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A B S T R A C T

Skin cancer is one of the leading causes of mortality worldwide. Early diagnosis can ensure more effective
patient treatment and outcomes, but, this is challenging due to the high similarity between different skin lesion
types. There is a growing interest in developing Artificial Intelligence (AI)-based systems for automated skin
lesion classification. However, current AI models are not transparent, leading to a lack of trust from clinicians
who struggle to interpret and validate AI decisions. To this end, in this paper, a fine tuned EfficientNet-B0-based
classifier is first developed to classify dermoscopic images of Melanoma (MEL), Nevus (NV) and Seborrheic
Keratosis (SK) skin lesions gathered from the International Skin Imaging Collaboration (ISIC) dataset. Next,
the explainability of the model is investigated. In particular, a new Trustworthiness Index for eXplainable AI,
herein referred to as TIxAI, is proposed. The TIxAI is based on the difference between the relevance degree of
the lesion and non-lesion areas, leading to the conclusion that the higher the TIxAI, the more trustworthy the
classifier is expected to be. Experimental results support the use of the proposed TIxAI to assess and benchmark
the reliability of classifiers also in other real-world applications.
1. Introduction

Cancer is a pathological condition characterized by the uncontrolled
proliferation of abnormal cells in the body that have the ability to
replicate and damage normal body tissues. It is worth noting that
according to the International Agency for Research on Cancer (IARC)
there are over 10 million cancer-related deaths and more than 20
million new cases worldwide [1]. Among the main classes of cancer,
skin cancer is one of the most prevalent and deadly form of cancer
worldwide with more than 1.5 million new cases estimated only in
2020. Specifically, melanoma, despite accounts for only less than 5% of
skin cancer diagnosis, is responsible for over 65% of skin cancer-related
fatalities [2]. Hence, identifying early warning features of melanoma
would aid in detecting the disease from the very initial stages, when the
disease is more treatable, thereby reducing the likelihood of mortality
for the patient. In this context, dermoscopy is a noninvasive imaging
technique involving the microscopic examination of the skin surface
and allows for the visualization of submacroscopical pigments unde-
tectable by the unaided eye. Such imaging technique aids clinicians
in the difficult task of early diagnosing skin cancer [3]. It is worth
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noting that skin lesions classification depends on several properties
such as morphology, shape, color and texture. Visual examination of
demoscopic images is a difficult task that strongly depends on the der-
matologist’s experience, and it also requires considerable time-effort.
Moreover, although the existence of well-known diagnostic procedure,
such as ABCD (Asymmetrical, Border, Color, Diameter) rule, typically
employed by clinicians, visual inspection is not an effective method
since it may lead to misdiagnose the actual lesion due to the high visual
resemblance among different lesion classes as well as the subjectivity
of human interpretation. Hence, there is a great deal of interest in
developing automatic tools for dermoscopic image analysis. It is worth
noting that conventional computer-aided approaches typically require
the segmentation of the lesion area, a hand-crafted features extraction
and the final classification [4].

However, due to the increasing deployment of Deep Learning (DL)
in several real-world applications [5] and considering the impressive
results achieved in the medical field [6,7], several DL-based systems
for skin lesion discrimination have been emerging. In this context,
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most of the existing works are based on the analysis of the Inter-
ational Skin Imaging Collaboration (ISIC) datasets. For example, Li
t al. [8] proposed LFN (a Lesion Feature Network based on Convolu-

tional Residual Networks) evaluated on the ISIC-17 dataset consisted of
three classes: Melanoma (MEL), Nevus (NV), Seborrheic Keratosis (SK),
reporting classification accuracy of 91.2%. Mahbod et al. [9] achieved
instead 87.7% using a multiple set of CNNs of different architectures
using the same dataset. Gouda W. et al. [10] implemented different

odels (Convolutional Neural Network (CNN), Resnet50, Inception V3,
nception Resnet) in order to classify dermoscopic images of malignant
nd benign tumors of ISIC-18 dataset, achieving 85.8% accuracy using
n the InceptionV3 network. It is to be noted that ISIC-18 dataset
ontains seven skin lesions (MEL, NV, Basal cell carcinoma (BCC),
ctinic keratosis (AKIEC), Benign keratosis (BKL), Dermatofibroma

DF), Vascular lesion (VASC)), but in [10] a binary classification was
ddressed. Alwakid G. et al. [11] proposed a modified version of

ResNet50 and a custom CNN to classify demoscopic images belonging
to seven categories of skin lesions of the HAM10000 dataset [12]
i.e., the training set for the ISIC-18 challenge). The quality of images
as improved using the enhanced super-resolution generative adver-

arial networks and segmentation was also used to segment regions of
nterest. Experimental results reported accuracy up to 86%. Bassel A.
t al. [13] proposed a stacked algorithm, which combined predictions
rom multiple models (i.e., Resnet50, Xception, VGG16) by using the

ISIC-19 dataset [12]. The predictions fed a linear regression model
for multi-classification purposes, reporting 90.9% accuracy using the
Xception model for feature extraction. Aljohani K. et al. [14] tested
ifferent DL models (e.g., DenseNet201, MobileNetV2, ResNet50V2,
esNet152V2, Xception, VGG16, VGG19, GoogleNet) to perform the
inary classification, melanoma vs. non-melanoma images, extracted
rom the ISIC-19, achieving accuracy and F1-score of 73% and 81%,
espectively. Alam T.M. et al. [15] proposed an efficient RegNetY-

320-based skin cancer classifier for identifying the seven categories
of HAM10000 dataset with accuracy 91% by applying augmentation.
Meswal H. et al. [16] developed a weighted ensemble system based
n InceptionV3, Xception, ResNet50, EfficientNetB4, and MobileNet
or binary classification (melanoma vs. nevus), achieving an accuracy
f 85.54%; while, recently, Senthil Sivakumar et al. [17] proposed a
inary classification based on ResNet50 achieving a maximum accuracy
f 94%.

Although the aforementioned systems achieved impressive perfor-
ance, the interpretability of the model behavior remains vague. In

his context, eXplainable Artificial Intelligence (xAI) aims to investigate
he black box behavior and provide further explanations into the inner

working mechanisms that power the AI algorithms [18]. In clinical
pplication, as in melanoma recognition, this holds utmost signifi-
ance, since a deeper understanding could substantially impact the

final decision-making of clinicians [19–22]. In the last years, xAI has
been exploited to explain the reasoning behind the specific decisions
produced by skin lesions classification systems [23–30]. However, in
this context, to the best of our knowledge, there is not any general index
to quantify the explainability and consequently the trustworthiness of
the developed model. In order to fill this gap, the present study intro-
duces a novel trustworthiness index for explainable AI in skin lesions
classification, named TIxAI. Specifically, the major contributions of this
paper are summarized as follows:

• Development of an automatic multi-class skin lesions classifica-
tion system based on the fine tuned EfficientNet-B0 and on a
revised version of ISIC-17;

• Explainability of the achieved outcomes by means of xAI tech-
niques to evaluate reliability of the proposed model;

• Development of a new index to measure the degree of trustwor-
thiness of xAI in skin lesions classification, here called TIxAI ;
2

a

• Development of a trustworthy skin lesions classification system
with potential deployment in clinical setting.

The paper is organized as follows: Section 2 describes the dataset
nd introduces the proposed methodology, including the developed
ulti-class skin lesions classifier, the xAI algorithms employed and the

definition of the trustworthiness index TIxAI ; Section 3 reports the
achieved experimental results, while Section 4 concludes the paper.

2. Methods

Fig. 1 shows the flowchart of the proposed methodology. It includes
he following stages: (i) a classification stage, where the classifier is
rained to discriminate between skin lesions (MEL/NV/SK); (ii) an ex-
laining stage, where an explainability analysis is carried out to evaluate

the trustworthiness of the decisions of the trained classifier.

2.1. Skin lesions dermoscopic images dataset preparation

In this study, the publicly available dataset provided by the Interna-
ional Skin Imaging Collaboration (ISIC) as part of the 2017 challenge
s used [31]. It is to be noted that, among the datasets provided by

ISIC, the 2017 has been selected since it is the most recent dataset
hat provided both the ground truth mask and the gold standard lesion
iagnoses (i.e., the corresponding label) alongside the lesion images.
his choice was made as this study focuses on the introduction of
n innovative measure of trustworthiness index, which relies on the
tilization of the ground truth mask as detailed in the subsequent
ections. ISIC-17 consists of 2750 dermoscopic images provided by dif-
erent international clinical centers and belonging to three categories of
kin lesions: ‘‘Melanoma’’ (MEL), ‘‘Nevus’’ (NV), ‘‘Seborrheic Keratosis’’
SK). Fig. 2 shows examples of dermoscopic images. It is worth noting

that the dataset included images with artefacts such as the presence
of marking-pen, ruler marks, light reflection, fuzz, dark corners, color
charts and air/oil bubbles that may negatively impact the classification
process (Fig. 3). For this reason, the dataset was carefully revised by
n expert operator removing such images. The final version of ISIC
ataset used in this study consisted of 2325 dermoscopic images: 478
elated to MEL, 1520 related to NV, 327 related to SK. However, since
he dataset resulted highly imbalanced, standard data augmentation
echniques (i.e., rotation, flipping and translation) have been applied
o MEL and SK classes. In addition, due to variability in size among
SIC images, these were resized to dimension of 224 × 224 to input the
re-trained models, while keeping the computation time low.

2.2. Skin lesions classification

2.2.1. Customised CNN-based skin lesions classifier
The architecture of the proposed custom CNN is depicted in Fig. 4. It

is to be noted that the CNN topology has been selected empirically ac-
ording to a trial and error approach. Several architectures were indeed

taken into account, as reported in Table 1. Specifically, the proposed
NN (i.e., 𝐶 𝑁 𝑁6 of Table 1) consists of: four convolutional layers, each
ne followed by a normalization layer, a ReLU activation layer and a
ax pooling layer; five fully connected layers, with 1000, 200, 100,

50 and 10 processing units, respectively. The convolution layers have
32, 64, 128 and 256 filters of size 3 × 3 for the first convolutional
layer and 2 × 2 for the remaining layers, zero padding and stride
equal to 1; while, pooling layers have 2 × 2 filters with a stride of
2 (with the exception of the fourth layer, which is characterized by a
unitary stride). The network ends with a final output classification layer
that allows to perform the classification among MEL, NV, SK images.
The custom CNN was trained using the Adaptive Moment optimization
(ADAM) technique [32] with a low learning rate (𝜂 = 0.0001), an
exponential decay rate for the 1st moment estimates (𝛽1 = 0.9) an
exponential decay rate for the 2nd moment estimates (𝛽2 = 0.999) and
 small constant for numerical stability (𝜖 = 1e−8). It is worth noting
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Fig. 1. Flowchart of the proposed methodology consisting of two main steps: classification and explainability. The classification stage includes a fine tuned EfficientNet-B0-based
classifier able to discriminate among Melanoma (MEL), Nevus (NV) and Seborrheic Keratosis (SK) lesions. The explaining stage includes an explainer based on xAI techniques
(i.e., Grad-CAM, LIME, OSA, SHAP) able to produce the so called heatmaps. These are multiplied by the ground truth and the inverse ground truth in order to calculate the
relevance of the lesion and non-lesion areas. Finally, the ‘‘Trustworthiness Index for Explainable AI (TIxAI)’’ is estimated as the difference of the relevance degree between the lesion
and non-lesion area.
Fig. 2. Examples of Melanoma (MEL), Nevus (NV) and Seborrheic Keratosis (SK) dermoscopic images belonging to the ISIC dataset [31].
Fig. 3. Examples of dermoscopic images with artefacts.
that since the proposed custom CNN contained a substantial number of
learnable parameters (approximately 43.6 million) a maximum of 50
epochs was set. The cross-entropy loss function was monitored during
training and the convergence was empirically observed within this
range. An early stopping criterion was applied, namely, training was
arrested if no improvement was observed in the validation loss for 5
consecutive steps.

2.2.2. Fine tuned CNN-based skin lesions classifiers
Pretrained neural networks allow the transfer of knowledge

(i.e. weights) from one task to another. In this study, well-known
GoogleNet, ResNet-18, MobileNetv2, EfficientNet-B0, VGG16, initially
trained on large ImageNet dataset, are fine-tuned to perform a new
classification task. Indeed, the last classification layer is replaced with
a new layer with the number of outputs equal to the number of classes
3

of the new dataset, while keeping unchanged the overall architecture of
the model. Here, a 3-way output classification layer is used to perform
the 3-way skin lesion classification: MEL vs. NV vs. SK. As discussed
in Section 3, EfficientNet-B0 outperformed the other models. The
architecture of EfficientNet-B0 is depicted in Fig. 5. It is the basic model
in the EfficientNet family of CNN architectures, introduced by Tan
et al. [33]. Specifically, EfficientNet-B0 starts with a set of processing
layers consisting of a standard convolutional layer with 3 × 3 kernel
size followed by a batch normalization and a swish activation function.
Then, the network is a sequence of Mobile Inverted Bottleneck Convo-
lution (MBConv) modules, i.e., MBConv1 and MBConv6, which consist
of a combination of a depth-wise convolution layers, swish activation,
and Squeeze-and-Excitation (SE) sub-block capable of enhancing the
ability of the model to learn relevant features [34,35]. The EfficientNet-
B0 and the other pretrained models were fine-tuned by re-training the
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Fig. 4. Architecture of the custom Convolutional Neural Network (CNN), developed to perform the multi-skin lesions classification: MEL vs. NV vs. SK.
Fig. 5. Architecture of the EfficientNet-B0 used to perform the multi-skin lesions classification: MEL vs. NV vs. SK.
entire architecture on the new dermoscopic image dataset. Training
was conducted for a maximum of 10 epochs using ADAM optimizer
with the following hyper-parameters: 𝜂 = 0.0001, 𝛽1 = 0.9, 𝛽2 =
0.999 and 𝜖 = 1e-8. The cross-entropy loss function was monitored
throughout training and the convergence was empirically observed
within 10 epochs. Early stopping was used to stop training when the
validation loss showed no improvement for 5 consecutive steps.

Custom and fine-tuned networks were trained and tested in MAT-
LAB R2023b over a workstation with one NVIDIA GeForce RTX 2080
Ti GPU and 64 GB RAM installed. In addition, in order to ensure the
reliability of the models, the 𝑘-fold cross-validation approach with 𝑘 =
7 was also applied. Hence, results are reported as mean ± standard
deviation.

2.3. Explainability of skin lesions classifier

The procedure involves an offline phase of transfer learning us-
ing EfficientNet-B0, which is fine-tuned on the dermoscopic images
dataset, and a subsequent phase of explainability analysis of the trained
classifier’s behavior. In this study, the explainability was investigated
through Gradient-weighted Class Activation Mapping (Grad-CAM), Lo-
cal Interpretable Model-Agnostic Explanations (LIME), the Occlusion
Sensitivity Analysis (OSA) and the SHapley Additive exPlanations
(SHAP) to tentatively explain and interpret the decisions made by the
proposed skin lesions classifier. In particular, once the classification
phase is completed, given an input image, the classifier is exploited
by the explainer (i.e., Grad-CAM/LIME/OSA/SHAP) to estimate the
relevance to classification of each area in the input image. In other
words, the explainer assesses which areas of the input images were
more decisive for the network in order to predict the class of the
image under analysis. The explainer’s output is a heatmap (H) that
associates each area of the input image with a color corresponding to
the estimated relevance (red indicating high relevance, blue indicating
4

low relevance). Relevance values are then normalized between zero and
one.

2.3.1. Gradient-weighted Class Activation Mapping (Grad-CAM)
Grad-CAM is an extension of the CAM method and measures the

significance of every neuron in a neural model by analyzing the gra-
dients of the target class as they propagate through the deep network.
Specifically, Grad-CAM estimates the gradient of the score of the class
𝑐 (𝑦𝑐) with respect to the features maps (𝐹𝑚), where m is the number
of features maps) in a specified convolutional layer. In this study, the
features maps of the last convolutional layer are considered. First, the
neuron importance weight is computed as follows:

𝛼𝑐𝑚 = 1
𝑁

∑

𝑖

∑

𝑗

𝜕 𝑦𝑐
𝜕 𝐹𝑚

𝑖,𝑗
(1)

where 𝑁 denotes the number of elements in the 𝑚th features map 𝐹 and
(𝑖, 𝑗) pinpoints the elements. Then, the class-discriminative localization
map (𝐿𝑐

𝐺 𝑟𝑎𝑑−𝐶 𝐴𝑀 ) is computed as a weighted combination of 𝐹𝑚 with
the application of a ReLU:

𝐿𝑐
𝐺 𝑟𝑎𝑑−𝐶 𝐴𝑀 = 𝑅𝑒𝐿𝑈 (

∑

𝑚
𝛼𝑐𝑚𝐹

𝑚) (2)

The Grad-CAM output is a saliency map where the most relevant
input regions are encoded with coloration from blue (low relevance) to
red (high relevance) [36]. In this study, Grad-CAM was implemented
using the built-in gradCAM function available in MATLAB 2023b.

2.3.2. Local interpretable model-agnostic explanations (LIME)
LIME utilizes a perturbation-based algorithm to provide local in-

terpretability by using a surrogate interpretable model. The latter is
trained on a newly generated dataset consisting of perturbed instances,
weighted around the specific instance being analyzed. This approach
minimizes , metric that quantifies the fidelity of the surrogate model
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Table 1
Topology of different custom CNNs for classifying skin lesions images of MEL/NV/SK.

Model Conv1 Max-Pool1 Conv2 Max-Pool2 Conv3 Max-Pool3 Conv4 Max-Pool4 HL1 HL2 HL3 HL4 HL5 HL6 Output

𝐶 𝑁 𝑁1 filters = 8@ 3 × 3 × 3
s = 1

filters = 2 × 2
𝑠 = 2

filters = 16@ 2 × 2 × 8
s = 1

filters = 2 × 2
𝑠 = 2

filters = 32@ 2 × 2 × 16
s = 1

filters = 2 × 2
𝑠 = 2

– – 400 – – – – – 3

𝐶 𝑁 𝑁2 filters = 8@ 3 × 3 × 3
s = 1

filters = 2 × 2
𝑠 = 2

filters = 16@ 2 × 2 × 8
s = 1

filters = 2 × 2
𝑠 = 2

filters = 32@ 2 × 2 × 16
s = 1

filters = 2 × 2
𝑠 = 2

– – 400 200 – – – – 3

𝐶 𝑁 𝑁3 filters = 32@ 7 × 7 × 3
s = 1

filters = 2 × 2
𝑠 = 2

filters = 64@ 4 × 4 × 32
s = 1

filters = 2 × 2
𝑠 = 2

filters = 128@ 2 × 2 × 64
s = 1

filters = 2 × 2
𝑠 = 2

– – 400 200 100 50 25 15 3

𝐶 𝑁 𝑁4 filters = 16@ 3 × 3 × 3
s = 1

filters = 2 × 2
𝑠 = 2

filters = 32@ 2 × 2 × 16
s = 1

filters = 2 × 2
𝑠 = 2

filters = 64@ 2 × 2 × 32
s = 1

filters = 2 × 2
𝑠 = 2

filters = 128@ 2 × 2 × 64
s = 1

filters = 2 × 2
𝑠 = 1

300 150 – – – – 3

𝐶 𝑁 𝑁5 filters = 16@ 3 × 3 × 3
s = 1

filters = 2 × 2
𝑠 = 2

filters = 32@ 2 × 2 × 16
s = 1

filters = 2 × 2
𝑠 = 2

filters = 64@ 2 × 2 × 32
s = 1

filters = 2 × 2
𝑠 = 2

filters = 128@ 2 × 2 × 64
s = 1

filters = 2 × 2
𝑠 = 1

375 75 15 – – – 3

𝐶 𝑁 𝑁6 filters = 32@ 3 × 3 × 3
s = 1

filters = 2 × 2
𝑠 = 2

filters = 64@ 2 × 2 × 32
s = 1

filters = 2 × 2
𝑠 = 2

filters = 128@ 2 × 2 × 64
s = 1

filters = 2 × 2
𝑠 = 2

filters = 256@ 2 × 2 × 128
s = 1

filters = 2 × 2
𝑠 = 1

1000 200 100 50 10 – 3
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(i.e., 𝑔) in approximating the behavior of the complex classifier (i.e., 𝑓 )
locally. The LIME interpretation, denoted as 𝜂 is derived through the
following optimization procedure:

𝜂(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑔∈𝐺 (𝑓 , 𝑔 , 𝜋𝑥) +𝛺(𝑔) (3)

where 𝑥 represents the instance being analyzed, 𝐺 denotes the set
of interpretable models, and (𝑓 , 𝑔 , 𝜋𝑥) is the fidelity function. This
function measures the reliability of the model 𝑔 (belonging to 𝐺) in
approximating the complex model 𝑓 in the local neighborhood defined
by 𝜋𝑥. Moreover, 𝛺(𝑔) represents the complexity of the interpretable
model [37]. In image processing applications, LIME segments the image
under analysis into small feature patches known as superpixels and
dentifies the subset of such superpixels that influences the network’s
ecision. Specifically, LIME creates perturbations by selectively includ-
ng or excluding certain superpixels in the image. In this way, synthetic

images are generated. In this study, each pixel within an excluded
feature is replaced by the average pixel value of the image. A simpler
surrogate interpretable model (here, a linear regression tree) is then
used on the perturbed images in order to approximate the classifier’s
behavior to pinpoint the most important features [37]. In this study,
IME was implemented using the built-in imageLIME function available
n MATLAB 2023b.

2.3.3. Occlusion sensitivity analysis (OSA)
OSA is a simple technique that identifies which regions of an image

are most relevant for a specific classification task. It involves perturbing
systematically different patches of the input by overlaying a shifting
mask and evaluating the corresponding effect on the network’s output.
Specifically, the perturbed image (i.e., image with a portion occluded)
feeds a pre-trained network (e.g., EfficientNet-B0) evaluating the varia-
tion in the classification score. These changes in classification are used
to generate a heatmap or saliency map that use a system of color-coded
from blue to red: red indicates higher values and corresponds to the
most critical areas contributing to the identification of the specified
class, as occluding these regions reduces classification performance. In
contrast, blue represents lower values and denotes regions that are less
relevant for the task [38]. In this study, a square mask with size of 20%
f the input image was applied and moved across the input data with
 vertical and horizontal stride of 22. It is to be noted that mask size
nd stride were determined empirically. OSA was implemented using

the built-in occlusionSensitivity function available in MATLAB 2023b.

2.3.4. Shapley additive explanations (SHAP)
SHAP [39] is a comprehensive framework for interpreting machine

learning (statistical and deep neural network) models grounded in
cooperative game theory. It quantifies the contribution of each feature
(e.g., a pixel in the case of an image) to the model’s output by assigning
it a Shapley value, ensuring a fair and consistent distribution of the pre-
diction’s attribution among all input features (i.e., pixels). Let 𝑓 (𝑥) be a
machine learning model, the Shapley value 𝜙𝑖 for feature 𝑖 is computed
by evaluating the marginal contribution of 𝑖 across all possible feature
subsets:

𝜙𝑖 =
∑

𝑆 ⊆𝑁⧵{𝑖}

|𝑁|!
|𝑆|!(|𝑁| − |𝑆| − 1)! [𝑓 (𝑥𝑆 ∪ {𝑖}) − 𝑓 (𝑥𝑆 )] (4)

where, 𝑁 represents the set of all features, 𝑆 is a subset of features
excluding 𝑖, 𝑥𝑆 is the input restricted to the features in 𝑆, and 𝑓 (𝑥𝑆∪ {𝑖})
is the model output when feature 𝑖 is included. In this study, the
Gradient Explainer from the SHAP library was employed to interpret
the deep networks under analysis. The Gradient Explainer approximates
Shapley values by integrating the gradient of the model output along
the path from a baseline input 𝑥′ to the actual input 𝑥. The Shapley
value for each feature 𝑖 is given as:

𝜙 =
1 𝜕 𝑓 (𝑥′ + 𝛼(𝑥 − 𝑥′))

⋅ (𝑥 − 𝑥′) 𝑑 𝛼 (5)
6

𝑖 ∫0 𝜕 𝑥𝑖 𝑖 𝑖
where, 𝑓 (𝑥) is the model’s output for the target class, 𝑥′ is the baseline
(e.g., a black image), and 𝛼 is the interpolation factor between the
aseline and actual input. Gradient Explainer operates locally (for
he given input) and approximates feature (pixel) contribution using
radients. Since Gradient Explainer requires a background dataset to
stimate feature contributions, in this study, 100 images were used,
s background data to compute Shapley values for all deep networks,
onsistently. It is worth noting that, since Gradient Explainer relies on
radient computations and the propagation of relevance across layers,
equiring substantial computational power, memory, and processing

resources, SHAP was computed using 100 images as background data
to minimize the computational burden for constrained resources. The
Gradient Explainer outcome is a saliency map, highlighting pixels in
the input image with coloration from blue (low relevance) to red (high
relevance). In this study, the Gradient explainer was implemented using
shap.GradientExplainer and Shapley values, normalized between zero
and one, are computed using the built-in function shap_values available
in shap library of PyTorch [40].

Examples of Grad-CAM, LIME, OSA and SHAP application to der-
moscopic skin lesions images MEL/NV/SK are reported in Fig. 12.

Trustworthiness index for explainable AI: TIxAI

In the field of xAI, trustworthiness refers to the degree of confidence
hat users (e.g., medical doctors) can place on outcomes generated by

AI systems. In this context, the Trustworthiness Index for eXplainable
I, herein referred to as TIxAI, is introduced to provide insights on the

ransparency of the AI model’s decision-making process, with particular
eference to skin lesion classification. Specifically, it estimates the
bility of the system to provide reliable results by evaluating in what
xtent the decision depends on the region in the input image that
ncludes the object of interest (i.e., skin lesion area) and not on a
egion in the input image that contains no relevant, background details

(i.e., non-lesion area). Indeed, by quantifying the extent to which the
I model’s decisions rely on the region of the skin lesion area (high

saliency values associated with the lesion area), the TIxAI aims to make
the model trustworthy from the clinicians’ and patients’ perspective
by endorsing possible high classification performance through a high
trustworthiness degree. Performance is not enough to make a model
eliable, as the final user needs to be sufficiently confident that the
odel’s decisions did not depend on unpredictable features related to

the non-lesion areas. The proposed TIxAI index quantifies the extent
to which high saliency regions in the heatmap match with the lesion
areas. The presence of high saliency regions in the non lesion area

ill reduce the TIxAI index. The proposed TIxAI index is based on
he combination of the heatmaps, provided by the xAI techniques, and
he ground truth mask corresponding to the image under analysis.
n the stage of evaluating a trained model, ground truth masks are
herefore necessary. Indeed, for each input image, the ISIC-17 dataset
rovides also a ground truth mask indicating the ‘‘lesion’’ and ‘‘non-
esion’’ regions based on delineation by experts. Starting from the
round truth mask M, the inverse ground truth mask 𝐌̂ is estimated
s the complementary. The ground truth mask M is then overlapped
o the heatmap H by performing the Hadamard product H ⊙ M, in
his way producing the relevance map of the lesion region R𝐿𝑒𝑠𝑖𝑜𝑛.
he element R𝐿𝑒𝑠𝑖𝑜𝑛𝑖,𝑗 is zero if the pixel (i, j) does not belong to the

esion region whereas it is equal to the heatmap level of pixel (i, j)
f the pixel belongs to the lesion region. The relevance map of the
on-lesion region, R𝑁 𝑜−𝐿𝑒𝑠𝑖𝑜𝑛 is calculated similarly by overlapping the
nverse ground truth mask 𝐌̂ to the heatmap H. In the end, the overall
elevance degree (RD) is obtained by summing the relevance of each
ixel (𝑖, 𝑗) in the relevance map (R𝐿𝑒𝑠𝑖𝑜𝑛 or R𝑁 𝑜−𝐿𝑒𝑠𝑖𝑜𝑛) and normalizing
ith respect to the extension of the corresponding region of interest

lesion or non-lesion).

𝑅𝐷𝐿𝑒𝑠𝑖𝑜𝑛 =

∑

𝑖
∑

𝑗 𝐑𝐿𝑒𝑠𝑖𝑜𝑛𝑖,𝑗
∑ ∑ (6)
𝑖 𝑗 𝐌
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Fig. 6. TIxAI is ranged between −1 and 1 (horizontal gray line). The figure shows three representative examples of negative, positive and null values of TIxAI. First, the heatmap
(H) is generated by means of xAI techniques (top row). In this case, the output of the occlusion sensitivity analysis of three dermoscopic images is reported. Then, the Hadamard
product H ⊙ M is performed (where M is the binary ground truth mask corresponding the dermoscopic image) and the Relevance Degree (RD) of the lesion area (RD𝐿𝑒𝑠𝑖𝑜𝑛) is
estimated according to Eq. (6) (second row). Similarly, the Hadamard product H ⊙ 𝐌̂ is performed (where 𝐌̂ is the inverse ground truth mask), and the Relevance Degree (RD) of
the non lesion area (RD𝑁 𝑜−𝐿𝑒𝑠𝑖𝑜𝑛) is estimated according to Eq. (7) (third row). Finally, TIxAI is computed by estimating the difference between RD𝐿𝑒𝑠𝑖𝑜𝑛 and RD𝑁 𝑜−𝐿𝑒𝑠𝑖𝑜𝑛 (Eq. (8)).
In this case, TIxAI of −0.3 denotes that the non lesion area is more relevant for the classification; TIxAI of 0.04 denotes that the two areas contribute equally; TIxAI of 0.72
denotes that the lesion area is more relevant for the classification.
𝑅𝐷𝑁 𝑜−𝐿𝑒𝑠𝑖𝑜𝑛 =
∑

𝑖
∑

𝑗 𝐑𝑁 𝑜−𝐿𝑒𝑠𝑖𝑜𝑛𝑖,𝑗
∑

𝑖
∑

𝑗 𝐌̂
(7)

𝑇 𝐼 𝑥𝐴𝐼 = 𝑅𝐷𝐿𝑒𝑠𝑖𝑜𝑛 − 𝑅𝐷𝑁 𝑜−𝐿𝑒𝑠𝑖𝑜𝑛 (8)

TIxAI ranges between −1 and 1. Indeed, negative values suggest
that the classifier considered more significant the area with no lesion;
values close to zero denote that regions with lesion and no-lesion
contribute equally to classification; positive values suggest that the
lesion area resulted more relevant to classification. Fig. 6 shows three
examples of images related to negative (−0.3), null (0.04) and positive
(0.72) TIxAI. It is reasonable to expect that a classifier is more trustwor-
thy when associated with a large gap between the relevance degree of
the lesion area and that of the non-lesion area. This difference is herein
referred to as the ‘‘Trustworthiness Index for Explainable AI (TIxAI)’’.
In conclusion, the higher the TIxAI, the more trustworthy the classifier
is expected to be.

Classification metrics

The performance of the proposed system is assessed using standard
metrics, including Accuracy, Sensitivity, Specificity, Precision, Negative
Predicted Value, F1-score [41]. In addition, K-Cohen score is also
evaluated [42]. It is defined as:

𝐾 − 𝐶 𝑜ℎ𝑒𝑛 =
𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 − 𝑃 𝑟(𝐸)

1 − 𝑃 𝑟(𝐸)
(9)

with Pr(E) being the probability of random agreement:

𝑃 𝑟(𝐸) = (𝑇 𝑃 + 𝐹 𝑃 ) ∗ (𝑇 𝑁 + 𝐹 𝑁)
(𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁)2

(10)

and measures the agreement between the predicted and target classes,
with the following score ranges: K-Cohen < 0.01; [0.01–0.20]; [0.21–
0.40]; [0.41–0.60]; [0.61–0.80]; [0.81–1.00], indicating, poor agree-
ment, slight agreement, fair agreement, moderate agreement, substan-
tial agreement and very high agreement.
7

Furthermore, the statistical algorithm known as 𝑡-distributed
stochastic neighbor embedding (𝑡-SNE) is used to further analyze the
features learned by the model. Specifically, 𝑡-SNE transforms high-
dimensional data points into lower-dimensional feature spaces by trans-
lating pairwise distances (using Chebyshev distance in this case) into
pairwise joint distributions. It achieves this by minimizing the
Kullback–Leibler divergence between the joint probabilities of the low-
dimensional and high-dimensional data [43]. In this work, in order to
visualize the progress of the learning procedure through the processing
modules of EfficientNet-B0, features corresponding to the initial, inter-
mediate and final stage of the network were extracted. In particular,
features related to the first MBConv1 (i.e., 112 × 112 × 16), the eighth
MBConv6 (i.e., 14 × 14 × 112) and the final global-average-pooling
(i.e., 1 × 1 × 1280) were taken into account. The 𝑡-SNE is thus applied
to embed the feature data into a two-dimensional feature space.

3. Results

Classification performance

Table 2 reports the comparative performance of the proposed skin
lesions classifiers trained and tested over the revised ISIC-17 dataset
(Section 2). In particular, the custom-based classifier yielded the worst
outcomes, achieving an average accuracy rate of 64.64 ± 5.67%, sen-
sitivity of 63.69 ± 6.13%, specificity of 78.69 ± 4.42%, precision of
66.90 ± 4.32%, NPV of 78.58 ± 6.86%, F-score of 64.17 ± 5.74%
with also a poor agreement score in terms of K-Cohen. In contrast,
with the exception of the VGG16 model, which reported an average
accuracy of 77%, all the fine tuned networks achieved comparable
performance, achieving also substantial and very high agreement of K-
Cohen parameter. In particular, as can be noted in Table 2, ResNet-18
and EfficientNet-B0 yielded the highest outcomes with average accu-
racies of 85.15 ± 1.13% and 87.57 ± 1.32%, respectively. Moreover,
it is important to highlight that both networks reported very high
agreement of K-Cohen parameter of 0.81 and 0.84, respectively. The
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Fig. 7. 𝑡-SNE visualization of features related to the first MBConv1, the eighth MBConv6 and the final global-average-pooling layer.
Fig. 8. Confusion matrices for each classification model corresponding to the test fold that yielded the highest accuracy.
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confusion matrices of the classification models, corresponding to the
test fold that yielded the highest accuracy, are also reported in Fig. 8.
As can be observed, the EfficientNet-B0 was able to achieve a maximum
lassification accuracy of 90.1%. In addition, in order to evaluate the
iscriminatory capabilities of the proposed network, 𝑡-SNE was applied
o the features extracted by the initial, intermediate, and last layer.

Fig. 7 depicts the 𝑡-SNE scatter plot of MEL (marked in red), NV
(marked in black) and SK (marked in blue) class. The projected features
are initially overlapped in the earlier stages of the network but became
more discriminative after passing through the layers. This observation
confirms the deep model proficiency in extracting the most relevant
features.

Evaluation of the explainable skin lesions classifier

Fig. 9 shows the average relevance of lesion and non-lesion areas
estimated according to Section 2) achieved by Grad-CAM, LIME, OSA
8

t

and SHAP. As can be observed, the relevance of lesion areas (blue bars)
was greater than the relevance of non-lesion areas (orange bars) for
Grad-CAM/LIME/OSA explainer. This means that the proposed skin
lesion classifier indeed considered the lesion regions more significant
than non-lesion regions. In particular, Grad-CAM explainer reported
the maximum value of average relevance degree, namely, 0.5. In con-
trast, since SHAP is a pixel-level explainability technique in image
processing, meaning that the importance of individual pixels in the
classification decision tends to be sparse across the image, comparable
degree of relevance of lesion and non-lesion area was achieved with
SHAP explainer. Fig. 10 shows the boxplots of the proposed TIxAI met-
ric (i.e., the difference between the relevance degree of the lesion area
nd the relevance degree of the non-lesion area) for each explainer.
s can be observed, the proposed TIxAI had positive median for Grad-
AM, LIME and OSA explainers, confirming the relevant contribution
f the lesion areas to the classifier’s decision; whereas, TIxAI related
o SHAP explainer was nearly to zero. This was due to the fact that
he relevance degree of the lesion area and the relevance degree of
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Table 2
Comparative performance of the proposed custom CNN-based and pre-trained CNN-based skin lesions classifiers.

Model K-Cohen Sensitivity [%] Specificity [%] Precision [%] NPV [%] Fscore [%] Accuracy [%] Execution time

Custom CNN 0.55 ± 0.07 63.69 ± 6.13 78.69 ± 4.42 66.90 ± 4.32 78.58 ± 6.86 64.17 ± 5.74 64.64 ± 5.57 10 min
GoogleNet 0.76 ± 0.04 82.26 ± 2.24 89.99 ± 1.65 82.71 ± 2.97 90.05 ± 1.55 81.85 ± 2.97 81.60 ± 2.95 4 min
ResNet-18 0.81 ± 0.01 85.48 ± 1.11 91.96 ± 0.65 85.36 ± 1.00 91.90 ± 0.65 85.37 ± 1.05 85.15 ± 1.13 2 min
MobileNetv2 0.78 ± 0.02 82.82 ± 1.17 90.37 ± 0.74 82.69 ± 1.28 90.34 ± 0.74 82.73 ± 1.21 82.51 ± 1.26 7 min
EfficientNet-B0 0.84 ± 0.02 87.94 ± 1.28 93.34 ± 0.75 87.61 ± 1.30 93.31 ± 0.75 87.73 ± 1.28 87.57 ± 1.32 11 min
VGG16 0.72 ± 0.04 76.83 ± 5.38 87.03 ± 2.65 79.98 ± 2.42 87.74 ± 1.95 76.95 ± 4.82 77.13 ± 4.27 40 min
e

the non-lesion area were similar, leading to a null value of TIxAI. Such
result was also confirmed by investigating the correlation between the
classification performance of the models and their corresponding TIxAI
values. Indeed, Fig. 11 shows the bar plot of the TIxAI generated by
each explainer (i.e., Grad-CAM, LIME, OSA, SHAP) corresponding to the
maximum accuracy achieved by every classification model (i.e., Custom
CNN, VGG16, MobileNetV2, GoogleNet, ResNet-18, EfficientNet-B0).
As can be seen, classifiers with lower classification accuracy (i.e., the
Custom CNN and VGG16) showed lower or negative TIxAI values.
n contrast, classifiers with higher accuracy scores reported higher

and positive TIxAI values. However, It is to be noted that the TIxAI
estimation based on SHAP explainer was nearly null for all classifiers,

hich is reflected in a bar positioned close to zero in the figure. Fig. 12
depicts sample instances of dermoscopic images belonging to MEL,
SK and NV class, along with the heatmaps that highlight the areas
in the input images that resulted more relevant to classification as
MEL, SK or NV (according to Grad-CAM/LIME/OSA/SHAP) and along
with the estimated TIxAI value. Positive TIxAI scores were recorded
in each example for Grad-CAM/LIME/OSA, with a maximum value of
TIxAI=0.79 for the MEL image and by means LIME explainer. Low
TIxAI was instead observed especially in SK images, with TIxAI of 0.43
and 0.58; while, negative and very low TIxAI scores (roughly zero)
were achieved using SHAP. Finally, Fig. 13 shows the scatter plots of
the TIxAI scores achieved by using LIME vs. OSA, LIME vs. Grad-CAM
nd OSA vs. Grad-CAM for each test image rightly classified as MEL,
V, SK, denoted as a black dot in the Figure. It is to be noted that since

he TIxAI for SHAP explainer was approximately null for each instance,
s clearly visible in Figs. 10 and 11, the scatter plot and the statistical

comparison of SHAP vs. LIME, SHAP vs. OSA and SHAP vs. GRAD-CAM
were not informative and were not taken into account in Fig. 13. Dots
positioned above the diagonal line indicate those samples for which one
explainer worked better than another. In particular, as can be observed
rom the distributions of Fig. 13, Grad-CAM outperformed the other

techniques. In addition, the statistical significance of the difference
between the TIxAI of each comparison (e.g., LIME vs. Grad-CAM) was
also estimated using the Wilcoxon Rank-Sum Test. The null hypothesis,
which suggests that the two sets of samples, namely, the TIxAI scores
associated with one explainer (such as LIME) and those linked with
he second explainer (such as Grad-CAM), are independent samples

drawn from identical continuous distributions with equal medians, was
evaluated. A 𝑝-value <0.05 was achieved in each comparison, resulting
in the rejection of the null hypothesis.

Comparison with the state-of-the-art

The proposed study was compared with other works that investi-
gated the application of explainable AI to skin lesions classifiers trained
nd tested on ISIC datasets. For example, Yang et al. [23] employed

the Class Activation Mapping (CAM) to highlight the discriminating
image areas used by the developed ResNet50 based-classifier to identify
the class under analysis. Wang et al. [24] proposed an interoperable
multi-modal CNN for skin lesion detection based on Grad-CAM algo-
rithm. This technique was also exploited by Zia et al. [27] and Ahmad
et al. [28] to investigate the explainability of the proposed binary
lassifier (i.e., the modified-DenseNet201) and multi-class classifier
i.e. Xception-ShuffleNet), respectively. Singh et al. [26] used XRAI,
9

Fig. 9. Average relevance degree of lesion and non-lesion areas, estimated by each
xplainer (i.e., Grad-CAM, LIME, OSA, SHAP).

Fig. 10. Boxplot analysis of the proposed TIxAI metric estimated for each explainer
(i.e., Grad-CAM, LIME, OSA, SHAP).
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Fig. 11. Bar plot representation of the TIxAI generated by each explainer (i.e., Grad-CAM, LIME, OSA, SHAP) compared to the maximum accuracy score achieved by every
classification model (i.e., Custom CNN, VGG16, MobileNetV2, GoogleNet, ResNet-18, EfficientNet-B0). It is worth noting that the TIxAI estimation based on SHAP explainer was
nearly null, which is reflected in a bar positioned close to zero in the figure.
Fig. 12. Heatmaps produced by Grad-CAM, LIME, OSA and SHAP based-explainers for three sample dermoscopic images, belonging to MEL, SK and NV classes, that were correctly
classified by the fine-tuned EfficientNet-B0 classifier. It is to be noted that Grad-CAM, LIME and OSA identify the relevant input areas contributing to MEL/SK/NV classification,
whereas SHAP, as a pixel-level explainability technique in image processing, highlights the significance of individual pixels, resulting in only a few relevant pixels across the
image. In the figure, the importance of the input region or pixel was emphasized using a color gradient ranging from blue (indicating low significance) to red (indicating high
significance). The figure reports also the corresponding TIxAI index estimated comparing the overall relevance degree of lesion and non-lesion areas. Lesion and non lesion areas
were derived from the ground truth mask. Positive TIxAI values indicate that the relevance of the lesion region is higher than the relevance of the non-lesion region in the
classification process (vice-versa for negative values).
Grad-CAM and Guided Backprop to SkiNet, a skin lesion diagnosis DL
network developed to classify the seven categories of ISIC-18 dataset.
Nigar et al. [25] applied LIME to explain the proposed ResNet-18-
based framework capable of achieving accuracy rate up to 94.47% in
the multi-skin lesions classification. Recently, Supriyanto et al. [29]
used various pre-trained CNN models and argumentation techniques
for classifying skin lesions of HAM10000 dataset, reporting 96.90%
accuracy. Moreover, SHAP was also analyzed in an attempt to interpret
the achieved performance. Finally, Ahmad et al. [28] proposed an
10
explainable skin lesion classification system based on an optimized
CNN, incorporating Grad-CAM and Grad-CAM++ to explain the model’s
decisions. It is worth noting that all the aforementioned studies pro-
vided only qualitative visual explanations of the achieved results with-
out quantifying the overall reliability of the model. In contrast, in
this study, xAI was applied to the developed classifier and TIxAI, a
novel metric to quantify the degree of trustworthiness of the explained
classifier, was also introduced.
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Fig. 13. Scatter-plots of the TIxAI estimated by Grad-CAM, LIME and OSA explainer. Dots above the diagonal indicate the samples for which one explainer (e.g., Grad-CAM)
outperformed the other (e.g., LIME). The significance of these improvements was assessed using the Wilcoxon Rank-Sum Test (p < 0.05).
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4. Conclusion

The primary objective of this paper was to investigate the trustwor-
hiness of the proposed skin lesions classifier in order to improve the

model reliability. For this purpose, the public ‘‘International Skin Imag-
ng Collaboration’’ dataset, which comprises various versions (ISIC-
6, ISIC-17, ISIC-18, HAM10000, ISIC-19, ISIC-20), was considered.
iven the specific objective of introducing a novel xAI metric that
xploits ground truth response masks alongside class labels, the most
ecent dataset, i.e. ISIC-17, which provided both these types of both
nformation, was selected for further analysis and experimentation.
he proposed methodology comprised a classification and explaining
tage. The classification stage included a fine tuned EfficientNet-B0-

based classifier that was able to achieve high classification performance
i.e., accuracy of 87.57 ± 1.32%). The explaining stage involved ex-

plainability analysis of the proposed classifier using state-of-the-art xAI
techniques, namely, Grad-CAM, LIME, OSA and SHAP. In addition, in
order to quantitatively assess the reliability of the classifier, a novel
metric, referred to as the ‘‘Trustworthiness Index for Explainable AI
(TIxAI)’’ was introduced to measure the degree of trustworthiness of
the classifier, based on the heatmaps produced by the explainers and
on the ground truth masks.

To the best of our knowledge, this is the first work that intro-
duces a measure of trustworthiness of explainability analysis in skin
lesions classification. Experimental results reported positive average
values of TIxAI, indicating that the relevance degree of the lesion
area was higher than the non-lesion area, in particular for Grad-CAM,
LIME, OSA explainer. TIxAI values of zeros were instead observed
with SHAP explainer. This is due to the fact that SHAP does not
nherently account for spatial relationships in image data. Lesion areas
n images are contiguous regions, whereas SHAP treats each pixel
feature) independently during its calculations, leading to diluted or
niform attributions for lesion and non-lesion regions. In general, for
he classifier to be considered trustworthy, in addition to pursuing high
lassification performance, the authors argue that a positive TIxAI is
ecessary, indicating that the relevance of the lesion region is higher
han the relevance of the non-lesion region. Further, if the classifier
ecognizes the image correctly but with a negative TIxAI, this indicates
hat the network considered the region with no lesion as more relevant,
uggesting that other factors may have influenced the classifier’s deci-
ion. Since enhanced trustworthiness of AI models is strictly necessary
or the case of healthcare applications, the present work aims to make
 contribution in the quantitative assessment of models’ reliability.

The proposed TIxAI can be considered a general evaluation metric
ith potential applications beyond skin cancer diagnosis. It can be
11

r

applied, in principle, in a wide range of medical scenarios [44], as well
as other contexts [45]. In medical imaging domains, including radiogra-
hy (X-rays), neuroimaging, magnetic resonance imaging (MRI), com-
uted tomography (CT), and hematological imaging (e.g., red blood
ell analysis), TIxAI can assess the trustworthiness of xAI models by
valuating the degree of relevance of specific regions of interest, such
s tumors, lesions, or other anatomical features. For example, in MRI-
ased brain tumor diagnosis, TIxAI could validate whether the xAI
echnique, used to evaluate the reliability of the model, effectively
ocuses on the tumor boundaries, ensuring that these regions are pri-
rity considerations in the decision-making process. For the case of
-rays based lung nodule detection, TIxAI could verify whether the AI
etection system correctly focuses on the nodule or mass and not on
rrelevant areas. In CT-based colorectal cancer screening, TIxAI could
ssess whether the AI and xAI model correctly focuses on the polyp
r tumor region, ensuring it does not mistakenly identify surrounding
ealthy colon tissues. TIxAI can also enhance the trustworthiness of AI
ystems in other domains [46,47]. For instance, in autonomous driving,
IxAI could ensure that AI models accurately detect, for example,
edestrians or obstacles, enabling safe and effective navigation. In
bject recognition tasks, such as ships detection in satellite imagery,
IxAI could help validate whether the AI focuses on relevant patterns
ike full shapes of ships or wakes. In nanotechnology and manufacturing
uality control applications, such as anomaly detection in scanning
lectron microscope (SEM) images of electrospun nanofibers, TIxAI
ould evaluate whether AI models effectively identify areas of defects,
uch as beads.

Although TIxAI has a wide range of potential applications both in
clinical and non-clinical contexts, the main limitation of TIxAI is its
dependence on annotated masks. Whilst annotated masks are essential
to the definition of the TIxAI metric, their creation requires significant
ime and effort from domain-specific expertise. For example, annotating

medical scans requires manual input from trained radiologists. This
dependency limits the applicability of TIxAI in scenarios where anno-
tated masks are unavailable. However, it is worth noting that annotated
masks are essential in image segmentation for object detection as they
epresent the gold standard for evaluating segmentation accuracy. In
he future, automatic segmentation tools based on the collaboration
f multiple centers sharing data and annotations will be included
n the proposed framework to assist in automating the definition of
asks. This tool could significantly speed up the segmentation process

nd reduce the burden on experts, making the process more efficient.
owever, experts validation will still be indispensable as their as-

essment cannot be disregarded, especially in clinical contexts. The

ole of experts in reviewing and validating annotations ensures the
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segmentation is precise and relevant. Automated methods might not
always capture the subtleties that an experienced operator can detect,
especially in complex clinical situations. The expert role in verifying
and, where required, correcting the automated masks ensures that the
final segmentation remains accurate and reliable for clinical decision-

aking. In addition, the proposed TIxAI depends on the output of the
explainer. The better the explainer the more reliable TIxAI will be.
In the future, novel explaining approaches will be proposed. Finally,
motivated by the promising results of the TIxAI score, the new metric
will also be employed to analyze the explainability of state-of-the-
art classifiers to benchmark their performance on other real-world
classification tasks.
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