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Wireless Rechargeable Sensor Networks:
Energy Provisioning Technologies, Charging

Scheduling Schemes, and Challenges
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Abstract—Recently, a plethora of promising green energy provisioning technologies has been discussed in the orientation of
prolonging the lifetime of energy-limited devices (e.g., sensor nodes). Wireless rechargeable sensor networks (WRSNs) have emerged
among other fields that could greatly benefit from such technologies. Such an ad-hoc network comprises a base station(s) and multiple
sensor nodes, which are primarily deployed in harsh environments, meeting the requirements of transmitting, receiving, collecting, and
processing data. Unlike existing works, this survey paper focuses on energy provisioning technologies within the context of WRSNs by
reviewing two interrelated domains. First, we introduce various energy provisioning techniques and their associated challenges,
including conventional energy harvesting methods (e.g., solar, thermal, and mechanical). We highlight wireless power transfer (WPT)
as one of the most applicable technologies for WRSNs, covering both radiative and non-radiative WPT. Additionally, we present radio
frequency (RF) energy harvesting, including simultaneous wireless information and power transfer (SWIPT) and wireless powered
communication networks (WPCNs), as well as backscatter communications. Furthermore, we compare hybrid energy harvesting
techniques (e.g., solar-RF, vibro-acoustic, solar-thermal, etc.). Second, we introduce the fundamentals of wireless charging, reviewing
various charger types (static and mobile), charging policies (including full and partial charging), charging modes (offline and online),
and charging schemes (periodic and on-demand). We also present the collaborative charging mechanisms. Additionally, we address
several key challenges facing WRSNs, such as energy consumption, multi-charger coordination, dynamic network recharging,
monitoring & security threats, vehicle-to-vehicle (V2V) charging, and hybrid WRSNs Finally, we highlight trends and future directions for
integrating advanced artificial intelligence (AI) technologies into WRSNs.

Index Terms—charging scheduling schemes, charging policy, energy provisioning techniques, collaborative charging mechanisms,
wireless rechargeable sensor networks.

✦

1 INTRODUCTION

R ECENTLY, due to the difficulties that researchers en-
counter with energy-depleted sensor nodes, the WRSN

technology was developed. One of the most popular re-
search areas is WPT, which is also one of the most com-
mercialized technologies as a new promising technology
that could potentially solve the energy limitation for the
Internet of Things (IoTs), 5G, and 6G devices [1]. In partic-
ular, WPT has rapidly increased in mobile phone chargers,
stationary electric vehicle (EV) chargers, and dynamic EV
chargers, also known as road-powered EV (RPEVs) charg-
ers [2]. The energy used in the WPT can be transferred
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through various technologies. These approaches can be di-
vided into radiative RF-based charging and nonradiative
coupling-based charging. There are three types of non-
radiative coupling-based technologies [3]: magnetic induc-
tive coupling [4], magnetic resonance coupling [5], and
capacitive coupling [6]. Radiative RF-based technologies
use both non-directional RF power transmission [7] and
directive RF power beamforming. Capacitive coupling and
directional RF power beamforming techniques rarely find
use in practice due to various constraints. Consequently,
WPT technology is potentially paving the way for solving
energy limitations. The story starts with the creation of
WSN, moves on to energy harvesting, and ends with WRSN.
Within the WSN, the system consists of multiple small-
scale sensor nodes. Sensor nodes have the following advan-
tages: being lightweight, having restricted battery capacity,
and being cost-efficient. The sensor nodes are strategically
placed within predefined regions through random or sys-
tematic distribution. The primary responsibilities of these
sensor nodes include data collection, neighbor monitoring,
data transmission to a central server, and data receipt for
subsequent processing.

However, due to the limited battery capacity, WSN faces
challenges, especially in expansive and challenging envi-
ronments. Sensor nodes endowed with a limited battery
capacity and tasked with enduring severe conditions over
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extended periods can only sustain a reduced data rate. This
limitation can lead to data packet loss or exhaustion of the
sensor nodes’ energy reserves.

Indeed, extending the network lifetime and minimizing
the survival rate of inactive sensor nodes have emerged
as key challenges in WSNs [8]. Despite significant efforts
to extend the lifetime of WSNs, there is still a need for
improved solutions to tackle this issue. The extension of
network lifetime is recognized as a primary factor impeding
system performance in a large environment [9].

Natural sources, such as solar, wind, tidal, renewable,
biomass, hydroelectricity, and thermal, have served as en-
ergy harvesting techniques for further supplying WSN with
energy to prolong the network lifetime (i.e., the WSN envi-
ronment is influenced by the natural sources surrounding
it). Photovoltaic energy harvesting, thermal energy harvest-
ing, and vibration energy harvesting are all examples of en-
ergy harvesting techniques suitable for various applications.

Unlike the aforementioned energy-generating tech-
niques, RF energy harvesting techniques are widely adopted
for supplying energy to next-generation wireless networks.
This method can harness energy from the surrounding
ambient RF waves [10]. Wireless devices can use RF energy
harvesting techniques to draw power from RF signals and
use it to power tasks such as information processing, trans-
mission, and sensing. Consequently, RF energy harvesting
is particularly well suited for wireless networks with lim-
ited power, such as the IoTs and WSNs. Moreover, active
RF data transmission necessitates intricate circuit designs
and uses much energy. To overcome these restrictions and
greatly enhance network performance, ambient backscatter
communications provides the solution [11].

Recent breakthroughs of a new expenditure of wireless
charging technology have been considered promising tech-
niques for extending the network lifetime [12], [13], [14].
This direction has paved a new way for WRSNs to work
by replenishing the energy of sensor nodes. Such a system
contains three main components: (a) the sensor nodes, (b)
the mobile charger (MC), and (c) the sink/base station
(BS) [15]. Static charger deployment within the network
restricts mobility to the surrounding area, leading to high
costs. Therefore, MC is a more feasible alternative to static
charger (SC) deployment. MC’s extensive and free mobility
facilitates the recharging of designated sensor nodes from
any location within the network [16].

1.1 Applications of WRSNs
WRSN is a choice for extending the network lifetime. Wire-
less charging technologies mitigate harsh environmental
factors, harsh cleaning products, substantial soiling, and
significant mechanical stress. It has various applications in
various fields, including intelligent traffic monitoring, smart
household, industrial monitoring [17], educational, environ-
mental [18], [19], commercial field, health care monitoring,
agriculture field [20], [21], earthquake monitoring, smart
cities [22]. These include robot manipulation applications,
robotic underwater vehicles, induction motors, and gener-
ators. As a result, we showcase several intriguing applica-
tions that focus on extending and optimizing the network
lifetime. More applications and details are provided in the
supplementary material Subsection (1.1).

1.2 Related Surveys

A plethora of studies have been introduced on energy
harvesting and WRSNs over the last decade. This subsection
reviews numerous survey papers published between 2011
and 2024, focusing on their scope, main contributions, and
differences between our work and previous surveys. Some
studies in [23], [24], [10], [25] focused on energy harvesting.
Sudevalayam et al. [23] reviewed energy harvesting mod-
els (Harvest-Use, Harvest-Store-Use), energy sources (solar,
wind, RF, human movement), and storage options like
Lithium Ion (Li-ion) batteries, highlighting how recharge
opportunities improve sensor design and networks. Prasad
et al. [24] reviewed sensor deployment growth due to
miniaturization and communication advances, exploring
energy harvesting methods, storage (e.g., supercapacitors),
models (Markov chain, leaky bucket), and efficient energy
conversion hardware. They reviewed protocols for energy-
harvested WSNs, including MAC, routing, relay selection
& cooperative communication, and challenges. Adu-Manu
et al. built on the work of Sudevalayam et al. [23] by
reviewing radiant, mechanical, and thermal energy sources,
hybrid systems, energy prediction, and management. They
addressed challenges like universal harvester design and
network optimization, proposing future trends in protocol
design, wearable devices, and non-RF communication tech-
nologies.

The rapid growth in WPT has led to studies such as [26],
[27], [13] to focus on WRSNs, which provide detailed in-
sights into how these networks overcome energy limitations
in traditional networks by enabling wireless recharging of
sensor nodes. In 2015, Lu et al. [26] discussed wireless charg-
ing methods and advancements in network applications
and technical standards. The static scheduling algorithms,
mobile charger dispatch strategies, wireless charger deploy-
ment, challenges in implementation, and future directions.
In our previous study [13], we reviewed WRSNs, highlight-
ing their role in extending WSN lifetime through WPT. We
discussed charging cycles, scheduling, multi-vehicle strate-
gies, energy optimization (e.g., UAVs), and security risks,
proposing directions for improving charging strategies and
efficiency. Building on this, our current work comprehen-
sively studies WRSNs, including energy provisioning tech-
niques, applications, wireless charging fundamentals, chal-
lenges, and future directions. However, in [27], Kaswan et
al. studied mobile charging techniques in WRSNs, covering
network models, WPT technologies, system performance,
and design challenges. They classified and compared pe-
riodic and on-demand charging methods, highlighting ob-
jectives, constraints, solutions, and limitations. Our study
builds on this by incorporating recent advancements in
WRNs, collaborative charging, energy harvesting, RF, and
backscatter communications. Alabsi et al. [28] provided a
comprehensive review of WPT technologies and proposed a
classification framework for various charging schemes. The
field of WRSNs is rapidly growing, with new technologies
and applications constantly emerging. Consequently, to help
researchers explore recent techniques, schemes, challenges,
and advancements in WRSNs, we provide a detailed review
of recent studies on energy provisioning and WRSNs in the
following sections.
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1.3 Motivations & Contributions
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Fig. 1: Year-rate of related publications in WRSNs according
to Scopus database.

WRSNs have emerged as transformative technologies,
enabling long-term monitoring in challenging environments
such as disaster response, environmental sensing, and
health monitoring. Powered by advancements in WPT, these
systems consist of sensor nodes, a BS, and MCs that re-
plenish energy in sensor nodes, ensuring continuous oper-
ation and significantly extending the network’s lifetime. As
WRSNs gain recognition for providing sustainable energy
solutions to IoT and WSN devices, we believe this critical
domain still requires further synergistic efforts. While the
rapid advancements, researchers face several challenges,
including minimizing energy consumption, reducing sensor
node failures, optimizing the number and location of MCs,
improving charging efficiency, maximizing the number of
charged nodes, lowering service costs, optimizing charging
trajectories, addressing security risks, and enhancing overall
energy efficiency. These challenges have motivated us to
present this comprehensive survey paper, which serves as a
guiding light for researchers in WRSNs, inspiring new ideas
and solutions. Furthermore, an analysis of approximately
425 WRSNs-related publications indexed in the Scopus
database (from 2011 to the present) shows a growing interest
in addressing these challenges, as shown in Fig. 1. Thus,
herein, we highlight the following main contributions:

• We provide an overview of energy provisioning tech-
niques, starting with conventional energy harvesting
methods like solar, thermal, and mechanical, as well
as WPT in both radiative and non-radiative forms. RF
energy harvesting techniques are introduced technolo-
gies such as simultaneous wireless information and
power transfer (SWIPT) and wireless-powered commu-
nication networks (WPCNs). Additionally, we discuss
backscatter communications, compare different energy
harvesting techniques, explore hybrid approaches, and
outline challenges in energy provisioning.

• We introduce the fundamentals of wireless charging,
providing an overview of previous work on wireless
charging techniques and ranges, including key con-
straints, decision variables, highlights, techniques, and
control methods, as shown in Table 1. We discuss
types of chargers, including mobile and static, as well
as full and partial charging ways. Additionally, we

outline charging modes, covering both offline and on-
line modes. We present various charging scheduling
schemes, including periodic and on-demand, with a
comparison and summary of previous studies as shown
in Table 2. Finally, we introduce collaborative charging
mechanisms.

• Finally, we introduce the challenges of wireless charg-
ing with solutions, followed by a discussion of trends
and future directions in WRSNs.

1.4 Paper Organization

This survey’s structure is depicted in Fig. 2. Table 1. pro-
vided in the supplementary materials Section (1) pro-
vides the notation definitions in our work. We organize
the remainder of this paper as follows: Section 2 offers a
brief overview of energy provisioning techniques, including
conventional energy harvesting, WPT, RF, and backscatter
communications. In this section, we also introduced a brief
of hybrid energy harvesting techniques and then discussed
the challenges researchers face when using these techniques.
Section 3 offers an in-depth discussion on the fundamentals
of wireless charging. Subsection 3.1 presents a comprehen-
sive summary of charger types, including static and mobile
chargers. In subsection 3.2, full and partial charging policies
are introduced. Subsection 3.3 covers the charging modes,
including offline and online charging modes. Subsection 3.4
furnishes detailed insights into periodical and on-demand
charging schemes, respectively. Finally, subseection 3.5 in-
troduces collaborative charging mechanisms. Section 4 in-
troduces the prominent challenges researchers face with so-
lutions in this field, followed by trends and future directions
in WRSNs in Section 5. Finally, Section 6 offers a concluding
perspective for this survey paper.

2 THE ENERGY PROVISIONING TECHNIQUES

Traditionally, batteries have served as the primary power
source for sensor nodes. However, placing these devices in
remote or inaccessible locations makes changing the battery
laborious. Consequently, it has become essential to seek
practical solutions with advanced techniques to address
the energy challenges faced by these devices. Harvesting
energy from the surrounding environment or delivering
energy wirelessly to these devices are currently available
solutions. Energy harvesting enhances the capability of
sensor networks by providing a sustainable solution to
energy challenges. Unlike batteries, which have a finite
energy storage capacity, energy harvesting sources are lim-
ited by their energy consumption rate, ensuring a more
consistent energy supply despite fluctuations in availability
over time. While a deterministic metric like residual battery
life is suitable for describing energy availability in battery-
powered systems, energy-harvesting systems require a more
nuanced approach. This complexity is essential to our re-
search, particularly because energy harvesting opportunities
vary across network nodes, posing significant challenges
[29]. Thus, this section provides an overview of energy
provisioning technologies in the following subsections.



XXXX 4

Survey Structure

Energy Provisioning
Techniques

Fundamentals of
Wireless Charging

Challenges
and Solutions

Trends and
Future Directions

Conventional energy
harvesting techniques

Wireless power
transfer

RF energy harvesting
techniques

Backscatter communi-
cations

Hybrid energy har-
vesting techniques

Challenges

Charger types

Charging policy

Charging modes

Charging scheduling
schemes

Collaborative charging
mechanisms

Energy consumption

Multi-charger coordi-
nation

Dynamic network
recharging

Monitoring & security
threats

V2V charging

Hybrid WRSNs

Applied AI in WRSNs

AI-enhanced sensor
design

Quantum computation

Fig. 2: Survey Organization

2.1 Conventional Energy Harvesting Techniques

Sensor nodes can obtain their energy from external environ-
ments using harvesting techniques such as solar, thermal,
and mechanical energy. These sources store accumulated en-
ergy in batteries or capacitors to support operations like pro-
cessing and communication. This subsection introduces so-
lar, thermal, and mechanical energy harvesting techniques.

1) Solar energy harvesting: Photovoltaic (PV) technol-
ogy converts light into electricity through semiconduct-
ing materials. PV systems consist of solar panels made
of multiple solar cells, which are classified into four
types: silicon, multi-compound, polymer photovoltaic
cells (PPVC), and nanocrystalline solar cells [25]. These
cells differ in efficiency: silicon cells range from 15% to
22%, multi-compound cells exceed 40% under concen-
trated sunlight, PPVC typically have less than 5%, and
nanocrystalline cells around 10%. Researchers use quan-
tum efficiency and volt-ampere testing to assess spectral
response and short-circuit current. PV technology is used
in applications like rooftop systems, power plants, trans-
portation, and telecommunications [30]. The rapid growth
of IoT has enhanced connectivity but faces challenges for
sustainable power supply [30]. Indoor photovoltaics (IPV)
offer a reliable energy source, though their effectiveness
is limited by nighttime unavailability and manufacturing
complexities [31]. To address this, IPV materials and
manufacturing processes must be eco-friendly and low-
toxic, providing a sustainable solution for powering IoT
devices.

2) Thermal energy harvesting: It uses thermoelectric gen-
erators (TEGs) to convert heat into electricity via the
Seebeck or Thomson effect. Heat can come from natural
sources or machinery, engines, and other systems [30].
TEGs are reliable when there is a temperature difference
or heat flow, offering advantages like compact size, safety,
and high reliability. However, they have relatively low

efficiency (5–8%) [30] and struggle to maintain significant
temperature gradients in small devices, limiting power
output. Recent advances in thermoelectric technology
focus on optimizing materials, exploring new thermoelec-
tric materials, creating functionally graded materials, and
reducing material dimensions to increase power output.
Despite losses from electrical interconnections, contact
heat resistance, and other factors, TEGs remain viable for
powering devices in WSNs, especially in environments
with consistent heat sources [32]. Multiple thermocouples
are often required to increase efficiency, as single units
generate minimal power. Consequently, thermal energy
harvesting is better suited for large-scale applications like
steam turbines.

3) Mechanical energy harvesting: Vibration energy harvest-
ing converts kinetic energy from vibrations into electricity
using electromagnetic induction, piezoelectric fibers, and
capacitive devices [33]. Applications include agriculture
[34] and livestock farming [35]. For example, a system
harnessed elephant movement to generate 88.91 J daily,
powering a tracking unit. Piezoelectric harvesters gener-
ate high voltage without external power, with materials
like PZT and polyvinylidene fluoride (PVDF) offering ef-
ficiency and mechanical strength [36]. However, they face
limitations like depolarization and brittleness [37]. Elec-
tromagnetic harvesters use induction and NdFeB magnets
to capture energy from vibrations [38], though output can
decrease with size reduction. Researchers are improving
coil designs and resonance frequency to enhance effi-
ciency. Capacitive harvesters convert mechanical energy
by altering capacitance due to vibrations, powering sen-
sor devices [39]. Challenges include generating enough
power and reducing reliance on external charging. Efforts
focus on improving electret materials for better efficiency
and stability.
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2.2 Wireless Power Transfer (WPT)

WPT technology enables energy delivery from a power
source to a target without physical wires, using air as the
transmission medium [40]. The transmitter, receiver, and
coupling devices are the main parts of WPT. The transmitter
produces and sends energy wirelessly, while the receiver
captures it and converts it into usable power for devices like
phones. Coupling devices, such as inductive coils, capacitive
plates, or antennas, facilitate energy transfer between the
transmitter and receiver. Recent advancements in WPT have
optimized energy efficiency, mobility, and extended network
lifetime, surpassing conventional energy harvesting tech-
niques. WPT revolutionizes smart homes, healthcare, and
industries by enabling wireless, cord-free energy solutions.
It powers home appliances, medical devices, and industrial
systems, enhancing convenience, safety, and efficiency while
reducing downtime. It also presents promising for solving
power challenges in WSNs and is increasingly used in
applications such as smartphone charging, EVs, and UAVs.

WPT technologies are widely classified into radiative
and non-radiative transmissions [3]. Non-radiative-WPT is
suitable for short-range energy transfer, relying on mag-
netic resonance coupling for mid-range applications [4]. Key
techniques in this category include inductive coupling and
capacitive induction [6]. However, radiative-WPT transmits
energy over long distances using electromagnetic waves.
This category includes several techniques, including RF,
optical, ultrasonic, and microwave-based power transfer.
Non-radiative WPT, also known as near-field WPT, is pri-
marily used for short-range energy transfer [41]. The main
challenge is that energy transfer becomes less efficient as
the distance increases, making it hard to power devices
that are far away. This technology is further categorized
into inductive and capacitive coupling, each with different
operational principles.

1) Inductive coupling: It uses a magnetic field generated
between a transmitter and receiver coil to transfer energy
efficiently over short distances, typically within 20 cm and
at kilohertz frequencies. This method is commonly found
in consumer electronics, such as wireless phone chargers
and RFID systems, due to its low cost, simplicity, and high
efficiency.

2) Magnetic resonance coupling: It extends the energy
transfer range, enabling the simultaneous charging of
multiple devices over greater distances. Its flexible config-
urations allow it to adapt to various applications. How-
ever, energy transfer efficiency decreases as the distance
between the transmitter and receiver increases [41].

3) Capacitive coupling: It uses electric fields to transfer
energy over very short distances [42]. The challenge is
that the amount of power transferred depends on the
capacitance between the plates, which limits efficiency
and performance, especially as the distance between the
plates increases. Thus, the authors in [43] considered
that the most widely used technologies in this field are
inductive coupling and magnetic resonance coupling.

Radiative WPT transmits energy using carriers such as
acoustic waves, optical signals, and microwaves [44]. It can
transfer energy over several meters through RF signals and

laser beams, making it suitable for applications like SWIPT
and WPCNs [7]. This method covers a wider area than tra-
ditional antennas, enabling broader deployment. However,
it faces challenges such as RF safety concerns and limited
range, which require advanced techniques like beamform-
ing to improve performance. While these solutions enhance
efficiency, they also increase the system’s complexity.

2.3 RF Energy Harvesting Techniques

As shown in Fig. 3, RF energy harvesting is a type of radia-
tive WPT that captures energy from ambient or transmitted
RF signals and converts it into usable power. It collects
electromagnetic waves, such as Wi-Fi or cellular signals, and
converts them into direct current (DC) power using a recti-
fier circuit [45]. The process starts with an antenna receiving
these signals as alternating current (AC), which the rectifier
transforms into DC. These antennas can operate on multiple
frequencies and transmit signals either omnidirectionally (in
all directions) for low-intensity broadcasts or in a focused
beam (directed) for high-intensity, typically using antenna
arrays. Since the energy harvested is limited, it is stored in
capacitors or batteries to power small devices, supporting
applications in WSNs and IoTs.

Fig. 3: RF energy harvesting sensor node.

Recent advancements in WPT integrate power and data
transfer, inspired by Nikola Tesla’s experiments [41]. These
innovations aim to make future wireless networks faster,
more reliable, and with lower latency. WPT shows sig-
nificant promise to support advanced wireless powered
networks technologies like SWIPT, WPCN, and Backscatter
Communications. Thus, WPT can be used to power either
wireless information transmitters or receivers. When the
harvested energy powers the transmitters, the system is
known as SWIPT [46]. Alternatively, the system is known
as a WPCN when it powers the receivers [47]. Despite
challenges due to signal degradation from path loss and
fading, these techniques show promise, especially in urban
areas with abundant ambient RF energy. More details are
provided in the supplementary materials Subsection (2.1).

2.4 Backscatter Communications

In 1948, Stockman introduced the modulated backscatter
method [11], which enables data transmission by modulat-
ing and reflecting received RF signals without generating
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active RF signals. Building upon our previous work [48], we
highlight the three primary techniques of backscatter com-
munications: monostatic backscatter communication sys-
tems (Mon-BackComs) [49], bistatic backscatter communica-
tion systems (Bis-BackComs) [50], and ambient backscatter
communication systems (Amb-BackComs) [51].

Amb-BackComs holds several advantages over Mon-
BackComs and Bis-BackComs. First, they capitalize on
nearby available RF sources, negating the necessity of de-
ploying and managing discrete RF sources. This translates
to reduced costs and energy consumption, as the com-
ponents of backscatter devices are low-cost and energy-
efficient [52]. Second, Amb-BackComs leverages existing
ambient RF signals, obviating the need for allocating a fresh
frequency spectrum. This optimized spectrum resource uti-
lization is achieved by modifying and reflecting current
ambient RF signals instead of actively generating signals in
the licensed spectrum, rendering Amb-BackComs virtually
interference-free to licensed devices. Consequently, Amb-
BackComs functions without requiring dedicated frequency
spectrums, further trimming down system expenses. Fi-
nally, Amb-BackComs adheres to existing spectrum uti-
lization regulations [52]. However, Amb-BackComs have
their drawbacks. Firstly, intense direct interference from
ambient RF sources can impact the system performance of
Amb-BackComs. Secondly, the simple analog construction
of backscatter devices raises various security concerns for
Amb-BackComs. Moreover, these devices utilize ambient RF
waves for their internal operations and transmission, posing
challenges in coordinating ambient RF sources’ frequencies,
scheduling, and transmission power. Furthermore, since the
energy harvested from ambient RF sources is often min-
imal, backscatter devices may require substantial time to
accumulate enough energy to sustain their operations and
transmissions [53].

2.5 Hybrid Energy Harvesting Techniques
This subsection introduces hybrid energy harvesting (HEH)
techniques, which combine multiple energy sources, such as
ambient light, RF signals, and vibrational energy, to develop
autonomous power systems for active RFID tags. HEH
techniques are essential for enhancing the energy sustain-
ability of WSNs. They are applied in various applications,
including environmental monitoring, industrial automation,
wearable devices, power devices, truck recognition, organic
fertilizer plants, agriculture, and the automobile industry,
in both indoor and outdoor environments [54]. More details
about the hybrid energy harvesting techniques are provided
in the supplementary materials Subsection (2.2).

2.6 Challenges of Energy Provisioning Techniques
While energy harvesting and hybrid techniques can ex-
tend WSN lifetimes, they face significant challenges. Energy
sources like solar and RF signals are highly variable, leading
to inconsistent power output [55]. Solar energy depends
on weather and time of day, with cloudy conditions and
nighttime drastically reducing efficiency. Similarly, ambient
RF signals vary in availability and strength, limiting their
energy-harvesting potential. These factors often result in
low power output and insufficient for high-energy WSN

operations. Additionally, the conversion efficiency of am-
bient energy to electricity, particularly with RF and thermal
energy harvesting, remains low, hindering performance and
reliability. High material costs, IoT integration challenges,
and managing multiple energy sources further complicate
HEH in large, remote WSNs.

Unlike energy provisioning techniques that depend on
changing environmental factors, WRSNs utilize controlled
and predictable WPT. MCs or unmanned aerial vehi-
cles (UAV) can be deployed to recharge sensor nodes as
needed, ensuring consistent power without being affected
by weather or RF conditions. This capability meets the
energy demands of applications that require higher power
levels. By integrating WRSNs into the system, the limita-
tions of traditional energy provisioning techniques are over-
come, leading to extended network lifetime and improved
performance. Thus, in the following sections, We introduce
a brief overview of the fundamentals of wireless charging.

3 FUNDAMENTALS OF WIRELESS CHARGING

WRSNs are an advanced type of WSNs that integrate the
ability to recharge sensor nodes wirelessly, extending their
operational lifetime without needing battery replacement.
They can increase energy efficiency by scheduling charging
based on the network’s needs. WRSNs have three main com-
ponents: chargers, sensor nodes, and BS. Each component is
essential for the network’s functionality and efficiency, and
they can differ based on whether the environment is 2-D or
3-D. Our focus in this review is on wireless charging, where
scheduling can be categorized as centralized or distributed,
depending on the route control where the charging requests
are collected. In centralized scheduling, requests are gath-
ered at the BS. However, in distributed scheduling, MCs col-
lect requests within sub-regions for localized management.
To clarify the fundamentals, technologies, and challenges of
wireless charging, we review the main concepts, such as
charger types, charging policy, charging modes, charging
scheduling schemes, and charger modes. Table 1 shows
related wireless charging work based on centralized and
distributed control.

3.1 Charger Types (CTs)
In WRSNs, energy replenishment is crucial to ensure sensor
nodes remain active. One of the critical components in
WRSNs is the charger type, which ensures that nodes have
sufficient energy to perform sensing and communication
tasks. Charger types in WRSNs are typically divided into
mobile and static chargers, each offering unique benefits
and challenges. This subsection introduces static and mobile
chargers in 3.1.1 and 3.1.2, respectively.

3.1.1 Static Charger Type (SCT)
In SCT, wireless charging devices are commonly and strate-
gically positioned at identified and fixed locations within
the network [74]. This type faces the problem of figur-
ing out where to place chargers within the network to
maximize coverage and replenish all sensor nodes with
enough energy. Liao et al. introduced a greedy algorithm
called adaptive pair-based greedy cone selection (APB-
GCS), which utilized the Friis propagation model [75]. It
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TABLE 1: Examples of Related Work of Wireless Charging Based on Centralized And Distributed Control

Ref Highlighted Decision Variables Key Constraints Control Method
[56], (2011) Prolong the network lifetime Charging sequence, data routing Time limit for total energy Centralized
[57], (2012) Maximize the ratio of charger’s

vacation time
Cycle time, traveling path Energy consumption rate

of sensor nodes
Centralized

[58], (2013) Reducing the number of MCs Charging sequence of each MC,
number of chargers

Eternal WSN operation,
MC energy capacity

Centralized

[59], (2013) Maximize the network lifetime Charging trajectory of each MC MC energy capacity Distributed
[60], (2014) Maximize the ratio of charger’s

vacation time
Cycle time, traveling path Charging range Centralized

[16], (2017) Maximize coverage and charg-
ing efficiency

Charging range, adaptive attractive-
ness, dynamic location update

Sensor node locations, un-
restricted energy

Distributed

[61], (2017) Optimize path planning and
MES scheduling, minimize data
loss

Traveling time, charging range,
number of paths

MES energy capacity Centralized

[62], (2018) Maximize energy efficiency, sur-
vival rate

Charging schedule trajectory, dis-
tances

Temporal and spatial corre-
lation

Distributed

[63], (2018) Maximize charging coverage
utility

Charging routes, charging time,
node association

Limited energy capacity,
traveling energy consump-
tion, charging consumption

Centralized

[64], (2018) Minimize the maximize moving
time

Number of chargers, service cost, en-
ergy consumption

Charger velocity, distances,
number of chargers

Distributed

[65], (2019) Minimize the cost deployment
of rechargeable directional sen-
sor network

Number of deployed sensor nodes Sensing angles of direc-
tional sensors and MC en-
ergy capacity

Centralized

[66], (2019) Optimize the service process Residual energy information, travel-
ing distance, charging time

MC energy capacity, flow
routing

Distributed

[67], (2020) Static node energy consumption Random node distribution, charging
distance, distance to BS

Node density Centralized

[68], (2020) Minimize the number of used
batteries

Distance between two service sta-
tions, charging tour

MC energy capacity Centralized

[69], (2020) Enhance energy efficiency, re-
ducing charging latency, maxi-
mize network lifetime

Moving trajectory, charging time MC energy capacity, rout-
ing flow

Centralized

[70], (2020) Minimize the number of charg-
ers

Number of chargers MC energy capacity Centralized

[71], (2020) Maximize the energy usage effi-
ciency, reduce the charging fre-
quency

Location, energy consumption Routing flow Centralized

[72], (2021) Maximize the charging utility/
reward

Sensing range, charging range, sen-
sor nodes

Routing flow, MC energy
capacity

Centralized

[73], (2021) Minimize charging delay Distance, angle, search space MC energy capacity Centralized

assumed that chargers with directional antennas were fixed
at specific heights on a grid while sensors were placed on
the ground. They showed that APB-GCS effectively reduced
the number of chargers needed while keeping complexity
manageable. However, using static chargers is unsuitable
for dynamic and large-scale networks. Zhang et al. were
the first to explore charging non-deterministic mobile nodes
with static chargers [76]. They optimized charging quality
in a 2-D area by selecting optimal charger placements and
power allocations under a budget, proving the problem
to be NP-complete, and developing approximation algo-
rithms. In 2018, they extended their work with stationary
devices (SP³), mobile devices (MP³), and cost-constrained
reconfiguration (CRP ) [1]. Simulations showed that their
algorithms performed close to optimal, with performance
gaps of 4.5%, 4.4%, and 5.0%, outperforming baseline meth-
ods. However, Zhong et al. addressed charging nodes with
unpredictable mobility while minimizing the number of
static chargers (SCs) [77]. The charger selection problem
(CSP) was proven to be NP-hard. CSP involved selecting the
smallest subset of candidate locations for placing chargers,
ensuring that each node in the network was covered by at
least one charger, and maximizing the network’s energy
gain. This problem can be reformulated as a minimum
weight set cover problem (MWSCP), a well-known NP-hard
problem. Since MWSCP is NP-hard, CSP is also NP-hard
by reduction. They demonstrated that finding the optimal
solution to CSP, in terms of the minimal number and place-

ment of chargers while ensuring full network coverage and
maximizing energy efficiency, is computationally intractable
for large instances. This justified the need for heuristic or
approximation algorithms, such as the proposed greedy
algorithm, to solve the problem efficiently.

3.1.2 Mobile Charger Type (MCT)

The mobile charger type is one of the critical keys in WRSNs,
and mobile devices travel from the BS or their current
locations to their destination to recharge the batteries of
hanger nodes. These mobile devices may be vehicles, robots,
or UAVs, and they distribute energy among sensor nodes to
extend the network’s lifetime. The network can use either
a single or multiple chargers. Thus, we now introduce the
prior works using mobile chargers type by either single or
multiple chargers.

Several studies use a single charger that is suitable for
small networks with simple setups, offering easy operation
and low cost [78], [5], [62], [56], [67]. However, they are
limited to large-scale networks. To overcome this limitation,
the J-RoC scheme integrated routing and charging, guid-
ing both activities proactively [56]. By delivering energy
where needed and optimizing energy consumption, J-RoC
enhances network performance and prolongs its lifetime. Fu
et al. proposed the ESync protocol to reduce charger travel
distance and node charging delays by creating nested TSP
tours based on energy levels and synchronizing charging
requests [79]. They demonstrated a 30% reduction in travel
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distance and a 40% decrease in charging delays. One key
challenge for a single charger is handling unpredictably
moving nodes. The predicting-scheduling-tracking (PST)
method [80] and the charging reward maximization prob-
lem (CRMP) approach [81] improved single MC by address-
ing the challenge of unpredictable node movement. PST
focused on predicting node locations using an improved
LSTM algorithm [80] and tracked them with a Kalman filter
[82] for accurate charging. On the other hand, CRMP used
reinforcement learning (RL) [83] to prioritize nodes based on
their remaining energy, ensuring efficient charging. While
PST relied on prediction and scheduling, CRMP focused on
adaptive learning to make better real-time charging deci-
sions. Lin et al. in [67] proposed the circular-density charg-
ing cluster division method (CDCCDM) to extend network
lifetime by forming circular clusters based on node density,
reducing clusters, and optimizing the MC’s path. In [84],
the authors proposed to minimize the energy consumption
and the covered distance in the network. However, their
efficiency still faces the limitation of using a single charger.
These approaches show that a single charger is inefficient
for large-scale networks with limited MC energy, leading
to increased charging delays, higher energy consumption,
and lower survival rates. Thus, increasing the number of
chargers in the network is a crucial key. Then, the re-
searchers turned to using multiple chargers to address these
challenges [16], [58], [59]. Dai et al. addressed the minimum
number of energy-constrained MCS (MinMCP) problem,
designing optimal paths for continuous operation [58]. They
showed that: (1) no (2 − ϵ)-approximation algorithm exists
for DVRP in broad metric spaces, (2) MinMCP is NP-hard,
and (3) MinMCP matches DVRP complexity through reduc-
tion. Wang et al. addressed the recharge scheduling prob-
lem under energy consumption and capacity constraints.
They achieved 30-50% less transient energy depletion, 10-
20% energy savings, and 30% energy savings with latency
reduced by two orders of magnitude [85]. Liang et al.
optimized multiple charger scheduling, minimizing charger
deployment while considering energy capacity constraints
[86]. Although researchers have increased network lifetime
and energy efficiency, they are still working to optimize
charging paths, coverage, and energy consumption while
addressing the challenges of static and mobile chargers.

3.2 Charging Policy

Energy consumption in WRSNs is crucial for researchers
to enhance network efficiency and extend its lifetime. Both
chargers and sensor nodes are the main reasons for energy
consumption. Sensor nodes consume energy for continuous
monitoring, location tracking, communication with the BS,
and chargers for traveling to recharge nodes, along with
tasks like route discovery and data collection in dynamic
networks. To manage this, charging tours operate in two
ways for energy transfer: partial charging [87], [73], [88],
[89], [90], [91], [92], and full charging [66], [93], [70], [94],
[95], [96], [69], [97], [71], [98], [68], [61], [99], [72], [100] , each
significantly impacting network efficiency and longevity.
Thus, we now discuss partial and full policies as follows.

3.2.1 Full Charging Policy
During each charging tour, full charging uses MC to
recharge the hanger sensor nodes completely [97]. It ensures
that the charger fully recharges each sensor node before
moving on to the next. This guarantees that each sensor
node can operate longer before needing another recharge.
However, this way is challenging with a single charger, as it
takes time to recharge each sensor node fully, risking energy
loss in other nodes before the charger reaches them. This
works better with multiple MCs, allowing them to balance
the workload and efficiently keep nodes powered. Several
studies employed a full charging policy to optimize charg-
ing efficiency and paths [101], [102]. Fu et al. introduced a
method to charge RFID-based sensor nodes to a required
energy level efficiently, improving charging efficiency by
24.7% [101]. Chen et al. investigated how to determine a
charging path that maximizes the number of nodes charged
within a specified time limit, proving that this problem is
APX-hard [102]. One of the challenges is reducing dead
sensor nodes and energy consumption. Lin et al. addressed
these challenges by optimizing the charging schedule to
avoid conflicts [62] and managing device sleep time [103].
In [62], a joint optimization problem was addressed using
a real-time scheduling strategy, dividing the system into
subdomains to simplify MC arrangement. This approach
enabled efficient travel and energy replenishment for critical
sensor nodes while managing computational complexity to
optimize performance. However, in [103], they proposed a
3-D dynamic collaborative scheduling scheme (3DCS) using
UAVs and MCs to divide the network into regions, optimize
charging sequences, and enable cross-region collaboration.
Lyu et al. proposed a periodic charging scheme to prevent
sensor node failures and maximize docking time using a
hybrid particle swarm optimization genetic algorithm, out-
performing GA and PSO [100]. Ding et al. reduced battery
needs for MCs by optimizing algorithms for single and
multiple service stations [68]. Malebary extended network
lifetime by partitioning networks into charging regions, op-
timizing MC routes and durations [69]. Liu et al. optimized
CUAV scheduling and trajectory in 3-D networks, minimiz-
ing hovering points and flight distances with particle swarm
optimization [104].

3.2.2 Partial Charging Policy
Due to challenges with full charging, such as charging
delay and high energy consumption, the researchers direct
their interest to partial charging, where the MC recharges
sensor nodes partially during each tour [105], [56]. This way
involves charging sensor nodes only to a specific level rather
than to full capacity, which quickly provides enough energy
to keep the sensor nodes operational until the next charging
tour. Its advantages reduce the time and energy consumed
by the MCs, allowing them to recharge more sensor nodes
quickly. However, this way requires careful balancing of
the energy needs of multiple nodes with varying charge
levels, making them particularly suitable for networks with
a single charger [106], [107], [108]. For example, an MC that
uses 20% of its energy for travel and 80% for recharging
four sensor nodes can provide partial charging. While this
doesn’t fully recharge the nodes, it ensures they stay opera-
tional and allows the MC to complete its tour and return to
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the BS, helping to extend the network’s lifetime. Han et al.
addressed energy issues in industrial WRSNs with a grid-
based joint routing and charging algorithm, improving lo-
cal energy distribution and balancing energy consumption,
which increased node survival rates [87]. Meanwhile, Feng
et al. introduced the Mobile Energy Replenishment Scheme
(MERSH), which combined online and offline modes to
adapt to changing energy needs and improve energy supply.
[91]. MERSH enabled nodes to request charging from an
MC and optimized paths and durations to prevent node
failures. Xu et al. proposed a partial charging strategy to
maximize sensor lifetime while minimizing the charger’s
travel distance [107]. Wang et al. addressed varying energy
consumption rates with partial charging [109]. In [88], the
authors aimed to optimize the scheduling, movement, and
charging times for multiple mobile chargers with limited
resources. Liu et al. created the multi-node temporal-spatial
partial charging algorithm (MTSPC) to balance minimizing
dead sensors and maximizing energy efficiency [106]. Liu
et al. focused on the challenge of unpredictable mobility
of mobile devices by formalizing it as a charging reward
maximization problem (CRMP) [89]. They considered the
energy capacity of the charger and developed a reinforce-
ment learning (RL)-based algorithm to improve charging
efficiency. Priyadarshani et al. developed an on-demand,
multi-node charging approach using the NSGA-II genetic
algorithm and multi-attribute decision-making (MADM)
to optimize charging schedules [90]. Lin et al. enhanced
energy efficiency and reduced delays by applying partial
charging with single and multiple chargers [73]. Kaswan
et al. introduced the Distributed Mobile Charging Protocol
(DMCP) to improve partial charging in large WSNs [110].
By focusing on sensor energy needs and charger idle times,
and using game theory to prioritize critical nodes, DMCP
reduced charging delays by 44% and increased coverage and
survival rates. Despite efforts to improve partial and full
charging policies, challenges remain. Partial charging can
result in uneven energy distribution, causing some nodes to
deplete faster and leading to coverage gaps. On the other
hand, full charging requires more energy and time, making
it less sustainable for large-scale networks.

3.3 Charging Modes

In WRSNs, the charging modes are divided into (a) offline
charging mode (deterministic techniques) and (b) online
charging mode (non-deterministic techniques). In this sec-
tion, we now review offline and online charging modes.
Chargers proceed to this stage to determine the paths that
directly lead to the requested nodes; as a result, the path
definition for the offline mode consists of predefined or fixed
paths, which is different from the online charging mode.

3.3.1 Offline Charging Mode
In the offline charging mode, decisions are made before the
system operates, with BSs and MCs having prior knowl-
edge of sensor information like location information for
required nodes, energy levels, and energy consumption
rate. Some researchers [61],[18] employ the offline mode
in their research. However, several assumptions, such as
network topology, location information for required nodes,

and energy consumption rate, constrain offline path plan-
ning for MCs. The charger’s route is crucial in transforming
the charging method into a traveling salesman problem
(TSP) and identifying the appropriate Hamiltonian cycle.
TPS aims to find the shortest path so that, through it, the
MC visits each node exactly once and returns to the BS.
The Hamiltonian cycle strives to ensure that MC visits each
sensor node exactly once in a cycle, avoiding any node
duplication. Although the offline model may appear similar
to a periodic charging scheme, the key difference is that in
offline scheduling, the MCs, sensor nodes, and BSs are all
coordinated and planned in advance. In contrast, the peri-
odic charging scheme involves only the MCs, which follow a
fixed path throughout the network to recharge sensor nodes.
Using single or multiple MCs is considered in online and
offline modes, as employing a single MC in a vast and harsh
area can lead to several issues. Despite offline scheduling
solutions’ contributions, unanticipated changes in network
topology remain a performance barrier in a dynamic system.
Consequently, offline scheduling may not be suitable for
several real-world applications. Shi et al., for example, ad-
dressed the charging problem of an MC as an optimization
problem [14]. Their goal was to increase the MC’s vacation
time ratio relative to tour time. Furthermore, they showed
that the shortest Hamiltonian cycle was the optimal path for
the MC to take on each recharging tour. Then, by enhancing
a verifiable near-optimal solution, they tackled the problem
of flow routing, total cycle time, and individual charging
time at each node as a joint optimization problem, which
was a non-linear problem. They also demonstrated that
the typical minimal energy routing wasn’t the best option.
The authors in [111] designed a hybrid clustering charging
algorithm to reduce charging time, travel duration, and
average delay. They created a network backbone with a
minimum connected dominating set, utilized hierarchical
clustering, and incorporated a k-means algorithm for energy
awareness. They improved the HCCA to develop HCCA-TS
for enhanced performance.

3.3.2 Online Charging Mode
In the online charging mode, recharging decisions are made
in real-time without prior knowledge of new requests or
task completion. This mode, often using on-demand or
collaborative scheduling schemes, is more practical than
the offline mode, which struggles with tracking sensor lo-
cations and maintaining balanced energy levels. Therefore,
the limitations of MCs constrained offline path planning
through several assumptions, including network topology,
location data for necessary nodes, and energy consumption
rate. Some online modes were suggested. These needed to
send information about requested sensor nodes to MCs or
BSs when a warning message had the rate of remaining
energy dropped below a certain level [112], [113]. BS or
MC would then decide on the charging schedule method
plan based on predetermined algorithms after receiving
the gathered information from the requested sensor nodes
(such as location information, remaining energy rate, and
consumption energy rate). For example, the authors in
[114] addressed maximizing covering utility in WRSNs by
using an online charging scheduling for MCs. The MC
autonomously moved upon receiving a recharge request.
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Fig. 4: Scenarios of periodic charging scheme: (a) A single MC is deployed within the network to recharge multi-sensor
nodes periodically; (b) Multiple MCs are deployed within the network, where each MC can periodically recharge multi-
sensor nodes in the same coverage area; (c) Multiple MCs are deployed within the network, where each MC can recharge
only one sensor node periodically.

They formulated the scheduling problem as an optimization
task and proposed three heuristic algorithms, leveraging
the spatial redundancy of WRSNs to solve the NP-complete
problem. The solution was also extended to scenarios with
multiple MCs. Ouyang et al. [115] introduced utility-based
collaborative charging (UBCC) to optimize MC performance
by merging paths, balancing workloads, and reducing idle
time. Simulations showed a 25% reduction in required MCs
and a 35% increase in charging efficiency. Additionally, in
[116], they improved charging utility and reduced data loss
using multiple MCs.

3.4 Charging Scheduling Schemes
This section introduces a brief review of charging schedul-
ing schemes, categorizing them into periodic and on-
demand schemes. Subsections 3.4.1 and 3.4.2 review pe-
riodic and on-demand charging schemes, respectively, and
previous works are summarized in Table 2.

3.4.1 Periodic Charging Scheme
In this scheme, the MC operates periodically to continually
charge each deployed sensor node across the environment,
subject to predetermined conditions [111], [57], [117], [118].
These factors include the charging duration at each node,
the route the MC takes, and the charging sequence. These
schemes transform the charging problem into a TSP to
determine the shortest Hamiltonian cycle, which is regarded
as a solution. The energy distribution and consumption
model serve as the foundation for their calculation. This
scheme has the following benefits: (a) adapting to deployed
nodes while maintaining balanced energy consumption; (b)
fixing the nodes’ energy consumption. However, its limited
charging capacity is inappropriate for dynamic networks, as
it assumes a fixed network topology. Therefore, this scheme
may be more effective in large-scale environments where
other approaches are not feasible.

We divided these schemes into two categories based on
the number of chargers that can operate to replenish sensor
nodes. The categories are single-MC-based and multiple-
MC-based. Single-MC-based uses one MC to recharge all
sensor nodes within a network. However, multiple-MC-
based uses multiple MCs to recharge sensor nodes simulta-
neously across a network. Fig. 4 shows the scenarios of peri-
odic charging schemes: (a) A single MC is deployed within
the network to recharge multi-sensor nodes periodically,
(b) Multiple MCs are deployed within the network, where
each MC can periodically recharge multi-sensor nodes in
the same coverage area, and (c) Multiple MCs are deployed
within the network, where each MC can recharge only one
sensor node periodically. Unfortunately, working with a
single-MC-based has low charging efficiency and is inappro-
priate for large-scale networks compared to multiple-MC-
based. More related work of periodical charging schemes
based on using a single and multiple MCs are provided in
the supplementary material Subsection(3.1).

3.4.2 On-demand Charging Scheme

This scheme relies on determining which node needs to be
replenished first in each round based on priority[96],[138],
[105]. Thus, it relies on non-deterministic characteristics,
such as dynamic changes in network topology, network
connectivity, and varying energy consumption for each
node across the network. Therefore, it is particularly suitable
for dynamic networks. The system of this scheme operates
based on a predefined threshold for remaining energy [139].
When the energy level falls below this threshold, the MC or
BS receives a recharging request warning message. The MC
or BS then takes over the charging priority and selects the
node that requires recharging first. Once the MC identifies
the designated node, it promptly recharges its energy. In the
network, either a single MC or multiple MCs are deployed
to recharge sensor nodes. A single MC can charge multiple
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TABLE 2: Summary of Previous Works of Charging Scheduling Schemes

Ref Scheme Type Focus/Highlights Charging Capacity Device Used
[99], 2016 On-demand Improving the efficiency and scalability of

recharge in WRSNs, handling dynamic en-
ergy demands and reducing service interrup-
tion time

One-to-one Multiple SenCars

[119], 2017 On-demand Improving efficiency, maximizing survival
rate and throughput

One-to-one Single MC

[120], 2017 On-demand Optimizing energy consumption, minimizing
battery depletion, and reducing the move-
ment costs in WSNs

Multi-to-one Multiple MCs

[61], 2017 Periodic Optimizing path planning and scheduling One-to-one Single MES
[121], 2017 Periodic Reducing energy latency, predicting anchor

points
One-to-multi Multiple MCs

[108], 2017 On-demand Maximizing the total reward collected from
the charged sensors

One-to-one Single MC

[62], 2018 On-demand Maximizing energy usage and node survival
rate

One-to-one Multiple MCs

[93], 2018 On-demand Reducing MC operating costs, optimizing
routes

One-to-one Single MC

[63], 2018 Periodic Maximizing coverage and balancing
travel/charging energy

One-to-multi Multiple drones

[122], 2018 Periodic Reducing energy use, improving charging ef-
ficiency and path optimization

One-to-multi Single MC

[107], 2018 On-demand Maximizing sensor lifetime, minimizing MC
travel distance

One-to-one Single MC

[65], 2019 Periodic Minimizing required sensor nodes for effec-
tive coverage

One-to-one Single MC

[123], 2019 On-demand Increasing efficiency, improving reliability
and performance

One-to-one Single UAV

[91], 2019 On-demand Optimizing the charger path and reducing the
whole charging cost

One-to-one Single MC

[92], 2020 On-demand Maximizing the overall task utility One-to-multi Single MC
[70], 2020 Periodic Minimizing the number of MCs One-to-one Multiple MCs
[124], 2020 Periodic Maximizing data collection, reducing energy

use
One-to-multi Single MD

[69], 2020 Periodic Optimizing routes, enabling multi-node
charging

One-to-multi Single WMC

[125], 2020 On-demand Optimizing scheduling, maximizing survival
rate

One-to-one Single robot

[115], 2020 Periodic Improving charger energy use and cost One-to-one Multiple MCs
[126], 2020 Periodic Reducing dead nodes, maximizing energy ef-

ficiency
One-to-multi Multiple MCs

[71], 2020 On-demand Reducing charger journey length and charg-
ing frequency while balancing energy con-
sumption across the network

One-to-one Single WCE

[90], 2021 On-demand Improving charging performance and energy
consumption

Multi-to-multi Multiple MCs

[127], 2021 Periodic Minimizing the number of sensor nodes re-
quired for effective coverage

One-to-one Single MC

[128], 2021 On-demand Extending the network lifetime and reducing
the cost

One-to-one Single MC

[72], 2021 Periodic Improving charging utility and network per-
formance

One-to-one Single MC

[129], 2022 Periodic Increasing the number of nodes within the
charging range, minimizing MCVs’ moving
distance, giving high priorities to sensors with
low battery levels, making the MCV closer
to the sensor nodes to improve the efficiency,
and maximizing the network lifetime.

One-to-multi Multiple MCs

[130], 2023 On-demand Minimizing energy consumption and data de-
livery latency

One-to-multi Multiple MCs

[131], 2023 On-demand Improving energy consumption and provi-
sioning for wireless charging and data col-
lection on a large scale, Minimizing latency,
optimal amount of energy of MCVs, optimal
number of MCs, and optimal number of data
collection and charging points

On-to-multi Multiple MCs

[132],2023 On-demand Enhancing energy efficiency, response time,
and reducing dead nodes and queuing delay

One-to-multi Multiple MCs

[133], 2023 On-demand Increasing system efficiency, extending net-
work lifetime, and ensuring optimal perfor-
mance for WRSNs in dynamic environment
(smart cities)

One-to-multi Single MC

[134], 2023 On-demand Maximizing surveillance quality One-to-multi Multiple MCs
[135], 2023 Periodic Maximizing network lifetime and reducing

the number of mobile devices
One-to-multi Multiple MDs

[136], 2024 Periodic Minimizing charging delays in a WRSN with
automatic landing pad (PADs)

One-to-one Single UAV

[137], 2024 On-demand & semi-
on-demand

Improving charging efficiency and network
performance, optimizing charging time, en-
ergy usage, and network lifetime, and mini-
mizing charging latency

One-to-multi Multiple MCs
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Fig. 5: Scenarios of on-demand charging schemes within the network that prioritize sensor nodes based on their recharge
needs (a) A single MC is deployed to recharge multiple sensor nodes simultaneously, based on their priority; (b) Multiple
MCs are deployed, and each MC can recharge multiple sensor nodes simultaneously according to their priority; (c) Multiple
MCs are deployed, but each MC can recharge only one sensor node at a time.

sensor nodes, while multiple MCs can charge one or mul-
tiple sensor nodes simultaneously. Fig. 5 shows scenarios
of on-demand charging schemes within the network that
prioritize sensor nodes based on their recharge needs; (a)
A single MC is deployed to recharge multiple sensor nodes
sequentially in the order of priority (S16, S15, S13, S1); (b)
Multiple MCs are deployed, and each MC can recharge
multiple sensor nodes sequentially based on priority: MC1
charges S2 and S3; MC2 charges S9, S7, and S8; MC3 charges
S16 and S15; (c) Multiple MCs are deployed, but each MC
can recharge only one sensor node at a time.

However, when multiple sensor nodes send requests for
recharging, the MCs follow the closest sensor node and
adhere to the current charging path (resulting in subopti-
mal paths). The supplementary material Subsection (3.2)
provides more related work on the on-demand charging
scheme.

3.5 Collaborative Charging Mechanisms
The collaborative charging mechanisms are designed to
manage the distribution of charging tasks among multiple
MCs in large-scale WRSNs. MCs work together to minimize
energy consumption and dead sensor nodes and increase
survival rates. There are two types of collaborative charging
mechanisms. The first type is based on dividing the network
into areas, with specific MCs (maybe only one MC or more
than one MC) responsible for each area. The idea is to
reduce overlap by ensuring each MC only works within its
designated area. This way, MCs are not competing for the
same tasks, and the energy distribution is more efficient. The
preemptive collaborative mechanism uses a utility function,
allowing different MCs to compete for charging tasks based
on the values of the function [115]. The advantage of this
approach is its ability to effectively engage all MCs in the
network, enhancing the overall charging efficiency. Liu et
al. studied the costs of building and operating WRSNs

with energy-limited MCs and introduced ”shuttling” to
minimize MCs [95]. They developed the Push-Shuttle-Back
(PSB) solution for 1D shuttling with minimal energy loss,
and later extended it to 2D with a ”shortcutting” scheme.
Simulations demonstrated reduced costs. Lin et al. devel-
oped a Game Theoretical Collaborative Charging Schedul-
ing (GTCCS) scheme to address limited battery energy,
using a non-cooperative game model with Nash Equilib-
rium to optimize charging decisions for multiple MCs [97].
They improved energy efficiency, reduced dead nodes, and
enhanced system performance with features like warning
thresholds and sacrifice charges. Wang et al. proposed a
partial charge scheduling scheme to reduce dead time and
extend network lifetime by prioritizing core nodes with
a preemptive algorithm (MCDE) and excluding inefficient
ones [105]. They improved service time, survival rate, and
queue size. However, in [140], a Collaborative Charging
Scheduling Algorithm (CCSA) was introduced, using two
MCs to maximize sensor survival by classifying nodes
and adapting charging strategies. They outperformed in
reducing node mortality and effectively managing charging
uncertainties and coordination complexities.

Additionally, in a collaborative charging process, sensor
nodes, and MCs can work together to complete the charging
process. Periodic charging schemes, which assume unre-
alistic certainty and regularity, cannot account for the un-
predictable network factors that affect energy demand and
supply [141]. Therefore, collaborative charging mechanisms
address varying demands and dynamic conditions. Lin et al.
proposed an online collaborative charging schedule using
the mTS design, dividing the network into subdomains for
specific MCs, with each MC prioritizing charging requests
based on deadlines and distances [62]. Han et al. [142] intro-
duced a collaborative charging algorithm that used density
clustering to divide the network into areas. A mean-shift
approach guided the deployment of sub-vehicles (SWCVs)
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by the mother wireless charger vehicle (MWCV), with op-
timal MWCV deployment and traversal order determined
by the virtual field intensity technique. Chen et al. proposed
a WRSN model combining MCs, MC-carried drones, and
independent drones, organizing charging zones to schedule
their cooperation, aiming to extend network lifetime and
minimize charging time [143]. Qureshi et al. [144] developed
a partial and full charging scheduling scheme that divides
the network into areas and uses a layered collaborative
mechanism to improve charging efficiency and network life-
time. Zeng et al. [145] addressed dynamic charging schedul-
ing in WRSNs with obstacles and multiple MCs, using the
Fresnel Diffraction Model (FDM) to account for obstacle
effects. They grouped nodes for simultaneous charging,
defined charging spot ranges, and used a dynamic scheme
to balance charging loads and reduce sensor failures.

4 CHALLENGES AND SOLUTIONS

Researchers in WRSNs focus on extending network lifetime
by recharging sensor nodes using various charging devices.
However, several challenges hinder efficient energy transfer,
including energy consumption, security, charging conflicts,
multi-charger coordination, dynamic network recharging,
and environmental interference. To overcome these chal-
lenges, innovative strategies and new research directions
have emerged. We now discuss each of these challenges in
detail as follows.

1) Energy Consumption (EC): Energy consumption re-
mains a major challenge in wireless charging. Jia et al. op-
timized WPT to reduce energy consumption while ensur-
ing full sensor node charging, but managing directional
energy in large-scale networks remains difficult [146]. Lin
et al. used UAVs for IoT applications to improve energy
efficiency by 18.2%, but their method faces challenges like
high costs and weather impacts [147]. Chen et al. devel-
oped a dynamic energy model using ant systems and
particle swarm optimization to enhance energy efficiency,
but clustering complexity limits flexibility [148].

2) Charging Conflict (CC): Charging conflict occurs when
multiple chargers attempt to recharge the same sensor
nodes simultaneously, leading to energy consumption,
delays, and increased node failure, which reduce network
performance and lifetime. One solution is the mobile-to-
cluster (M2C) scheme [66], where nodes are grouped by
energy levels, prioritizing low-energy nodes to prevent
delays and conflicts. This scheme reduces charging delays
by 50% and travel distance by 10%, enhancing network
reliability. Alternatively, [98] ensures that no node is
charged by more than one charger at a time, avoiding
energy consumption and battery damage. This approach
optimizes charger scheduling to reduce overlaps and
delays, improving charging efficiency and extending net-
work lifetime.

3) Multi-charger Coordination (MCC): In multi-UAV sys-
tems, researchers face high latency and data interference.
In [149], a high-level architecture for multi-UAV systems
is proposed, with UAVs equipped with integrated sensor
nodes, computing, and modules for coordination, com-
munication, and networking. Real-world tests highlight

the importance of addressing communication and coordi-
nation issues for dynamic multi-UAV applications. In [88],
the focus is on optimizing scheduling, movement, and
charging times for multiple MCs with limited resources,
aiming to minimize energy consumption while prevent-
ing sensor node power depletion. The authors use MILP
to coordinate multiple MCs and introduce a decompo-
sition technique to break the problem into subproblems,
MC scheduling, movement time, and charging time and
solving them iteratively to find an optimal solution.

4) V2V Charging: In WRSNs, one key challenge is recharg-
ing mobile chargers effectively. A study [94] proposed a
collaborative mobile charging approach where chargers
transfer energy to each other. The PushWait algorithm
optimized scheduling to prevent sensor nodes from de-
pleting their power. Simulations showed that this collab-
orative charging improves energy efficiency and coverage
and extends network lifetime, even in complex network
scenarios.

5) Dynamic Network Recharging (DNR): Dynamic net-
work recharging adjusts energy delivery in real-time
based on node locations, energy levels, and network
demands. AI algorithms optimize charging routes and
reduce energy consumption, with UAVs providing on-
demand energy replenishment and maintenance tasks
like battery replacement [150]. As AI and UAV technolo-
gies advance, recharging efficiency and network uptime
will improve [151]. In [152], the authors introduced a
dynamic charging-recycling scheduling (DCRS) problem
using deep reinforcement learning (DRL) with double
deep Q-networks (DDQN), reducing dead nodes and
delays. Similarly, Yang et al. [125] used actor-critic rein-
forcement learning (ACRL) and Gated Recurrent Units
(GRUs) to optimize dynamic charging, selecting the best
sensor node to charge and adjusting strategy based on
tour length and node survival as rewards.

6) Monitoring & Security Threats: Most WRSN research
has focused on scheduling and energy optimization, ne-
glecting security, which exposes networks to attacks. Two
main types of threats are software and interference at-
tacks. For software attacks, the Denial of Charge (DoC)
attack [153] uses fake requests to drain energy from
legitimate nodes, causing them to miss events. In 2022, the
MDoC attack [154] manipulated charger routes to over-
load nodes, draining 20% more nodes undetected. For
interference attacks, the Charging Spoofing Attack (CSA)
[155] involves a charger pretending to provide power but
blocking energy transfer with electromagnetic interfer-
ence, depleting 80% of nodes undetected. These threats
highlight the need for improved security in WRSNs.

7) Hybrid WRSNS (HWRSNs): WRSNs have become cru-
cial for various applications, but they face challenges
such as limited battery life, energy inefficiency, high
costs, delays, and charger management [120]. A hybrid
design offers a promising solution, combining renewable
energy sources (RES) like solar, wind, and thermal en-
ergy to ensure reliability. Solar technologies, including PV
panels and thermal harvesting, play a key role. While
wireless charging is effective, it raises safety concerns
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regarding electromagnetic exposure, requiring FCC com-
pliance. High-traffic nodes, like cluster heads, demand
more power, risking battery depletion and network issues
[156]. A hybrid framework combining solar energy with
wireless charging optimizes energy use, balances power,
and schedules data collection, reducing battery depletion
by 20% and cutting costs by 25%. The hybrid WRSN faces
challenges related to costs, safety, and energy manage-
ment despite its potential. Research is ongoing to improve
efficiency and reliability.

5 TRENDS AND FUTURE DIRECTIONS IN WRSNS

WRSNs are evolving rapidly to address challenges related
to energy consumption and network lifetime. Emerging
technologies such as artificial intelligence (AI), autonomous
UAVs, and renewable energy integration are transforming
WRSNs, offering new possibilities for dynamic recharging.
We now introduce the key trends and future directions
shaping the development of WRSNs as follows.

1) Applied AI in WRSN: AI techniques such as machine
learning (ML), deep learning (DL), and reinforcement
learning (RL) optimize WRSNs by predicting mainte-
nance, scheduling charging, and managing energy con-
sumption, thereby extending network lifetime. RL algo-
rithms, for example, determine optimal paths for MCs
and UAVs, reducing travel time and energy consumption
while maximizing recharged nodes [113], [157], [158].
Zhang et al. [159] enhanced MC efficiency and mini-
mized data delays by integrating energy replenishment
with data collection through a deep reinforcement learn-
ing (DRL)-powered path planning algorithm. Meanwhile,
Wang et al. [160] addressed optimal charger placement
by clustering nodes using K-Means++ and refining lo-
cations through an RL-based charging cluster algorithm
enhanced by an experience-strengthening mechanism.
However, these approaches face high computational de-
mands, large data requirements, and security risks [161].
AI-powered systems also facilitate improved collabora-
tion among network components and enable proactive
maintenance through predictive models.

2) AI-Enhanced Sensor Design for WRSNs: Integrating AI-
driven sensor design can significantly enhance WRSN
performance and extend network lifetime. Zhang et al.
[162] used inverse design and machine learning to opti-
mize sensor hardware, improving energy efficiency. These
enhanced nodes predict energy consumption, optimize
charging schedules for MCs, and maximize data col-
lection, contributing to a more sustainable and efficient
WRSN.

3) Quantum Sensor Technology in WRSNs: Quantum sen-
sors enhance WRSNs by detecting magnetic fields and
other physical quantities with high sensitivity, improv-
ing performance, energy efficiency, and security, which
extends network lifetime [163]. Rydberg sensors, for ex-
ample, improve RF signal detection with lower energy
consumption than traditional antennas, enabling longer
operation on harvested energy [164]. Their ability to cap-
ture weak signals at longer wavelengths provides a more
accurate and energy-efficient alternative.

6 CONCLUSION

This paper provides a comprehensive survey of WRSNs,
considering wireless charging technologies as promising
techniques to reduce energy consumption and maximize
WRSN network lifetime. We have conducted a detailed
study of energy provisioning techniques. Due to the im-
portance of determining which wireless charging technique
is adaptable to the environment, a table is established for
summarizing the highlighted/focused, decision variables,
key constraints, techniques, and control methods within
2011–2024. We also discuss related works based on charger
types, including static and mobile chargers. The paper
introduces partial and full charging policies, as well as
offline and online charging modes. Furthermore, we cover
periodic and on-demand charging schemes alongside the
collaborative charging mechanism. WRSNs face several
challenges during the wireless charging process, such as
energy consumption, multi-charger coordination, dynamic
network recharging, and monitoring & security threats. We
also present V2V charging and hybrid WRSNs as emerging
challenges in the field. Finally, we highlight trends and
future directions for integrating advanced AI technologies
into WRSNs. This comprehensive study of WRSNs offers
insights that could lead to the optimization of network per-
formance, extend network lifetime, and enhance resource
utilization through the adoption of optimized or newly
discovered techniques.
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