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Abstract: Malicious domains are part of the landscape of the internet but are becoming
more prevalent and more dangerous both to companies and to individuals. They can
be hosted on various technologies and serve an array of content, including malware,
command and control and complex phishing sites that are designed to deceive and expose.
Tracking, blocking and detecting such domains is complex, and very often it involves
complex allowlist or denylist management or SIEM integration with open-source TLS
fingerprinting techniques. Many fingerprinting techniques, such as JARM and JA3, are used
by threat hunters to determine domain classification, but with the increase in TLS similarity,
particularly in CDNs, they are becoming less useful. The aim of this paper was to adapt
and evolve open-source TLS fingerprinting techniques with increased features to enhance
granularity and to produce a similarity-mapping system that would enable the tracking
and detection of previously unknown malicious domains. This was achieved by enriching
TLS fingerprints with HTTP header data and producing a fine-grain similarity visualisation
that represented high-dimensional data using MinHash and Locality-Sensitive Hashing.
Influence was taken from the chemistry domain, where the problem of high-dimensional
similarity in chemical fingerprints is often encountered. An enriched fingerprint was
produced, which was then visualised across three separate datasets. The results were
analysed and evaluated, with 67 previously unknown malicious domains being detected
based on their similarity to known malicious domains and nothing else. The similarity-
mapping technique produced demonstrates definite promise in the arena of early detection
of malware and phishing domains.

Keywords: passive fingerprinting; active fingerprinting; malware domains; phishing
domains; detection methods

1. Introduction
There is an increasing threat from malicious domains to users and networks, whether

that is from phishing domains that are designed to harvest user information and credentials
or malicious domains that host command and control servers. There are several open-
source techniques and tools designed to assist with the classification of domains, but many
of them are reactionary and rely on reports from third parties, tools, or systems. However, a
key arsenal in the weapon of classification is active TLS fingerprinting. This approach uses
scanning to conduct exhaustive probes on domains and amalgamates the data returned
from ClientHellos, to determine the configuration of the server from those features.
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These TLS features, whilst appearing benign, can help form a picture of underlying
technologies and libraries, such as the version of OpenSSL. Given the fingerprint of a
malicious domain, it is possible to pivot to other domains with the same fingerprint and
identify malware with the same technology and configurations. Given the rising level of
automation in common malware, ransomware and phishing tools, it is reasonable to assume
that numerous malicious domains will share similar configurations and deployments in
the future [1,2].

Fingerprinting in this manner is widely used in tooling such as Shodan and Censys,
and whilst useful for threat hunting and pivoting, it is not fool proof. If the TLS features
included in the fingerprint are too wide, then cardinality will be too high, resulting in
high levels of benign domains sharing fingerprints with malicious domains. Many of
the methods currently in use also rely on hash-based approaches, meaning it is difficult
to understand how similar domains are, as small differences in configurations produce
radically different hashes.

This paper aimed to determine if the hypothesis that malicious domains can be
classified more easily based upon their similarity to other domains is correct, rather than
exclusively relying on hash-based approaches. It also aimed to examine the current state of
the art for active scanning-based fingerprinting and to determine if the increased granularity
of server features can aid in the detection of malicious domains even when they are hosted
on CDNs—which greatly narrows the range of TLS features.

The main contributions of the current article are as follows:

• We conducted a critical literature review, evaluating active scanning techniques that
can be used to generate server fingerprints.

• We applied the information gathered in the literature review to the design and de-
velopment of an active scanning fingerprint that increases the granularity of current
techniques, improving the ability to detect malicious domains hosted on CDNs where
feature similarity is high.

• We enhanced the applicability and security of fingerprinting by introducing a suitable
similarity-mapping approach, making it difficult to subvert hash-based fingerprints
with minuscule adjustments or manipulations.

• We critically evaluated the results and findings from the practical experiments.

The paper is structured as follows: Section 2 presents an in-depth literature review
to determine the current state of the research and what gaps can be identified. Section 3
presents the methodology for the practical experiments and examines any decisions made.
Section 4 presents the results of the practical in-depth and extensive evaluations, including
a comparison to others’ research. Finally, Section 5 summarises our work and Section 6
suggests future research and avenues for improvement.

2. Related Work
The first version of the TLS protocol was published in 1999 by the Internet Engineering

Task Force (IETF) and has been under constant review and development since, with the
latest version, TLS 1.3 [3], being released in 2018. Despite such a lengthy period of adoption,
it remains in the Open Web Application Security Projects (OWASP) top ten, and as recently
as 2021 cryptographic failures were promoted to the number two slot [4]. According to the
OSWAP report, underlying issues can range from a simple lack of understanding of the
TLS mechanisms resulting in weak cipher suite choices to invalid certificate chains and
depreciated TLS versions.

TLS 1.3 is increasingly being adopted for its enhanced security and privacy features,
with 63% of the global top 1 million web sites now supporting it [4]. Despite the modernity
of the version, however, there remained gaps in the privacy aspect of the protocol, and in
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2022 the TLS working group released a further amendment to the protocol [3], to introduce
the Encrypted ClientHello (ECH). The introduction of ECH has far-reaching implications
for TLS fingerprinting methods that have traditionally relied on metadata contained within
the unencrypted ClientHello.

As this paper focused on future ability to detect and fingerprint malware and C2
domains under TLS, the background and exposition work focused on the latest released
version, 1.3, including ECH[3], with previous versions only referenced for historical clarity.

2.1. Active Fingerprinting

Although the goal of TLS is to improve security and privacy, a side-effect is that it
hampers the ability to differentiate malicious traffic from normal traffic. As the volume of
companies utilising Security Operations Centres (SOCs) increases, the ability to classify
traffic correctly is a valuable tool. Oh et al. [5] raised the issue that Network Traffic Analysis
(NTA) is becoming increasingly difficult, due to 80% of internet traffic now being under
the HTTPS protocol. They highlight one of the motivating factors in this growth as being
the ease of access to certificate providers, specifically Let’s Encrypt, but also the drive by
large web browser technologies, such as Mozilla, and by CDN providers like Cloudflare.
Shamsimukhametov et al. [6] raised similar concerns regarding the uptake in malware
utilising TLS, but they focused on the requirement for privacy on the internet.

Active fingerprinting is the technique of actively identifying malicious domains or web
servers, and it can be useful in various scenarios, including threat hunting, infrastructure
hunting and for detecting the use of CDNs [7]. These methods involve making active
but benign connections to a domain, in order to gather enough information to make an
accurate classification as to the intent of the server. The most common technique currently
in use is known as JARM [8], which is a fuzzy SHA256 hash of the resultant selected set of
metadata extracted from ten TLS connections. Each of the ten connections uses a different
ClientHello, forcing the server to respond with a range of results that enables profiling of
the server. The server behaviours [7] are considered the totality of the server’s capabilities,
made up from the configuration of the TLS that can influence the handshake procedure. This
indicates that servers with identical JARMs will have very similar software configurations.

In contrast to JARM, which creates a fingerprint based on unencrypted TLS metadata,
Sosnowski et al. [7] created Active TLS Stack Fingerprinting. Unlike the JARM methodology,
the tooling enables users to configure not only the number of ClientHellos sent but also the
configuration of the ClientHellos themselves. Another key difference is the full completion
of the TLS connection during the active scan, enabling the tooling to collect metadata that
would otherwise be encrypted in the new ECH. The feature selection used to build the
fingerprint consists of the TLS version, cipher suites, any received alerts and extensions
data. A comparison of the TLS feature used by the JARM scanning tool and those used by
ActiveTLS can be seen in Table 1.

Although Sosnowski et al. [7] concluded that their tooling can differentiate 55% more
server behaviours than the JARM approach, the authors still had to incorporate additional
metadata in the form of HTTP headers captured during the scan, to further improve the
ability to detect command and control (C2) servers. Papadogiannaki and Ioannidis [9] also
highlighted some weaknesses with the JARM technique, similar to the issues raised by [10].
They stated that the volume of collisions with benign domains can mean diminishing
returns if the database is not kept up to date. This was reflected in their results, with the
overlap of malicious fingerprints with benign being only 135 in 2021 versus 40% in 2022.
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Table 1. The full TLS features used in both the JARM and ActiveTLS scan tools. The features used by
each tool are highlighted in green; those not used are highlighted in grey.

ID Extension JARM Active TLS
1 max_fragment_length
7 client_authentication
8 server_authentication
9 cert_type

10 supported_groups
11 ec_point_formats
13 signature_algorithms
15 heartbeat
16 application_layer_protocol_negotiation
19 client_certificate_type
20 server_certificate_type
23 extended_master_secret
24 token_binding
27 compress_certificate
28 record_size_limit
35 session_ticket
43 supported_versions
45 psk_key_exchange_modes
47 certificate_authorities
50 signature_algorithms_cert
51 key_share (only selected group)

65281 renegotiation_info

2.2. TLS Fingerprinting and the CDN Problem

Content delivery networks are geographically distributed nodes designed to improve
the speed and availability of content by moving it closer to the end user. They are increas-
ingly being adopted to help with Distributed Denial Of Service (DDOS) attacks, and some
CDN vendors have been instrumental in pioneering the early adoptions of technologies
like ECH, with Cloudflare enabling the technology as recently as 2023 [11].

The increasing adoption of CDNs has naturally had an impact on the statistics of TLS
usage. According to the HTTP archive Web Almanac, 87% of sites using TLS now use the
latest version compared to only 42% of non-CDN-origin sites [12]. This has been driven
by the fact that the CDN handles the TLS termination at the edge and creates a second
connection back to the origin. The fact that the CDN handles the termination means that
TLS configurations are often no longer done by the origin server and, as the CDN can
be configured to handle updates and configuration changes, more uniformity across TLS
profiles is seen. Siby et al. [13] discussed some of the issues faced when fingerprinting
websites host behind CDNs. They highlighted the increased usage of CDNs, with 44% of
the top 1 million sites now utilising them, and how the co-hosting of multiple domains
behind a singular IP with the same TLS configuration creates a natural anonymity for
the origin server. Sosnowski et al. [7] helped confirm the principal difficulties behind
CDN identification focusing only on TLS metadata during their development of the Active
TLS Stack fingerprinting tool. Their attempt to identify CDN deployments outside of a
CDN’s AS clearly highlighted the similarity between TLS fingerprints, with their research
allocating specific fingerprints to several large CDN providers. Although the ranges of
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fingerprints were small in some cases, such as Alibaba being assigned only 1 fingerprint,
Cloudflare was allocated 801 fingerprints, more than would be expected for a provider
deploying TLS-enabled servers at scale.

2.3. TLS Fingerprint Enrichment

A large volume of the research into TLS fingerprinting suggests that it is a viable tool
for clustering nodes with similar configurations, but that it is not granular enough on its
own to enable true classification. As the roll-out of TLS 1.3 and ECH progresses, along
with the upswing in the use of CDNs, the variation seen across the TLS stack is decreasing,
making TLS fingerprinting less viable as a fine-grained method for malicious domain and
infrastructure hunting.

Sosnowski et al. [7] included the HTTP ’Server’ key in their initial scans, to help
detect CDN server deployments outside of a CDN’s designated AS. The additional HTTP
metadata, when combined with TLS, achieved a maximum precision of 97%, but the authors
were clear that HTTP header analysis alone was not ideal as a classifier. In contrast to this,
Tang et al. [14] developed HSLF, a Locality-Sensitive Hashing algorithm that sequenced
all header fields and measured similarities between HTTP sessions. The authors chose
to weight specific headers that reflected application-specific details before applying a
random forest machine learning algorithm that resulted in an accuracy rating of 0.96 when
classifying application-specific traffic.

HTTP headers have also been used to track and pivot between malicious domains,
McGahagan et al. [15] analysed numerous headers from benign and malicious web-servers
and used eight machine learning models to demonstrate the feasibility and effectiveness of
only using headers in isolation. The authors chose to invest heavily in data cleaning and the
validation process, ensuring that custom headers and mis-spellings were not considered.
This approach was in direct conflict to the one taken by Al-Hakimi and Bax [16], who
used headers for hunting malicious infrastructure. Their research considered mis-spellings
and unusual sequencing to be valuable anomalies that could aid in the identification of
unique command and control servers. The importance of header sequences was echoed by
Bortolameotti et al. [17], who produced HeadPrint to identify malicious communications in
passive traffic. Their fingerprint technique relied on two orthogonal header characteristics
that enabled applications to be distinguished by their order and their associated values.
A range of machine learning models were evaluated using the fingerprinting technique,
and the accuracy ranged from 90.74% to 95.44%.

Although research into the domain of active HTTP header fingerprinting is limited,
the current research does indicate that, at least on an application level, HTTP headers can
be effective in fingerprinting [14,16,17] and useful for enrichment of TLS fingerprints.

3. Methodology
It is clear from the current research that, as technology progresses, TLS fingerprints are

becoming less granular, which naturally limits their effectiveness. This presents a significant
challenge in malicious domain detection, as actors frequently make minor modifications
to their server configurations to evade detection [9,10]. These small changes—such as
adjusting a single cipher suite or TLS extension—can produce entirely different hash-
based fingerprints, despite the underlying infrastructure remaining largely unchanged [7].
This fingerprint-evasion technique is particularly effective against traditional hash-based
approaches like JARM, where even minimal alterations generate completely different
signatures, making it difficult to track malicious infrastructure over time, as operators make
small defensive changes.
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This paper proposes a methodology to produce an enhanced fingerprint that combines
TLS features with HTTP header data, complemented by a similarity-mapping technique
that mitigates the subversion of current hash-based approaches. The methodology is
presented in three main sections. Firstly, we detail the selection and breakdown of the
datasets used. Secondly, we detail the tooling used throughout the process. Finally, we
provide an end-to-end process flow followed by a detailed explanation of how fingerprints
are obtained and transformed into fine-grained similarity relationships.

3.1. Data Acquisition

For known good domains, the Tranco list [18] was selected, as it offers several advan-
tages over alternatives such as the historical Alexa or Umbrella rankings: it employs vote-
counting rank aggregation across multiple source lists, it implements specific manipulation-
resistance measures, and it provides reproducible daily snapshots with verifiable generation
processes [18].

Known active malicious and unknown domains were more difficult to source in bulk,
due to their transient nature. A range of publicly accessible sources were used, as shown in
Table 2, covering various threat intelligence platforms and attack vectors. To ensure data
quality and representativeness, several controls were implemented. Domains were dedu-
plicated and cross-validated across multiple threat intelligence platforms, with any inactive
domains removed from the dataset, given that prior studies indicated that approximately
75% of malicious domain activity occurs within the first 30 days after registration [19],
and that industry findings from Akamai also demonstrated that newly registered domains
exhibit the highest rates of malicious activity within their first month [20]. A 30-day slid-
ing window was used for data collection, to balance currency with sufficient volume for
meaningful analysis.

Table 2. Table of all datasets used for active scanning.

Dataset Location Category

Tranco LJNY4 [18] https://tranco-list.eu
access on 2 March 2025 Good

UrlHaus [21] https://urlhaus.abuse.ch
access on 2 March 2025 Bad

Hunt.io [22] https://hunt.io
access on 2 March 2025 Bad

Cert.pl [23] https://hole.cert.pl
access on 2 March 2025 Bad

OpenPhish [24] https://openphish.com
access on 2 March 2025 Bad

Shreshtait [25] https://shreshtait.com
access on 2 March 2025 Unknown

3.2. Tooling

The initial phase required domain name resolution to IP addresses across large datasets.
MassDNS [26] was selected for its effectiveness in large-scale scanning scenarios. As a
stub resolver, MassDNS enables parallel processing of thousands of queries per second
while maintaining accuracy. Despite this accuracy, the relationship between domains and
IP addresses is not static or permanent. Domain name resolution, via the Domain Name
System (DNS), only provides a mapping at a specific time, and subsequent scans may
resolve to different IP addresses. This limitation can introduce a degree of variability to
the fingerprinting process, as subsequent scans can return different TLS or HTTP header
patterns. To address this, our methodology focused on snapshots at a specific time within

https://tranco-list.eu
https://urlhaus.abuse.ch
https://hunt.io
https://hole.cert.pl
https://openphish.com
https://shreshtait.com
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the 30-day sliding window, setting a temporal boundary on scans. This approach provided
a valid representation of the domains’ configuration at any given moment, which was
sufficient for detecting patterns in malicious infrastructure.

For TLS fingerprint generation, the ActiveTLS stack fingerprinting tool [7] was chosen
over the more widely recognised JARM process. This was based on two requirements:
(1) a transparent output format that would enable further analysis and modification, (2) sup-
port for Encrypted ClientHello (ECH) and an increased TLS feature set, as seen in Table 1.
While JARM is widely adopted for TLS fingerprinting, its hash-based output format limits
feature-level analysis without direct code modification. In contrast, ActiveTLS provides
detailed metadata for each TLS feature, enabling the subsequent fine-grained similarity
mapping required for the presented methodology. The tool’s built-in ten ClientHellos were
used, to enable direct comparison to previous research and datasets’ outputs. To load
balance, domain scanning was randomized across the ten connections. TLS extended
output was also enabled, to capture the complete feature set.

ActiveTLS stack provides HTTP header capture functionality by using the existing
TLS connection. However, its implementation presents two limitations: header ordering
and correlation challenges when mapping the resultant header data to domains. Given
that header sequence is a key element of fingerprinting techniques [16,17], the built-in
HTTP mechanism was deemed unsuitable. To address these limitations, our methodology
implemented a separate post-processing phase that established a dedicated TLS connection
for each domain that executed a HEAD request, ensuring deterministic header collection.

3.3. Process Flow

The entire end-to-end fingerprinting process can be seen in Figure 1. Starting with the
initial datasets and progressing through the MassDNS and ActiveTLS tooling, the raw en-
riched fingerprints were processed into unique feature sets. These sets were converted into
binary vectors, which were then used to create a MinHash signature matrix. Finally, the LSH
forest was generated from this matrix, enabling the visualisation of similarity comparisons.

Figure 1. A flow diagram of the end-to-end fingerprint processing pipeline.

3.4. Active Scanning

The initial steps involved resolving the domains to their respective IP address. The do-
main resolution to IP was performed using MassDNS [26]. The output from the MassDNS
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scan of the domain:ip format was then appended with the ten curated ClientHellos used
by the ActiveTLS tool, to ensure parity of results across the datasets.

3.5. Fingerprint Post-Processing

The ActiveTLS-generated fingerprints (example shown in Figure 2) underwent ini-
tial post-processing, to decompose them into their core elements: TLS version, cipher
suites, extensions (including decoded Application-Layer Protocol Negotiation), encrypted
extensions and certificate extension parameters. These TLS features were reduplicated
across all ten ClientHello scans and categorized by feature type, to create a complete
profile of the TLS. While the original fingerprint was preserved, a SHA256-encoded ver-
sion was also maintained, to enhance readability. The data were enriched by domain
source information, classification labels (good, bad, or unknown) and Autonomous System
(AS) numbers, with AS resolution performed using the pyasn.dat file from the original
ActiveTLS dataset [27].

771_1302_43.AwQ-51.23_0.-16.AAMCaDI__43.AwQ-51.23_-

Figure 2. The raw fingerprint produced from the active scan.

3.6. HTTP Header Enrichment

The HTTP header collection occurred as an optional post-processing step, executed
through a HEAD request following TLS connection establishment. Unlike Sosnowski et al. [27],
who captured only the Server header—commonly overwritten in CDNs—our methodology
preserved all header keys in their original sequence, while discarding values except where
explicitly specified. In the base implementation, only the Server value was retained.
Header ordering was maintained as a critical metric for application similarity mapping.
The collected headers were then hashed, using MurmurHash3. The Python aiohttp module
was used during the implementation of the enrichment process, to asynchronously make
each HEAD request. During the header collection, the session keys were written to key.log
file, to enable future decryption of the session if required. An example of a full HEAD
request taking place within Wireshark can be seen in Figure 3, with the corresponding
HTTP header response being seen in Figure 4.

Figure 3. A screenshot of the HEAD request being made, as seen within Wireshark. The HTTP
Protocol is highlighted in green.

Table 3 demonstrates the correlation between HTTP header fingerprints and their
corresponding TLS fingerprints:

Table 3. TLS fingerprint and HTTP header hash correlation for CDN-hosted domains, demonstrat-
ing how incorporating HTTP headers increases fingerprint granularity. While there are only two
unique TLS fingerprints shown, there are three unique HTTP header hashes, suggesting better server
differentiation capability.

TLS Fingerprint (SHA256) HTTP Headers (MMH3)

71a72d0a2d5478cafb7fc513fe120129a4db5f5dd21671ded5314034b0b72124 3898065973
ab545fcff96261433c531d79bd9035d8db4a13b7faef85f5e4283d66ad5ed49d 3898065973
ab545fcff96261433c531d79bd9035d8db4a13b7faef85f5e4283d66ad5ed49d 3898065973
71a72d0a2d5478cafb7fc513fe120129a4db5f5dd21671ded5314034b0b72124 2350846486
ab545fcff96261433c531d79bd9035d8db4a13b7faef85f5e4283d66ad5ed49d 1200561793
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Figure 4. A screenshot of a typical set of HTTP headers received in response to a HEAD request
during the header enrichment process. The HEAD request is seen in red, the HTTP response is blue.

3.7. Feature Vector Generation

To enable the similarity computation, the enriched fingerprints were also transformed
into binary feature vectors in a post-processing step. For each fingerprint, we constructed a
binary vector, x ∈ {0, 1}|F|, where

x[i] =

1 if feature i is present in the fingerprint

0 otherwise

The feature set F was constructed dynamically after each active scan by iterating
through all the fingerprints in the dataset and maintaining a set of unique TLS features
and HTTP headers. This captured the complete feature space and ensured that fixed-size
vectors were produced. The resulting binary feature vectors had dimensions ranging from
80 to 3000 features, depending on the inclusion of HTTP header data and, importantly, the
size of the scan. The larger the selection of domains scanned, the larger the feature vectors.

3.8. Similarity Mapping

Similarity mapping is a core element of the presented approach, and it enabled us
to map the high-dimensional feature spaces of TLS and HTTP fingerprints on to a lower-
dimensional structure whilst preserving the local similarity structure. The main challenge
in this mapping lies in being able to efficiently calculate similarities without losing any
of the fine-grain details. This is more critical for TLS features where the quantity of the
exposed data is limited to that which is exposed during the handshake.

In our approach, we used the Jaccard similarity coefficient to compare two fingerprints
represented as binary feature vectors, A and B. This method is defined as J(A, B) = |A∩B|

|A∪B| ,
and it provided a reliable measure of their similarity. However, directly computing Jaccard
similarities has O(n2) complexity for n fingerprints, making it computationally expensive, es-
pecially for the large datasets used in active scanning. To address the challenge of scalability,
we used a two-phase similarity approach involving MinHash signatures and Locality-
Sensitive Hashing (LSH). Using MinHash specifically exploits the relationship between
Jaccard similarity and the probability of hash collisions, enabling the compression of binary
feature vectors into fixed-size signatures that preserve the expected Jaccard similarities.
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For a fingerprint’s binary feature vector, x ∈ 0, 1|F|, the MinHash signature M(x) was
generated, using k independent hash functions, h1, ..., hk, as

M(x) = [min(h1(i) : x[i] = 1), ..., min(hk(i) : x[i] = 1)].

This reduced the dimensionality from |F| to k, while still preserving the expected
similarities between fingerprints [28,29]. The probability of a match between MinHash
signatures was related to the Jaccard similarity:

P(min(h(A)) = min(h(B))) = J(A, B).

The most appropriate values for k and l were established through iterative testing.
Once the LSH Forest was produced, it could be queried via linear scan and LSH traversal.
This enabled the nearest neighbours for any given node to be determined. As established
in Section 3.5, the original fingerprints were retained alongside their binary representa-
tions, enabling confirmation that domains with the same fingerprint or those with small
vector differences were located on branches or in clusters. Through this iterative process,
we were able to determine that k = 1024 hash functions struck an optimal balance be-
tween computational efficiency and similarity preservation, with a theoretical error bound
of O

(
1√
k

)
.

The LSH forest data structure facilitated fast, approximate nearest-neighbour searches
with O(log n) complexity. For each fingerprint, x, its MinHash signature was split M(x) into
l bands (signature partitions) of r values, where l × r = k. Two fingerprints were considered
candidate pairs if they matched in at least one band, with the collision probability given by

P(candidates) = 1 − (1 − J(A, B)r)l .

The LSH forest was initialised with 1024 hash functions (matching the MinHash
encoding) and l = 128 prefix trees. Increasing these values improved accuracy [30] but also
increased memory usage. Using l = 128 prefix trees and r = 8 values per band, we
achieved a high probability of detecting fingerprint pairs with J(A, B) > 0.7, while keeping
the false positive rate under 0.1%.

We then constructed the final c-k-NNG graph G = (V, E) in stages: 1. We computed
the MinHash signatures for all fingerprints; 2. We built the LSH forest index, using l prefix
trees; 3. We found k = 100 approximate nearest neighbours for each vertex; 4. We added
edges weighted by estimated Jaccard similarity.

This reduced the complexity from O(n2) to O(n log n), while still maintaining the local
similarity relationships necessary for granular TLS comparison.

3.9. Similarity Visualisation with Tree MAP

To better understand the similarity relationships between fingerprints, we used Tree
MAP (TMAP), a method developed by Probst and Reymond [30] for mapping chemical
fingerprints. TMAP is a Python library supported upto Python 3.9 designed for handling
high-dimensional datasets, and it has been used extensively in the chemical sciences, such
as with the ChEMBL database, which contains millions of nodes. The core feature of TMAP
is its focus on preserving nearest-neighbour relationships, making it an ideal choice when
avoiding dimensionality-reduction techniques like Principle Component Analysis (PCA).

For our use case, TMAP allowed us to project the high-dimensional similarity space
onto a 2D plane while preserving local structures. The resulting visualisations placed
domains with similar TLS configurations closer together, while still capturing global rela-
tionships. This method is more resilient to minor configuration changes—domains with
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slightly different TLS settings will still remain close to each other in the visualisation. It
also enables visual grouping of related infrastructure, making it easier to spot similarities
across malicious domains quickly. The effectiveness of this approach is demonstrated in
Section 4, where we show how visually distinct groups correspond to related malicious
infrastructure, enabling the detection of previously unknown malicious domains through
similarity relationships. Figure 5 shows a plot of binary feature vectors. For this visualisa-
tion, we used the Python library Fearun, which supports interactive graphs of millions of
data points through web-based interfaces.

Figure 5. Graph displaying TLS features enriched with HTTP header data. The resulting feature
matrix M ∈ {0, 1}n×d has dimensions n = 16,254 (fingerprints) and d = 2124 (features), representing
the complete binary feature space of the TLS and HTTP characteristics. Known good domains are
coloured green, known bad domains, red and unknown domains, orange.

Similarity Resilience

Unlike static hash-based fingerprinting approaches, similarity mapping introduces
a natural resilience to fingerprint subversion, particularly in relation to TLS features.
An adversarial action to flip a single TLS extension would generate a completely different
JARM or hash signature, but with a Minhash and LSH approach similarity relationships
remain proportional to the Jaccard similarity of the underlying feature set.

For a feature vector with dimensionality d and k hash functions in the MinHash
signature, the expected difference in similarity scores follows the statistical properties of
MinHash sampling. The probability that two sets with Jaccard similarity J(A, B) will have
the same MinHash value for a random hash function is exactly J(A, B). This means that
small changes to the feature vector result in proportionally small changes to the similarity
score. From a practical perspective, the proportional response to changes imposes a degree
of natural resilience to subversion. Adjusting some of the core TLS parameters (cipher
suites, ALPN, extensions) beyond minor alterations can also lead to compatibility issues,
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impact handshake stability and security and, importantly, restrict supportable clients for
malicious actors.

Additionally, when a node has a Jaccard similarity of 1 compared to other points in the
dataset, it indicates there is zero similarity between other fingerprints. These isolated nodes,
or clusters of isolation, could indicate novel infrastructure, either from new, unique TLS
configurations or deliberate evasion techniques such as TLS randomization or customized
TLS stacks.

While this research focused on the foundations for using the MinHash and LSH
techniques for fingerprinting and similarity mapping, practical evaluation of the techniques’
performance against targeted adversarial subversion was not undertaken. The section on
future work suggests some approaches for how this could be evaluated, along with some
further avenues of research.

4. Evaluation
Dataset A (Mixed Host) contained 17,711 domains across multiple autonomous sys-

tems, ensuring broad applicability across diverse hosting environments. Dataset B (Cloud-
flare CDN) consisted of 5368 domains exclusively from Cloudflare AS 13335, evaluating
the technique’s effectiveness in CDN environments, where traditional TLS fingerprinting is
less granular. Cloudflare was specifically chosen, due to its roll-out of Encrypted Client
Hello (ECH) in August 2024 [31], which presented challenges to the widely adopted JARM
fingerprinting approach. Dataset C (Malicious) included 4475 known malicious domains
from verified sources, assessing the abilities of the approaches to identify similarities within
known malicious infrastructure.

Although only three datasets were used, they were constructed by aggregating data
from multiple sources (Table 2), to provide a representative evaluation across distinct
technical fingerprinting challenges. These included variations in hosting environments,
the impact of privacy-enhancing measures in CDN deployments and the classification of
known malicious infrastructure. The datasets were, however, temporal, as many malicious
domains are. They represented a snapshot of domain behaviour at a given point in time,
and they focused on specific deployment scenarios rather than long-term trends.

4.1. Granularity Comparisons

Granularity improvement was evaluated using a methodology similar to that of
Sosnowski et al. [7], based on comparative analysis of fingerprint cardinality and feature
dimensionality. The baseline ActiveTLS fingerprints were compared to the new enriched
TLS-HTTP fingerprints, to quantify improvements across granularity and classification
ability. The three datasets used in the active scan were comprised of the domains selected
from those in Table 2. The percentage increases of distinct fingerprints across the datasets
can be seen in Table 4, and they were calculated by (ActiveTLS fingerprint—enriched
fingerprint/ActiveTLS fingerprint) × 100. The calculation provided a measure of how
much additional differentiation the HTTP header enrichment added to the ActiveTLS
fingerprint. By comparing the baseline and enriched fingerprints, we could assess how
much more uniquely each domain was represented, particularly in environments with
TLS feature similarity, such as CDNs. The percentage range increase represented the data
subsets within each of the three scans. For example, in the mixed host dataset, domains
from the Tranco list saw the largest increase in distinct domains, increasing from 2638 TLS
fingerprints to 7910 TLS-HTTP fingerprints.
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Table 4. Fingerprint granularity improvement across datasets.

Dataset Sample Size (n) Dimensionality (d) Improvement
Mixed Host 17,711 2124 features 4–199%

Cloudflare CDN 5368 847 features 66.7–4523.7%
Malicious 4475 306 features 4–118%

The largest increase in granularity was observed in the Cloudflare CDN dataset,
where the improvements ranged from 66.7% to 4523.7%. This increase is noteworthy,
given the similarity of TLS features in CDN environments. The results indicate that HTTP
header enrichment is an effective addition that improves the ability to differentiate between
domains with similar TLS configurations.

The Mixed Host dataset showed improvements ranging from 4% to 199%, while
maintaining the highest set of features at 2124. This broader range indicates that domains
hosted outside CDN environments tend to exhibit greater TLS feature diversity, resulting
in more varied impact from HTTP header enrichment.

Finally, the Malicious dataset showed improvements ranging from 4% to 118%, with a
feature dimensionality of 306. This aligned with the tendency of malicious applications to
share similar deployment patterns and configurations, limiting the effect of enrichment.

4.2. Evaluation of Similarity

The LSH forest can be queried using a linear scan by domain approach, which retrieves
the k-nearest neighbours to a given domain through a combination of LSH forest traversal
and linear scanning. This method provided an effective means by which to visualise and
assess the success and stability of the similarity calculations. For TMAP functionality,
the distance to the given domain was inversely related to its proximity, i.e., the closer the
domain, the lower the distance value, with an exact match represented as 0.0. To eval-
uate the results, 20 random domains from each dataset were queried for their nearest
ten neighbours, and the distance from the origin (0.0) was plotted against the k-nearest
neighbours. Figure 6 displays the results for Dataset A (Mixed Host), in comparison to
Dataset B (Cloudflare CDN), as shown in Figure 7:

Figure 6. The Mixed Host dataset displays a diverse number of distance metrics and a broader
distribution of similarity scores across the sample space. Each line represents a different domain,
with a range of colors to aid in differentiation.
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Figure 7. The Cloudflare CDN dataset displays less diversity in similarity. All k-nearest neighbours
maintain distances below 0.30. This shows closer similarity between domains. Each line represents a
different domain, with a range of colors to aid in differentiation.

4.3. Visualisation of the Datasets

The graphs produced are visual representations of the c-k-NNG construction. It is
important to highlight that this method is not a clustering method and cannot be evaluated
as such. The visualisations represent continuous similarity relationships and, subsequently,
domains that shared a high similarity are displayed closely, forming natural groups with
branching. Due to the non-traditional approach to clustering, it was difficult to quantify
the success or failure of the similarity mapping by using techniques such as silhouette
scores. Consequently, the visualisation was evaluated by examining distinct areas of the
graph, to determine if the plots were accurate, consistent and, importantly, new malicious
domains that could be located based solely on their similarity to known bad domains.
The approach involved highlighting good domains that were grouped closely within areas
of bad domains, or good domains that appeared on distinct branches of bad domains, and
evaluating them to determine their true classification.

4.3.1. Initial Verification Through Security Platforms

Domains appearing in suspicious clusters were first evaluated through Virus Total,
which aggregates detection results across security vendors. Following a similar methodol-
ogy to that established by Anderson et al. [32], a domain was only reclassified as malicious
when a minimum of four independent vendors flagged it as suspicious or explicitly mali-
cious. An example of this can been seen in Figure 8:

Figure 8. A typical domain with strong indicators of malicious intent. The domain was sourced
from the unknown category and registered within 30 days of the scan taking place. At the time of
evaluation, 12 security vendors had flagged the domain as malicious, including Sophos, Fortinet,
ESET and Bitdefender.
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4.3.2. Further Indication Analysis

For cases where primary verification yielded inconclusive results or was close to the
threshold, but where similarity mapping strongly suggested malicious intent, secondary
verification was conducted. The domain was explored within Virus Total, to determine any
shared hosting infrastructure (IP addresses, name-servers) with confirmed malicious do-
mains before further analysis with URLQuery.net’s [33] sand-boxed browser environment,
and an example of this can be seen in Figure 9:

Figure 9. An example of a domain on the threshold for further investigation. The domain has three
vendors confirmed as malicious—BitDefender, CRDF and G-Data—but a further suspicious flag from
vendor Trustwave. The left-hand shows the heuristic scan performed by URLQuery, indicating that
ClearFake malicious JavaScript library was detected.

For the the purpose of these experiments, the verification process was conducted
manually, to establish confidence in the results. The Python library used—Fearun—can,
however, be run as a web server, enabling exploration to be performed interactively and
third party verification to be automated.

4.3.3. Dataset A—Mixed Host

For the Mixed Host dataset, malicious nodes formed natural groups—indicating
that there is a high similarity between malware domains across TLS and HTTP features.
Figure 10 shows a proportion of the final graph, where the diversity between known good
domains is evident by the high level of branching. This dataset had dimensions n = 17,711
(fingerprints) and d = 2133. The statistical analysis of the domain evaluations can be found
in Table 5.

Figure 10. The LSH forest of dataset A visualised using Fearun. Known bad domains are colored red,
known good are colored blue and unknown domains are colored orange.

Table 5. Breakdown of the statistics across three blended areas of the similarity mapping for dataset A.

Total Nodes: 211

Known Good: 32

Known Bad: 166

Unknown: 13

Newly identified malicious domains: 27

Area with 91.47% confirmed malicious nodes and 12 distinct fingerprints.
Of the total good or unknown domains, 60% were reclassified to bad.
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4.3.4. Dataset B—Cloudflare CDN

Dataset B focused on domains from the Cloudflare AS 13335, and it was a blend of
known good, known bad and unknown domains. Two graphs were generated, one that
plotted the domains solely based on their TLS features, and one based on the full enriched
TLS with HTTP features. It had been previously established that the diversity of the TLS
features across the CDN was poor, with only 59 fingerprints covering the full spectrum
of known good domains. This is well represented in the visualisations show in Figure 11,
with HTTP headers, compared to Figure 12, which is TLS only. The dimensionality of the
pure TLS is n = 5368 (fingerprints) and d = 50 (features). In contrast, the dimensionality
of the graph when enriched with HTTP headers is n = 5368 and d = 847. The statistical
analysis of the domains can be seen in Table 6.

Figure 11. The LSH forest of dataset B (Cloudflare CDN domains) visualised using Fearun. The
TLS fingerprints have been enriched with HTTP header data. Known bad domains are colored red,
known good are colored blue and unknown domains are colored orange.

Figure 12. The LSH forest of dataset B (Cloudflare CDN domains) visualised using Fearun. The TLS
fingerpritns are not enriched and contain only TLS features. Known bad domains are colored red,
known good are colored blue and unknown domains are colored orange.

Table 6. Breakdown of the statistics across three blended areas of the similarity mapping for dataset B.

Total Nodes: 85

Known Good: 25

Known Bad: 30

Unknown: 30

Newly identified malicious domains: 40

Area with 82.35% confirmed malicious nodes and nine distinct fingerprints.
Of the total good or unknown domains, 72.72% were reclassified to bad.
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4.4. Data Set C—Malicious

Dataset C represented domains from five known malicious applications. This dataset
enabled us to examine the similarity-mapping approach across an already identified mali-
cious infrastructure. Figure 13 displays the final plot based on the TLS-HTTP fingerprint. It
has a dimensionality of n = 4475 (fingerprints) and d = 306 (features). Clear areas of similar-
ity can be seen across the applications. Overlap on branches is primarily seen between the
Go Phish domains and the miscellaneous bad domains provide by Cert.Pl. It is clear from
the plots that despite a range of fingerprints being seen across each of the applications,
they were close enough in similarity that the applications themselves were close in the
Jaccard space.

Figure 13. The LSH visualisation of dataset C, known malicious domains. Clear similarity patterns
can be seen forming by capability. Go Phish domains are seen in yellow, Cert Pl orange, Metasploit
pink, Tactical RRM purple and Burp Collaborator Blue.

5. Discussion
The results indicate that a combination of the two-fold approach of increased finger-

print granularity through feature expansion with similarity mapping can indeed improve
malicious domain detection. Fingerprint granularity was improved in all the sample
datasets resulting in improved similarity mapping in each dataset, with Dataset B, specifi-
cally relating to CDNs, being the most improved. As stated in the results section, Chapter
4, the aim of the approach was not to create clusters based on features but to calculate and
visualise the similarities between application configurations. The fact that many applica-
tions formed natural clusters was an artefact of the process. This confirms that with many
types of malware applications, there are limited variations in the way they are deployed.

One of the major benefits of the approach is its ability to identify evolving threats and
hidden malicious domains. The technique of TLS fingerprinting has been used successfully
in cyber security for many years now, but the technique is not infallible, and small changes
to configurations produce very different fingerprints. This leads to a new cycle of detec-
tion, where new malicious fingerprints must be identified and lists of known malicious
fingerprints must be updated. In this situation, it is difficult to understand changes to
malicious applications, because the fingerprints themselves are either overly verbose and
require analysis to understand the changes or they are hashed and subsequently cannot be
reversed. Although the technique presented here produces a ‘hashed’, enriched fingerprint,
the similarity-mapping process ensures that small changes are maintained and represented
visually. The benefit of this is that new fingerprints that appear close to known branches and
clusters of bad domains can be instantly highlighted and flagged for further investigation.

This approach has demonstrated a clear ability to discover new fingerprints and
domains that are otherwise unidentified or have been classified as good. Across Datasets
A and B, in just the five areas of mixed good, bad and unknown that were evaluated
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in the results, 67 new malicious domains were discovered, based on their similarity to
known malicious domains alone. Of those, 37 were known good domains taken from the
Tranco top 1 million [18], indicating that even maintaining and evaluating known goods
against the most reputable list is not enough on its own to defend against phishing and
malicious domains.

6. Conclusions
In this article, we conducted a critical literature review evaluating active scanning

techniques that can be used to generate server fingerprints. Following the review, and
having identified the pros and cons of the existing methods, we presented the design
and development of an active scanning fingerprint. The proposed method increases the
granularity of current techniques, improving the ability to detect malicious domains hosted
on CDNs where feature similarity is high. Moreover, we enhanced the applicability and
security of fingerprinting by introducing a suitable similarity-mapping approach. Finally,
we critically evaluated the results and findings from practical experiments. Its ability to
reclassify known good domains from high-reputation allowlists, even when examining
only small subsections of the c-k-NNG graph, demonstrates that there is future potential in
this technique.

Future Work

The section Similarity Resilience introduced the concept of resilience testing for the
similarity technique. A valid avenue for future work would be a systematic evaluation of the
technique against deliberate fingerprint-subversion techniques. Future experiments should
explore to what degree modification across the feature space alters the location of malicious
nodes when TLS and HTTP headers are changed significantly, slightly and when they are
completely randomised.

Additionally, a promising extension to the research would be to apply the similarity-
mapping approach solely to domain classification by malware domain or campaign.
Figure 13 demonstrated a natural clustering, but further analysis and extensive scanning of
known malware families could help determine the feasibility of the approach, to distinguish
between applications.

Finally, further research should focus on feature vector expansion. The similarity
technique relies on flexible and dynamically built vectors. This research focused on TLS
and HTTP headers, but this could easily be expanded to include certificate details or even
content analysis.
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