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Abstract: The efficiency of Shor’s and Grover’s algorithms and the advancement of quan-
tum computers implies that the cryptography used until now to protect one’s privacy is
potentially vulnerable to retrospective decryption, also known as the harvest now, decrypt
later attack in the near future. This dissertation proposes an overview of the cryptographic
schemes used by Tor, highlighting the non-quantum-resistant ones and introducing the-
oretical performance assessment methods of a local Tor network. The measurement is
divided into three phases. We start with benchmarking a local Tor network simulation on
constrained devices to isolate the time taken by classical cryptography processes. Secondly,
the analysis incorporates existing benchmarks of quantum-secure algorithms and compares
these performances on the devices. Lastly, the estimation of overhead is calculated by
replacing the measured times of traditional cryptography with the times recorded for
Post-Quantum Cryptography (PQC) execution within the specified Tor environment. By
focusing on the replaceable cryptographic components, using theoretical estimations, and
leveraging existing benchmarks, valuable insights into the potential impact of PQC can be
obtained without needing to implement it fully.

Keywords: Tor; post-quantum cryptography; NIST; onion routing

1. Introduction
1.1. Background

Shor’s algorithm [1] has shown that our existing asymmetric (public key) methods are
at risk, and Grover’s algorithm [2] outlines a risk to symmetric key methods. As the Tor
network uses cryptography as its base for security, we thus need to understand its possible
migration path. Released in 2002, Tor currently has about two million estimated users [3].
It aims to fight censorship and surveillance, allowing users to browse anonymously. The
definition of Tor’s anonymity is described by Dingledine and Syverson [4] as the unlinka-
bility between the user’s identity and their actions. Their paper highlights the “not perfect”
side of the definition, explaining that it aims to prevent traffic analysis to a certain degree.
Tor’s mode of operation mainly relies on three types of “proxies”, through which the user
connection goes. The client selects an entry node, middle node, and exit node, forming a
path to the targeted resource. For each node, a key exchange happens between the client
and the node, starting with the entry relay and then extending to the other nodes. Once the
key exchange has occurred, data are re-encrypted at each step of the circuit. They undergo
three layers of encryption until they reach the exit node, where the traffic is decapsulated
to reach its final destination.

The Tor network is often associated with facilitating illegal activities, primarily through
onion services—formerly known as hidden services. However, metrics collected by the Tor
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paper reveal a discrepancy between the proportion of onion service traffic and that of the to-
tal network bandwidth. While unlawful content is hosted on onion services, this constitutes
only a small fraction of the overall activity enabled by the Tor network (see Appendix A).
OSs are a way to present content within the network itself without having to leave Tor.
They conceal the physical location of the server and are accessible exclusively through the
network using addresses ending in “.onion”. Since the implementation of Version 3, these
56-character alphanumeric strings are created by encoding the service’s long-term public
key (32 bytes Ed25519), checksum, and version (“x03” by default) in Base32 [5] #224. Dingle-
dine and Syverson [4] introduced a new mechanism called rendezvous-point relying on a
DH key exchange where the user and OS establish a shared secret through Diffie–Hellman,
with a “rendezvous” relay connecting the circuits from both parties without learning their
identities or reading the data transmitted. Yet, since version 0.3.2.1—alpha—onion service
cryptography has been improved by replacing the schemes SHA1, DH, and 1024-RSA with
SHA3, Ed25519, and curve25519. Today, the main usage of cryptography in the network,
as shown in Tables A1 and A2 relies on RSA, ECC, and AES. The latter, as a symmetric
encryption algorithm, is less vulnerable to QC. An attacker equipped with a sufficiently
advanced quantum computer could, in theory, compromise these cryptographic schemes
to impersonate relay nodes, decrypt confidential content, and forge digital signatures,
thereby creating documents that appear authentic to recipients. Gidney and Ekerå [6]
estimate 20 million required physical qubits to break RSA-2048 encryption and highlight
a considerable decrease in this estimation from 2015 to 2021, thus encouraging a faster
adoption of PQC.

1.2. Purpose

On the 13th of August 2024, NIST [7] released three long-awaited PQC standards,
including the CRYSTALS-Kyber KEM and CRYSTALS-Dilithium signature schemes (re-
named “ML-KEM” and “ML-DSA”), both based on lattice problems. Another lattice-based
standard publication, with FALCON to follow. On the other hand, NIST more recently
announced a new timeline, banning RSA and ECDSA starting in 2035 [8]. Amid the wave
of new publications in the field, the following question persists:

How can one evaluate its relay performance now as a reference point for later?
The four core aims of this paper can be summarised in the following points to assist in

answering the latter research question.

• First, based on the literature analysis, this paper intends to identify a set of appropriate
schemes for Tor post-quantum cryptography migration.

• To set up a functioning Tor network comprising multiple physical nodes in order to
measure it and evaluate its performance at scale.

• Thirdly, identifying and measuring the cryptographic processes within Tor software.
• Finally, the scope of this research is to estimate a theoretical overhead value by incorpo-

rating the results of the previously defined objectives with post-quantum benchmark
performances made on the devices used.

2. Literature Review
Tor specifications are supplied by proposals, allowing its implementation to grow and

adapt to attacks over time. This literature review focuses on the cryptography features of
the Tor paper. Firstly, the network’s cryptography design must be explored to understand
the technical environment and constraints. The Section 2 of this review will go through the
main schemes used, reviewing the relevant cryptosystems and their place within onion
routing in order to identify the ones that could be broken by a cryptographically relevant
QC and their potential replacement candidates.
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2.1. Tor Design and Architecture

In 2004, Dingledine and Syverson [4] addressed the disadvantages of the initial design
by introducing features that have remained fundamental to this day. One of them is
directory authorities: they are a small group of “trusted nodes” reaching a common
agreement on the network state. In fact, Tor is not a fully decentralised, peer-to-peer
network. This consensus allows Tor clients to have a global view of the network and aims
to prevent malicious relays from manipulating its topology. Dingledine and Syverson [4]
explain how these servers provide this information by sharing a directory signed with their
long-term keys. Yet, the paper’s technical design has been improved many times since.
For instance, shortly after, the TAP was introduced [9] and strengthened the cryptographic
rigour by formalising a circuit-based approach.

2.1.1. Circuits and Handshake

Circuit creation relies on the directory authorities in the very first step of the process
when a given client (OP) chooses the first relay. As it needs a list of reliable relays, it will
fetch the consensus document from the directory authorities, providing necessary data
on the relays, such as their public keys, roles, supported protocols, and bandwidth [10].
Figure 1 below shows a high-level view of the circuit creation process. A circuit is typically
composed of four channels: OP to R1, R1 to R2, R2 to exit node (RN), and RN to destination.
After a circuit is established, the OP securely shares a unique symmetric key with each
relay in the circuit. Additionally, each R exchanges a distinct circuit identifier with the
nodes adjacent to it within the circuit, facilitating secure and efficient communication
between nodes without revealing the entire path. A channel is defined as an encrypted link
established directly between two relays or between a client and a relay, implemented as
TLS sessions over TCP.

Figure 1. Tor circuit creation. The /2 represents the version, as their older specifications have become
obsolete [10].

Tor relies on several cell types: cells, shown in Figure 1, are responsible for circuit
creation. During channel negotiation, CERTS cells are used to describe the keys that a Tor
instance is claiming to have. It also provides certificates to authenticate that those keys
belong to long-term key(s) that uniquely identify a relay.

In standard TLS, the authentication is usually only necessary on the server side as
the client identity is not important; this also applies to the first connection of a Tor circuit.
Yet, the three other channel establishments need mutual authentication as the nodes must
prove the genuineness of their affiliation in the circuit [11].
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NTOR, the key exchange protocol currently used by Tor, introduced significant im-
provements over the TAP protocol [12]. It reduces the computational overhead by em-
ploying ECC, offering faster key exchange and smaller data transmissions. Also, NTOR
strengthens FS, preventing decryption, even if long-term keys are compromised. The paper
reflects on the challenge of One-Way Authenticated Key Exchange (1W-AKE) and how it
applies to anonymity. In 1W-AKE, one party (the client) authenticates the other (relay) and
remains unauthenticated. Goldberg et al.’s design [12] offers to authenticate the relay to
the client by using the relay’s public key and performing a key exchange via Curve25519
Diffie–Hellman.

Gosh and Kate [13] address the limitations of NTOR in light of quantum algorithms
while maintaining forward secrecy, calling their 1W-AKE implementation HybridOR. It
combines lattice-based cryptography, Learning With Error (ring-LWE), with the current
DH assumption, maintaining compatibility with the current infrastructure.

Schanck et al. [11] proposed a hybrid design of the ntor circuit-extension handshake
demonstrating a practical implementation using NTRU Encrypt. Schanck et al. [11] permits
the incorporation of any number of KEMs, allowing the other quantum-resistant algorithms
to be integrated more easily without rebuilding the entire protocol. They compare the per-
formance of this hybrid handshake with the main Tor’s handshakes (tap and ntor) and the
one from Gosh and Kate. Computation time (in microseconds, µs) and the communication
overhead, the number of bytes transmitted between the client and server, are shown for
an instantiation with ntruees443ep1. NTOR remains the most efficient in terms of both
overhead and time taken. They also display the proportion of the total handshake time that
is spent on the client-side operations relative to the overall handshake time. ntor equally
shares the handshake time, the hybrid reaches 74%, and Gosh–Kate 67%.

Gosh–Kate protocol’s implementation by Schanck et al. [11] showed, on average,
a smaller computation time (900 µs) but a larger number of bytes (1344). On the other
hand, their hybrid design heavily relies on the client role (661 µs for client init and 74%),
which could increase latency if the client’s device has limited resources. However, their
hybrid design implementation reduces the number of computational steps and amount
of data exchanged. The evaluation is limited to NTRUEncrypt only; comparing it with
other quantum-robust schemes would shed light on the efficiency of the overall hybrid
implementation. They highlight a major obstacle: the size of the circuit-extension hand-
shake “CREATE” cells is limited to 505 bytes (in NTOR), while ntruees443ep1 requires
693 bytes [11]. The work resulted in two distinct specification proposals: one aiming to
widen the cell size [5] #249, and the other to enable the hybridisation of the ntor pro-
tocol and a KEM. The first one has been superseded by proposal #340, introducing the
sub-protocol “RelayCell”, which focuses on cell packing and fragmentation. The second,
Ref. [5] #263, was made obsolete by proposal #269; created by the authors of the papers
and Tor’s developers, it takes the incorporation of different post-quantum KEMs further
and emphasises compatibility with Tor’s handshake.

Currently, the Tor code includes four different circuit-extension handshakes [10]:

• “CreateFast” deprecated (unauthenticated, non-forward-secure) handshake, which
was previously used for the first hop of each circuit.

• The ntor handshake [12].
• The onion service ntor handshake variant allows each party to encrypt data (without

forward secrecy) after the first message. Clients have used it since version 3 of the OS
protocol to encrypt data in the introduction and rendezvous cells [5] #224.

• The ntor v3 also permits each party to encrypt data at the cost of FS, enables the client
to send an authenticated encrypted message within its onion skin and allows the relay
to send an encrypted and authenticated reply as part of its response [5] #332.
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In 2019, Lauer et al. [14] proposed a 0-RTT handshake relying on puncturable KEMs
to achieve a lower latency design than ntor; yet, the paper shows that it can result
in higher computational overhead on certain low-power devices. The authors claim
to achieve “immediate” FS, which appears to meet Tor’s need for perfect FS, as the
immediate variant mandates the deletion of ephemeral keys instantaneously. This
approach could facilitate key management and allow the integration of post-quantum
KEMs within the Tor handshake.

2.1.2. Relay and Link Layer

Also called onion skinning, the Relay “layer” is one of the most important of Tor’s
protocols. At the origin OP, a symmetric key is shared with each relay in the circuit using
a telescoping key exchange protocol. During the circuit creation, as shown in Figure 1,
instead of encrypting an entire circuit in one go, the circuit is built incrementally, with
the client negotiating session keys with one node at a time. The OP encrypts the message
multiple times, starting with the key for the final relay and moving backwards. When a
message is transmitted, each intermediate relay decrypts one layer using its symmetric key,
revealing the next hop or, for R_N, the destination. The message is always padded to a
fixed size, preventing traffic analysis based on message length. This approach ensures that
no single relay has a full view of the communication path, enhancing anonymity. However,
according to Degabriele and Stam [15], due to its use of AES-128 in counter mode for each
layer of encryption, Tor’s relay protocol is susceptible to tagging attacks, where a malicious
entry and exit node can tamper with and detect changes in the data to de-anonymise the
user. This is exacerbated by Tor’s low-latency design, which prioritises performance over
stronger cryptographic guarantees.

Rogaway and Zhang [16] introduce the concept of Onion Authenticated Encryption,
including indistinguishability from random bits and end-to-end authenticity verification as
critical security measures.

While Degabriele and Stam [15] assess the relay protocol under CCA, identifying
potential metadata leakage or improper handling of intermediary nodes, Rogaway and
Zhang’s findings [16] highlight that Tor’s current protocol fails to meet these security
benchmarks, specifically showing vulnerability to tagging attacks due to its reliance on
counter-mode AES with an absence of a mechanism for authenticity checking throughout
the relay path. They suggest improving integrity validation by applying robust authenti-
cated encryption with associated data (AEAD) schemes, which would ensure the detection
of tampering at an intermediary (middle node) layer. Moreover, they propose to add
layer-specific nonce usage and key diversification across encryption layers against tagging
attacks. Globally, their work calls for a protocol restructuring, which would not be solved
by the implementation of PQC. Since Grover’s algorithm [2] demonstrates limited paral-
lelisation capabilities, the quantum threat is not estimated to be significant to asymmetric
cryptosystems; thus, increasing the key size is expected to provide sufficient security [17].

Concerning the link layer, TLS ensures authentication, integrity, and encryption of
data in transit between nodes. Its speed is a crucial metric in the Tor protocol for the user
experience as it directly impacts circuit creation latency (every new Tor circuit requires a
fresh TLS handshake between nodes) and the network scalability, as a higher TLS connec-
tion capacity allows it to handle more users efficiently. At present, Tor’s TLS avoids session
resumption for additional security and relies on stateless connections to avoid potential
state-carrying [10]. Hence, treating each connection independently makes it harder for
one to track connections or identify patterns. The newer version omits client certificates
and uses a single-element, non-distinctive certificate chain to avoid detection by deep
packet inspection systems, mimicking HTTPS traffic. TLS renegotiation was added but
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later moved to encrypted data records in version 3 to improve anti-blocking features and
limit observable TLS signatures.

Tor aims to cease using TLS 1.2 [5] #294, as 1.3 incorporates significant improvements
such as the handshake design, particularly with its 1-RTT, meaning only one round-trip
time is required until the first application message is sent, decreasing latency [18]. In
a “classical” key exchange context, the assumption relies on Diffie–Hellman, while with
PQC integration, it typically includes KEM, implicating a revision of the 1-RTT mode. In
2020, Schwabe et al. [19] introduced “KEMTLS”, a fully post-quantum modification of TLS
1.3, replacing signature-based authentication with KEM. Their design drastically cuts the
computational costs associated with PQC signatures while achieving IND-CCA but not
strict full-forward secrecy, for which they declared achieving levels 1, 3, and 5 according to
the Noise protocol framework [20]. The same authors released a variant of their previous
KEMTLS named KEMTLS-PDK [21], yet in the context of Tor, this revised version relying
on pre-distributed keys and partially cached information might not be a straightforward fit
if connections could be linked back to cached or pre-shared keys.

As for hybrid instantiation, the main method involves concatenating the classical
and PQC key materials (public keys/ciphertexts) and treating them as a single element.
Stebila et al. [22] draw a transitional capable design with backwards compatibility, allowing
one device (client or server) to still use traditional schemes if it is not “hybrid-aware”,
therefore resulting in three possible scenarios: hybrid handshake, client downgrade, or
server downgrade to classical only. Their design aims to keep TLS 1.3 features such as high
performance or 1-RTT.

The IETF draft declares the main security property of KEMs as IND-CCA2, correlating
with the first motivation of CECPQ2 [23]—the second version of the TLS 1.3 key exchange
protocol developed by Google and Cloudflare. In fact, Langley [23] highlights that, in TLS,
managing confidentiality is more straightforward than authenticity, as encryption keys
are independently negotiated for each session, while post-quantum authenticity presents
a greater challenge, as it needs to integrate with the existing certificate authority and
certificate ecosystem, making it considerably more complex to establish and maintain. Tor’s
TLS connection layer for relays and bridges, like the standard TLS, uses X.509 certificates to
authenticate themselves during handshake exchanges [10]. Concerning the OS, the “.onion”
address, being a hash of the service’s public key, confirms the server’s identity itself without
the need for a CA. Firefox, on which Tor’s browser is based, has already released the option
to use X25519Kyber768 for TLS. Tor’s TLS implementations have been slightly modified
from the standard to meet its needs for compatibility and against traffic analysis. The
ongoing research and deployments give a strong base to migrate the network’s link layer; if
the circuit-layer protocol ensures the main security and anonymity guarantees, in Tor, TLS
is a necessary complement and has mitigated critical bugs in the past [5] #294. The relay
and circuit-extend protocols, as Tor-specific protocols, seem to need a deeper analysis to
build a migration design. However, the relay layer does not appear highly endangered [24].
The stream protocol has not been reviewed due to its significant reliance on the other layers
and its minimal impact on onion routing compared to them.

2.2. Schemes

Based on research papers and Tor’s official source code, this section outlines the used
schemes and their potential replacement candidates, each addressing specific security
requirements. NIST defined the security level of PQC from 1 to 5. The first level is
equivalent to the 128-bit traditional security level (strength of AES-128).

TAP [9] implemented a standard of at most 80-bit security [25], through the use of RSA
with a 1024-bit modulus and DH 1024 in its key exchange. Since the NTOR [12] paper, Tor
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cryptography publications [11,13] have agreed on the necessity of at least a 128-bit security
standard. Tor has started to adopt Curve25519 (also written as x25519) in most key-enabled
cryptography processes; nonetheless, RSA is still used as an identity key in the relay layer
(see Table A1) and in TLS 1.2.

Baseri et al. [24] compiled a comparative inventory of the vulnerable protocols and
evaluated the corresponding mitigation strategies. The paper presents a risk assessment
framework that includes multiple known attack strategies based on the STRIDE (Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of
Privilege) model. They differentiate the risk into two categories: the algorithmic level,
where a mathematical assumption is not strong enough, and the protocol level, where the
implementation presents a vulnerability, such as side-channel or fault-injection attacks.
Hybrid implementation, aiming to protect the new cryptography migration from these
risks, is highlighted in the context of a crypto-agility approach. However, due to Tor’s
infrastructure, the computational load, packet size, and bandwidth requirements need to
be considered.

Table 1 breaks up Tor’s layers by schemes (currently used), their security level, key size
in bytes, and role. When looking at the replacements, the benchmarking of PQC schemes
tends to highlight the overall performance of lattice-based algorithms: Saber and Kyber as
KEMs, and Dilithium as a signature scheme, in constrained environments, such as running
on a Raspberry Pi [26]. Nevertheless, Saber was judged to be less efficient than Kyber in a
broader range of environments [27].

Table 1. Cryptography schemes of Tor’s main layers. For clarity, the “directory authorities” section
is presented within the relay layer; however, it may be more appropriately classified as a distinct
category. For further specifications, refer to Figure A4.

Layer Protocol / Version Scheme Security Category Role

Circuit-extend

ntor
HMAC-SHA256 2 Message integrity in handshake, authenticity
HKDF 2 Key derivation from shared secret

ntor v3 and OS-ntor
Ed25519 unsafe Relay identity verification
SHA3-256 2 Integrity, authenticity of messages
SHAKE-256 4 Keying material generation with randomness

All handshakes
AES-128-CTR 1 Message content encryption during handshake
X25519 unsafe Key agreement

Relay

Standard circuits

SHA-1 unsafe Cell header integrity check (being phased out)
SHA-256 2 Cell message integrity check
AES-128-CTR 1 Relay cell encryption in layers
Ed25519 unsafe Relay identity verification and key signing

OS v3
AES-256-CTR 5 Encryption for data integrity and identity validation
SHA-256 2 Key derivation, message integrity, handshake validation

Directory authorities
Ed25519 unsafe Signature for consensus data
SHA-256 2 Integrity through hashes of consensus documents and descriptors
RSA2048 or 3072 unsafe Authority identity key, Directory server public signing key

Link

TLS 1.2
RSA2048 unsafe Identity authentication
DHE unsafe Ephemeral key exchange with forward secrecy

TLS 1.3 AEAD only 1 Channel encryption; e.g., AES-GCM, ChaCha20-Poly1305, having built-in integrity checks

All
SHA-256 and above >2 Message integrity, authentication, key derivation
ECDHE unsafe Ephemeral key exchange with forward secrecy

Internal X.509 unsafe Certificate-based identity and link verification

The following first covers quantum-safe key exchange schemes, followed by a review
of PQC signature algorithms.

2.2.1. Key Exchange

For key exchange, Tor almost always uses X25519 (Tables 1 and A1). It is known
for its efficiency and is used in multiple PQC hybrid instantiations [22,28]. The work of
Schanck et al. [11] is also a hybridisation of X25519 with ntruees443ep1 and HKDF-SHA256.
In proposal #269 [5], a hybrid handshake alternative, it mainly differs from ntor in the
computation of the authentication tag and key derivation.

Two lattice-based schemes have been instantiated as examples in the proposal:

• NTRUE KEM with the EESS443EP2-specific parameter set, estimated at 128-bit security
for both traditional and quantum-resistant settings. The design declares the maximum
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message size as m = 49 bytes, the KEM public key length as |PK| = 615 bytes, and a
KEM ciphertext size of |CT| = 610 bytes.

• NewHope KEM is declared with |PK| = 1824 and |CT| = 2048.

The chosen NTRU parameter EESS443EP2 is interesting as it proposes relatively small
keys; Cheng et al. [29] showed the performance of the EES parameters in constrained
devices. Yet, according to Bernstein et al. [30], this classic NTRU parameter falls under
a category vulnerable to automorphism-based exploits and other attacks such as lattice
reduction. In contrast, NTRU Prime is still of interest from a security point of view,
achieving IND-CCA2; it is a third-round NIST candidate with its “Streamlined” and
“LPRime” variants. The preferred parameter is Streamlined, sntrup761, as a balance of
performance and security; it approximately achieves NIST category two post-quantum
security with an estimation of 2153 based on the Core-SVP.

Another KEM scheme that was not selected for standardisation by NIST in 2022 is
FrodoKEM. For randomness generation, its main implementations rely either on AES-CTR
or SHAKE XOF, with the latter offering better performance across a broader range of
hardware types, as demonstrated by Bos et al. [31]. FrodoKEMs claimed categories 1, 3,
and 5 of NIST PQC security according to the given parameters; FrodoKEM-640 targets
the first level and FrodoKEM-976 the third. In Table 2, their key and ciphertext sizes are
significantly larger compared to the sntrup761 setting except for the shared secret key.
Furthermore, ML-KEM presents multiple advantages. It is indistinguishable from a chosen
ciphertext attack, assuming that D-MLWE is intractable and that G, H, and J are random
functions. Additionally, it maintains IND-CCA2 by a quantum adversary able to make
both classical and quantum queries (in superposition) to G, H, and J [32,33]. Above all, it
shows encouraging performances in comparison with other schemes [26,34]. Table 3 shows
the three distinct standardised formats of Kyber and their corresponding key sizes.

Table 2. Sizes (in bytes) of FrodoKEMs and sntrup761’s keys and ciphertexts.

Encapsulation Key Decapsulation Key Ciphertext Shared Secret Key

sntrup761 1158 1763 1039 32
FrodoKEM-640-AES 9616 19,888 9720 16
FrodoKEM-640-SHAKE 9616 19,888 9720 16
FrodoKEM-976-AES 15,632 31,296 15,744 24

Table 3. Sizes (in bytes) of keys and ciphertexts of ML-KEM [33].

Encapsulation Key Decapsulation Key Ciphertext Shared Secret Key

ML-KEM-512 800 1632 768 32
ML-KEM-768 1184 2400 1088 32
ML-KEM-1024 1568 3168 1568 32

In hybrid implementations, the increase in handshake size tends to lead to higher band-
width usage and latency during the handshake process. However, the overall performance
heavily depends on the underlying mathematical assumption and its implementation. The
Open Quantum Safe [35] benchmarking displays the performance of the schemes on x86_64
architecture according to the operations (key generation, encapsulation, decapsulation) per
second and per CPU cycle. It ranks HQC-128 and Kyber512, both achieving NIST level 1
security, with higher key generation per second. Table 4 shows a summary of OQS mea-
sures for the schemes of interest. Overall, taking into consideration size and performance
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attributes, Kyber/ML-KEM appears to be the highest performer. It is followed by HQC,
which reaches faster key generation per second and maintains good key encapsulation and
decapsulation speeds despite larger key and ciphertext sizes (see Table 5). The streamlined
NTRU Prime, sntrup761, comes next with smaller keys and ciphertext sizes than HQC-128,
ML-KEM-768, or FrodoKEM-640. Claiming at least the second NIST security category, it
represents a trade-off between performance, security, and bandwidth. FrodoKEM tends
to fall behind due to reduced operational efficiency, considering its large key sizes and
security level.

Table 4. KEM performance comparison. Operations per second per algorithm, reference code type
(unoptimised), 2024-04-02, OQS [35].

Keygen/s Keygen
(Cycles) Encaps/s Decaps/s Security

Category

HQC-128 6719.33 371,892 3571.00 2349.00 1
HQC-192 2855.00 875,523 1465.00 1000.00 3
Kyber512 23,348.00 106,974 18,970.00 16,118.00 1
Kyber768 13,660.67 182,899 11,630.00 10,096.33 3
sntrup761 115.55 21,636,049 2308.00 818.00 2
FrodoKEM-640-SHAKE 345.99 7,224,951 282.67 280.33 1

While Kyber is a derivation of the Kyber PKE algorithm using FO transform, HQC
uses a variant of the FO transform called HHK, allowing HQC to achieve IND-CCA2
security [36]. Among a few other minor modifications, the FIPS 203 standard for Kyber and
ML-KEM specifies a variant of the FO transform for the encapsulation and decapsulation
mechanism; in this work, the Kyber benchmarks are considered for evaluating ML-KEM
performance.

The code-based HQC scheme displays excellent performances, yet its large keys and
ciphertexts (Table 5) may require further adaptation to integrate it within Tor protocols.

Table 5. Sizes (in bytes) of keys and ciphertexts of HQC [36].

Encapsulation Key Ciphertext Secret Key

HQC-128 2249 4487 56
HQC-192 4522 9042 64
HQC-256 7245 14,485 72

The 512-byte limit affects the amount of data that can be included in the handshake
process. The currently open proposal #340 [5] aims to implement a cell packing, optimising
cell usage, and a fragmentation mechanism allowing for larger cryptographic keys. Based
on the design of proposal #269, the work on PQC migration toward a hybrid handshake [11,13],
and the attributes of the observed schemes, ML-KEM-768 and sntrup761 appear to fit the
circuit-extension requirements. HQC may be an alternative if larger keys can be implemented
easily. This work ignores strong cryptosystems such as McEliece, which imposes a substantial
key size and, therefore, communication overhead.

The current cell size limit remains an obstacle to the hybrid or full PQC migration for
all layers. Concerning the relay layer, no key exchange has been processed, but the challenge
also concerns signature schemes. Regarding the link layer, it produces key exchange within
its TLS implementation. RFC [37] standard defines the handshake with three core stages:
server parameters, key exchange, and authentication. In a PQC environment, the second
phase would rely on KEMs. The third is reviewed in the next section. Currently, Tor’s TLS
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uses P256 ECDHE (and still has legacy support for secp224r1) for handshakes and Ed25519
for server identity, known as link keys [10]. Indeed, ML-KEM-768 appears to be the selected
parameter for the newly adopted designs [22]. Færøy [38], in a fork of C Tor, experimented
with the integration of hybrid key exchange TLS with X25519Kyber768Draft00.

In 2020, Paquin et al. [39] presented the performance trade-offs of several schemes,
including hybrid ECDH-P256-Kyber512. Compared to the classical p-256 curve, the hybrid
scheme shows an increase in packet loss and completion time. Their work highlights the
effect of higher RTTs, where the hybrid scheme demonstrates greater degradation; in their
conclusion, the authors discussed how the enlargement of the MTU might improve TLS
establishment performance. In 2024, the post-quantum TLS survey by Alnahawi et al. [40]
points out the significant impact of large keys, using FrodoKEM as an analogy. FrodoKEM
takes 2.7× the time of a Kyber handshake and 2.53× the time of a typical classical handshake
with ×25519. They state that the combination of Kyber512 (NIST security level 1) and ×25519
took 1.25× the time of a traditional handshake, while NIST level 3 of this hybridisation has
a very close performance (1.28×). Finally, the paper provides an overview of how the work
of [19] differs from other designs in its approach of achieving AKE as the pure PQC solution
KEMTLS. Indeed, KEMTLS is achieving a form of 1W-AKE, as the server is authenticated
to the client without DSA by using a long-term KEM public key for encapsulation, with the
server responding via an encapsulation based on the client’s ephemeral KEM public key.

Therefore, achieving a 1W-AKE means the client does not need to authenticate itself.
A pure KEM 1W-AKE implementation is interesting in the context of the future circuit-
extension handshake. Recently, Pan and al. [41] introduced a one-way Verifiable Weak
FS notion and presented the first lattice-based tightly FS AKE via key confirmation in
the classical random oracle model (using the lattice-based protocol from Pan et al. [42]),
showing that the OW-VwFS can be transformed tightly to FS using key confirmation in
the random oracle model (ROM). The circuit-extension handshake requires FS [11], and in
the near future, a fully KEM-reliant 1-WAKE handshake could potentially replace ntor or
hybrid-motor. Based on [19]’s benchmarks (NIST Round 3 estimation results), it could be
as fast as or faster than the current handshake encryption.

2.2.2. Signature

This subsection takes a closer look at the potential signature mechanisms that could
be integrated within Tor’s different layers. The current 1W-AKE relies on public key cryp-
tography. The hybrid circuit-extension design presented in proposal #269, inspired by
Schanck et al.’s work [11], does not integrate post-quantum DSA. It maintains the usage
of ECDH primitives (signing with the server’s Curve25519 public key) for authentication.
This is based on the assumption that the session negotiation itself is not vulnerable to
quantum attacks. The hybrid protocol derives session keys and authentication tags from
the shared secrets of both the ECDH shares and KEM-derived secrets, allowing authen-
ticity verification without an explicit digital signature during session establishment. This
approach avoids the additional computational cost and larger communication footprints
of the standardised DSAs and the significant modifications to the Tor protocol that their
incorporation would lead to. Although the recently introduced ML-DSA and SLH-DSA
(Table A4) have larger signature sizes compared to the stateful hash-based schemes XMSS
and LMS (Table A5), they offer the advantage of reducing state management complexity
and lowering operational overhead; thus, they are better candidates if used in the hand-
shake. The Falcon scheme, like ML-DSA, is based on lattice; it proposes even smaller keys
(Table A6) but considerably slower runtimes; Dilithium, with security level 2 parameters,
generates key pairs approximately 178 times faster per second than Falcon512, which
corresponds to security level 1 (Table 6). SLH-DSA is the only stateless hash-based standard
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so far, offering robust security without relying on new mathematical problems. However,
it generates large signatures (from nearly 8 KB to 50 KB) and performs slower signing
than its lattice-based competitors; SPHINCS+ at security level 3 achieves about 14 signing
operations per second, as shown in Table 6.

Table 6. PQC performance comparison. Operations per second per algorithm, reference code type
(unoptimised), 2 April 2024, OQS [35].

Keygen/s Keypair
(Cycles) Sign/s Verify/s Security

Category

Falcon-512 53.26 46,938,518 176.55 17,246.00 1
Falcon-1024 17.91 139,565,458 80.56 8341.00 5
Dilithium2 9486.00 263,444 2099.33 8752.33 2
Dilithium3 5184.33 482,134 1320.00 5519.00 3
SPHINCS+-SHA2-128f-s 558.81 4,473,508 23.86 404.73 1
SPHINCS+-SHA2-192f-s 382.08 6,542,247 14.52 270.91 3

The relay layer is heavily reliant on the circuit-extension handshake in terms of au-
thentication, yet it also depends on Tor’s own certificate mechanism. Tor does not rely on
standard CA-issued certificates for its core functioning, avoiding reliance on centralised
CAs. Signing is performed with Ed25519 keys; their format differs for certificates used by
authorities to sign their identity key [10]. CERTS cells are at least 104 bytes when contain-
ing a single certificate of 96 bytes (32 of certified key and 64 of signature), with its expiration
date of 4 bytes plus 4 bytes representing the number, type, and length of certificates in
the cell. This number is approximate, as an extension can be added to bundle the signing
key along with the certificate, which adds up to at least 36 bytes. Therefore, 140 bytes
would represent one certificate and its signing key, which fits into the current absolute max-
imum fixed size of 512 bytes. ML-DSA, the smallest recently standardised post-quantum
equivalent, has a total of 3732 bytes for the public key and signature sizes (Table A4).

In regard to onion services, which also rely on a public key for authentication (Table A2)
to prevent the linking of descriptors, they use a blinded version of the identity key that
changes at regular intervals instead of using the identity key directly [10] #224. This allows
us to hide the original identity key while still authenticating without linking the real key
directly. The feature is vulnerable to quantum attacks where a capable adversary could
forge the OS signature and potentially redirect queries addressed to the service. Regarding
its migration to PQC primitives, Eaton et al. [43] assessed four schemes, including Dilithium,
which outperforms the others both in signing and verification but also reaches a close result
of its unblinded counterpart.

TLS signatures can be divided into two categories: “online” signatures of messages in
the handshake protocol and static ones of certificates in the certificate chain; the “statics”
allow a greater signing time as the computation takes place in advance. Typically, the root
certificate signs the intermediate CA certificate, which itself signs the leaf certificate. The
latter is used to sign the transcript during the handshake; the other signatures are static.
The certificate chain size gives practical insight into assessing the overhead. Kampanakis
and Childs-Klein [44] estimate the authentication data sizes of ML-DSA-44 and ML-DSA-6
to be 14 KB and 19 KB, respectively (including the intermediate CA certificate). Their
work on the increased latency caused by the certificates is based on the estimated sizes
of the chain; the observed chains are built with RSA, not actual ML-DSA certificates. The
paper states a 32% handshake time increase compared to the 2.5 KB chain. In Tor TLS, the
certified key type varies from Ed25519 to a hash (SHA256) of an X.509 certificate. Since
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the hash itself is not directly reversible, this part of TLS authentication is, therefore, less
exposed to quantum attacks. Yet, the underlying X.509 certificate remains dependent on
the public key primitive used. While standards drafts are proposing to include the recently
standardised SLH-DSA [45], its performance stays far behind Dilithium and Falcon [46].
Kampanakis and Kallitsis [47] proposed a backwards-compatible mechanism to omit the
intermediate CA certificate, allowing lighter and faster PQC TLS handshakes.

Currently, an IETF draft is in progress to extend ACME challenges to validate “.onion”
domains through a Tor-compatible mechanism; the draft by Misell [48] presents a new
challenge type, “onion-csr-01”, while still incorporating the “http-01”, “dns-01”, and “tls-
alpn-01” challenges. Relying on the broader web PKI, aside from the potential privacy
concerns for the onion service, remains sensitive to quantum attacks.

If proposal #340 is implemented as specified, the digest field, responsible for checking
the cell integrity, should reach a size of 14 bytes, allowing the integration of larger hashes
(currently SHA-1). Although hash functions are less directly threatened by quantum
algorithms than PKE schemes, it has been shown that Grover’s algorithm can be used
to reduce the time required for preimage attacks on hash functions like SHA-1, SHA-2,
and SHA-3, as well as minimise the time needed for hash inversion in O(

√
n), halving the

security of the function [49].
Ultimately, NIST [50] is still looking for a signature scheme and has declared that some

second-round candidates have undergone minimal or no formal cryptanalysis in published
research. Thus, potential signature schemes may still reveal themselves in future research
and deployment as a match for Tor’s requirements. For instance, FAEST, which achieves
faster key generation than ML-DSA, displays smaller key sizes and relies on the mature
security of SHA3 and AES, yet its signatures are more than twice the size of those of the
latter lattice-based scheme at their respective minimum security levels [51].

2.3. Reflection

The attraction towards hybrid models is justified by the potential fallback to classical
encryption in case a given quantum-robust scheme fails. Even if they have been cautiously
examined, new PQC schemes could potentially be broken by an adversary. As an analogy,
SIKE reached the fourth round of NIST competition before being proven insecure [52]. To
avoid solely relying on relatively young solutions, hybrids appear to outweigh the faster,
fully PQC solutions (KEMTLS). As for the ease of instantiation, the concatenation method
of algorithms allows for the simpler implementation of these hybrids.

The circuit layer comes up as the most urgent layer to migrate to PQC. Implementing
a transitional hybrid scheme would require a KEM and a DSA mechanism. The second
migration would concern the link protocol. In comparison, TLS has benefitted from a greater
number of deployments and more extensive research. While OS reuses these fundamental
blocks, it incorporates additional mechanisms such as introduction, rendezvous points,
and hidden service descriptor encryption, which have separate cryptographic processes.
Public key cryptography is used in both cases: for key exchange during the introduction
and rendezvous points; and authentication for both the points and descriptors.

Regarding Tor’s components that should be tested with quantum-robust KEMs, four
stand out:

• The circuit-extension handshake;
• Onion skin;
• Link layer TLS;
• OS Introduction, rendezvous points.

As for the ones that can be evaluated using DSA, the following stand out:

• Consensus document;
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• Relay identity authentication;
• Link TLS handshake authentication;
• Encrypted descriptor.

Section 2.1.2 highlighted the fact that Tor already faces cryptography challenges that
will not be solved by the integration of quantum-resistant schemes. The latter implies a
potential redesign of certain underlying protocols beforehand, as proposed by Degabriele
and Stam [15]. Overall, the review emphasised the various cryptographic layers and
examined their interactions. It appears technically feasible to transition to PQC standards
incrementally, layer by layer. Regarding the necessity of migrating the encapsulated TLS
layer to PQC when its outer layer is already quantum-resistant, the recommendation is
affirmative, as it is preferable to ensure comprehensive quantum security.

On the other hand, Rahman et al. [53] proposed an integration of QKD for symmetric
key exchange without relying on trusted nodes. The design presents a quantum relay to
facilitate the key exchange between client and nodes, yet this approach would require a
specific quantum communication infrastructure, such as quantum repeaters, which are still in
development and not widely available. It can be observed that the diversity of KEM standards
is currently limited compared to that of DSA (ML-DSA, SLH-DSA, XMSS, and LMS).

3. Methodology and Design
This section seeks to develop the implementation design based on insights gained

from the literature review. This research takes an inductive approach, collecting data to
build a theory regarding the impact of PQC migration in Tor.

3.1. Technical Requirements

On a security level, the implemented protocols will need to achieve IND-CCA2 and at
least the first NIST PQC security category. From a size perspective, none of the schemes
observed fit in the current cell size. At the data-link layer, to reduce fragmentation, it
is preferable for public key sizes to fit in the Ethernet MTU of 1500 bytes. Only ML-
KEM-512,768 or sntrup761 for KEM and Falcon-512 or ML-DSA-44 for signatures meet
this requirement. Yet, as previously noted, Tor cell body lengths are currently limited to
509 bytes and will be adjusted to 493 bytes, except for “DATAGRAM” messages, which
aim to support the UDP-over-Tor proposal [5] #339. Fragmentation of PQC keys across
several cells appears inevitable (Tables 2, 3, 5, and A4–A6). Reassembly, verification, and
potential retransmissions will be necessary. ML-KEM and Falcon encapsulation and public
keys, respectively, fit in two Tor cells. In terms of actual runtime, ML-DSA significantly
outperforms Falcon.

Regarding relays, memory (≥1 to 1.5 GB of RAM per node), disc storage (≥200 MB),
and bandwidth minimal requirements (≥16 Mbps), as defined by the Tor paper, will need
to be met in the hardware equipment used.

Arti offers a safer and faster development than C Tor due to Rust’s design. Generally,
the Rust language does not outperform C, yet it shows close performance [54]. Initiated in
2020, the Rust implementation takes a simpler approach compared to the older C version.
At present, a performance comparison of the two implementations is difficult to make as
Arti is not fully finished. For instance, relays cannot be run just yet [10]. Thus, this work
focuses on C language Tor implementation and cryptographic libraries.

3.2. Network Architecture

A star topology will be formed around a central switch device. For the sake of
mimicking the key roles, the network needs to provide enough diversity; therefore, nine
nodes will operate together. Two machines will act as directory authorities. Four nodes
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will serve as guard relays, two as exit relays, and one will be dedicated to functioning as
a middle hop and OS. Given the size and configuration of the network, there will be no
dedicated directory caches, and nodes will endorse multiple flags, such as the onion service
descriptor “HSDir” flag.

3.3. Local Benchmark

The implementation will start by looking at the tools relevant to measuring the Tor net-
work and running them within our scenario. A packet capture will permit the observation
of the time of transmitted frames with the corresponding traffic type.

Tor uses sbws (Simple Bandwidth Scanner) and OnionPerf to measure its perfor-
mance [3]. Sbws usually relies on the download and upload of files through the circuits
to measure the benchmark. This method can be mimicked manually using tools such as
wget or curl. The implementation will look for a method to efficiently measure the circuit
round-trip latencies and circuit build times.

3.4. Code Performance

With regard to the three layers, the list of C files below represents the core Tor pro-
tocol operations; they will be assessed on the performance of their most computationally
expensive functions.

• The circuit_establish_circuit function in circuitbuild.c handles the pro-
cess of selecting paths and managing the handshake protocols between nodes to
establish circuits.

• onion.c is responsible for the creation, encoding, and parsing of cells (CREATE,
CREATED, EXTEND, and EXTENDED). It invokes handshakes.

• channel.c implements the transmission, reception, and processing of cells across
different connections.

• relay.c manages RELAY cells, including their encryption, decryption, forwarding,
and processing for routing data.

The following code files will be evaluated to weigh the cryptography operations
they represent:

• onion_ntor.c implements the ntor handshake.
• onion_ntor_v3.c, as specified in proposal 340 [5], requires the enhanced handshake,

ntor v3, for cell fragmentation.
• relay_crypto.c handles relay cell payload encryption, decryption, integrity verifica-

tion via cryptographic digests, and the initialisation of symmetric keys.
• hs_ntor.c is closer to ntor v3 than ntor; it is the implementation of the handshake for

onion services.
• tortls.c is the main TLS implementation file in Tor.
• channeltls.c is the only instantiation of channel abstraction. It handles the v3+ link

handshake, certificate verification, and cell processing over OR connections.

In Tor’s “crypto” code directory, the deprecated fast handshake file onion_fast.c is
ignored. A frequency analysis will be conducted to associate the roles of nodes with the
functions they execute the most.

3.5. PQC

The following algorithms will be considered viable candidates: ML-KEM-512 and
Falcon-512 at security level 1; sntrup761 and ML-DSA-44 at security level 2; and ML-KEM-
768 at security level 3. The Open Quantum Safe C library [35] provides implementations of
the considered schemes. The speed tests for signature and KEMs will be run on different
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devices with their code. Regarding the performance evaluation of the classical scheme,
the OpenSSL speed tool will be used. Combinations of the selected schemes will be made
to evaluate their timing with their security level. All of them will be run on at least two
different devices. The advertised results summarised in Sections 2.2.1 and 2.2.2 will be
taken into account.

3.6. Reflection

The implementation of this outline should be helpful in shedding light on the impact
of post-quantum cryptography in Tor, according to the assumption that if a given crypto-
graphic process represents a proportion of Tor’s total runtime, then an increase in latency
will lead to a rise in at least the total timing.

4. Implementation
Firstly, the benchmark techniques will focus on the local network before targeting

cryptographic timings (circuit-extend, onion service, and TLS). Secondly, the measurements
obtained will be compared with their potential PQC substitutes.

4.1. System Setup

The hardware used for this implementation consists of nine Raspberry Pis used as
onion relays: two model 4b with 8 GB of RAM, and seven model 5 (two with 8 GB and five
with 4 GB of RAM). A Thinkpad laptop X1 with i7-10850H CPU and 32GB of RAM is used
as a client. They are connected using two-metre-long straight-through Ethernet cables and
a Cisco Catalyst 2900 switch (Figure A5). It should be noted that a Raspberry 4b with 4 GB
of RAM is added for stability when needed.

Each Raspberry runs Ubuntu server 24.04, and the Lenovo personal computer runs
Kali Linux 2024.3. The switch runs DHCP to avoid accessing the Raspberries through
monitors, but the IPs are configured statically; the switch’s minimal configuration can be
found in Listing A1. Each node runs Tor version 0.4.8.10.

The Nginx web server is used for the hidden service. It publishes a simple HTTP
page, as shown in Figure A6. It is resolved and reached by launching the Tor browser
using a separate Tor daemon (see Figure A7). Tor software is designed to run within a
large network with a large number of nodes; the implementation of a local testing network
with a small number of nodes meets multiple constraints. To ensure anonymity, Tor code
discards guards on certain conditions.

4.2. Local Network Benchmark

The average bandwidth connectivity between devices was measured to be 93.8 Mb/s
using the iPerf network performance measurement tool [55]. The network was configured
as described in Section 3.2; Chutney [10], a Python tool for testing the Tor network locally,
was used to generate torrc configuration files for each node (Listings A2 and A3).

The torrc files were slightly adapted, but most of the settings remained identical
to Chutney’s templates. Listings A4 and A5 display the used parameters for direc-
tory authorities and guard relay. For instance, due to the size of the network setting,
PathsNeededToBuildCircuits was decreased to allow more flexible circuit building. The
client configuration also pointed to the local directory authorities and contained the setting
for testing networks, which adjusted default values, as described in “man tor” (Listing A6).
The conflux setting was disabled, and the nodes were specified in the configuration to
facilitate the onion.

If accessing the internet through the local Tor nodes, from the browser’s point of view,
the timing displayed is heavily influenced by external variables such as broadband and
thus is not relevant to evaluating the Tor implementation itself. However, considering the
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timing difference between the same test request made from Firefox to the internet directly
and the Tor browser going through the local nodes, it can be inferred that passing through
the established Tor channel only adds a few hundred milliseconds (Figure A7). Tor’s traffic
is mostly web [3]; measuring the time taken to visit an internet resource adds a relevant
data point of the overhead introduced by the class. The laptop was configured to perform
NAT between its ethernet and WLAN interfaces, and its IP was set as the default gateway
on all nodes. DNS points to the Google 8.8.8.8 address.

4.2.1. Pcap Analysis

This configuration allows sniffing of the first packet sent to the guard relay and the
first packet leaving the exit node (Figure A8) (to the duckduckgo.com domain without
search content). For this circuit exiting by node “.23”, the client sends its Tor encrypted
packet to the entry node at 15:29:50.360220332. The exit node sends a DNS request at
15:29:50.414655443 and its decapsulated ClientHello message at 15:29:50.462253502 (see
Figure A9). Therefore, the timing to exit the circuit is 102 milliseconds, including the DNS
requests (which are influenced by broadband), and 54 milliseconds without.

When trying a similar request, the measured time, with “DNS overhead”, is
110 milliseconds and approximately 60 milliseconds without (see Figure A11). The browser
process is killed between each measure, and its cache stays empty. In this capture, the
entry and exit nodes are the same, but the circuit is different, as shown in Figure A10.
For a third circuit and another web request, we obtain 4 ms from the first TCP sent to the
DNS request made by the exit node and 57 ms if waiting for the ClientHello. This timing
further stresses the need to automate the measurement process to derive metrics from a
larger sample size.

4.2.2. Simple Bandwidth Scanner

As for the sbws tool, it is currently developed for targeting the real Tor or a locally
hosted (single-device) Tor simulation. Here, it was built locally, and its source code file,
“generals.py”, was slightly modified to force the generated Tor daemon to point at the local
directory authorities. This method avoids including the processing of the browser. To use
this tool, a new node was added to act as a web server. It published the 1 GiB file accessible
on port 443 with HTTPS (TLS is required on the target in this scenario to run sbws). The
laptop was configured as a DNS server, allowing the nodes to resolve the address “local.tor”
to IP 192.168.1.24. The self-signed SSL certificate was updated as trusted on the nodes, and
the option ServerDNSDetectHijacking 0 was added to their torrc configuration. The tool
stops after one loop when detecting that it is assessing a testing network and creates a raw
text file, which is used to generate “v3bw” files. As for OS, the “Attachstream” functionality
is not currently supported for .onion addresses.

Gauging the circuit’s timings against the direct and non-encapsulated traffic would
bring a relevant comparison. Thus, the following subsection aims to achieve this.
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4.2.3. Curl Measurements

First, we compare the latency of passing through the network with sending curl
requests directly to the external server. Listings 1 and 2 display the curl requests run from
the client passing through its Tor daemon with SOCKS5.

Listing 1. Curl GET request to duckduckgo.

curl --socks5 -hostname 127.0.0.1:9050 -w "%{ time_total} " -o /dev/null -s https ://
duckduckgo.com

The Tor paper defines round-trip latencies as the time between sending the HTTP
request and receiving the HTTP response header [3]. Here, this is replicated by the
time_total variable in the curl command. This technique also permits us to reach the OS
and to directly benchmark it.

Listing 2. Curl GET request to onion service.

curl --socks5 -hostname 127.0.0.1:9050 -w "%{ time_total} " -o /dev/null http ://
adg4jkv2xpciraegkj3rpcfrdnzlaeqnlt7a3wzylhzcvshzkerhacyd.onion

Furthermore, POST requests are also sent to the target address, allowing us to down-
load and upload performances with a 1 GiB large file (just as sbws can achieve) and
the average of a typical POST request. This is performed by adding curl parameters, as
shown in Listing A8, for the evaluation of access to an external resource without relying on
broadband internet. Figure 2 represents the average speeds measured with the 1 GiB file.

Figure 2. Average download and upload speeds of onion services.

Finally, to evaluate the overhead of TLS in the onion service, it is implemented and
compared with HTTP.

4.2.4. Circuit Build Time

Using the stem library, Listing 3 allows obtaining timing metrics for a given number
of built circuits. Two ways were implemented: the first was by waiting for the controller
to mark the status of the circuit as built, and the second one was by checking its status at
small intervals. The latter demonstrated greater consistency in its results.
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Listing 3. Python script using the stem controller library.

import time
import numpy as np
from statistics import mean , median , stdev
from stem import CircStatus
from stem.control import Controller

def benchmark_circuits(controller , numCircuits =1000):
circuitBuildTimes = []
for i in range(numCircuits):

startTime = time.time()
# Creating a new circuit and waiting until circuit is fully built
circId = controller.create_circuit(await_build=False)
while True:

circ = controller.get_circuit(circId)
if circ.status == CircStatus.BUILT:

break
time.sleep (0.001) # Checking the status as frequently as possible

endTime = time.time()
buildTime = endTime - startTime
circuitBuildTimes.append(buildTime)
controller.close_circuit(circId)

if circuitBuildTimes:
avgTime = mean(circuitBuildTimes)
mdTime = median(circuitBuildTimes)
mnTime = min(circuitBuildTimes)
mxTime = max(circuitBuildTimes)
sdTime = stdev(circuitBuildTimes) if len(circuitBuildTimes) > 1 else 0
q1Time = np.percentile(circuitBuildTimes , 25)
q3Time = np.percentile(circuitBuildTimes , 75)
print(f‘‘Metrics for {numCircuits} circuits:’’)
print(f‘‘ Average build time: {avgTime :.4f} seconds ’’)
print(f‘‘ Median build time: {mdTime :.4f} seconds ’’)
print(f‘‘ Min build time: {mnTime :.4f} seconds ’’)
print(f‘‘ Max build time: {mxTime :.4f} seconds ’’)
print(f‘‘ Standard dev: {sdTime :.4f} seconds ’’)
print(f‘‘ First quartile (Q1): {q1Time :.4f} seconds ’’)
print(f‘‘ Third quartile (Q3): {q3Time :.4f} seconds ’’)

else:
print(‘‘No circuits ’’)

if __name__ == ‘‘__main__ ’’:
with Controller.from_port(port =9051) as controller:

benchmark_circuits(controller , numCircuits =1000)

4.3. Cryptography Benchmark

To measure the cryptographic operations performance in terms of execution time,
the relevant functions of the files described in Section 3.4 were executed with the
clock_gettime() function, the results were returned as standard output, and the
RunAsDaemon option needed to be disabled. The executable file was run on all devices. The
functions were used at different frequencies according to the node’s role.

Focusing on the traditional cryptography used, Table 7 presents the performance
achieved by Raspberry Pi 4 and 5 (4GB) using OpenSSL.
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Table 7. Benchmark of Tor’s asymmetric schemes on Raspberry Pi. Average operation iteration
per second.

Sign/s Verify/s Model

Ed25519 2939.1 1327.0 4b
RSA2048 199.2 7492.9 4b
RSA3072 21.3 1209.6 4b

Ed25519 16,301.1 6846.1 5
RSA2048 281.0 10,289.0 5
RSA3072 90.1 4652.2 5

Key Exchange/s Model

X25519 1044.6 4b
X25519 5973.5 5

The first Tor protocol to invoke these cryptosystems is the circuit-extend.
Lauer et al. [14] measured the time of the ntor handshake execution by the user at 0.30 ms
and 0.10 ms by the OR. Yet, Schanck et al. [11] benchmarked a 0.000527 ms total perfor-
mance for ntor computation. Here, a low-level approach was taken to estimate the ntor
execution time: onion_skin_ntor_create computed the first client-side step of ntor in
0.13 ms, while the function onion_skin_ntor_client_handshake, which performs the ntor
final client-side step, was executed in 0.77 ms on average by all nodes. The server-side
steps of the handshake achieved an average of 2.1 ms altogether.

In the PQC migration context, the ntor v3 handshake is expected to be the standard,
as previously mentioned in Section 3.4. It performed significantly better than the classical
ntor with 0.67 ms on the client side and 0.63 ms on the server side.

Figure 3 shows the mean and median values of most measured functions; very small
values have been excluded for the graph’s clarity.

Figure 3. Execution speed per function.

4.4. PQC Runtimes

The schemes of interest were benchmarked using the OQS library to grasp the per-
formance of the nodes against PQC schemes. Table 8 shows the average number of opera-
tions per second on Raspberry Pi (4GB of RAM) 4b and 5 for both KEMs and signatures.
Here, Raspberry Pi 4 significantly under-performed compared to the results published by
OQS. For example, ML-KEM-512 ran 3807 key generation operations per second, whereas
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Kyber-512 achieved 23,348 keygen/s (Table 4). On the other hand, model 5 accomplished
closer outputs.

Table 8. Benchmark of PQC schemes on Raspberry Pi. Average time (µs) per operation, code retrieved
from liboqs [35].

Keygen/s Encaps/s Decaps/s Model

ML-KEM-512 3807.3 3462.0 2783.0 4b
ML-KEM-768 2539.0 3905.0 2571.5 4b
sntrup761 25.2 841.7 410.6 4b
ML-KEM-512 23,168.3 19,178.0 15,136.3 5
ML-KEM-768 13,976.6 11,900.6 9614.3 5
sntrup761 158.1 6067.0 3210.3 5

Keypair/s Sign/s Verify/s

Falcon-512 23.6 615.3 7866.3 4b
ML-DSA-44 2642.7 286.1 3213.9 4b
Falcon-512 95.4 3360.6 19,831.3 5
ML-DSA-44 8986.3 1885.0 8139.0 5

Based on the fact that a key exchange for a KEM requires key generation, encapsulation,
and decapsulation operations,

TKE = Tkengen + Tencaps + Tdecaps.

Here, the fastest post-quantum KEM scheme performed slightly faster than X25519.
The 4b model achieved 0.95 ms per classical KE exchange and 0.91 ms per ML-KEM-
512 KE; nonetheless, model 5 achieved closer results with 0.167 ms per X25519 against
0.161 ms. The operations per second are displayed in Tables 7 and 8. On the client (x86_64
architecture), X25519 was benchmarked as KEM and it resulted in 22,839.0 keygen/s,
11,950.9 encaps/s, and 26,040.8 decaps/s, thus corresponding to a speed of 0.1659 ms per
key exchange. Meanwhile, ML-KEM-512 produced 38,732.0 keygen/s, 33,241.3 encaps/s,
and 36,170 decaps/s, showing a speed difference of 66% (between 0.1659 and 0.0835).
From a runtime point of view, adopting ML-KEM-44 to replace Curve25519 key exchange
on these devices would result in an acceleration of the overall process. Yet, this is the
only scheme where X25519 is slower. On Raspberry model 4b, ML-KEM-768 showed a
14% execution time increase, while sntrup761 performed the KE operations in 43.3 ms,
nearly 50 times slower than X25519. Nevertheless, on the client, the NTRU scheme was
only six times slower than the classical key exchange with a timing of 1.005 ms/KE.
Regarding DSA schemes, Edwards-curve 25519 signing remains the fastest of the standards,
followed by Falcon-512, which is still, on average, 4.8 times slower. Moreover, Ed25519
key and signature sizes (32 and 64 bytes, respectively) stay significantly smaller than both
post-quantum DSAs (see Tables A4 and A6), which introduces storage and transmission
overhead. It should be noted that the need for flexible key management increases as the
public and private keys of Falcon and ML-DSA differ, unlike the currently used Ed25519.

In terms of verifying operation speed, Falcon slightly surpasses RSA2048 on Raspberry
Pi 4b and runs almost twice as fast in comparison to model 5. Without taking size and key
pair generation into consideration, the fastest combination of quantum-robust signature
cryptosystems, as a hybrid, would be Falcon-512 with Ed25519 at security level one. RSA is
not considered, as Tor is trying to move away slowly from it. However, if one considers
key sizes and key pair operations per second, ML-DSA with Ed25519 is a better choice,
achieving the second NIST security category.
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4.5. Reflection

The size of the network has consequently influenced the nodes’ configurations, ensur-
ing enough guards, which has been a core challenge in achieving correct circuit building.
Logs have been highly valuable alongside Nyx, a Tor command-line monitor (Figure A12).
The settings have mostly been manually deployed, and most could be easily automated
with a script.

5. Evaluation
This section will evaluate the implementation and its outcomes in relation to the aims

and objectives outlined in the initial research proposal.

5.1. Results
5.1.1. Bandwidth and Circuit Performance

For an average bandwidth of 93.8 Mbits/s between nodes, without passing through
the circuits in the network, the mean time taken for a circuit to be built varies between
approximately 44 and 60 milliseconds. The tools used did not allow accurate measurement
of the circuit build time per hop but rather the entire circuit building. The stem scripts,
however, may be modified to measure a single-hop latency. This was not performed
here, yet the overall latency gave an approximation of the single-hop circuit build time.
Their results are compared in Figure 4. The graph displays metrics from twelve different
script executions over time. The upper row displays timings more spread out, yet faster
than the lower one. They have been differentiated, as each script execution would either
average a circuit time close to 44 ms or the upper 57 ms due to hardware differences in the
chosen nodes.

Figure 4. Circuit build time. The Q1 and Q3 measurements are omitted from the graph.

When using Tor circuits to fetch the “local.tor” HTML page (HTTPS), the upload
speed was 3808.52 kB/s, and the download speed reached 9648.06 kB/s. Without passing
through circuits, much closer values were obtained: an upload speed of 11,511.83 kB/s and
a download speed of 11,410.24 kB/s. This implies asymmetrical bandwidth capabilities
between paths; this is supported by the results obtained in the file transmission, as shown
in Figure 2, with higher upload speeds on the exit path.

The Pcap analysis results show limitations in terms of accuracy; on the other hand,
using a greater sample of curl timings data, relevant metrics were obtained. Table 9 displays
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the median and average values of a single request according to the targeted source. The
three targets were running Nginx web servers, all equipped with SSL certificates.

Table 9. Performance of web traffic through local Tor network. Total time (ms) per curl.

Duckduckgo Local Webserver Onion Service Request Type

Mean 262.9 136.7 174.6 GET
Median 260.8 142.4 166.0 GET
Mean _ 141.8 172.6 POST
Median _ 148.0 171.5 POST

The round-trip latency can be calculated accurately by subtracting the average latency
of direct route requests from that of requests routed through Tor. Based on 1900 requests
per source, fetching “duckduckgo.com” yields an overhead of 83.1 ms, while accessing the
“local.tor” Nginx webserver incurs an additional latency of 82.4 milliseconds. Rounding up
these values, the estimated latency overhead is approximately 83 milliseconds.

Regarding OS performance, the data exchange to fetch the test page (as shown in
Figure A6) takes approximately 20 ms longer compared to the identically configured Nginx
server. Knowing that OS requires going through three more hops than the external resource
fetching it, the time per hop extension for fetching via OS is approximately 7 ms, while the
circuit building time per hop ranges from 15 to 20 ms (based on stem script results). This
could be explained by the optimised ntor handshake initiated in hs_ntor.c.

The bandwidth results obtained from sbws corroborate the initial bandwidth measure-
ment of 93 Mbits/s made using iPerf. Notably, the first authority guard is excluded from
this analysis as it introduces an error. In Figure 5, the first authority guard is omitted as it
results in an error due to the fact that sbws uses it to fetch data in the network, corrupting
its bandwidth assessment.

Figure 5. sbws upload bandwidth per node.

5.1.2. Cryptography Comparison

The comparison potentially demonstrates that the optimisation of the X25519 imple-
mentation allows constrained devices to execute its KE almost as fast as the ML-KEM-512
standard, while on a 32 GB machine, the post-quantum standard is able to perform at least
50% faster than its classical counterpart. In a similar manner, NTRU (sntrup761) performs
much better on the client than it does on the Raspberry Pi. Memory usage should be
compared for a deeper analysis. Falcon-512 is the fastest on constrained devices. However,
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it represents a much larger latency on more powerful hardware (e.g., laptops). It should
be noted that the architecture here—aarch64 for the Raspberry Pis—should be taken into
account; the OpenSSL executable for x86_64, used on the laptop, provided more accurate
computations of each operation per scheme.

In terms of roles, the analysis of results, displayed in Figure 6, reveals distinct func-
tional distributions among Tor nodes, highlighting the specialised responsibilities of each.
Guard nodes show the largest proportion of iteration for encryption- and circuit-related op-
erations relay_encrypt_cell_inbound, relay_decrypt_cell, and circuit_package_
relay_cell, whereas the middle node, also acting as an OS, mainly displayed handshake-
related function iterations. As expected, exit nodes primarily engaged in outbound traffic
handling (relay_encrypt_cell_outbound and channel_write_packed_cell). Authority
nodes have a smaller, consistent presence, reflecting their role in network management
and verification rather than direct cell processing. Thus, onion service nodes evidently
exhibited the highest usage of public key cryptography functions, followed by guard nodes,
executing the most handshake-related operations.

Figure 6. Proportion of iterations per relay role for a given function. In this experiment, OS and
middle relay are the same devices.

5.2. Effectiveness

The network benchmarking process displays consistent results. Asymmetric latencies
have been identified; however, they are not necessarily problematic. The real Tor network
relies on a diversity of hardware, resulting in asymmetric bandwidth. Compared to adver-
tised metrics (see Figure A3), the circuit round-trip latencies share common characteristics
in their results, with a higher but faster onion latency compared to when directed to a public
server. On the other hand, estimating a precise proportion of public key cryptography
processes is difficult by solely analysing the timings of cryptographic functions.

Related Work

Zsolt et al. [56] highlight the impact of PQC on Tor but focus mainly on the scheme’s
performances and less on Tor software. Their work acknowledges the advantage of lattice-
based KEM cryptosystems but presents SIKE as an optimal choice; it does not cover the
efficiency of DSA schemes. In comparison, this paper benefits from a more advanced
status in the NIST standardisation process. Evgnosia-Alexandra [57] gives a brief crypto-
graphic analysis of potential candidates and emphasises hybrid Ring-LWE approaches. Yet,
Evgnosia-Alexandra’s paper also promotes SIKE as the appropriate choice to minimise
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overhead. In contrast, this work dived into Tor’s software performances in a constrained
environment, evaluating the potential PQC load in a pragmatic manner.

5.3. Reflection

Based on the frequency analysis of C function execution, middle-OS and guard nodes
appear to perform the most asymmetric cryptographic operations. It can be inferred that
considering previous benchmarks of PQC algorithms on Raspberry Pis, their minimum
hardware memory requirements may need to be increased. However, reducing the accept-
able criteria could also lead to a reduction in network capacity.

6. Conclusions
Overall, this work has presented several methods to evaluate a local Tor network,

which can be easily implemented and repeated in future testing environments. It also
presented a reference point, providing results of these measurement techniques that one
could consider in a similar experiment.

The key deliverables of the paper are as follows:

• Four algorithms have been demonstrated to be more appropriate than others: ML-
KEM, and NTRU (sntrup761) as KEMs, followed by ML-DSA and Falcon as signa-
ture schemes.

• A local Tor network has been successfully deployed with multiple physical devices; it
reached a Tor circuit-round latency of 83 ms for a non-encapsulated bandwidth mean
value of 93.8 Mbits/s.

• The C code related to Tor cryptographic operations was timed. However, the relevance
of the timings should be interpreted with caution within the context of this experiment.

• Using the obtained results alongside PQC performances, an accurate estimate of the
overhead percentage cannot be determined. Numerous unclear variables are likely
to influence the final latency evolution. This work has highlighted that the hardware
characteristics of Tor nodes will be one of these factors.

Most of the raw results have been made publicly available at https://gitlab.torproject.
org/diunisu/testing-network-results (accessed on 15 February 2025).

6.1. Limitations

The drawbacks of this work can be represented by three main points below.

• While trying to satisfy the low-bandwidth requirement, the selected schemes only
cover the two first NIST security categories. Furthermore, they lack diversity in their
mathematical assumptions, relying solely on lattice problems.

• The benchmarking is heavily subjective.
Firstly, it is influenced by the technology used, such as the optimisation of cryptosys-
tems based on a CPU architecture. In this context, this theoretical bare-metal Tor
network simulation could be improved by using hardware generally used in the real
Tor network. This would require more intrusive relay metrics and may go against
security and privacy principles. Secondly, the timings are greatly influenced by the
configuration. The torrc files were adapted to obtain a functional local network with
the given number of nodes. Yet, another blend of settings could result in a more
realistic implementation. Adding more nodes should improve the stability of the
setup. Going further, the nodes could be distanced geographically. Planet Lab [58]
may be an appropriate test bed. Additionally, the methods and tools employed in
the measurement process can significantly alter the results; for instance, time is con-
sistently taken as a reference point, and other measuring units, such as CPU cycles,
are neglected.

https://gitlab.torproject.org/diunisu/testing-network-results
https://gitlab.torproject.org/diunisu/testing-network-results
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• The estimation of the PQC overhead is only theoretical and misses a multitude of
parameters, such as different traffic types or volumes. In a virtual environment,
further testing with Shadow could provide valuable insights based on the real Tor
traffic, while on physical machines, adapting or creating tools like OnionPerf to target
local instantiations could also produce more relevant measures. In the future, Tor’s
software optimisations and restructuring of the underlying protocols will also impact
network performance.

6.2. Future Work

Future work includes advancing the post-quantum circuit-extend handshake design,
inter alia, by comparing a DSA-free handshake to a KEM authentication (still requiring
DSA for static leaf signature). This should be followed by a software implementation
draft to enable the practical evaluation of the integration of these PQC schemes. It would
be particularly useful to assess its performance in a realistic scenario. Looking ahead,
when the Arti code allows the running of relays, it will be helpful to note the difference in
cryptography performance between C Tor and Rust in this context.
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Glossary

Acronym Meaning

ACCE Authenticated and Confidential Channel Establishment

ACME Automated Certificate Management Environment

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AKE Authenticated Key Exchange

ARTI A pure-Rust Tor Implementation

CA Certificate Authorities

CCA Chosen-Ciphertext Attack

SVP Shortest Vector Problem

CRYSTALS Cryptographic Suite for Algebraic Lattices

DH Diffie–Hellman

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie–Hellman

EES Efficient Embedded Security

FALCON Fast Fourier Lattice-based Compact signatures over NTRU

FO Fujisaki–Okamoto transform

FS Forward Secrecy

HHK Hofheinz–Hövelmanns–Kiltz transform
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HQC Hamming Quasi-Cyclic

IETF Internet Engineering Task Force

IND-CCA INDistinguishability under Chosen-Ciphertext Attack

IND-CCA2 INDistinguishability under Adaptive-Ciphertext Attack

IND-CPA INDistinguishability under Chosen-Plaintext Attack

IP Internet Protocol

KEM Key Encapsulation Mechanism

LMS Leighton–Micali Signature

MLWE Module Learning With Error

ML-KEM Module-Lattice-based Key Encapsulation Mechanism

ML-DSA Module-Lattice-based Digital Signature Algorithm

MTU Maximum Transmission Unit

NAT Network Address Translation

NIST National Institute of Standards and Technology

NSA National Security Agency

NTRU Nth degree TRUncated polynomial ring

OSs Onion Services

PDK Pre-Distributed (public) Key

PFS Perfect Forward Secrecy

PKE Public Key Encryption

PQC Post-Quantum Cryptography

PRNG Pseudo-Random Number Generator

QC Quantum Computer

QKD Quantum Key Distribution

RAM Random-Access Memory

RSA Rivest–Shamir–Adleman

RTT Round-Trip Time

SHA Secure Hash Algorithm

SSL Secure Sockets Layer

TAP Tor Authentication Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

TOR The Onion Routing

XMSS eXtended Merkle Signature Scheme

1W-AKE One-Way Authenticated Key Exchange
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Appendix A

Figure A1. V3 onion service traffic over 2023.

Figure A2. Total bandwidth traffic over 2023.
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Figure A3. OnionPerf latencies between July 2024 and September 2024.

Table A1. Relay keys. Source: Tor gitlab [10].

Key Type Description Expected Lifetime

relayid_rsa 1024-bit RSA identity key long-term, never rotated
onion_tap 1024-bit RSA TAP onion key medium-term, at least 1 week
conn_tls 1024-bit RSA connection key for negotiating TLS connections short-term, at most 1 day
ntor x25519 (256 bits) onion key for handling onion key handshakes medium-term, at least 1 week
relayid_ed ed25519 (256 bits) identity key long-term, never rotated
relaysign_ed ed25519 (256 bits) signing key medium-term, rotated periodically
relaysign_ed_cert ed25519 (256 bits) relaysign_ed signed by relayid_ed same lifetime as relaysign_ed
link_ed ed25519 (256 bits) link auth key, used to authenticate the link handshake regenerated “frequently”
link_ed_cert ed25519 (256 bits) link_ed signed by relaysign_ed same lifetime as link_ed

Table A2. Onion service keys. Source: Tor’s gitlab [10].

Key Type Description Expected Lifetime

hs_id ed25519 (256 bits) identity key long-term, never rotated
hs_blind_id ed25519 (256 bits) blinded signing key (derived from hs_id) 1 time period
hs_desc_sign ed25519 (256 bits) descriptor signing key 1 time period
hs_desc_sign_cert ed25519 (256 bits) descriptor signing certificate (hs_desc_sign signed by hs_blind_id) short-term (54h)
hsc_desc_enc x25519 (256 bits) the client’s counterpart to hss_desc_enc long-term until the client rotates it/service revokes access
hsc_intro_auth ed25519 (256 bits) client auth key for use in the introduction protocol long-term/until the client rotates it/service revokes access
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Table A3. Directory authority keys. Source: Tor’s gitlab [10] and /var/lib/tor/cached-certs.

Key Type Description Expected Lifetime

v3_ident RSA (2048 bits) identity key of the authority long-term, never rotated
dir_signing RSA (1024 bits) signing key used for directory information medium-term, rotated periodically
dir_signing_cert RSA (1024 bits) dir_signing signed by v3_ident same lifetime as dir_signing

• AES-128-CTR: in counter mode as stream cipher; IV of all 0 bytes.
• RSA: exponent of 65,537. OAEP-MGF1 padding, with SHA-1 as its digest function

(label left unset). Tor paper plans to move away from SHA-1 to align with
evolving cryptographic standards and best practices.

• SHA-1 as “hash of a public key”, DER encoding of an ASN.1 RSA public key (as
specified in PKCS.1).

• Relay identity keys: currently, two types are still deployed: RSA1024 is legacy
and is being replaced by Ed25519, which is the one advertised in the table.

• Tor’s TLS 1.2 Ciphers:
– TLS1_TXT_DHE_RSA_WITH_AES _256_SHA
– TLS1_TXT_DHE_RSA_WITH_AES _128_SHA
– TLS1_TXT_ECDHE_RSA_WITH_ AES_256_GCM_SHA384
– TLS1_TXT_ECDHE_RSA_WITH_ AES_128_GCM_SHA256
– TLS1_TXT_ECDHE_RSA_WITH_ AES_256_CBC_SHA
– TLS1_TXT_ECDHE_RSA_WITH_ AES_128_CBC_SHA

• Tor’s TLS 1.3 AEAD Ciphers:
– TLS1_3_TXT_AES_128_GCM _SHA256
– TLS1_3_TXT_AES_256_GCM _SHA384
– TLS1_3_TXT_CHACHA20_POLY1305 _SHA256
– TLS1_3_TXT_AES_128_ CCM_SHA256

Figure A4. Scheme specifications for Table 1. Source: Tor’s gitlab (tortls_openssl.c, tortls_nss.c,
tortls.c). Specifications [10].

Table A4. DSA standards released by NIST in 2024. Source: FIPS 204, 205 [7]; size displayed in bytes.

Scheme Public Key Size Private Key Size Signature Size

ML-DSA-44 1312 2528 4981
ML-DSA-65 1952 4000 3351
ML-DSA-87 2592 4864 4595
SLH-DSA-128f 32 64 1700
SLH-DSA-192f 48 96 3564
SLH-DSA-256f 64 128 4988

Table A5. Hash-based DSA standardised by NIST in 2020. Source: Open Quantum Safe [35]; size
displayed in bytes, with four example settings selected among others.

Scheme Public Key Size Private Key Size Signature Size

XMSS_SHA2_10_256 64 1373 2500
XMSS_SHAKE256_10_192 48 1053 1492
LMS_SHA256_H5_W1 60 64 8688
LMS_SHA256_H5_W8 60 64 1296
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Table A6. Falcon DSA key sizes. Source: Open Quantum Safe [35]; size displayed in bytes.

Scheme Public Key Size Private Key Size Signature Size

Falcon-512 897 1281 752
Falcon-1024 1793 2305 1462

Figure A5. Hardware used for the implementation.

Listing A1. Cisco switch configuration.

> enable
configure terminal
ip dhcp pool LAN_POOL
network 192.168.1.0 255.255.255.0
interface vlan1
ip address 192.168.1.1 255.255.255.0
no shutdown
service dhcp
exit
write memory

Listing A2. Chutney configuration file.

Authority1 = Node(tag=‘‘a1’’, authority=1, relay=1, torrc=‘‘authority.tmpl’’)
Authority2 = Node(tag=‘‘a2’’, authority=1, relay=1, torrc=‘‘authority.tmpl’’)

GuardRelay1 = Node(tag=‘‘g1’’, relay=1, guard=1, torrc=‘‘relay.tmpl’’)
GuardRelay2 = Node(tag=‘‘g2’’, relay=1, guard=1, torrc=‘‘relay.tmpl’’)
GuardRelay3 = Node(tag=‘‘g3’’, relay=1, guard=1, torrc=‘‘relay.tmpl’’)

MiddleRelay1 = Node(tag=‘‘m1’’, relay=1, middle=1, onion_service =1, torrc=‘‘relay.tmpl
’’)

MiddleRelay2 = Node(tag=‘‘m2’’, relay=1, middle=1, rendezvous =1, torrc=‘‘relay.tmpl’’)

ExitRelay1 = Node(tag=‘‘e1’’, relay=1, exit=1, torrc=‘‘relay.tmpl’’)
ExitRelay2 = Node(tag=‘‘e2’’, relay=1, exit=1, torrc=‘‘relay.tmpl’’)

NODES = [Authority1 , Authority2 , GuardRelay1 , GuardRelay2 , GuardRelay3 , MiddleRelay1 ,
MiddleRelay2 , ExitRelay1 , ExitRelay2]

ConfigureNodes(NODES)
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Listing A3. Listing of files generated by node type (chutney).

000a1 (Directory authority)
fingerprint
fingerprint -Ed25519
keys
authority_certificate
authority_identity_key
authority_signing_key
Ed25519_master_id_public_key
Ed25519_master_id_secret_key
Ed25519_signing_cert
Ed25519_signing_secret_key
secret_id_key
secret_onion_key
secret_onion_key_ntor
lock
torrc

004g3 (Guard relay)
fingerprint
fingerprint -Ed25519
keys
Ed25519_master_id_public_key
Ed25519_master_id_secret_key
Ed25519_signing_cert
Ed25519_signing_secret_key
secret_id_key
secret_onion_key
secret_onion_key_ntor
lock
torrc

005m1 (Middle relay)
fingerprint
fingerprint -Ed25519
keys
Ed25519_master_id_public_key
Ed25519_master_id_secret_key
Ed25519_signing_cert
Ed25519_signing_secret_key
secret_id_key
secret_onion_key
secret_onion_key_ntor
lock
torrc

007e1 (Exit relay)
fingerprint
fingerprint -Ed25519
keys
Ed25519_master_id_public_key
Ed25519_master_id_secret_key
Ed25519_signing_cert
Ed25519_signing_secret_key
secret_id_key
secret_onion_key
secret_onion_key_ntor
lock
torrc
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Listing A4. Directory authority torrc file.

TestingTorNetwork 1

PathsNeededToBuildCircuits 0.35
TestingDirAuthVoteExit $D36D51189EC2112507DDB293FC166C5E5ADA9B91 ,

$3E5729E0BE77AAD422BE2D95D72200EF01D1F29F
TestingDirAuthVoteExitIsStrict 1
TestingDirAuthVoteHSDir $BD452B626D1A453BB3E557B363CEC39F1E63D089 ,

$CCE340CBBFFA07C8E434261FFCA5AB457DD06217 ,
$D36D51189EC2112507DDB293FC166C5E5ADA9B91

#TestingDirAuthVoteHSDirIsStrict 1
TestingDirAuthVoteGuard $84C8BDC0ECB2A6F7B536A2C6696DE0ADE8AC09A9 ,

$139726CAC0132D62C1D6E5E2F306315CCFE857A9 ,
$A0595788A046B7B2DF48B04A02C262DC525A82E2 ,
$691B61F16F6D48F65183AF7A39BC789645C14C49 ,
$2EEB5B771A2A177EC0D184D410DDB4F153FF354F

TestingDirAuthVoteGuardIsStrict 1
V3AuthNIntervalsValid 2
V3BandwidthsFile /home/ubuntu /000a1/bwfile.v3bw

MiddleNodes $691B61F16F6D48F65183AF7A39BC789645C14C49 ,
$CCE340CBBFFA07C8E434261FFCA5AB457DD06217

DataDirectory /home/ubuntu /000a1
RunAsDaemon 1
ConnLimit 60
Nickname test000a1
ShutdownWaitLength 2
DisableDebuggerAttachment 0

AddressDisableIPv6 1
ControlPort 8000
ControlSocket /home/ubuntu /000a1/control
CookieAuthentication 1
PidFile /home/ubuntu /000a1/pid

Log notice file /home/ubuntu /000a1/notice.log
Log info file /home/ubuntu /000a1/info.log
Log debug file debug.log
ProtocolWarnings 1
SafeLogging 0
LogTimeGranularity 1

AuthoritativeDirectory 1
V3AuthoritativeDirectory 1
ContactInfo auth0@test.test
DirAuthority test000a1 orport =5100 no -v2 v3ident =4832

D1130A4F32E4410E42D33C36B6B87EC37C27 192.168.1.15:7100
EA30E583EF155930ACE4144D0CFA800725C65D46

DirAuthority test001a2 orport =5101 no -v2 v3ident =43
DE83E17AB616F71A36394D519732767B2CEF50 192.168.1.16:7101
BD452B626D1A453BB3E557B363CEC39F1E63D089

SocksPort 9050
OrPort 5100
Address 192.168.1.15
DirPort 7100
ExitRelay 0
DisableNetwork 0
ConfluxEnabled 0
TestingAuthKeyLifetime 3 months
ServerDNSAllowNonRFC953Hostnames 1
ServerDNSDetectHijacking 0
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Listing A5. Guard relay torrc file.

TestingTorNetwork 1
PathsNeededToBuildCircuits 0.45
TestingDirAuthVoteExit *
TestingDirAuthVoteHSDir *
V3AuthNIntervalsValid 2

TestingDirAuthVoteGuard *
TestingMinExitFlagThreshold 0

DataDirectory /home/ubuntu /002g1
RunAsDaemon 1
ConnLimit 60
Nickname test002g1
ShutdownWaitLength 2
DisableDebuggerAttachment 0
AddressDisableIPv6 1
ControlPort 8002
ControlSocket /home/ubuntu /002g1/control
CookieAuthentication 1
PidFile /home/ubuntu /002g1/pid
Log notice file /home/ubuntu /002g1/notice.log
Log info file /home/ubuntu /002g1/info.log
ProtocolWarnings 1
SafeLogging 0
LogTimeGranularity 1

DirAuthority test000a1 orport =5100 no -v2 v3ident =4832
D1130A4F32E4410E42D33C36B6B87EC37C27 192.168.1.15:7100
EA30E583EF155930ACE4144D0CFA800725C65D46

DirAuthority test001a2 orport =5101 no -v2 v3ident =43
DE83E17AB616F71A36394D519732767B2CEF50 192.168.1.16:7101
BD452B626D1A453BB3E557B363CEC39F1E63D089

OrPort 5102
Address 192.168.1.17
ExitRelay 0
DisableNetwork 0
ConfluxEnabled 0

Listing A6. Client torrc file.

TestingTorNetwork 1

DirAuthority test000a1 orport =5100 no -v2 v3ident =4832
D1130A4F32E4410E42D33C36B6B87EC37C27 192.168.1.15:7100
EA30E583EF155930ACE4144D0CFA800725C65D46

DirAuthority test001a2 orport =5101 no -v2 v3ident =43
DE83E17AB616F71A36394D519732767B2CEF50 192.168.1.16:7101
BD452B626D1A453BB3E557B363CEC39F1E63D089

SocksPort 9050
DisableNetwork 0
CircuitBuildTimeout 60
LearnCircuitBuildTimeout 0
DataDirectory /var/lib/tor
LogTimeGranularity 1

NumEntryGuards 1
UseEntryGuards 0
ClientOnly 1

SocksPolicy accept 192.168.0.0/16
RunAsDaemon 1
ConfluxEnabled 0

Listing A7. Tor browser command.

$ TOR_SKIP_LAUNCH =1 TOR_SOCKS_PORT =9050 TOR_SKIP_CONTROLPORTTEST =1 /home/$USERNAME /.
local/share/torbrowser/tbb/x86_64/tor -browser/Browser/start -tor -browser



J. Cybersecur. Priv. 2025, 5, 13 34 of 38

Figure A6. Onion service test.

Listing A8. Tor Browser command.

for i in {1..500}; do
curl --socks5 -hostname 127.0.0.1:9050 -w "%{ time_total}, " -o /dev/null -X POST \

-H ‘‘Content -Type: application/json’’ \
-H ‘‘User -Agent: BenchmarkingAgent /1.0’’ \
-H "Accept: application/json" \
-d ’{

"cookie ": "value111111111111111111111111",
"username ": "testuser",
"password ": "76478736456728374637823764637382" ,
"session_id ": "abc123xyz4567890",
"data": {

"field1 ": "Some random text to increase payload size 1",
"field2 ": "Some random text to increase payload size 2",
"field3 ": "Some random text to increase payload size 3"

}
}’ \
-s https :// local.tor/postpath
done

Figure A7. Comparison of request timing between the local Tor network (upper image) and direct
internet access (lower image). The upper screenshot is from the Tor browser, while the lower one is
from Firefox.

Figure A8. Tor browser displaying circuit.
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Figure A9. Wireshark sniffing eth0 interface.

Figure A10. Tor browser displaying circuit.

Figure A11. Wireshark sniffing eth0 interface.

Figure A12. Nyx overview.
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