-
types to reduce intra-class differences. For the old classes,
with the aim of mitigating the prototype drift caused by
parameter updates to the dimensionality reduction layer,
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the weighted sum of Euclidean distance and cosine dis-
tance between the prototypes before and after the updates
are used as the feature drift loss for the old classes:

Ldrift = α

Mn∑
k=1

(p′k − pk)
2
+

Mn∑
k=1

dcos

(
p′k
|p′k|

,
pk
|pk|

)
(7)

α is a scale factor to balance the constraints of Euclidean
distance and cosine distance. pk represents the prototypes
of old classes before the update of the dimensionality
reduction layer, and p′k represents the prototypes of old
classes after the update of the dimensionality reduction
layer. In summary, the total loss during the incremental
training stage is depicted as follows:

Linremental=γLorthogonal + Lintra + Ldrift (8)

In the process of feature orthogonal distribution opti-
mization, it is evident that only the disparity between pro-
totypes and the target directions, along with the intra-class
differences of features, need to be considered. There’s no
longer a need to simultaneously calculate the positional
relationships between all prototypes. This effectively re-
duces the factors affecting prototype adjustments, making
model fine-tuning more conducive to convergence.

D. Random Augmentation of High-Dimensional
Features

During the FSCIL process, with only a limited quan-
tity of saved samples from previously learned classes and
data from new classes available for model updates, the
model not only encounters severe feature confusion but
is also highly prone to overfitting. In order to further
ameliorate the negative impact caused by the few-shot
condition on recognition and to help maintain the orthog-
onality of features, a random augmentation method for
high-dimensional features is presented in this paper.

Fig. 4 illustrates the concept of high-dimensional
feature random augmentation. Due to the constraint of
few-shot condition, during the parameter updates of the
dimensionality reduction layer in the incremental learning
stage, there are only a few high-dimensional features
available for both new and old classes. Random aug-
mentation introduces several pseudo high-dimensional
features that possess certain representational capabilities
for their respective classes by applying random biases
to these real high-dimensional features. The effect of
this process is directly evident in the expansion of the
spatial distribution characterized by real high-dimensional
features for each class. For both the base and new classes,
the limited number of real high-dimensional features
can only represent a small subset of the entire feature
space occupied by the corresponding class. This makes
it difficult for the model to map all high-dimensional
features of the same class to the preset orthogonal direc-
tions, thereby affecting the final classification results. The
presence of pseudo high-dimensional features expands the

class boundaries, simulating the features of some same-
class samples that differ significantly from the real high-
dimensional features. This allows more high-dimensional
features to be correctly mapped to the preset orthogonal
directions. Hence, updating the model parameters using
both real and pseudo high-dimensional features not only
assists in distinguishing features of different classes but
also enriches the training data, thereby alleviating the
overfitting issue.

Fig. 4. Schematic Diagram of High-Dimensional Feature Random
Augmentation

Based on the aforementioned analysis, the specific
implementation of high-dimensional feature random aug-
mentation is described as follows. When the model learns
task Tn (n ≥ 1), the training samples of the new classes
are denoted as Dn = {(xn

i , y
n
i )}

|Dn|
i=1 , and the feature

extractor with frozen parameters is denoted as fφ. The
high-dimensional features for the new classes εcnew can
be computed using Eq. 5. The saved high-dimensional
features of the learned classes are denoted as εcold . By
merging the high-dimensional features of both new and
old classes, we obtain an updated set of high-dimensional
features, denoted as εc. Random bias following a standard
Gaussian distribution is added to each sample in the high-
dimensional feature set, thereby generating several pseudo
high-dimensional features centered around each sample:

µ
εcj
i = εcj + ei ∗ r (9)

µ
εcj
i represents the i-th pseudo high-dimensional feature

generated by applying Gaussian random bias ei around
the j-th sample in the high-dimensional feature set. r
serves as the scale factor of the bias, allowing control
the dispersion range of pseudo high-dimensional features
around the real ones. The label of µ

εcj
i , denoted as y

εcj
i ,

is identical to that of εcj . All generated pseudo high-
dimensional features are fed into the dimensionality re-
duction layer σ to compute pseudo low-dimensional fea-
tures. Then, the classification confidence P is computed
for all pseudo low-dimensional features with respect to
the prototypes of each class. Finally, cross-entropy loss
is computed as an auxiliary loss using the classification
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confidence of pseudo low-dimensional features and their
corresponding labels:

Lauxiliary= −
∑

y
εcj
i log (P ) (10)

After incorporating the auxiliary loss, the total loss
function during the incremental training process will be
rewritten as:

L′
incremental = γLorthogonal+Lintra+Ldrift+Lauxiliary

(11)

E. Joint Decision Criterion

In the FSCIL process, the classifier not only needs
to effectively distinguish features of new classes in the
current task but also needs to differentiate between fea-
tures of new and old classes from different tasks, which
presents challenges to the classifier’s robustness and its
generalization capability. Research in reference [17] has
demonstrated that a classifier combining Euclidean and
cosine distances can effectively enhance classification per-
formance. In the orthogonal distribution optimization pro-
cess proposed in this paper, features from different classes
are assigned to a set of mutually orthogonal directions.
Additionally, the intra-class Euclidean distance and cosine
distance are minimized. This ensures that different classes
exhibit good separability under both Euclidean and cosine
distance criteria. Considering the well-matched feature
distribution resulting from orthogonal optimization and
the joint distance classifier, we also adopt a joint deci-
sion criterion based on Euclidean and cosine distances.
It effectively utilizes the characteristics of orthogonal
feature distribution to enhance the incremental recognition
performance in few-shot scenarios.

After learning the task Tn, the neural network model
is represented by fθ, and the overall count of previously
learned classes is C. The test set for this stage is denoted
as Q = {(xi, yi)}Nn

i , where yi ∈ ∪nk=0Ck corresponds
to the labels. The prototypes pc

(
c ∈ ∪nk=0Ck

)
of each

class are calculated using Eq. 1. With reference to the
Euclidean and cosine distances between the features and
the prototypes, the classification output of any test sample
can be computed under two different criteria, respectively:

PEuc (y
′
i = c|xi) =

[1 + dEuc (fθ (xi) , pc)]
−1∑C

c [1 + dEuc (fθ (xi) , pc)]
−1

(12)

PCos (y
′
i = c|xi) =

[1 + dcos (fθ (xi) , pc)]
−1∑C

c [1 + dcos (fθ (xi) , pc)]
−1

(13)

Here, PEuc (y
′
i = c|xi) and PCos (y

′
i = c|xi) respectively

represent the confidence of sample xi belonging to class
c under the Euclidean distance criterion and the cosine
distance criterion. dEuc (·) and dcos (·) stand for Euclidean
distance and cosine distance.

Subsequently, these two confidences are combined
into a joint decision confidence through the weighted sum
with adaptive coefficients:

Ptotal (y
′
i = c|xi) = a · PCos (y

′
i = c|xi)

+b · PEuc (y
′
i = c|xi)

(14)

Wherein, a represents the weighted coefficient of the con-
fidence calculated based on the cosine distance criterion,
while b denotes the weighted coefficient of the confidence
calculated based on the Euclidean distance criterion. They
automatically adjust during the decision-making process
to better combine the decisions made based on the two
criteria. The computation of a and b is illustrated in Eq.
15 and Eq. 16:

a=
max (PCos (y

′
i = c|xi))

max (PCos (y′i = c|xi)) + max (PEuc (y′i = c|xi))
(15)

b=
max (PEuc (y

′
i = c|xi))

max (PCos (y′i = c|xi)) + max (PEuc (y′i = c|xi))
(16)

max (PCos (y
′
i = c|xi)) and max (PEuc (y

′
i = c|xi)) re-

spectively represent the maximum values of the classifi-
cation confidences based on the cosine distance criterion
and the Euclidean distance criterion. It can be observed
that the joint decision confidence will lean towards the
criterion that can make a clear judgment (i.e., where the
confidence for a particular class significantly surpasses
that of other classes, rather than having similar confi-
dences for multiple classes). It assigns greater weight
to such criterion and takes into account the decision of
the other criterion appropriately, thereby minimizing the
chances of the classifier providing a classification result
when it cannot make an accurate judgment.

Finally, the class corresponding to the maximum value
in the joint decision confidence is taken as the classifica-
tion result:

yprediction = argmax
c∈{1,··· ,C}

(Ptotal) (17)

This classification result is derived from the spatial
relationships between the features and the prototypes
measured by Euclidean distance and cosine distance. It
aligns with the distribution characteristics of features
optimized by orthogonal distribution, hence offering a
more accurate classification compared to results based on
a single criterion.

F. Algorithm Implementation

The proposed ODF algorithm improves SAR target
incremental recognition performance under the few-shot
condition by employing feature orthogonal distribution
optimization, high-dimensional feature random augmen-
tation, and joint decision criterion. The implementation
details of ODF are shown in Algorithm 1.
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Algorithm 1: Implementation Process of ODF.
Input: A series of labeled data D0, D1, · · · , Dn

Output: A trained CNN model fθ
1 // Base Session with D0

2 for epoch in epochs: do
3 Construct a support set and a query set;
4 Calculate protypes with support set features;
5 Calculate Lorthogonal, Lintra and Lcls;
6 The total loss for the base session is:
7 Lbase = βLcls + γLorthogonal + Lintra;
8 end
9 Construct high-dimensional feature exemplar εc;

10 Construct prototype set {pk};
11 // Incremental Session with Dk (k ≥ 1)
12 for k ← 1 to n do
13 Extract new-class features and update

high-dimensional feature exemplar εc;
14 Generate pseudo high-dimensional features;
15 for epoch in inremental epochs do
16 Calculate Lorthogonal, Lintra, Ldrift,

Lauxiliary;
17 The total loss for incremental sessions is:
18 L′

incremental =
γLorthogonal+Lintra+Ldrift+Lauxiliary;

19 end
20 Update prototype set {pk}
21 end

IV. EXPERIMENTS

A. Experimental Settings

To assess the effectiveness of the proposed ODF
approach for SAR target few-shot incremental recognition
tasks, various experiments are conducted based on the
MSTAR dataset. The experimental results are compared
with several FSCIL algorithms.

The MSTAR dataset originates from the Moving and
Stationary Target Acquisition and Recognition Program,
a collaboration between the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research
Laboratory. [46]. This dataset is compiled using high-
resolution synthetic aperture radar operating in the X-
band, featuring a resolution of 0.3m × 0.3m and HH polar-
ization. It comprises SAR images of 10 types of ground
mobile targets across various azimuth angles, observed
under two elevation angles: 15° and 17°. Typically, images
with an elevation angle of 17° are allocated for training,
while those taken at 15° elevation angle are reserved for
testing. The optical and SAR images for each target are
shown in Fig. 5. The detailed statistics of the dataset are
shown in Table I.

The FSCIL experiments are conducted in three dif-
ferent scenarios: 1-way 5-shot, 2-way 5-shot, and 1-step
5-shot. In the 1-way 5-shot scenario, the model initially
learns four classes with sufficient samples, and in each
incremental stage, learns one new class with only five

Fig. 5. Example of optical and SAR images in MSTAR dataset

TABLE I
Statistical Information of the MSTAR dataset

Targets Training Samples(17°) Testing Samples(15°)

D7 299 274
BMP2 233 195

ZSU234 299 274
BTR70 233 196
ZIL131 299 274
BTR60 256 195

2S1 299 274
BRDM2 298 274

T62 299 273
T72 299 274

Total 2747 2425

samples. In the 2-way 5-shot scenario, the model initially
learns four classes with sufficient samples, and in each
incremental stage, learns two new classes, each with
five samples. In the 1-step 5-shot scenario, the model
initially learns five classes with sufficient samples, and
in the incremental learning stage, learns the remaining
five classes, with each class having only five training
samples. The task division for model training in these
three scenarios is outlined in Table II.

TABLE II
Task Division for Incremental Learning.

Target Type
Task Division

1-way 5-shot 2-way 5-shot 1-step 5-shot
2S1

T 0 T 0

T 0

BMP2
BRDM
BTR70
BTR60 T 1

T 1

D7 T 2

T 1

T62 T 3

T 2

T72 T 4

ZIL131 T 5

T 3

ZSU234 T 6

The ODF method is implemented in the PyTorch
framework [47], and the model is trained with the Adam
optimizer. The base training process encompassing 2000
epochs, with an initial learning rate configured to 0.01.
The learning rate undergoes a tenfold decrement at epoch
1250, 1500, and 1750, respectively. During the incremen-
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Fig. 6. Accuracy Curves for Three Different Scenarios. (a) 1-way 5-shot scenario. (b) 2-way 5-shot scenario. (c) 1-step 5-shot scenario.

tal learning stage, the feature extractor is frozen, leaving
the parameters of the dimensionality reduction layer train-
able. The incremental training comprises 200 epochs, with
an initial learning rate of 0.1. The learning rate decreases
tenfold at epoch 100, 150, and 175. The hyperparameters
α and β in the loss function are configured to 0.001
and 0.2, while γ is set to 20 for base training and 3
for incremental learning. The number of pseudo-features
generated around each real high-dimensional feature is set
to 10, and the scale factor r for the random bias is set to
2.5.

B. Few-Shot Incremental Recognition Results

To illustrate the advantages of the algorithm intro-
duced in this paper, we conducted incremental recogni-
tion performance comparisons under few-shot conditions
using ODF against various algorithms. The compared
algorithms include Incremental Classifier and Repre-
sentation Learning (iCaRL) [48], Prototypical Networks
for Few-shot Learning (ProtoNet) [49], Few Shot In-
cremental Learning with Continually Evolved Classi-
fiers (CEC) [33], C-FSCIL [38], Forward Compatible
Few-Shot Class-Incremental Learning (FACT) [27], Self-
Supervised Stochastic Classifiers for Few-Shot Class-
Incremental Learning (S3C) [50], and Warping the space:
Weight space rotation for class-incremental few-shot
learning (WaRP) [30]. Specifically, iCaRL is a classic
incremental learning algorithm, ProtoNet is a typical
few-shot learning network, and CEC, C-FSCIL, FACT,
S3C, and WaRP are all recently proposed algorithms for
FSCIL. All these algorithms are implemented based on
ResNet-18 [45] to ensure the fairness of the comparative
experiments.

As depicted in Fig. 6, subplots (a), (b), and (c)
respectively delineate the trends in fluctuation of target
recognition accuracy for both the proposed ODF and
comparative algorithms across three different FSCIL sce-
narios. In each of the three scenarios, all algorithms
demonstrate notable success in achieving high recognition
accuracy in the base task. However, in the subsequent
stages, as the total number of classes increases and there is
a scarcity of training samples for both previously learned

and newly introduced classes, the model experiences a
gradual decline in recognition accuracy.

Compared to the comparative algorithms, ODF ex-
hibits a slower decline in recognition accuracy, yielding
superior target recognition performance. iCaRL is de-
signed for conventional incremental learning scenarios,
relying on a sufficient amount of data, thus exhibiting
unstable recognition performance in few-shot scenarios.
While ProtoNet is designed for few-shot recognition
tasks, it lacks appropriate parameter update methods for
incremental learning, resulting in limited model plasticity
to continuously emerging new classes. For the compara-
tive FSCIL algorithms, they lack sufficient consideration
for the characteristics of SAR images. The distinctive
attributes of SAR images in neural network models
primarily manifest in the fact that the imaging results
of the same target under different azimuth angles are
not consistent, while different targets under the same
azimuth angle may appear similar. Consequently, SAR
images contain complex information with large variations
within classes and small disparities between classes. The
nudging process adopted by C-FSCIL struggles to impart
sufficient discriminability to features of different classes
in face of more challenging feature space distributions,
leading to significant feature confusion in certain classes.
FACT compresses the feature space of learned classes
using pseudo prototypes to reserve space for potential new
class features. However, the inadequate representation
capability of virtual features for SAR image features
leads to a mismatch between the reserved space and
the features of new classes, which limits the model’s
capability of adapting to new classes. CEC utilizes a graph
neural network to aggregate and integrate information
from prototypes of different classes, but the complexity of
SAR image information results in the inclusion of some
irrelevant or redundant information, thereby limiting the
improvement of classification performance. Furthermore,
the complexity of SAR images makes it difficult for
WaRP to find suitable flat directions, thus failing to
effectively avoid the mutual influence between old and
new classes.

In contrast, ODF directly focuses on the character-
istics of large variations within classes and small dis-
parities between classes in SAR images. By allocating
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features of different classes to orthogonal directions, it
not only reduces mutual interference between new and
old classes but also reserves space for new classes in
advance. Additionally, random augmentation of high-
dimensional features supplements information for the ac-
curate recognition of each class and effectively alleviates
overfitting issues. The joint decision based on Euclidean
distance and cosine distance comprehensively considers
the classification confidence under both criteria, leading
to more reasonable classification results. Ultimately, ODF
achieves high target recognition accuracy across different
scenarios.

Table III, IV and V further present metrics including
recognition accuracy, average accuracy, and Performance
Drop rate (PD rate) [33] of each algorithm in the 1-
way 5-shot, 2-way 5-shot, and 1-step 5-shot scenarios.
In these tables, we denote the optimal values in bold and
the suboptimal values with an underline. The algorithm
advanced in this paper consistently demonstrates superior
performance with the highest average accuracy and the
lowest PD rate across all three scenarios, indicating that
ODF not only outperforms the comparative algorithms in
intermediate stages of incremental learning but also better
balances the classification knowledge of both new and old
classes after learning all classes.

Furthermore, it’s worth noting that ODF demonstrates
higher adaptability to different incremental learning sce-
narios. In general, the more incremental learning stages
there are, the lower the average recognition accuracy
tends to be, making it increasingly challenging to strike
a balance between the model’s stability and plasticity.
ODF achieves an average recognition accuracy of 84.17%,
with a PD rate of 29.93% in the 1-step 5-shot scenario.
When the scenario changes to 2-way 5-shot, the average
recognition accuracy of ODF only decreases by about 1%,
with a 3.57% increase in PD rate. In the 1-way 5-shot
scenario, the target recognition accuracy and PD rate of
ODF are similar to those in the 2-way 5-shot scenario. On
the contrary, among all comparative algorithms, iCaRL
achieves similar recognition accuracy to ODF in the 1-
step 5-shot scenario, but when the scenario changes to
2-way 5-shot and 1-way 5-shot, its target recognition per-
formance decreases significantly, lagging behind ODF by
around 10%. S3C achieves recognition accuracy similar
to ODF in the 1-step 5-shot and 1-way 5-shot scenarios,
but its target recognition performance exhibits significant
fluctuations in the 2-way 5-shot scenario. Other algo-
rithms such as WaRP and FACT exhibit similar fluctuation
trends in average recognition accuracy and PD rate to
ODF in different scenarios but fail to achieve recognition
performance similar to ODF in any scenario. Obviously,
the algorithm introduced in this paper exhibits enhanced
adaptability to various few-shot incremental recognition
scenarios, which is more in line with practical application
requirements.

C. Ablation Experiments

This paper leverages orthogonal distribution optimiza-
tion, high-dimensional feature random augmentation, and
joint decision with Euclidean and cosine distance simulta-
neously to improve few-shot incremental recognition per-
formance for SAR targets. To comprehensively assess the
effectiveness of aforementioned methods, various ablation
experiments are conducted in the 1-way 5-shot, 2-way 5-
shot, and 1-step 5-shot scenarios.

Tables VI and VII present the incremental recognition
accuracy of the model under two conditions: first, using
samples from both previously learned and new classes
for parameter fine-tuning, and second, feature orthogonal
distribution optimization. It can be observed that feature
orthogonal distribution optimization effectively improves
recognition accuracy at various stages of incremental
learning across different scenarios. In the 1-way 5-shot,
2-way 5-shot, and 1-step 5-shot scenarios, after the model
has learned targets of all 10 classes, the recognition
accuracy using feature orthogonal distribution optimiza-
tion increases by 14.36%, 9.59%, and 12.01%, respec-
tively, compared to using parameter fine-tuning. This
result demonstrates the effectiveness of feature orthog-
onal distribution optimization in enhancing the model’s
performance in few-shot incremental recognition.

To better illustrate the impact of the orthogonal distri-
bution optimization on the spatial distribution of features,
we further provide visualizations of t-distributed Stochas-
tic Neighbor Embedding (t-SNE) [51] for features ex-
tracted from the test set under three scenarios, when using
parameter fine-tuning and feature orthogonal distribution
optimization. In Fig. 7, subplots (a), (b), and (c) corre-
spond to the 1-way 5-shot, 2-way 5-shot, and 1-step 5-
shot scenarios respectively. Compared to parameter fine-
tuning, feature orthogonal distribution optimization effec-
tively reduces feature confusion between different classes.
For example, when using parameter fine-tuning in the
1-way 5-shot scenario, significant confusion is observed
among features corresponding to D7, T62, ZSU234, and
ZIL131. The overlap of features is so severe that fea-
tures corresponding to D7 are almost indistinguishable.
As a result, there is almost no discriminability among
these classes. Furthermore, there is varying degrees of
confusion observed between features of 2S1 and T72,
T72 and BMP2, BRDM2 and some other classes. This
explains why parameter fine-tuning struggles to perform
well in few-shot incremental recognition tasks. When
employing feature orthogonal distribution optimization,
the classification difficulty of the extracted features no-
tably decreases. Although some confusion persists among
features corresponding to D7, T62, ZSU234, and ZIL131,
features of different classes roughly occupy distinct posi-
tions in space, allowing for better differentiation between
most features. Moreover, the level of confusion between
features of T72 and BMP2 decreases, and features cor-
responding to 2S1 and BRDM2 almost do not overlap
with those of other classes. Consequently, the model
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TABLE III
Average Recognition Accuracy and PD rate of each Algorithm in the 1-way 5-shot Scenario

Algorithms
Recognition Accuracy (%)

Average Accuracy (%) PD rate (%)
T 0 T 1 T 2 T 3 T 4 T 5 T 6

iCaRL 99.45 72.69 77.66 65.90 58.48 53.58 52.09 68.55 47.36
ProtoNet 99.35 85.61 73.43 62.02 57.11 50.52 45.32 67.62 54.03

CEC 96.16 85.99 84.39 78.05 72.05 62.89 58.50 76.86 37.66
C-FSCIL 97.54 86.20 85.75 76.60 73.45 64.40 59.19 77.59 38.35

FACT 99.44 85.67 85.68 76.45 73.30 63.00 57.65 77.31 41.79
S3C 99.70 89.35 92.46 80.19 73.92 68.41 63.80 81.12 35.90

WaRP 98.83 88.24 85.27 77.26 73.51 64.02 59.05 78.03 39.78
ODF (ours) 99.69 91.91 89.24 83.49 79.36 68.82 64.81 82.47 34.88

TABLE IV
Average Recognition Accuracy and PD rate of each Algorithm in the 2-way 5-shot Scenario

Algorithms
Recognition Accuracy (%)

Average Accuracy (%) PD rate (%)
T 0 T 1 T 2 T 3

iCaRL 99.33 75.11 67.12 58.42 75.00 40.91
ProtoNet 99.41 76.38 60.06 47.88 70.93 51.53

CEC 96.77 84.39 72.87 59.75 78.45 37.02
C-FSCIL 97.25 86.21 75.06 61.32 79.96 35.93

FACT 99.32 85.77 73.11 59.69 79.47 39.63
S3C 99.56 88.74 71.30 60.70 80.08 38.86

WaRP 99.07 86.42 74.69 59.60 79.95 39.47
ODF (ours) 99.47 89.65 77.50 65.97 83.15 33.50

TABLE V
Average Recognition Accuracy and PD rate of each Algorithm in the 1-step 5-shot Scenario

Algorithms
Recognition Accuracy (%)

Average Accuracy (%) PD rate (%)
T 0 T 1

iCaRL 99.16 68.36 83.76 30.80
ProtoNet 99.16 68.36 83.76 30.80

CEC 96.68 60.42 78.55 36.26
C-FSCIL 95.79 62.85 79.32 32.94

FACT 98.94 64.07 81.51 34.87
S3C 99.54 68.46 84.00 31.08

WaRP 98.72 64.59 81.66 34.13
ODF (ours) 99.13 69.20 84.17 29.93

TABLE VI
Recognition Accuracy of the Model using Parameter Fine-tuning and Feature Orthogonal Distribution Optimization in the 1-way 5-shot Scenario

Methods
Recognition Accuracy (%)

T 0 T 1 T 2 T 3 T 4 T 5 T 6

Parameter Fine-tune 98.78 84.39 77.05 69.58 64.01 55.62 50.45
Orthogonal Distribution Optimization 99.69 91.91 89.24 83.49 79.36 68.82 64.81

TABLE VII
Recognition Accuracy of the Model using Parameter Fine-tuning and Feature Orthogonal Distribution Optimization in the 2-way 5-shot and

1-step 5-shot Scenario

Methods
Recognition Accuracy (%)

2-way 5-shot scenario 1-step 5-shot scenario
T 0 T 1 T 2 T 3 T 0 T 1

Parameter Fine-tune 98.97 84.70 70.82 56.38 98.04 57.19
Orthogonal Distribution Optimization 99.47 89.65 77.50 65.97 99.13 69.20
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Fig. 7. The t-SNE Visualization Illustrating the Features Extracted by the Model using Parameter Fine-tuning and Feature Orthogonal
Distribution Optimization. (a) 1-way 5-shot scenario. (b) 2-way 5-shot scenario. (c) 1-step 5-shot scenario.

achieves significantly higher recognition accuracy when
utilizing feature orthogonal distribution optimization com-
pared to parameter fine-tuning. In 2-way 5-shot and 1-
step 5-shot scenarios, the advantages of feature orthogonal
distribution optimization over parameter fine-tuning are
similar to those observed in the 1-way 5-shot scenario. In
conclusion, feature orthogonal distribution optimization
proves effective in enhancing the spatial distribution of
features under few-shot conditions. It improves the distin-
guishability of features among different classes, thereby
improving target recognition performance.

Fig. 8 depicts the incremental recognition accuracy
of the model under three conditions: without any aug-
mentation, with image augmentation, and with high-
dimensional feature random augmentation. The employed
image augmentation techniques include several common
methods: random cropping and scaling, random rotation,
and random flipping. Compared to not using any aug-
mentation, the model’s recognition accuracy actually de-
creases when image augmentation is applied. We attribute
this primarily to the difference in imaging principles
between SAR and optical imaging. The distribution of
scattering centers and the positions of shadows in the
enhanced SAR images are inconsistent with real SAR
images, which makes them unrepresentative of real SAR
images, thereby misleading the neural network. On the
contrary, high-dimensional feature random augmentation
notably enhances the model’s recognition performance

across each incremental learning stage in the 1-way 5-shot
scenario. Similar improvements of recognition accuracy
can also be observed in the 2-way 5-shot and 1-step 5-
shot scenarios. After learning all 10 classes, compared
to not using any augmentation, the model’s recognition
accuracy increases by 0.96%, 1.66%, and 0.66% in the
1-way 5-shot, 2-way 5-shot, and 1-step 5-shot scenarios,
respectively. The process of high-dimensional feature
random augmentation is based on the characteristic that
neural networks project images of the same class close
to each other in the feature space. Thus, pseudo-features
generated around real high-dimensional features serve to
maintain the feature distribution of previously learned
classes and complement the distribution of new-class fea-
tures. This not only supplements the training samples for
the dimensionality reduction layer, reducing the impact
of overfitting, but also assists the dimensionality reduc-
tion layer in better projecting high-dimensional features
from different classes onto the predefined orthogonal
directions. In summary, random augmentation of high-
dimensional features further strengthens the boundaries
between features of different classes, leading to an overall
improvement in recognition accuracy.

Tables VIII and IX present the few-shot incremental
recognition results of the model using Euclidean distance
criterion, cosine distance criterion, and joint decision
criterion in three scenarios. The recognition accuracy
under the Euclidean and cosine distance criteria is similar
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TABLE VIII
Few-Shot Incremental Recognition Accuracy under Different Decision Criteria in the 1-way 5-shot Scenario

Methods
Recognition Accuracy (%)

T 0 T 1 T 2 T 3 T 4 T 5 T 6

Euclidean 99.53 91.64 89.53 80.71 76.00 68.36 63.33
Cosine 99.52 89.99 87.22 81.26 77.09 68.56 63.40

Joint Decision 99.69 91.91 89.24 83.49 79.36 68.82 64.81

TABLE IX
Few-Shot Incremental Recognition Accuracy under Different Decision Criteria in the 2-way 5-shot and 1-step 5-shot Scenario

Methods
Recognition Accuracy (%)

2-way 5-shot scenario 1-step 5-shot scenario
T 0 T 1 T 2 T 3 T 0 T 1

Euclidean 99.31 87.79 76.75 65.19 98.81 68.12
Cosine 99.66 90.03 77.27 65.33 99.09 67.87

Joint Decision 99.47 89.65 77.50 65.97 99.13 69.20

Fig. 8. Comparison of Recognition Accuracy when using different
Augmentation Methods. (a) 1-way 5-shot scenario. (b) 2-way 5-shot

scenario. (c) 1-step 5-shot scenario.

and both are lower than that under the joint decision
criterion. In the 1-way 5-shot, 2-way 5-shot, and 1-step
5-shot scenarios, after the model learns targets of all 10
classes, the recognition accuracy using the joint decision
criterion increases by 1.48%, 0.78%, and 1.08% compared
to using the Euclidean distance criterion, and by 1.41%,
0.64%, and 1.33% compared to using the cosine distance
criterion. Therefore, the joint decision criterion leverages
the good separability characteristics of orthogonal dis-
tributed features under both Euclidean and cosine distance
criteria, thereby providing more reasonable classification
results compared to a single decision criterion and further
improving target recognition accuracy.

D. Discussion

In this section, we discuss a range of parameters
involved in the proposed method under the 1-way 5-shot
scenario.

To analyze the impact of the number of pseudo-
features generated around each real feature and the scale
factor r of the random bias on recognition performance,
we present the recognition accuracy of the model after
learning all 10 classes with different values for these two
parameters. As shown in Fig. 9, the optimal number of
pseudo-features is 10, and the optimal value of the scale
factor r is 2.5. When the number of pseudo-features is
relatively small (e.g., 2 or 5), and the scale factor r is
low (e.g., 1.0 or 2.0), the expansion of the feature space
occupied by each class is insufficient. Pseudo-features fail
to effectively simulate features of same-class samples that
differ significantly from real high-dimensional features,
thus limiting the improvement of the model’s recognition
performance. When the number of pseudo-features is too
large (e.g., 20 or 50), the model may overly focus on
pseudo-features and neglect real features, leading to a
decrease in recognition accuracy. When the scale factor r
is too large (e.g., 3.0, 5.0, or 10.0), the excessive random
bias introduces incorrect information about the features’
spacial distribution, misleading the model in establishing
the classification boundaries for each class.

Fig. 9. Parameter Analysis of the High-Dimensional Feature
Random Augmentation Process. (a) The Impact of Pseudo-Feature

Quantity on Recognition Performance. (b) The Impact of Scale Factor
on Recognition Performance.
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Fig. 10 illustrates the recognition accuracy of the
model after learning all 10 classes with different fixed
values and adaptive values of the cosine distance weight
coefficient a and the Euclidean distance weight coefficient
b in the joint decision criterion. It is evident that the
model achieves optimal target recognition accuracy when
using adaptive coefficients. Fixing weight coefficients
reduces the classifier’s plasticity, leading to insufficient
adaptability to dynamic tasks, which in turn limits the
improvement of classification performance.

Fig. 10. Comparison of Fixed and Adaptive Coefficients in Joint
Decision.

Additionally, we provide examples of adaptive coeffi-
cients during testing to more comprehensively analyze the
joint decision criterion. As shown in Fig. 11, we consider
that when a > 0.8, the decision is dominated by cosine
distance, and when b > 0.8, it is dominated by Euclidean
distance. The intermediate area represents a joint decision
based on both distances. It is evident that most adaptive
coefficients fall within the intermediate area, indicating
that the classification decision is not overly dependent
on a single distance. However, the adaptive coefficients
also exhibit a tendency to favor Euclidean distance. This
is because in joint decision criterion, the distance that
can provide a clear judgment (i.e., the confidence for a
particular class significantly exceeds that of others, rather
than having multiple classes with similar confidence) is
given a greater weight. Test samples that are less likely
to be misclassified typically have features close to the
prototypes, where both Euclidean and cosine distance
criteria can provide clear judgments, resulting in weights
with little differences for the two. Features that are easily
confused with other classes typically deviate significantly
from the prototype. The orthogonal distributed prototypes
have the maximum margin of 90 degrees when measured
by cosine distance, whereas there is no clear upper
limit for the margin measured by Euclidean distance.
Therefore, features near the boundary are more likely
to obtain a clear judgment under the Euclidean distance
criterion, leading to a bias towards Euclidean distance in
the adaptive coefficients.

Finally, we compared the number of parameters and
the floating point operations (FLOPs) required to infer
a single image for our proposed ODF with the ResNet-
18, which serves as the backbone. As shown in Table
X, compared to ResNet-18, the ODF has only a slight

Fig. 11. Adaptive Coefficients Distribution.

increase in the number of parameters and FLOPs. The
increase in the number of parameters is mainly due to
the storage of high-dimensional features and prototypes
of the previously learned classes, while the increase in
FLOPs primarily comes from calculating the Euclidean
and cosine distances between the feature of the test image
and the prototypes of each class. In summary, the ODF
does not significantly increase the model’s storage and
computational resource consumption.

TABLE X
Comparison of Model Parameter Size and Computational load

Models Number of Parameters FLOPs

ResNet-18 11.175M 142.442M
ODF 11.203M 142.470M

V. CONCLUSION

This paper introduces a SAR target few-shot incre-
mental recognition approach based on orthogonal distri-
bution features, with main contributions including feature
orthogonal distribution optimization and random aug-
mentation of high-dimensional features. Specifically, the
orthogonal distribution optimization of features improves
the features’ spatial distribution during FSCIL process.
This optimization strategy not only reduces mutual inter-
ference between features from different classes but also
reserves space for features of new classes. The random
augmentation method of high-dimensional features assists
in strengthening the boundaries between features of dif-
ferent classes and alleviating overfitting issues in few-shot
scenarios. Additionally, the joint decision criterion based
on Euclidean and cosine distances effectively leverages
the characteristics of orthogonal distributed features to
make more reasonable classification decisions.

A series of SAR target few-shot incremental recogni-
tion experiments validate the effectiveness of the proposed
algorithm. Compared with the existing FSCIL algorithms,
ODF not only achieves the best target recognition accu-
racy but also demonstrates better adaptability to different
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few-shot incremental recognition scenarios. Therefore,
ODF better meets the requirements of target recognition
under sample deficiency conditions and has higher ap-
plication value in complex and urgent scenarios such as
emergency rescue.

Currently, ODF primarily improves the target recog-
nition accuracy by optimizing the feature distribution in
high-dimensional space, but it still underutilizes the scat-
tering information of targets contained in SAR images. In
the next step, we will incorporate the Attribute Scattering
Center model and time-frequency analysis methods to em-
bed the target scattering information into the deep learning
framework. With the aid of scattering information, the
model’s performance in few-shot incremental recognition,
as well as its generalization and interpretability, will be
further enhanced.
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