
1

Multi-Agent Deep Reinforcement Learning-Based
Cooperative Perception and Computation in VEC

Liang Zhao, Member, IEEE, Longjia Li, Zhiyuan Tan, Senior Member, IEEE, Ammar Hawbani, Qiang
He, Member, IEEE, and Zhi Liu, Senior Member, IEEE

Abstract—Connected and autonomous vehicles (CAVs) are an
important paradigm of intelligent transportation systems. Coop-
erative perception (CP) and vehicular edge computing (VEC)
enhance CAVs’ perception capacity of the region of interest
(RoI) while alleviating the pressure of intensive computation
on onboard resources. However, existing CP and computation
schemes are based on inefficient broadcast communications and
still face challenges such as highly dynamic communication
link channel conditions caused by vehicle mobility, and limited
computing resources in VEC environments. Considering the delay
sensitivity of CAVs’ perception tasks and the need for enhanced
perception, we propose a unicast-based cooperative perception
and computation scheme to achieve more efficient resource
utilization and perception task execution in VEC scenarios. Our
goal is to maximize CP gain and minimize task execution delay by
optimizing the decision of each ego CAVs. To solve the sequential
decision-making problem of multi-objective optimization, we
propose a solution based on improved multi-agent proximal
policy optimization deep reinforcement learning, where CAVs
agents make adaptive decisions distributed based on partial
observations. Simulation results show that compared with the
baseline algorithm, our proposed scheme effectively reduces the
execution delay of ego CAVs perception tasks and ensures a high
perception gain.

Index Terms—Connected and autonomous vehicles, Cooper-
ative perception, Vehicular edge computing, Multi-agent deep
reinforcement learning.

I. INTRODUCTION

W ITH the rapid advancement of the Internet of vehicles
and artificial intelligence, connected and autonomous

vehicles (CAVs) have attracted increasing attention as a key
component of intelligent transportation systems [1]–[4]. To
achieve safe and reliable autonomous driving, CAVs must cap-
ture comprehensive environmental information through vari-
ous onboard sensors and process these sensor data in real time
to perceive the surrounding environment, including obstacles
and traffic participants [5]. However, a single vehicle can
experience observation blind spots or insufficient perception
accuracy due to line-of-sight (LoS) occlusion and the sparse
observation characteristics of the sensors at long distances [6].

Liang Zhao, Longjia Li, and Ammar Hawbani are with the School of
Computer Science, Shenyang Aerospace University, Shenyang 110136, China
(e-mail: lzhao@sau.edu.cn; lilongjia@stu.sau.edu.cn; anmande@ustc.edu.cn).

Zhiyuan Tan is with the School of Computing, Edinburgh Napier University,
Edinburgh EH10 5DT, U.K. (e-mail: z.tan@napier.ac.uk).

Qiang He is with the School of Medicine and Biological Information
Engineering, Northeastern University, Shenyang 110169, China (e-mail:
heqiang@bmie.neu.edu.cn).

Zhi Liu is with the Department of Computer and Network Engineering, The
University of Electro-Communications, Tokyo, Japan (e-mail: liu@ieee.org).

Qiang He and Ammar Hawbani are the corresponding authors.

Moreover, relying solely on the limited computing resources of
CAVs, makes it challenging to complete various computation-
ally intensive and delay-sensitive tasks, including perception
tasks [7]–[9]. As promising solutions, cooperative perception
(CP) and vehicular edge computing (VEC) are proposed to
address the aforementioned issues. Specifically, using vehicle-
to-everything (V2X) wireless communication technology [10],
perception information sharing and distributed computing can
be achieved between CAVs, as well as between CAVs and
road infrastructure. This integration not only provides CAVs
with accurate and real-time situational awareness, but is also
expected to improve traffic efficiency and safety.

CP enables the exchange of perceived environmental in-
formation among CAVs and roadside units (RSUs), thereby
compensating for the limitations of single-vehicle perception
system. Depending on the type of shared information, CP
is divided into early fusion of shared raw sensor data [11],
intermediate fusion of shared data characteristics [12], [13],
and late fusion of shared perception results [14], [15]. Among
them, early fusion can obtain the most detailed environment
sensing data and is robust to timestamp misalignment, thus
achieving the best perception performance [16], but there
are still many challenges. Firstly, the communication link
between CAVs and other nodes is unstable due to vehicle
mobility, which can cause significant transmission delays [17].
Secondly, the spectrum efficiency of broadcast-based collab-
orative mechanism is low, making it challenging to scale in
dense traffic and limited bandwidth scenarios. Sidelink unicast,
supported as a new feature in 5G new radio (NR) V2X, helps
stabilize the connection and improve spectrum utilization [18].
Therefore, it is necessary to evaluate the cooperative weight of
the cooperative nodes and collaborate with the node that offers
greater benefits to its own perception [19], thereby achieving
an efficient unicast-based CP. In addition, existing studies on
CP primarily aim to improve the detection accuracy of a single
CAV, while ignoring the time-varying computing resources.
High computational loads faced by CAVs make it challenging
to meet the strict delay constraints of real-time perception
tasks [20]. To solve this problem, it is necessary to select
appropriate communication node locations for sensing data.
The task offloading technology of VEC is expected to make
full use of the computing resources at the network edge.

VEC provides context-aware storage and distributed com-
puting at the network edge close to the sensors of CAVs
and RSUs, thus offering solutions to task execution delay and
communication bandwidth limitations [21]. Specifically, CAVs
offload computational tasks to nearby CAVs or edge servers

mailto:lzhao@sau.edu.cn
mailto:lilongjia@stu.sau.edu.cn
mailto:anmande@ustc.edu.cn
mailto:z.tan@napier.ac.uk
mailto:heqiang@bmie.neu.edu.cn
mailto:liu@ieee.org

2

with abundant computing resources for processing, thereby
reducing the execution delay and energy consumption of tasks
[22]. However, in task offloading, computational tasks gener-
ated by vehicles are usually considered independent, ignoring
the collaborative characteristics of CP tasks. For CP tasks,
sensor data from multiple sources must be fused before model
inference, which increases the complexity of task offloading.
Therefore, it is essential to study efficient cooperation and task
offloading to enable CAVs to take advantage of the powerful
perception and computing capabilities of edge service nodes.
Furthermore, due to the dynamic changes of VEC networks
and the complexity and diversity of traffic scenarios, deep
reinforcement learning (DRL) has emerged as an effective and
feasible solution algorithm for solving task offloading in dy-
namic environments [23]. However, existing studies typically
deploy DRL algorithms in RSUs to implement centralized task
offloading strategies, requiring continuous network connection
to obtain vehicle status in real time, which can limit the
scalability of vehicle network systems [10]. Multi-agent deep
reinforcement learning (MADRL) has been applied to vehicle
applications as an emerging distributed solution [24], [25], but
its application in CP tasks is still in its early stages.

Considering the complex association of CP tasks in VECs
and the limited communication and computing resources, a
unicast-based cooperative perception and computation scheme
is proposed, aiming to achieve a lower delay in the execu-
tion of the perception task and a higher gain in perception
of objects in the region of interest (RoI). First, to enable
unicast-based cooperation, CAVs acquire the basic information
of other CAVs and RSUs within the communication range
by broadcasting lightweight cooperative awareness messages
(CAMs), and then use indicators such as cooperative weight
as edge service node selection criteria. Second, considering
the complex dynamic interactions between CAVs and edge
service nodes, a solution based on an improved MADRL
algorithm is used to optimize the offloading strategy of CP
tasks and enhance the scalability of the system. Finally, to fur-
ther stabilize the offloading decisions generated by the CAVs
agent using a distributed policy network, the loss function is
improved. The weights are also adjusted to adapt to different
traffic environments according to varying requirements of task
execution delay and perception gain. The main contributions
of this paper are summarized as follows:

• To fully utilize the computing resources in the VEC envi-
ronment, an infrastructure-assisted cooperative perception
and computation scheme is proposed, combining vehicle-
to-infrastructure and vehicle-to-vehicle task offloading
frameworks. To implement the unicast-based cooperation
mechanism, CAMs are used to evaluate the cooperative
weight of edge service nodes and assist in selecting ap-
propriate cooperation nodes, with the intersection degree
between the interest area and the node perception range
used to calculate the cooperative weight.

• The multi-objective optimization problem of joint task
execution delay and CP gain for multiple CAVs is for-
mulated as a Markov decision process. The coopera-
tive weight evaluation, computational load, and channel

conditions of edge service nodes are comprehensively
considered to minimize delay and maximize CP gain.

• For complex state spaces, an improved multi-agent prox-
imal policy optimization algorithm is proposed, using
a loss function with stricter Kullback-Leibler (KL) di-
vergence constraints to obtain more stable strategies.
Simulation experiments in multiple scenarios verify that
the algorithm can provide CAVs with a higher CP gain
and a lower system latency.

The subsequent sections of this paper are arranged as
follows. Section II introduces the related work. Section III
delineates the system model and problem formulation. Section
IV describes the details of the cooperative perception and
computation solution based on MADRL. Simulation results
and discussion are provided in section V, and conclusions are
given in section VI.

II. RELATED WORK

In this section, we review the research on CP and task
offloading based on V2X wireless communication technology
and summarize the shortcomings. A detailed comparison of
these works from various aspects is presented in Table I.

A. Cooperative Perception

To address single CAV viewpoint occlusion and sparse
observation data, researchers have extensively studied V2X-
based CP and designed CP algorithms from different fusion
levels to improve object perception accuracy and system
robustness. Late fusion [26] involves sharing detection results,
including the 3D bounding box and category of objects. Mao
Shan et al. [14] consider the cross-correlation between the
perception results and propose a trajectory-to-trajectory fusion
method based on the covariance intersection (CI) algorithm. A
CP framework based on vehicle-to-vehicle (V2V) communi-
cation is proposed in [27] to share the vehicle’s own state
and the trajectory of other objects detected by the sensor.
These late fusion schemes are more sensitive to errors in
positioning and objects position estimation [15], and may
introduce large errors even with complex fusion algorithms.
Intermediate fusion shares the extracted data features. The
V2VNet proposed by Tsun-Hsuan Wang et al. [28] uses a
spatial perception graph neural network to aggregate data
intermediate representations from surrounding CAVs. Follow-
ing a similar transmission paradigm, a delay compensation
module is proposed in [29] to achieve feature synchronization
to mitigate the impact of communication transmission delays,
thereby improving the robustness of CP. Runsheng Xu et al.
propose CP frameworks using only V2V in [30] and combined
with vehicle-to-infrastructure (V2I) in [31], both of which
employ multi-scale attention modules to capture local and
global spatial feature relationships between different agents
or views.

B. Task Offloading

In VEC, through V2V and V2I task offloading frame-
works, CAVs can utilize the resources of edge servers nodes

3

TABLE I
COMPARISON OF SOLUTIONS IN RELATED WORK

Reference Algorithm Offloading Considered Factors Optimization ObjectiveCP V2V V2I Distributed
[14] CI ✓ ✓ ✓ Minimize uncertainty of position estimates
[27] IMM ✓ ✓ ✓ Minimize errors in the estimation of the motion states of vehicles
[28] V2VNet ✓ ✓ ✓ Maximize the perception accuracy of CAVs
[29] SyncNet ✓ ✓ ✓ Maximize the perception accuracy of CAVs
[30] CoBEVT ✓ ✓ ✓ Maximize the perception accuracy of CAVs
[31] V2X-ViT ✓ ✓ ✓ ✓ Maximize the perception accuracy of CAVs
[32] GK-DDPG Partial ✓ ✓ Minimize delay and service price.
[33] DTP-DIESEL Partial ✓ ✓ Minimize execution delay and energy consumption
[35] LSTM-DDQN Binary ✓ Minimize the ratio of dropped tasks and average delay.
[36] PPO Binary ✓ ✓ ✓ Minimize total priority of the discarded tasks
[37] TDGC ✓ ✓ Maximize the detection range and perception accuracy of CAVs
[38] MADDPG Binary ✓ ✓ ✓ Maximize computing efficiency gain
[34] MAPPO Binary ✓ Minimize delay and rental price

Our work IMAPPO Binary ✓ ✓ ✓ ✓ Minimize execution delay and Maximize CP gain

to perform computational tasks. Collaborating with nodes
that have sufficient computing resources and better views
to perform perception tasks can reduce response delays and
improve detection accuracy. Zhao et al. [32] propose a digital
twin-assisted VEC task offloading framework, which jointly
optimizes delay and service prices. To adapt to the dynamic
changes of network links, [33] predicts the communication
distance of CAVs based on their historical trajectories before
offloading, reduces the decision space of V2V offloading, and
uses heuristic algorithms to optimize system energy consump-
tion and delay. S. S. Hassan et al. [34] offloaded the tasks of
intelligent transportation systems nodes to a satellite network
that supports edge computing, jointly optimized delay and
rental price, and applied MADRL to distributed decide task of-
floading. These works show excellent results in reducing delay
and energy consumption, but they cannot be directly applied to
CP tasks, and arbitrary division of tasks is unrealistic. In our
work, we formulate a binary task offloading problem [35] to
optimize the multi-objective problem of task execution delay
and cooperative perception gain.

C. Cooperative Perception Assisted by VEC

Recent studies have attempted to apply task offloading to CP
to unleash the potential of VEC. Pin Lv et al. [36] propose a
centralized task offloading scheme that defines the perception
task weight by the number of overlaps between the perception
range and the surrounding vehicle RoI. However, the optimi-
zation objective of maximizing the task weight completed by
the server is difficult to reflect the perception gain. To solve
the cooperative task allocation and enable ego CAV to achieve
perception within the RoI, a joint cooperative task allocation
and offloading optimization problem is formulated in [39], and
a two-layer binary intelligent firefly heuristic method is used
to minimize the task execution delay. In [37], an edge-assisted
multi-vehicle CP system called EdgeCooper is proposed. This
system centrally fuses light detection and ranging (LiDAR)
point cloud data at the edge server based on voxel units in
PointPillars, and then performs object detection on the merged
view. In [40], an attention mechanism is introduced in the
offloading task to dynamically focus on relevant information
from the input state and joint actions, so that CAVs can

make wise decisions while considering the behavior of other
agents. [38] uses MADRL to determine when each CAV
pair switches between cooperative and standalone perception,
and uses an auxiliary model to solve the cooperative CAV
pair communication and computing resource allocation sub-
problems to maximize the computing efficiency gain under
delay constraints.

D. Summary
In reviewing the existing research, we can summarize the

shortcomings of CP and task offloading. Firstly, late fusion
has limited perception gain and may fail to detect objects
even after fusion. The data features extracted by different
CAVs in intermediate fusion may lack universality. In contrast,
early fusion not only improves accuracy but also allows CAVs
to perform distributed fusion and computation of raw sensor
data. Secondly, most existing works overlook the limitations
of communication and computing resources, and the broadcast
cooperation mechanism poses significant challenges to existing
V2X networks. Thirdly, centralized scheme places more strin-
gent requirements on the network, as CAVs needs to maintain
a constant network connection to transmit data. Processing the
perception task entirely on the infrastructure also wastes the
CAV’s own resources. Our approach uses unicast to transmit
the raw point cloud and employs an improved multi-agent
proximal policy optimization algorithm to enable the CAV
to make decentralized offloading decisions based on local
observations.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first outline the system scenario, then
introduce the cooperative perception task and gain, commu-
nication model, and edge computing model in detail. Finally,
we formulate the joint optimization problem of cooperative
perception gain and task execution delay. For clarity, a sum-
mary of the primary notations used throughout this paper is
provided in Table II.

A. System Overview
We consider the intersection traffic scenario involving

infrastructure-assisted perception and computation for CAVs.

4

RSU with server V2V link V2I link

User CAVs Service CAVs Other Vehicles

RoI

RoS

Fig. 1. Overview of the scenario.

As shown in Fig. 1, the CAVs and RSUs establish communi-
cation connections using NR V2X unicast links. There are
N user CAVs, represented by V = {v1, v2, . . . , vN}, and
the user CAVs need to offload perception tasks to detect the
objects within their RoI. The service CAVs and RSUs with
sufficient idle resources act as edge service nodes to provide
cooperative perception and computation support for the user
CAVs. The set of M edge service nodes is represented by
ES = {es1, es2, . . . , esM}. In each time slot t ∈ T =
{1, 2, . . . , T}, each user CAV makes decentralized offloading
decisions based on the real-time road status. Specifically, at the
start of each time slot t, the communication nodes exchange
essential information, including location, vehicle status, and
RSU status, via lightweight CAMs. When a user CAV decides
to compute the perception task locally, it operates in standalone
perception (SP) mode. Conversely, if it decides to offload the
perception task, the user CAV transmits its sensing data to
an edge service node, which can be either a static RSU or
a mobile service CAV, and switches to CP mode. The edge
service node fuses and computes the data offloaded by the user
CAVs, and then returns the enhanced detection results to the
user CAVs. Since CAVs pay more attention to objects around
them, our scheme focuses on the cooperative perception gain
within the RoI range of each CAV.

B. Cooperative Perception Task Model

LiDAR point clouds offer the advantage of depth informa-
tion and is easy to fuse after coordinate transformation, we opt
for early CP based on point clouds. In time slot t, CAVs and
RSUs utilize their sensors to scan and generate point cloud
data Pk = (xi

k, y
i
k, z

i
k, r

i
k), which represent the coordinates

and intensity values of the reflection points respectively. Upon
offloading to the edge service node, the user CAV’s point
cloud undergoes transformation through the rotation matrix
R, R = Rz(α)Ry(β)Rx(θ), where Rz(α), Ry(β), Rx(θ)
are the basic rotation matrices in the three dimensions of
z, y and x axis respectively. α, β and θ are the differences
between the yaw angle, pitch angle and roll angle of the sender
node n and the receiver node m respectively. The PointPillars
detection pipeline is used for target detection. The perception

TABLE II
SUMMARY OF NOTATIONS

Notation Description

n,N Index and number of user CAVs
m,M Index and number of edge service nodes
t, T Index and number of time slots
STn Perception task of user CAVn

Pk Point cloud data generated by node k
Dn Data size of user CAVn’s perception task
Cn CPU cycles required for the perception task
Tn Maximum tolerable delay of the perception task
qn Computational density of the perception task
rS Benefit of standalone perception
rI Benefit of cooperative perception
Gn Cooperative perception gain for user CAVn

Rnm Transmission rate between nodes n and m
Bnm Wireless channel bandwidth between nodes n

and m
Lock Position of communication node k
dnm Distance between nodes n and m
T loc
n Local execution delay of the perception task for

user CAVn

fn Computational capacity of CAVn

fm Computational capacity of edge service node m
Tup
nm Transmission delay of perception data

T fu
nm Fusion delay of perception data

T edge
nm Edge computing delay of the perception task

T down
nm Result return delay
Dego

n Execution delay of the perception task for user
CAVn

ω1 Weight of cooperative perception gain
ω2 Weight of task execution delay
η Penalty term associated with Tn

S State space
A Action space
rn Reward function for user CAVn

R(t) Reward of user CAV at time t

task of user CAVs n is defined as ST
(n)
t = {Dn, Cn, Tn}.

In the SP mode, Dn denotes the size of the single frame
data, and in the CP mode, it denotes the size of the fused
data. Cn denotes the CPU cycles required to complete the task
computation, calculated as Cn = Dn · qn, where qn denotes
the computational density (unit: CPU cycle/bit). Tn denotes
the maximum tolerable delay of the perception task.

Each user CAV maintains two sets of objects OS and OI ,
where OS contains objects in its region of sense (RoS) and OI

contains objects in its region of interest (RoI), and OS ⊆ OI .
For simplicity, the CAV’s concerned RoI is assumed to be a
circular area with a radius RRoI , and the sensing range RoS’s
radius is RRoS . The detection result for the object oj ∈ OI

is expressed as Φ(oj) ∈ {0, 1}, Φ(oj) = 1 indicating that
the object oj is accurately located and classified, otherwise
Φ(oj) = 0. Due to the varying importance of objects to
the user CAVs, the benefit of SP considering the objects
importance weight is calculated by (1), where ω

(t)
j is the

importance weight of object j at time slot t, which is related
to the distance from the user CAV according to [19]. Objects
that lie outside the RoS but within the RoI are detected by

5

performing CP, and the benefit of CP is calculated by (2).

rS(t) =
∑
j∈OS

ω
(t)
j Φ(oj) (1)

rI(t) =
∑
j∈OI

ω
(t)
j Φ(oj) (2)

The benefit gain from CP is contingent upon the cooperating
nodes, and the cooperative perception gain of user CAVn is
calculated as (3).

Gego
n (t) = rI(t)− rS(t) =

∑
j∈OI−OS

ω
(t)
j Φ(oj) (3)

In summary, the cooperative perception gain is the cumula-
tive weighted benefit of objects detected through CP. This gain
is obtained when the detection process is completed within a
single time slot.

C. Communication Model
User CAVs make distributed offloading decisions from

the perspective of ego. First, the location Locm(t) =
[xm(t), ym(t), zm(t)]T of the service CAVs and RSUs within
the communication range is identified through the CAMs.
Given that CAMs are lightweight messages, their commu-
nication overhead is negligible. However, for point clouds
with a frame size of 200 KB to several MB, broadcast-
based sharing will result in a data transmission volume that is
(N +M)(N +M − 1) times larger. The delay of broadcast
exceeds 100 ms under the existing communication bandwidth,
while unicast can selectively establish links based on channel
quality, improving bandwidth efficiency. Fluctuations in chan-
nel conditions, influenced by distance and occlusion, dictate
the transmission rate between communication nodes. NR V2X
sidelink communication between nodes employs orthogonal
frequency division multiple access (OFDMA). This advanced
spectrum resource allocation technology minimizes the in-
terference between wireless channels. Based on Shannon’s
theorem, the data transmission rate from node n to node m at
time slot t is given by (4), where Bnm denotes the bandwidth
allocated to the channel between the sender node n and the
receiver node m, Pn denotes the transmission power of the
uplink of the sender node n, hnm is the small scale fading
coefficient of the Rayleigh distribution, hnm ∼ cN (0, 1), dnm
denotes the distance between sender and receiver, γ is the path
loss exponent, and σ2 is the noise power spectral density at
the receiver node.

Rnm(t) = Bnm(t)log2

(
1 +

Pn|hnm|2(t)d−γ
nm(t)

σ2

)
(4)

Assuming that the system remains stable within the t time
slot, the distance at time t is expressed as (5), where Locn(t)
is the location of user CAVn.

dnm(t) =

√
|Locn(t)− Locm(t)|2 (5)

Beyond LoS and non-LoS (NLoS) channel states, we have
also incorporated the non-LoS vehicle (NLoSv) state in accor-
dance with the 3GPP NR V2X 37.885 standard [41]. This state
describes a situation where the direct path is obstructed by
vehicles, resulting in additional path blocking loss compared
to the LoS state.

D. Edge Computing Model
To elucidate the edge computing model, we initially delin-

eate the attributes of user CAV and edge service node. User
CAV is represented as vn = {STn(t), fn(t), Locn(t), f

v
n},

which denote the perception task, the computational capacity
at time t, location at time t and the maximum computational
capacity of user CAVn respectively. Similarly, edge service
node is represented as esm = {STm(t), fm(t), Locm(t), fes

m }.
The trained neural network models are deployed on each
communication node to detect the categories and 3D bounding
boxes of the objects from single viewpoint or fused data.
The decision variable of user CAVn is anm ∈ {0, 1} ,∀n ∈
V,∀m ∈ ES.

1) Local computing model: When user CAVn decision
variable anm = 0, it indicates that the user CAV processes the
single viewpoint data locally, which is referred to as SP mode.
In this scenario, the task execution delay is expressed by the
local computing delay as (6), where Dn denotes the sensing
data size, qn denotes the CPU cycle required to process the
unit byte data, and fn(t) denotes the computational capacity
(CPU cycles per second) of user CAVn at time t.

T loc
n (t) =

Dn · qn
fn(t)

(6)

2) Task offloading model: When the computational load of
user CAVn is high, it elects to offload the task to edge service
node m for cooperative computation, that is, anm = 1. In this
scenario, the task execution delay is articulated by the data
transmission delay, data fusion delay, edge computing delay,
and result return delay.

The data upload delay for user CAVn is given by (7), where
Dn(t) represents the sensing data size of user CAVn, and
Rnm(t) is the transmission data rate between user CAVn

and edge service node m at time t. When the perception
task of CAVn is offloaded to edge service node m, there
may be cooperation (data fusion) with other user CAVs, so
the transmission delay depends on the maximum value of the
data upload delay of the user CAVs that offload the task to
this node. Therefore, the transmission delay for user CAVn is
defined as (8), where anm is the offloading decision variable
of user CAVn.

tupnm(t) =
Dn(t)

Rnm(t)
(7)

Tup
nm(t) = max {a1mtup1m(t), a2mtup2m(t), . . . , anmtupnm(t)}

(8)
The data from user CAVn is fused with the data on edge

service node m, resulting in Dnm(t) = anm ·Dn(t)∪Dm(t).
The data fusion delay is expressed as (9), where ζ denotes the
ratio of data fusion delay to data size.

T fu
nm(t) = ζDnm(t) (9)

Subsequently, edge service node m performs inference
computation utilizing the fused data, and the edge computing
delay is expressed as (10), where Dnm denotes the size of
the fused perceived data, and fm denotes the computational
capacity of edge service node m at time t.

T edge
nm (t) =

Dnm(t) · qm
fm(t)

(10)

6

The detection result is returned to user CAVn, and the result
return delay is expressed as (11), where ϖDnm(t) is the size
of the result.

T down
nm (t) =

ϖDnm(t)

Rnm(t)
(11)

When the perception task of user CAVn is executed on
the edge service node m, the task edge execution delay is
expressed as (12).

T exe
nm (t) = Tup

nm(t) + T fu
nm(t) + T edge

nm (t) + T down
nm (t) (12)

Based on (6), (8), (9), (10), (11), and (12) above, the task
execution delay can be represented as (13).

Dego
n (t) =

{
T loc
n (t), if anm = 0

T exe
nm (t), if anm = 1

(13)

E. Problem Definition

Within the VEC framework, the objective is to optimize the
decision-making process from the ego perspective of each user
CAV, maximizing the cooperative perception gain while mini-
mizing task execution delay under highly dynamic conditions
such as occlusion, computing resources, and communication
conditions. We define the single-step optimization indicator
of user CAVn in time slot t as (14), where ω1 and ω2

are adjustment parameters that control the trade-off between
cooperative perception gain and task execution delay.

Ωego
n (t) = ω1Gego

n + ω2(−Dego
n) (14)

Notable is the fact that ω1 +ω2 = 1, and ω1 ≥ ω2 indicates a
preference for maximizing cooperative perception gain, while
ω1 < ω2 indicates a focus on reducing task execution delay.
The objective of the optimization problem is to maximize
the long-term system optimization indicator of all user CAVs.
Overall, we formulate the problem as follows:

P: max
anm

T∑
t=1

M+∑
m=1

N∑
n=1

Ωego
n (t) (15a)

s.t. C1 : anm ∈ {0, 1},∀n ∈ N, ∀m ∈ M+, (15b)

C2 :
∑
n∈N

anm = 1,∀m ∈ M+, (15c)

C3 : Dego
n ≤ Tn,∀n ∈ N, (15d)

C4 : fesm
min ≤ fm(t) ≤ fesm

max ,∀m ∈ M, (15e)
C5 : fvn

min ≤ fn(t) ≤ fvn
max,∀n ∈ N, (15f)

C6 :
∑
n∈N

anmBnm(t) < Btotal,∀m ∈ M. (15g)

The optimization problem incorporates constraints C1 and
C2 to model the decision variables of user CAVs, specifying
the selection of data computation location among M edge
service nodes or local computation. Consequently, the offload-
ing decision in time slot t is represented as an (M + 1)-
dimensional one-hot vector, signifying that each task can either
be computed locally or offloaded to an edge service node,
thereby preventing the redundant execution of tasks. Constraint
C3 ensures that each perception task is completed within the
maximum tolerable delay Tn specific to the task. Constraints

C4 and C5 stipulate that the computational capacity provided
by both user CAVs and edge service nodes must lie within
the range of their maximum and minimum computational
capacities. Lastly, constraint C6 accounts for the bandwidth
limitations across all communication channels.

IV. PROPOSED SOLUTION

This section presents the specifics of the cooperative per-
ception and computation framework. First, the optimization
problem is formulated as a Markov decision process (MDP).
Next, we present an in-depth explanation of the multi-agent
proximal policy optimization (MAPPO) algorithm and its
improvements. Additionally, we introduce the dynamic weight
adjustment method. Finally, we conduct a comprehensive
analysis of the proposed algorithm. Details on preliminaries
of the scheme are provided on supplementary file.

A. Formulation of Markov Decision Process

Since the formulated objective problem can be transformed
into a sequential decision problem, we standardize it based
on the MDP and solve it utilizing our improved MAPPO
algorithm. Each user CAVs observes the local state from the
environment, and subsequently employs a distributed policy
network to determine actions. Both the policy network and
the value network are trained on historical data, enabling users
CAVs to progressively refine their strategies to achieve optimal
decision-making. The MDP framework, which encompasses
the state space, action space, and reward function, is delineated
as follows.

1) State space: The state space at time slot t, denoted by
S(t), consists of the local states of all user CAVs. It is repre-
sented as S(t) = {s1(t), s2(t), . . . , sN (t)}, where N denotes
the number of user CAVs. The local state of a user CAVn

consists of its own state as well as the states of the edge service
nodes it can observe. This local state is defined as sn(t) =
{STn(t), fn(t), Locn(t), f

v
n , {esn(t)m∈M , ωCP

m (t)}}, where
STn(t) denotes the perception task generated by user CAVn,
fn(t) denotes the computational capacity at time t, Locn(t)
denotes the current geographical coordinates, and fv

n repre-
sents the total computational capacity that can be provided.
Moreover, the {esm(t)m∈M} denotes the state information of
the edge service nodes observed by user CAV m at time t,
which is obtained through lightweight CAMs, and the details
are shown in the system overview Section III-A. To enhance
the local observation of each user CAV and to obtain more
cooperative perception gain, each user CAV calculates the
cooperative weight of the edge service node m using an
overlap level, which is expressed as (16).

ωCP
m (t) =


0, dnm(t) > RRoI

n +RRoS
m

1− dnm(t)

RRoI
n +RRoS

m

, otherwise

(16)
2) Action space: User CAVs choose actions from the action

space based on the current state and their strategy. This
involves deciding whether to offload computations and, if so,
to which edge service node. The action of user CAVn is

7

denoted by an(t) = [an1, an2, . . . , anm+1], which is a one-
hot encoded vector. A value of 1 at the first position signifies
local computation, while a 1 at any other position indicates
that the computation is offloaded to the corresponding edge
service node. This node could be either a service CAV
or a static RSU, as specified by the index. The collective
action space for all user CAVs at time t is represented by
A(t) = {a1(t), a2(t), . . . , aN (t)}.

3) Reward function: The design of reward function is
closely related to the optimization objectives. Upon executing
an action, the user CAV agent obtains corresponding rewards.
This reward serves as feedback from the environment, quan-
tifying the efficacy of the chosen action. Our overarching
objective is to maximize the cumulative rewards for all user
CAVs, which entails enhancing the cooperative perception
gains across the entire operational cycle while concurrently
reducing task execution delay. Therefore, we define the imme-
diate reward as the weighted sum of the negative task delay
and the cooperative perception gain for user CAVn during
each time slot t, which is associated with the single-step
optimization indicator, as shown in (14). The reward function
for user CAVn can be represented as (17).

rn(t) =

{
Ωego

n(t), if Dn < Tn

Ωego
n(t)− η, otherwise

(17)

When the task execution delay satisfy the specified con-
straint, the corresponding reward is applied; otherwise, a
corresponding penalty term is incorporated into the reward
function. The penalty term, denoted by η, is associated with the
maximum tolerable delay for the perception task. Since the re-
sult of the perception task is crucial to subsequent autonomous
driving tasks, η is invoked when the task execution delay of
the perception task surpasses the maximum tolerable threshold.
Based on the reward R(t) = {r1(t), r2(t), . . . , rN (t)}, each
CAV agent updates its strategy to converge towards the optimal
strategy.

B. Cooperative Computing Based on Improved MAPPO

In the original MAPPO algorithm, excessive update am-
plitude can result in an unstable optimization process and
suboptimal strategy. To address this, we improve the loss
function, thereby ensuring that the algorithm benefits from the
monotonic improvement lower bound theorem by restricting
the KL divergence more strictly. In the following, we refer to
this improved MAPPO algorithm as IMAPPO, and Fig. 2 illus-
trates the foundational framework of IMAPPO. IMAPPO em-
ploys a centralized training approach coupled with distributed
execution. Each user CAVs intelligent agent encompasses two
networks: the policy network (actor network) and the value
network (critic network). The actor network is tasked with
mapping the observed environment state to an action distri-
bution from which actions are sampled. During the training
process, the actor network first interacts with the environment
for T time steps to obtain the trajectory τ . The trajectory is
represented as τ = (s0, a0, r0, . . . , st−1, at−1, rt−1, st), and is
stored in a buffer for subsequent parameter updates. The policy
parameter update aims to maximize the expected cumulative

reward. The cumulative discounted reward is represented as
(18), where γ denotes the discount rate, a value that lies within
the interval [0, 1) and is employed to weigh the immediate and
future rewards.

Rt =

∞∑
k=0

γkr(t+ k) (18)

The parameters of the critic network are denoted by ϕ.
This network is used to approximate the mapping function
from the current state to the expected reward, which is
known as the state value function, defined as (19). The state
value function serves as the foundation for determining the
advantage function, which assesses the differential expected
reward of selecting a specific action in a given state over
alternative actions. The advantage is articulated by the formula
(20).

Vϕ(st) = Eat,st+1,...[Rt|st] (19)

δ(t) = R(t) + γVϕ(st+1)− Vϕ(st) (20)

To balance the variance and bias caused by the state value
estimate and ensure the stability of the training process, we
employ the general practice method of generalized advantage
estimation (GAE), incorporating both advantage normalization
and value clipping. The GAE is given by (21), where ϱ denotes
the GAE discount factor. When ϱ is 0, GAE degenerates into
a single-step temporal difference, reducing the variance; when
ϱ is 1, GAE is equivalent to using monte carlo return, which
tends to reduce the deviation. The expression of the value
function through GAE is articulated by (22).

Â(t) = δ(t)+ (γϱ)δ(t+1)+ · · ·+(γϱ)T−t+1δ(T − 1) (21)

V̂πφ
(st) = Â(t) + Vπφ

(st+1) (22)

To mitigate the estimation error inherent in GAE, the value
functions of all agents are subjected to normalization. Subse-
quently, the loss function for the critic network is articulated
as (23), where Ṽϕ(sn,t) denotes the normalized state value.

J(ϕ) =
1

NT

T∑
t=1

N∑
n=1

(Vϕ(sn,t)− Ṽϕ(sn,t))
2

(23)

Here, gradient descent is employed to minimize the root
mean square error, thereby optimizing the critic network. For
the actor network, parameterized by φ, the optimization target
is given by (24), where H[πφ] denotes the cross entropy be-
tween different action probability distributions and µ denotes
entropy coefficient.

J(φ) =
1

NT

T∑
t=1

N∑
n=1

{µH[πφ(an,t|sn,t)]

+ χn(φ, t)Ân(t)D[KL(πφ, πφold)]}
(24)

In the original MAPPO algorithm, the ratio χn(φ, t) =
πφ(an,t|sn,t)/πφold(an,t|sn,t) is constrained within the inter-
val [1 − ϵ, 1 + ϵ] using a clipping function. However, this
approach does not effectively cap the KL divergence. The KL
divergence measures the dissimilarity between two probabil-
ity distributions, effectively gauging the divergence in actor

8

Experience

Pool
Experience

Pool
Experience

Pool
Data Buffer

for Trajectories

Reward

r1(t)

r2(t)

rn-1(t)

rn(t)

…

State

s1(t)

s2(t)

sn-1(t)

sn(t)

…

Action

a1(t)

a2(t)

an-1(t)

an(t)

…

User CAV1

User CAV2

User CAVn-1

User CAVn

VEC Environment

Critic Loss

Critic ϕ

Value

Normalization

Actor φ

πold

Actor φ

πnew

Old

Probabilities

New

Probabilities

Old Log-

probabilities

New Log-

probabilities

KL Divergence

Clip(d,0,d max)

Backpropagation Actor LossGradient Clipping

Value Network

Policy NetworkUpdate Weights

……

Critic ϕ

Gradient ClippingBackpropagation

GAE

Vϕ (st+1)

Vϕ (st)

st

st+1

Old

Probabilities

New

Probabilities

Clip(πnew/πold,1−ϵ,1+ϵ)

Actor Loss

MAPPO

Fig. 2. IMAPPO framework and its improvements compared to MAPPO. The original MAPPO uses policy clipping to avoid unstable updates, but the bounded
probability ratio cannot strictly limit the KL divergence. IMAPPO achieves stricter constraints by clipping the KL divergence.

network updates. Excessive KL divergence can destabilize the
training process. Thus, in our IMAPPO algorithm, a stringent
KL penalty (25) is integrated into the loss function (24).

D[KL] =


1, KL(πφ, πφold) < dmax

dmax

KL(πφ, πφold)
, otherwise

(25)
By setting the fractional component of KL divergence, the

KL divergence is limited during the parameter update process.
When the KL divergence is less than the set threshold, the
trust region constraint is met, thereby achieving stable strategy
optimization. When the KL divergence is greater than the set
threshold, the fractional form enables the strategy network to
reduce the KL divergence as much as possible to maximize
the expected return. Furthermore, the IMAPPO algorithm
leverages mini-batches to reuse trajectory samples stored in the
buffer during agent-environment interactions, which mitigates
sample correlation and bolsters sample utilization efficiency.

Building upon the preceding discussions, we summarize the
edge-assisted multi-CAVs cooperative perception and com-
putation framework based on the IMAPPO in Algorithm 1.
The algorithm begins by elucidating the input and output,
culminating in the optimized decision-making model. At line
1, the algorithm initializes the actor and critic network pa-
rameters in an orthogonal manner, which mitigates gradient-
related issues during training, such as gradient disappearance
or gradient explosion. By line 4, a data buffer is established
to archive trajectory samples of duration T , collected by the

CAV agent in each iteration, with each user CAV maintaining
a corresponding buffer. From lines 5 to 12, during each time
slot, each user CAV independently observes the environment,
generates an action probability distribution based on the actor
network, samples a specific action from this distribution, and
calculates the state value. From lines 13 to 18, each user CAV
executes the sampled action and obtains a new local state
and reward from interacting with the environment. Notably,
the CAV obtains specific data on the task execution delay
and cooperative perception gain after completing the detection
task. The user CAV interacts with the VEC environment over
T time steps to collect trajectory data τ . Between lines 19
and 24, the advantage function Â is calculated using GAE
based on collected trajectory data samples. Following this, the
normalized value function Vϕ is calculated. The sequence of
data within the buffer is then randomized and re-indexed, an
intervention that diminishes data correlation, thereby stabiliz-
ing the training process. Lines 26 to 31 extract small batches
of data from the buffer, divide the data into numerous mini
batches, and train them multiple times within a single epoch,
thereby enhancing data utilization efficiency. Concluding with
lines 32 and 33, the algorithm updates the actor parameter φ
and critic parameter ϕ using the Adam optimizer. The variable
E denotes the number of training epochs, while T specifies
the trajectory length interacting with the environment.

9

Algorithm 1 IMAPPO-Based Cooperative Perception and
Task Offloading
Input: Simulation parameters for the VEC network.
Output: The optimal IMAPPO agent policy πφ.
1: Initialization: Orthogonal initialize actor network π’s parameters

φ and critic network V ’s parameters ϕ.
2: Set learning rate lr .
3: for episode = 1, 2, . . . , E do
4: Initialize data buffer D.
5: for batch size i = 1, 2, . . . , B do
6: Initialize empty list τ .
7: for time slot t = 1, 2, . . . , T do
8: for user CAV n = 1, 2, . . . , N do
9: Pn(t) = πφ(an,t|sn(t)).

10: Sample an,t from Pn(t).
11: Vn(t) = Vϕ(st).
12: end for
13: Execute action a(t).
14: Get instant rewards from VEC Environment.
15: Calculate CP weight of edge service nodes by (16).
16: Observe st+1 based on VEC environment.
17: τ+ = [st, at, V (t), r(t), st+1].
18: end for
19: Calculate advantage estimate Â by (21) on τ .
20: Calculate V̂ϕ by (22) on τ and normalize.
21: Split trajectory τ into chunks of length L.
22: for l = 0, 1, . . . , T//L do
23: Append chunk τ [l : l+T], Â[l : l+L], and R̂[l : l+L]

to buffer D.
24: end for
25: end for
26: for mini-batch k = 1, . . . ,K do
27: b ← random mini-batch from D with all agent data.
28: for each data chunk c in mini-batch b do
29: Update V based on first hidden state in data chunk.
30: end for
31: end for
32: Update φ on J(φ) with mini-batch b using Adam.
33: Update ϕ on J(ϕ) with mini-batch b using Adam.
34: end for

C. Dynamic Weight Adjustment

To adapt to varying traffic scenarios, it is essential to dynam-
ically adjust the weights assigned to cooperative perception
gain (ω1) and task execution delay (ω2). The two weights are
interrelated by the constraint ω1 + ω2 = 1, and the dynamic
adjustment method primarily adjusts ω2, indirectly modifying
ω1. This dynamic adjustment method takes into account two
critical factors: the time slot occupancy rate of task execution
and the current computational load of user CAVs. The time
slot occupancy rate is defined in (26), where ∆ is the time
slot size. For example, when the time slot occupancy rate is
large, it means that the task execution delay is high, so the
component ρ increases the percentage of weight ω2 and the
importance of optimizing the task execution delay is higher.

ρ = 1− ∆−Dego
n

∆
(26)

Concurrently, the computational load of user CAVs is eval-
uated, primarily based on the computational capacity available
in the current time slot. The evaluation of the computational
load is represented by a sigmoid function as depicted in (27),
where k is a parameter that controls the steepness of the

sigmoid curve, fth is a threshold value used to determine load
level, and fn(t) represents the computational capacity at time
t.

ς =
1

1 + exp(−k(fth − fn(t))
(27)

When the available computational capacity fn(t) of the user
CAV is small, it means that the computational load is high and
the weight ω2 is larger, which makes the CAV prioritize the
task execution delay to ensure the timely processing of the
task. The task execution delay weight considering the above
factors is expressed as (28).

ω2 = ρ · ς (28)

Consequently, an increase in both the time slot occupancy
rate and the computational load leads to a proportional rise
in ω2, prompting user CAVs to prioritize achieving a lower
task execution delay. When the time slot occupancy rate and
computational load are low, ω2 is smaller and ω1 is larger,
enhancing the emphasis of cooperative perception gain.

D. Computational Complexity

We analyze the time complexity of the IMAPPO algorithm,
which is directly proportional to the number of neurons
in the neural network. Fully connected neural networks are
used to implement the actor and critic networks. For the
training process, each user CAV agent completes the inter-
action in parallel, so N does not contribute to the total
running time. Consequently, the time complexity is delineated
as O

(
E ·B · T · (

∑Lac−1
j=1 Xac

j Xac
j−1 +

∑Lcr−1
j=1 Xcr

j Xcr
j−1)

)
,

where Lac and Lcr represent the number of layers in the actor
and critic networks, respectively, and Xac

j and Xcr
j represent

the number of neurons in the j-th layer of the respective
networks. For the distributed inference process, the time com-
plexity is O

(∑Lac−1
j=1 Xac

j Xac
j−1 +

∑Lcr−1
j=1 Xcr

j Xcr
j−1

)
. The

design of the input and output layers of the neural network
can be found in Section IV-A, and the various training hyper-
parameters are detailed in Section II-A in supplementary file.

V. PERFORMANCE EVALUATION

In this section, the effectiveness of the proposed solution is
verified through rigorous experiments. Firstly, we introduce
the simulation tool and detail the experimental parameter
settings. Secondly, we compare the IMAPPO algorithm with
other baseline algorithms across multiple metrics, and evaluate
its adaptability across different scenarios. Lastly, the practical
relevance, limitations, and future work of our scheme are dis-
cussed. For the effect of the KL penalty on KL divergence and
distribution entropy, please see Section II-A in supplementary
file.

A. Simulation Tools and Parameter Settings

Simulation data is generated using OpenCDA [42], an open-
source cooperative driving automation framework that inte-
grates simulation of urban mobility (SUMO) traffic simulator

10

TABLE III
SYSTEM PARAMETERS IN SIMULATION

Parameters Value

Number of user CAVs (N) [4, 20]
Number of service CAVs [5, 10]
Number of RSUs 5
Center frequency (fc) 5.9 GHz
Noise power (σ2) −104 dBm
Transmit power (pn) 23 dBm
Bandwidth (Btotal) 20 MHz
CAVs maximum local CPU frequency (fv

n) 4 GHz
CAVs sensing range radius (RRoS) 100m
CAVs maximum speed 16.7m/s
RoI radius (RRoI) 150m
RSUs maximum CPU frequency (fes

n) 2× 4 GHz
RSUs sensing range radius 200m
Maximum delay tolerance (Tn) 100 ms
Computational density (qn) 30 cycles/bit
Batch size (B) 1
Mini-batch number (K) 4
Total training epochs (E) 1860
Trajectory length (T) 105

and car learning to act (CARLA) autonomous driving simula-
tor. The PointPillars objects detection algorithm and the multi-
agent reinforcement learning algorithm are implemented using
PyTorch. The algorithm training was conducted on a 6-core
CPU with a maximum frequency of 4.4GHz, delivering 240
Giga-FLOPS. It also utilized a 22.06 TFLOPS GPU and 32GB
of RAM. CAVs and RSUs data are generated at a frequency of
10Hz in the map Town06. The Town06 road network consists
of four main roads, each with four to six lanes, along with
multiple branches and intersections. A total of 100 vehicles
are generated, including 4 to 20 user CAVs, 5 to 10 service
CAVs, and the remainder being human-driven vehicles, along
with 5 RSUs. For the communication model, parameters are
designed to simulate a 20 MHz 5G NR V2X system. The
transmission power is set to 23dBm, and the noise power is set
to −104 dBm. In an urban traffic environment, the path loss of
LOS and NLOSv channels is calculated by PLLOS = 38.77+
16.7log10d+18.2log10fc, while the path loss of NLOS channel
is given by PLNLOS = 36.85+30log10d+18.9log10fc, where
d denotes the distance between sender and receiver, and fc
denotes the center frequency. The computational density of
the perception task is set to 30 cycle per bit, and the size
of the sensor data frame is determined by the actual file size
generated. The weight of objects is calculated depending on
the speed of the user CAVs and the distance to the objects,
as described in [19]. The CAVs sensing range radius is 100
meters, the RoI radius is 150 meters, and the RSUs sensing
range is 200 meters. The main parameters and values are
shown in Table III. In addition, different computational load
levels under the setting of parameters k = 1 and fth = 2 GHz
are quantitatively presented in Table IV.

B. Comparative Performance and Adaptability Evaluation

1) Evaluation metrics: We employ the following metrics to
evaluate the effectiveness of different schemes:

TABLE IV
COMPUTATIONAL LOAD CLASSIFICATION

Low Medium High
Load Percentage [0, 32.1%] (32.1%, 67.9%] (67.9%, 100%]

fn(t) (GHz) [2.75, 4] [1.25, 2.75) [0, 1.25)

Note: parameters k = 1 and fth = 2 GHz.

(a) Total reward (TR): This metric signifies optimization goal
of the system. The convergence value and convergence
speed of the total reward per episode are indicative of
the strategy’s quality and the training efficiency of the
intelligent algorithm.

(b) Average task execution delay (ATED): In the context of
VEC, this metric serves as a critical indicator, directly
reflecting both the computing efficiency of the chosen
computing nodes and the quality of communication over
unicast links.

(c) Average cooperative perception gain (ACPG): This metric
reflects the perceptual benefits that user CAVs obtain
from detecting objects within their RoI and encourages
them to collaborate with edge service nodes that have
higher cooperative weight.

2) Counterparts: For the effectiveness of the proposed
scheme, we compare it with the following baselines, and the
baseline time complexity analysis is given in Section II-B1 of
the supplementary file.

(a) Random: In this strategy, each user CAV independently
samples actions from the action space for offloading
decisions. This independent approach allows for an as-
sessment of the performance lower bound, as CAVs
operate without coordination.

(b) Greedy [19]: Each user CAV selects the edge service node
with the highest confidence upper limit based on histori-
cal perception gains. This approach prioritizes individual
benefit maximization without accounting for the broader
implications on resource contention and cooperative ve-
hicle interactions.

(c) DQN [33]: A centralized solution featuring a central
controller (CC) as a single agent, this approach aims to
approximate the optimal value function using a DNN and
selects the action with the highest value.

(d) MADDPG [38]: A multi-agent deep deterministic policy
gradient algorithm that uses a replay buffer to store
experience and performs soft updates of parameters based
on a delayed replicated target actor and critic network.

(e) MAPPO [34]: A distributed multi-agent proximal pol-
icy optimization algorithm that based on the actor-critic
framework. The MAPPO utilizes policy clipping and
has significantly high algorithm operation efficiency than
MADDPG with limited computing resources [43].

3) Comparative Analysis of Performance: Our proposed
IMAPPO algorithm is benchmarked against its counterparts
based on evaluation metrics and its adaptability to different
scenarios is also analyzed. For the backbone overhead of dif-
ferent algorithms, please see Section II-B2 of supplementary
file.

11

(a) (b) (c)
Fig. 3. The performance of the different algorithm. (a) Total reward with different Episode. (b) ATED with different user CAVs number. (c) ACPG with
different user CAVs number.

Fig. 3(a) illustrates a comparison of the total rewards
obtained in each episode by our proposed IMAPPO algorithm
and the baseline algorithms. Reinforcement learning-based
intelligent algorithms rely on empirical data to optimize their
strategies. As the strategies are iteratively optimized, the total
rewards of each episode progressively increase. In Fig. 3(a),
the rewards initially fluctuate and gradually rise during the
early stages of training, eventually converging as network
parameters are updated. Our proposed IMAPPO algorithm
demonstrates a more rapid growth in rewards after approx-
imately 500 episodes and converges when the episode count
exceeds 1400. Notably, the total rewards achieved after conver-
gence are higher than those obtained by the clipped MAPPO,
MADDPG, DQN, random strategy, and greedy algorithm.
Among these, the greedy algorithm does not require iterative
strategy optimization and shows better performance in the first
200 episodes. However, it performs worse than reinforcement
learning-based methods in later episodes because it focuses
solely on the immediate optimal solution while not considering
long-term returns. Compared with MAPPO, MADDPG and
DQN, the total rewards of IMAPPO are increased by 3.1%,
15.4% and 25.8% respectively. Specifically, the actor-critic
architecture employed in IMAPPO proves more effective in
handling large state spaces than the DQN, and IMAPPO pro-
vides smoother policy updates compared to the soft-updating
MADDPG. Furthermore, compared to the clipped MAPPO
algorithm, the improved loss function in IMAPPO imposes
explicit restrictions to prevent excessive divergence in KL
divergence during policy updates, thereby enhancing stability.
Consequently, IMAPPO attains the best overall performance.

In Figs. 3(b) and 3(c), we test the impact of different
numbers of user CAVs on both the ATED and ACPG of each
user CAV’s perception tasks, thereby verifying the scalability
of our scheme. As shown in the figures, the ATED across
various schemes increases with an increasing user CAVs count,
a trend mirrored by the ACPG. The primary reasons are
as follows: first, the delay performance of the CP task is
influenced by multiple variables, with the most important
factor being the number of cooperative data sources, that
is, the number of user CAVs. Within a given system time
slot, the edge service node must await the completion of all

sensor data transmissions prior to undertaking data fusion.
Consequently, an augmentation in the cooperative node count
not only prolongs the data fusion delay but also increases
the transmission delay. Second, as number of user CAVs
grows, the data enhancement achieved through data fusion
leads to a more comprehensive environmental perception,
consequently boosting the ACPG. Furthermore, it is evident
that our proposed IMAPPO algorithm surpasses other methods
in terms of these performance metrics. This superiority stems
from its enhanced strategy, thereby validating the efficacy of
the IMAPPO algorithm.

In Figs. 4(a) and 4(b), we demonstrate the impact of
sensor data quality on ATED and ACPG. The horizontal axis
indicates the maximum number of scan points contained in
each frame of the simulated LiDAR data. A higher number of
scan points corresponds to a more detailed perception of the
surrounding environment. As observed in the figures, across
various algorithms, an increase in data quality correlates with
a higher ACPG. This is because more detailed data frames
enhance the detection accuracy of the model, albeit with
diminishing returns. Specifically, at a maximum number of
scan points of 80,000, the enhancement of ACPG becomes
more pronounced. In this scenario, IMAPPO demonstrates
a notable improvement, showing an approximate increase of
2.9% in ACPG compared to other algorithms. Simultaneously,
the ATED also increases, as larger data frames demand addi-
tional time for transmission and computation. Nevertheless,
our enhanced algorithm, through an optimized collaboration
and offloading strategy, achieves the lowest task execution
delay when compared to other algorithms.

In Fig. 4(c), we examine the impact of varying com-
putational capacity of RSUs on the ATED across different
algorithms. The findings indicate that the ATED progressively
diminishes with an increase in the computational capacity of
RSUs serving as edge service nodes. This trend underscores
the advantage of edge service nodes with greater computa-
tional resources, which can offer expedited data processing.
User CAVs can leverage the powerful computing capability
of these edge service nodes to enhance the performance of
task processing. Moreover, our solution consistently achieves
the lowest ATED across various levels of edge computational

12

(a) (b) (c)
Fig. 4. (a) ATED with different maximum number of points. (b) ACPG with different maximum number of points. (c) ATED with different computational
capacity of RSU.

capacity, demonstrating the adaptability of the IMAPPO opti-
mization strategy to diverse system parameters.

To assess the efficacy of our dynamic weight adjustment
method, we design scenarios with varying computational
loads: high, medium, and low. In these scenarios, the impact of
weight adjustments on the ATED and ACPG is systematically
compared under varying numbers of user CAVs, as illustrated
in Fig. 5. When the computational load is low, a lower
weight is assigned to task execution delay, thereby enhancing
the emphasis on cooperative perception gain, which in turn
boosts the perceived gains for user CAVs. Conversely, under
high computational loads, task execution delay is prioritized,
prompting user CAVs to engage with service nodes that
possess sufficient computational resources and superior com-
munication conditions. Although this strategy may marginally
diminish cooperative perception gain, it ensures that the task
completes the computation within the maximum tolerable
delay. In scenarios with medium computational loads, a more
balanced strategy is taken, optimizing both task execution
delay and cooperative perception gains. The experimental re-
sults demonstrate that our dynamic weight adjustment method
can adeptly balances task execution delay and cooperative
perception gain in real-world dynamic scenarios.

(a) (b)
Fig. 5. Impact of weight adjustment on ATED and ACPG. (a) ATED with
different user CAVs number. (b) ACPG with different user CAVs number.

C. Discussion
1) Practical Relevance: Applying this approach to real-

world VEC environments requires considering the differences
in data distribution between simulation and reality. To improve
the generalization of the model, domain adaptation or transfer
learning can be used. Domain adaptation helps the model
adapt to the differences between simulated and real-world data,
while transfer learning can fine-tune the pre-trained model
based on real-world data, thereby reducing the need for large
real-world datasets and improving practicality.

2) Limitations: The current simulation has several limita-
tions that need to be further addressed:

• Network connection variation: Vehicle movement leads
to unstable connections, which causes packet loss, and
the current simulation weakens this issue.

• Strict synchronization assumption: The simulation as-
sumes perfect time slot synchronization, which may be
challenging for synchronization of multiple devices in the
real world.

• Data characteristics: The model does not consider packet
loss, sensor failure, or malicious attacks, which reduces
the reliability of the system.

• RAM limitations: The model does not consider the impact
of RAM limitations on processing efficiency, especially
in the case of high memory usage.

3) Future Research: Future research can focus on the
following areas:

• Diverse configurations: Test the system with various vehi-
cle and edge server configurations to ensure adaptability
and scalability.

• RAM impact: Incorporate RAM-related metrics to ana-
lyze how memory limitations affect performance.

• Large-scale simulations: Test in more complex and larger-
scale scenarios to evaluate scalability and adaptability.

• Realistic communication models: Include packet loss,
communication interruptions, and data corruption to im-
prove system reliability.

• Environmental factors: Simulate the impact of weather,
traffic density, and other external factors to enhance
system robustness.

13

VI. CONCLUSION

In this paper, we introduce a unicast-based cooperative per-
ception and computation scheme for CAVs, assisted by edge
infrastructure, to tackle the challenge of real-time transmission
and computation of massive perception data under limited
communication and computing resources. We pose a multi-
objective optimization problem focusing on task execution de-
lay and cooperative perception gain, and develop an improved
multi-agent proximal policy optimization algorithm to train
decentralized decision-making agents. Moreover, our adaptive
weight adjustment method is designed to dynamically respond
to varying computational loads, effectively balancing the trade-
offs between task execution delay and cooperative perception
gain. Our comprehensive simulation results demonstrate that
the proposed scheme achieves a reduction in average task
execution delay by 1.8% to 2.4% and an improvement in
average cooperative perception gain by 1.2% to 2.9% over
the baseline algorithm. In summary, these results prove the
effectiveness and superiority of our scheme in minimizing task
execution delay and maximizing cooperative perception gain.

ACKNOWLEDGMENT

This work is supported in part by the National Natural Sci-
ence Foundation of China under Grant 62372310, and in part
by the Liaoning Province Applied Basic Research Program
under Grant 2023JH2/101300194, and in part by the LiaoNing
Revitalization Talents Program under Grant XLYC2203151.
Large language model is used to proofread this paper.

REFERENCES

[1] X. Sun, F. R. Yu, and P. Zhang, “A survey on cyber-security of connected
and autonomous vehicles (cavs),” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 7, pp. 6240–6259, 2022.

[2] B. Lu, X. Huang, Y. Wu, L. Qian, D. Niyato, and C. Xu, “Cooperative
perception aided digital twin model update and migration in mixed
vehicular networks,” IEEE Transactions on Intelligent Transportation
Systems, pp. 1–16, 2024.

[3] M. Ahmed, M. A. Mirza, S. Raza, H. Ahmad, F. Xu, W. U. Khan,
Q. Lin, and Z. Han, “Vehicular communication network enabled cav data
offloading: A review,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 8, pp. 7869–7897, 2023.

[4] J. Liu, Y. Zhou, and L. Liu, “Communication delay-aware cooperative
adaptive cruise control with dynamic network topologies-a convergence
of communication and control,” Digital Communications and Networks,
2023.

[5] S. Shi, J. Cui, Z. Jiang, Z. Yan, G. Xing, J. Niu, and Z. Ouyang,
“Vips: real-time perception fusion for infrastructure-assisted autonomous
driving,” in Proceedings of the 28th Annual International Conference on
Mobile Computing And Networking, ser. MobiCom ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 133–146.

[6] Q. Chen, S. Tang, Q. Yang, and S. Fu, “Cooper: Cooperative perception
for connected autonomous vehicles based on 3d point clouds,” in 2019
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), 2019, pp. 514–524.

[7] X. Xu, K. Liu, P. Dai, F. Jin, H. Ren, C. Zhan, and S. Guo, “Joint
task offloading and resource optimization in noma-based vehicular
edge computing: A game-theoretic drl approach,” Journal of Systems
Architecture, vol. 134, p. 102780, 2023.

[8] Z. Lu, T. Wu, J. Su, Y. Xu, B. Qian, T. Zhang, and H. Zhou,
“Toward edge-computing-enabled collision-free scheduling management
for autonomous vehicles at unsignalized intersections,” Digital Commu-
nications and Networks, 2024.

[9] X. Huang, P. Li, H. Du, J. Kang, D. Niyato, D. I. Kim, and Y. Wu, “Fed-
erated learning-empowered ai-generated content in wireless networks,”
IEEE Network, vol. 38, no. 5, pp. 304–313, 2024.

[10] R. Chen, S. Sun, Y. Liu, X. Hu, Y. Hui, and N. Cheng, “Proactive
effects of c-v2x-based vehicle-infrastructure cooperation on the stability
of heterogeneous traffic flow,” IEEE Internet of Things Journal, vol. 11,
no. 5, pp. 9184–9197, 2024.

[11] Y. Jia, R. Mao, Y. Sun, S. Zhou, and Z. Niu, “Online v2x scheduling
for raw-level cooperative perception,” in ICC 2022 - IEEE International
Conference on Communications, 2022, pp. 309–314.

[12] Y. Li, S. Ren, P. Wu, S. Chen, C. Feng, and W. Zhang, “Learning distilled
collaboration graph for multi-agent perception,” Advances in Neural
Information Processing Systems, vol. 34, pp. 29 541–29 552, 2021.

[13] Y. He, L. Ma, Z. Jiang, Y. Tang, and G. Xing, “Vi-eye: semantic-based 3d
point cloud registration for infrastructure-assisted autonomous driving,”
in Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 573–586.

[14] M. Shan, K. Narula, S. Worrall, Y. F. Wong, J. Stephany Berrio Perez,
P. Gray, and E. Nebot, “A novel probabilistic v2x data fusion framework
for cooperative perception,” in 2022 IEEE 25th International Conference
on Intelligent Transportation Systems (ITSC), 2022, pp. 2013–2020.

[15] Z. Song, F. Wen, H. Zhang, and J. Li, “A cooperative perception
system robust to localization errors,” in 2023 IEEE Intelligent Vehicles
Symposium (IV), 2023, pp. 1–6.

[16] X. Ye, K. Qu, W. Zhuang, and X. Shen, “Accuracy-aware cooperative
sensing and computing for connected autonomous vehicles,” IEEE
Transactions on Mobile Computing, pp. 1–15, 2023.

[17] S. Ren, Z. Lei, Z. Wang, M. Dianati, Y. Wang, S. Chen, and W. Zhang,
“Interruption-aware cooperative perception for v2x communication-
aided autonomous driving,” IEEE Transactions on Intelligent Vehicles,
vol. 9, no. 4, pp. 4698–4714, 2024.

[18] M. Harounabadi, D. M. Soleymani, S. Bhadauria, M. Leyh, and E. Roth-
Mandutz, “V2x in 3gpp standardization: Nr sidelink in release-16 and
beyond,” IEEE Communications Standards Magazine, vol. 5, no. 1, pp.
12–21, 2021.

[19] Y. Jia, R. Mao, Y. Sun, S. Zhou, and Z. Niu, “Mass: Mobility-aware
sensor scheduling of cooperative perception for connected automated
driving,” IEEE Transactions on Vehicular Technology, vol. 72, no. 11,
pp. 14 962–14 977, 2023.

[20] W. Fan, Y. Zhang, G. Zhou, and Y. Liu, “Deep reinforcement learning-
based task offloading for vehicular edge computing with flexible rsu-rsu
cooperation,” IEEE Transactions on Intelligent Transportation Systems,
pp. 1–14, 2024.

[21] P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and A. Mouzakitis,
“A taxonomy and survey of edge cloud computing for intelligent
transportation systems and connected vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 7, pp. 6206–6221, 2022.

[22] L. Zhao, E. Zhang, S. Wan, A. Hawbani, A. Y. Al-Dubai, G. Min, and
A. Y. Zomaya, “Meson: A mobility-aware dependent task offloading
scheme for urban vehicular edge computing,” IEEE Transactions on
Mobile Computing, vol. 23, no. 5, pp. 4259–4272, 2024.

[23] J. Liu, M. Ahmed, M. A. Mirza, W. U. Khan, D. Xu, J. Li, A. Aziz, and
Z. Han, “Rl/drl meets vehicular task offloading using edge and vehicular
cloudlet: A survey,” IEEE Internet of Things Journal, vol. 9, no. 11, pp.
8315–8338, 2022.

[24] L. Wu, J. Qu, S. Li, C. Zhang, J. Du, X. Sun, and J. Zhou, “Attention-
augmented maddpg in noma-based vehicular mobile edge computational
offloading,” IEEE Internet of Things Journal, pp. 1–1, 2024.

[25] Z. Gao, L. Yang, and Y. Dai, “Fast adaptive task offloading and resource
allocation via multiagent reinforcement learning in heterogeneous vehic-
ular fog computing,” IEEE Internet of Things Journal, vol. 10, no. 8,
pp. 6818–6835, 2023.

[26] Z. Y. Rawashdeh and Z. Wang, “Collaborative automated driving: A
machine learning-based method to enhance the accuracy of shared
information,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), 2018, pp. 3961–3966.

[27] D. D. Yoon, B. Ayalew, and G. G. M. Nawaz Ali, “Performance of
decentralized cooperative perception in v2v connected traffic,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp.
6850–6863, 2022.

[28] T.-H. Wang, S. Manivasagam, M. Liang, B. Yang, W. Zeng, and R. Ur-
tasun, “V2vnet: Vehicle-to-vehicle communication for joint perception
and prediction,” in Computer Vision – ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II.
Berlin, Heidelberg: Springer-Verlag, 2020, p. 605–621.

[29] Z. Lei, S. Ren, Y. Hu, W. Zhang, and S. Chen, “Latency-aware
collaborative perception,” in European Conference on Computer Vision.
Springer, 2022, pp. 316–332.

14

[30] R. Xu, Z. Tu, H. Xiang, W. Shao, B. Zhou, and J. Ma, “Cobevt: Cooper-
ative bird’s eye view semantic segmentation with sparse transformers,”
arXiv preprint arXiv:2207.02202, 2022.

[31] R. Xu, H. Xiang, Z. Tu, X. Xia, M.-H. Yang, and J. Ma, “V2x-vit:
Vehicle-to-everything cooperative perception with vision transformer,” in
Computer Vision – ECCV 2022, S. Avidan, G. Brostow, M. Cissé, G. M.
Farinella, and T. Hassner, Eds. Cham: Springer Nature Switzerland,
2022, pp. 107–124.

[32] L. Zhao, Z. Zhao, E. Zhang, A. Hawbani, A. Y. Al-Dubai, Z. Tan,
and A. Hussain, “A digital twin-assisted intelligent partial offloading
approach for vehicular edge computing,” IEEE Journal on Selected
Areas in Communications, vol. 41, no. 11, pp. 3386–3400, 2023.

[33] L. Zhao, T. Li, E. Zhang, Y. Lin, S. Wan, A. Hawbani, and M. Guizani,
“Adaptive swarm intelligent offloading based on digital twin-assisted
prediction in vec,” IEEE Transactions on Mobile Computing, pp. 1–18,
2023.

[34] S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han, and C. S. Hong,
“Satellite-based its data offloading & computation in 6g networks: A
cooperative multi-agent proximal policy optimization drl with attention
approach,” IEEE Transactions on Mobile Computing, vol. 23, no. 5, pp.
4956–4974, 2024.

[35] M. Tang and V. W. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Transactions on
Mobile Computing, vol. 21, no. 6, pp. 1985–1997, 2022.

[36] P. Lv, W. Xu, J. Nie, Y. Yuan, C. Cai, Z. Chen, and J. Xu, “Edge
computing task offloading for environmental perception of autonomous
vehicles in 6g networks,” IEEE Transactions on Network Science and
Engineering, vol. 10, no. 3, pp. 1228–1245, 2023.

[37] G. Luo, C. Shao, N. Cheng, H. Zhou, H. Zhang, Q. Yuan, and
J. Li, “Edgecooper: Network-aware cooperative lidar perception for
enhanced vehicular awareness,” IEEE Journal on Selected Areas in
Communications, vol. 42, no. 1, pp. 207–222, 2024.

[38] K. Qu, W. Zhuang, Q. Ye, W. Wu, and X. Shen, “Model-assisted learning
for adaptive cooperative perception of connected autonomous vehicles,”
IEEE Transactions on Wireless Communications, pp. 1–1, 2024.

[39] Z. Xiao, J. Shu, H. Jiang, G. Min, H. Chen, and Z. Han, “Perception
task offloading with collaborative computation for autonomous driving,”
IEEE Journal on Selected Areas in Communications, vol. 41, no. 2, pp.
457–473, 2023.

[40] L. Wu, J. Qu, S. Li, C. Zhang, J. Du, X. Sun, and J. Zhou, “Attention-
augmented maddpg in noma-based vehicular mobile edge computational
offloading,” IEEE Internet of Things Journal, pp. 1–1, 2024.

[41] M. H. C. Garcia, A. Molina-Galan, M. Boban, J. Gozalvez, B. Coll-
Perales, T. Şahin, and A. Kousaridas, “A tutorial on 5g nr v2x commu-
nications,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3,
pp. 1972–2026, 2021.

[42] R. Xu, Y. Guo, X. Han, X. Xia, H. Xiang, and J. Ma, “Opencda:
An open cooperative driving automation framework integrated with
co-simulation,” in 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC), 2021, pp. 1155–1162.

[43] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu,
“The surprising effectiveness of ppo in cooperative, multi-agent games,”
2022.

Liang Zhao (Member, IEEE) is a Professor at
Shenyang Aerospace University, China. He received
his Ph.D. degree from the School of Computing at
Edinburgh Napier University in 2011. Before joining
Shenyang Aerospace University, he worked as asso-
ciate senior researcher in Hitachi (China) Research
and Development Corporation from 2012 to 2014.
He is also a JSPS Invitational Fellow (2023-2024).
He was listed as Top 2% of scientists in the world by
Standford University (2022 and 2023). His research
interests include ITS, VANET, WMN and SDN. He

has published more than 170 articles. He served as the Chair of several
international conferences and workshops, including 2022 IEEE BigDataSE
(Steering CoChair), 2021 IEEE TrustCom (Program Co-Chair), 2019 IEEE
IUCC (Program Co-Chair), and 2018-2022 NGDN workshop (founder). He
is Associate Editor of Frontiers in Communications and Networking and
Journal of Circuits Systems and Computers. He is/has been a guest editor of
IEEE Transactions on Network Science and Engineering, Springer Journal of
Computing, etc. He was the recipient of the Best/Outstanding Paper Awards
at 2015 IEEE IUCC, 2020 IEEE ISPA, 2022 IEEE EUC and 2013 ACM
MoMM.

Longjia Li is a student at Shenyang Aerospace
University, Shenyang, China. He is currently study-
ing for M.S. degree in Computer Science, Shenyang
Aerospace University. His research interests mainly
include V2X, Vehicular Edge Computing, Internet
of Things, and Intelligent Transportation Systems.

Zhiyuan Tan (Senior Member, IEEE) received his
Ph.D. degree from the University of Technology
Sydney (Australia) in 2014. He was a Postdoctoral
Researcher at the University of Twente (Netherlands)
from 2014 to 2016, and is now an Associate Profes-
sor with the School of Computing, Engineering &
the Built Environment at Edinburgh Napier Univer-
sity (UK). Dr Tan is also a Senior IEEE Member, and
ACM Member. His recent research interest includes
Cyber Security, Machine Learning, Cognitive Com-
puting, and Intelligent Transportation. His research

has been funded by the Royal Society (UK), the Scottish Informatics &
Computer Science Alliance, the ENU Development Trust, the Commonwealth
Scientific and Industrial Research Organisation (Australia), etc. He is an
Associate Editor of IEEE Transactions on Reliability, and an Academic Editor
of Security and Communication Networks.

Ammar Hawbani is a full Professor at the School of
Computer Science at Shenyang Aerospace Univer-
sity. He received the B.S., M.S. and Ph.D. degrees
in Computer Software and Theory from USTC, in
2009, 2012 and 2016, respectively. From 2016 to
2019, he worked as Postdoctoral Researcher in the
School of Computer Science and Technology at
USTC. Later, he worked as an Associate Researcher
in the School of Computer Science and Technology
at USTC from 2019 to 2023. His research interests
include IoT, WSNs, WBANs, WMNs, VANETs, and

SDN.

Qiang He (Member, IEEE) received the Ph.D.
degree in computer application technology from
the Northeastern University, Shenyang, China in
2020. He also worked with School of Computer
Science and Technology, Nanyang Technical Uni-
versity, Singapore as a visiting PhD researcher from
2018 to 2019. He is currently an Associated Pro-
fessor at the College of Medicine and Biological
Information Engineering, Northeastern University,
Shenyang, China. His research interests include ma-
chine learning, social network analytic, data mining,

health care, infectious diseases informatics, etc. He has published more than
70 journal articles and conference papers, including IEEE Transactions on
Knowledge and Data Engineering, IEEE Transactions on Neural Networks
and Learning Systems, IEEE Transactions on Cybernetics, IEEE Transactions
on Cloud Computing, IEEE Transactions on Computational Social Systems,
IEEE Transactions on Cognitive and Developmental Systems.

Zhi Liu (Senior Member, IEEE) received the B.E.
degree from the University of Science and Technol-
ogy of China, China, and the Ph.D. degree in infor-
matics from the National Institute of Informatics. He
is currently an Associate Professor with The Uni-
versity of Electro-Communications, Japan. His re-
search interests include video network transmission,
vehicular networks, and mobile edge computing. He
was a recipient of the IEEE StreamComm 2011
Best Student Paper Award, the 2015 IEICE Young
Researcher Award, and the ICOIN 2018 Best Paper

Award. He is an Editorial Board Member of Wireless Networks (Springer)
and IEEE Open Journal of the Computer Society.

	Introduction
	Related Work
	Cooperative Perception
	Task Offloading
	Cooperative Perception Assisted by VEC
	Summary

	System Model and Problem Formulation
	System Overview
	Cooperative Perception Task Model
	Communication Model
	Edge Computing Model
	Local computing model
	Task offloading model

	Problem Definition

	Proposed Solution
	Formulation of Markov Decision Process
	State space
	Action space
	Reward function

	Cooperative Computing Based on Improved MAPPO
	Dynamic Weight Adjustment
	Computational Complexity

	Performance Evaluation
	Simulation Tools and Parameter Settings
	Comparative Performance and Adaptability Evaluation
	Evaluation metrics
	Counterparts
	Comparative Analysis of Performance

	Discussion
	Practical Relevance
	Limitations
	Future Research

	Conclusion
	References
	Biographies
	Liang Zhao
	Longjia Li
	Zhiyuan Tan
	Ammar Hawbani
	Qiang He
	Zhi Liu

