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Abstract—The forthcoming wireless network is expected to
support a wide range of applications, from supporting au-
tonomous vehicles to massive Internet of Things (IoT) deploy-
ments. However, the coexistence of diverse applications un-
der a unified framework presents several challenges, including
seamless resource allocation, latency management, and system-
wide optimization. Considering these requirements, this paper
introduces WIND (Wireless Intelligent Network Digital Twin), a
self-adaptive, self-regulating, and self-monitoring framework that
integrates Federated Learning (FL) and multi-layer digital twins
to optimize wireless networks. Unlike traditional Digital Twin
(DT) models, the proposed framework extends beyond network
modeling, incorporating both communication infrastructure and
application-layer DTs to create a unified, intelligent, and context-
aware wireless ecosystem. Besides, WIND utilizes local Machine
Learning (ML) models at the edge node to handle low-latency
resource allocation. At the same time, a global FL framework
ensures long-term network optimization without centralized data
collection. This hierarchical approach enables dynamic adapta-
tion to traffic conditions, providing improved efficiency, security,
and scalability. Moreover, the proposed framework is validated
through a case study on federated reinforcement learning for
radio resource management. Furthermore, the paper emphasizes
the essential aspects, including the associated challenges, stan-
dardization efforts, and future directions opening the research
in this domain.
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I. INTRODUCTION

The forthcoming wireless network is expected to accommo-
date a wide range of use cases, each with a different level of
Quality of Service (QoS) requirements. Furthermore, the rapid
expansion of autonomous systems and the industrial Internet
of Things (IoT) demands that modern wireless networks
support heterogeneous traffic, ultra-low latency, and stringent
reliability constraints. Addressing these challenges requires
a fundamentally new approach to network optimization and
intelligent decision-making [1]. The notion of the Digital Twin
(DT) [2] emerges to be the most preferred and convenient solu-
tion among the available options. Specifically, DT creates real-
time virtual replicas of wireless networks for dynamic analysis,
optimization, and predictive modeling. While traditional DTs
in wireless networks exclusively focus on network modeling,
the next-generation intelligent wireless ecosystem demands
an integrated approach that can simultaneously model the
network infrastructure and the applications running on top
of it. Accordingly, the dual-layer DT approach ensures a
symbiotic relationship between physical entities and their
virtual representations, allowing for real-time synchronization
and intelligent decision-making.

Considering the increasing complexity of modern wire-
less networks, we introduce WIND (Wireless Intelligent
Network Digital Twin), a self-adaptive, self-regulating, and
self-monitoring system-of-systems that leverages Federated
Learning (FL) and Multi-Layer DTs for real-time optimization
and intelligent resource management. Unlike conventional DT
implementations, which primarily focus on network modeling,
WIND extends beyond traditional approaches by integrating
both the communication network and application-layer DTs,
enabling a seamless and dynamic interaction between infras-
tructure and services. The key contributions of this work are as
follows: a) A novel Multi-Layer DT architecture that integrates
both communication and application-layer digital twins, allow-
ing real-time monitoring, optimization, and predictive model-
ing for next-generation wireless networks. b) An adaptive FL-
driven resource management framework, where local Machine
Learning (ML) models based on Reinforcement Learning (RL)
algorithms at the edge enable low-latency decision-making,
while Federated Reinforcement Learning (FRL) ensures global
optimization across the network without requiring raw data
exchange, improving both scalability and privacy preservation.
c) A traffic-aware scheduling mechanism that dynamically
prioritizes different traffic classes based on QoS requirements,
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Fig. 1. Multi-Layer Digital Twin (DT) Architecture

ensuring efficient and fair resource allocation across hetero-
geneous applications. d) An FRL-based case study for radio
resource management, demonstrating how WIND enhances
scheduling efficiency, QoS, and traffic prioritization compared
to conventional scheduling policies. e) A comprehensive dis-
cussion on key challenges, standardization efforts, and future
research directions in DT-driven wireless networks, addressing
critical aspects such as security, synchronization, and energy
efficiency.

II. MULTI-LAYER DT ARCHITECTURE: A WIRELESS
PERSPECTIVE

The DT models aim to create a virtual representation of the
physical system, functioning in two distinct modes: real-time
monitoring and control alongside the physical system, and pre-
deployment simulation for predictive analysis and optimiza-
tion. This differentiates DTs from traditional simulations such
as Sim Scale and AMEsim, which model specific scenarios but
lack continuous feedback loops and real-time interaction. In
contrast, DT models dynamically synchronize with real-world
data, enabling monitoring, analysis, and optimization through
evolving learning techniques [3].

Within the wireless communications, simulation environ-
ments have been essential for performance evaluation. Mean-
while, AI-driven learning techniques have proven effective in
optimizing network operations. DTs bridge these approaches
by integrating simulation-based testing with real-time learning
and adaptation. Fig. 1 depicts the proposed Multi-Layer DT
architecture consisting of four layers, as follows:

i. Physical Layer: The DT process begins with the Analyz-
ing Phase (AP) located at the Physical layer, which involves
extensive data gathering and event mapping from real-world
systems. For wireless systems, this data may include the
number of cellular users, serving stations, vehicle density, and
mobile user speed. Data is captured through various means,
such as sensors, cameras, and edge computing devices, pro-

viding insights into network performance metrics, including
cost, reliability, efficiency, and scalability. This phase ensures
that the DT has access to comprehensive and up-to-date
information.

ii. Edge/Fog Layer: Once the data is analyzed, the Ex-
traction Phase (EP) located at the Edge/Fog layer, focuses
on efficiently selecting and processing relevant information.
This phase employs ML and Deep Learning (DL) algorithms
to extract critical insights, optimize feature selection, and
translate real-world data into a digital format. A feedback loop
operates between the analyzing and extracting phases, ensuring
continuous refinement of extracted data and allowing control
signals to regulate data collection processes dynamically. Since
the EP is located at the Edge Layer, being closer to the real-
world system it also handles real-time adjustments, making
short-term, quick changes (e.g., traffic offloading, latency mit-
igation, adaptive scheduling and dynamic resource allocation).

iii. Digital Twin Layer: The DT layer consists of the
Modeling/Simulation Phase that represents the core of the
DT system, responsible for representing real-world data in a
virtual space. The extracted information is processed using
advanced simulation tools and AI-based frameworks. This
phase operates in two modes: (1) Real-time monitoring and
control: The DT functions alongside the real-world system,
continuously adjusting parameters through edge computing
and AI-driven insights. (2) Pre-deployment simulation and
testing: Before actual implementation, network changes can
be tested in a simulated environment to assess performance
and impact, reducing risks in real-world deployment. This
is crucial for strategic decisions like network expansions,
infrastructure upgrades, and optimization strategies without
disrupting real-world operations. This phase includes multiple
training and optimization cycles, ensuring that simulations
remain aligned with real-world conditions and adapting dy-
namically to new challenges.

This article has been accepted for publication in IEEE Communications Standards Magazine. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCOMSTD.2025.3575511

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on June 15,2025 at 15:25:25 UTC from IEEE Xplore.  Restrictions apply. 



3

Fig. 2. An illustration of the WIND system model.

iv. Optimization Layer: Located at the Optimization Layer,
the execution phase, represents the final stage, where the
refined digital model provides actionable insights for both real-
time network optimization and strategic deployment decisions.
In real-time operations, AI models drive network adjustments
and send optimization decisions for immediate actions to the
physical layer for long-term improvements. Meanwhile, pre-
deployment simulations aid decision-makers in strategic plan-
ning and infrastructure expansions by testing and validating
network adjustments before real-world implementation. By
enabling the information flow from the Optimization Layer
back to the DT Layer, we allow for experimentation and
simulation before AI/ML recommendations are applied to the
real-world system.

Through these structured interactions, the proposed Multi-
Layer DT framework ensures a seamless integration between
simulation, AI-driven learning, and real-time operational ad-
justments, maximizing efficiency and adaptability in complex
wireless network environments.

III. WIND: WIRELESS INTELLIGENT NETWORK DT

The rapid expansion of wireless networks is expected to
connect billions of users and devices, exhibiting different
traffic patterns and resource requirements, which raise the
demand for an intelligent and adaptive management approach.
Figure 2 introduces the WIND system model, that is mapped
to the proposed layered architecture as follows:

• Edge Layer for Low-Latency Decisions: Local ML mod-
els at edge nodes manage immediate resource allocation, lever-
aging RL-based algorithms to dynamically prioritize traffic
classes and allocate radio resources. This enables efficient real-
time decision-making while maximizing QoS revenue.

• FL for Long-Term Optimization: The DT central server
aggregates local RL model updates, refining a global RL
model that enhances network-wide performance continuously,
all without requiring centralized data collection.

This integration of hierarchical ML learning with edge-local
models managing short-term adaptations and FL optimizing
long-term performance creates a self-adaptive, traffic-aware
wireless network.

A. Digital Twin-Driven Federated Learning System Model

In Fig. 2, the User Equipment (UE) nodes represent real-
world use cases in a virtualized DT environment. Unlike
conventional systems that randomly assign resources, the DT-
driven approach categorizes UEs based on traffic classes,
allowing ML models to allocate resources dynamically based
on priority levels. The WIND system consists of three main
components: (1) UE Nodes: These include mobile devices,
IoT sensors, UAVs, and autonomous vehicles, each classified
based on traffic requirements (e.g., latency-sensitive, high-
bandwidth, or best-effort traffic). This classification ensures
that latency-sensitive applications receive prioritized resource
allocation. (2) Edge Nodes and Base Stations (BSs): Each BS
is connected to an edge node that hosts a local ML model.
These models process real-time traffic data, handling immedi-
ate decisions such as load balancing, interference mitigation,
and resource scheduling. This edge-based learning ensures
ultra-low latency responses without overwhelming the central
infrastructure. (3) DT Central Server: The central decision-
making entity aggregates local ML model updates from differ-
ent edge nodes, refines a global FL model employing a mixed
federated averaging as the aggregation technique based on
neural network weights and Temporal Difference (TD) errors,
and redistributes optimized parameters to improve network
performance over time. This approach eliminates raw data
transmission, preserving privacy while continuously improving
the accuracy of the model.

B. Adaptive Traffic-Aware Learning Process

WIND follows a structured learning and optimization cycle:
• Cluster Formation and BS Association: UE nodes form

clusters and associate with the nearest BS, enabling local
learning and decision-making. Each BS is linked to an edge
node, where ML models process real-time traffic and optimize
scheduling and resource allocation.

• Adaptive Traffic Prioritization and Scheduling: UE nodes
are categorized based on their traffic class and associated
QoS requirements (e.g., latency-sensitive VR streaming, high-
bandwidth best-effort IoT traffic). Each UE cluster employs
locally Continuous Actor-Critic Learning Automata (CACLA)
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Fig. 3. The Principle of WIND Global Optimization

algorithm to determine the optimal traffic prioritization order
and scheduling rule at each Transmission Time Interval (TTI),
aiming to maximize QoS revenue for each class [4]. The
model updates two Neural Networks (NNs): a critic NN
(value function) that estimates the expected return for a given
state and an actor NN (policy value) that determines the
prioritization order and scheduling rule. The actor network
updates only when the critic indicates a positive advantage,
ensuring stable learning and efficient resource allocation [5].

• Federated Learning: This phase involves the periodic ag-
gregation of model updates from multiple edge nodes to refine
a global model. Each edge node trains a local CACLA RL
model based on observed traffic patterns and virtual network
conditions. During each aggregation cycle, the updated NN
information (weights, TD error) for both actor and critic is sent
to the DT Central Server, where the FRL-based aggregation
is applied: a) the federated actor network is updated by
averaging the weights of all local actor networks, and b)
the federated critic network is updated by averaging the TD
errors received from the edge nodes. The refined federated
actor-critic model is then distributed back to edge nodes,
ensuring long-term, network-wide optimization and improving
generalization across diverse traffic conditions.

• Global Optimization: The process of WIND global opti-
mization follows the model of three nested and interdependent
cycles as shown in Fig. 3: DT, FRL Testing, and FRL
Training. The DT cycle continuously monitors the physical
network, gathers relevant data, and enables a simulation-based
environment for modeling. During each cycle, the performance
of trained FRL solution is evaluated in the testing phase,
measuring QoS revenue optimization across different virtual
network conditions. If performance is insufficient, the FRL
training cycle is triggered, where local CACLA RL models
are trained, and then, federated NNs are periodically updated.
Once training is complete, the retrained FRL solution is
evaluated through the FRL testing cycle before applying the
updated model to the physical network. If QoS performance
meets the required thresholds, then the FRL model is deployed
at the Edge/Fog layer for real-time scheduling. Otherwise, the

training cycle may be extended or request additional data from
the DT cycle to improve learning.

• Continuous Adaptation and Performance Enhancement:
While FL and Global Optimization happen at scheduled in-
tervals, Continuous Adaptation is a real-time, local process at
the edge nodes. Each edge node dynamically fine-tunes its ML
model parameters based on real-time network conditions, such
as sudden traffic surges or varying QoS demands. These local
updates allow immediate adaptation to changing conditions
without waiting for the next FL aggregation round, ensuring
low-latency decision-making for time-sensitive applications.
C. WIND as an Adaptive Learning Framework

By leveraging DT-driven Federated Learning, the proposed
WIND framework achieves: (1) Ultra-low latency communica-
tion: Edge-local RL models handle real-time decisions in the
DT cycle, ensuring rapid responses; (2) Privacy-Preserving
AI Optimization: Federated learning minimizes dependence
on centralized data collection by sharing only relevant neural
network updates, thereby enhancing security; (3) Traffic-aware
resource management: The system dynamically prioritizes
traffic classes in the short term and selects scheduling strategy
per class to prevent overprovisioning, optimizes per-class QoS
revenue, and maintains long-term traffic class prioritization.

In addition to improving scheduling efficiency and QoS,
WIND is designed to enhance energy efficiency in next-
generation wireless networks. Using localized ML models
at the Edge/Fog Layer, WIND reduces unnecessary data
transmission to central servers, thereby minimizing commu-
nication overhead and energy consumption. The FL approach
further optimizes energy use by enabling distributed train-
ing at edge nodes, eliminating the need for raw data ex-
changes, which would otherwise consume substantial network
resources. Moreover, the traffic-aware scheduling mechanism
dynamically allocates network resources based on real-time
demand, preventing over-provisioning and reducing power
consumption at BSs. Additionally, WIND’s multi-layer digital
twin architecture can predict traffic variations and proactively
adjust network configurations, ensuring that idle BSs enter
low-power states when not in use. These combined capabilities
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Fig. 4. Federated RL in Scheduling and Radio Resource Allocation.

position WIND as a scalable, energy-efficient solution for
future 6G wireless networks, aligning with green networking
objectives.
D. WIND: Simulation Results

To evaluate the performance of the proposed WIND ar-
chitecture, we conducted simulations focusing on FRL-based
solution for radio resource management in a wireless network
environment. The primary objective is to demonstrate how
WIND’s hierarchical learning framework, which combines
edge-based ML for real-time decisions with FL for long-term
network optimization, improves network efficiency, resource
allocation, and QoS.

The simulation is conducted using an enhanced LTE-Sim
simulator with AI-driven network data processing and al-
gorithms [5]. We consider downlink transmissions with a
100MHz bandwidth across five 20MHz carrier components,
each modeled as an urban micro-cell (200m radius, FDD
mode). Inter-cell interference is accounted for using a 7-
cell cluster model, while Jakes fading models the downlink
channels. User mobility follows a random walk model at 3
km/h. The WIND framework operates only on the central cell
of each cluster, with surrounding cells generating interference.
Additionally, three distinct cells (cell 1, cell 2, cell 3) are
simulated with identical structural characteristics but differing
user distributions, mobility patterns, service demands, and
speeds, ensuring diverse network conditions.

The packet scheduler works per carrier component, with a
maximum of five retransmissions per packet before declaring
loss. The traffic mix includes 360° video (20 Mbps), live video
streaming (1 Mbps), VoIP (32 kbps), and FTP (256 kbps),
distributed as 20%, 60%, 15%, and 5%, respectively, claiming
diverse QoS requirements [5]. Each cell is managed by an
edge server, where a local CACLA-RL algorithm trains actor-
critic NNs to determine the optimal traffic prioritization order
and apply an adaptive scheduling rule in the frequency domain
at each TTI. Neural network configurations were evaluated in
the FRL testing cycle, with the optimal structure consisting of
three hidden layers with 150 nodes each, applied to both local
and federated actor-critic networks.

The evaluation process follows the WIND global optimiza-
tion principles as depicted in Fig. 3. In the DT cycle, the
Analyzing and Extraction Phases generate digital footprints
of the physical layer, capturing various observations and mea-
surements such as channel quality indicators, instantaneous

throughput, delay, packet loss, and traffic arrival rates. These
digital footprints then facilitate the simulation environment
through the The modeling and simulation phase, enabling the
training and testing of FRL-based solutions. Since no FRL
solution is initially available, the framework begins with the
FRL training cycle, where local actor-critic NNs are trained
for 1000s, followed by the application of aggregation methods.
The local and federated actor NNs are then compared and eval-
uated in the FRL testing phase over 500s to assess their QoS
provisioning performance. Given that all actor NNs share the
same configuration, the computational complexity of executing
these solutions in parallel remains nearly identical. Finally, the
federated actor NN is integrated into the DT cycle, optimizing
latency-sensitive traffic prioritization while balancing network
load. Future work will analyze computational complexity in
FRL training and testing cycles, the overhead of sharing
actor-critic NN updates, and the response time of FL-driven
scheduling decisions in the physical layer.

Performance comparisons between local trained RL policies
and WIND-enabled federated reinforcement learning reveal
significant improvements. Figure 4 illustrates the performance
of the trained RL policies for each cell, showing the percentage
of users meeting all QoS requirements across different traffic
classes, with the amount of time when these QoS objectives
are met. The local RL policy for cell 1 exhibits a sharper
decline, as 360◦ video users are prioritized due to their better
channel conditions, while other traffic classes experience lower
QoS satisfaction because of varying speeds and less favorable
channel conditions. In cell 2, the local RL policy maintains a
more stable representation, as the algorithm optimizes service
distribution, ensuring 360◦ video users receive their requested
QoS, albeit at the expense of other traffic classes, which
experience a reduced amount of time for QoS satisfaction.
In cell 3, the curve is even flatter, reflecting the wider spatial
distribution of 360◦ video users, which influences the over-
all scheduling dynamics. In contrast, WIND’s FL approach
dynamically adjust scheduling rules based on real-time traffic
conditions and global learning insights, resulting in a more
balanced allocation of resources across all traffic classes.

Simulation results demonstrated that WIND improves QoS
satisfaction across multiple performance metrics. The per-
centage of users meeting their QoS requirements (latency,
throughput, packet loss) is consistently higher under WIND-
enabled scheduling than standalone RL models being used
in different network settings. Additionally, the federated RL
model exhibits better generalization across cells, ensuring
stable performance even in varying network conditions. Unlike
single-cell RL training, which optimizes policies for localized
conditions but struggle with adaptability, WIND’s federated
approach leverage knowledge from multiple cells, enabling it
to respond effectively to dynamic traffic fluctuations.

Further analysis highlight WIND’s impact on network effi-
ciency. By offloading real-time scheduling decisions to edge-
based ML models, the framework significantly reduce the
computational overhead on central servers while maintaining
low-latency responses for time-sensitive applications. This
adaptive learning cycle, where short-term adjustments at the
edge inform long-term federated optimizations, prove to be
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TABLE I
MAJOR CHALLENGES OF WIRELESS COMMUNICATION

Major Areas Challenges Remark Opportunities with DTs

Artificial Intelligence
/ Machine Learning

The data required to train the
models is scarcely available

Enables hi-tech robots, ma-
chines and promotes automa-
tion

The real-time data integration of DTs and the DT-
generated data can be used to train models and test
models [6].

Back-Scattering
The backscattering communi-
cation utilizes the backscat-
tered signals, which require ef-
fective precoders.

It supports the back reflection
to save the energy level.

Different precoder designs can be tested using the DTs
[7].

Big Data
Processing and storing issues
in big data

It is proposed to handle large
sizes of data in an efficient
manner

DTs use a streamlined data processing and manage the
flows intelligently instead of collecting raw data contin-
uously [6].

Internet of Things
Sensing and connectivity is-
sues

Supports of millions of new
devices i.e., IoT Industries

DTs can be used to develop and deploy proactive man-
agement methods to efficiently manage the IoT devices
[8] .

Edge Computing
Reliable and robust system re-
quired for implementation

To reduce the latency and im-
prove the edge computing

The task offloading decisions can be made by DTs in
real-time while considering the computation resources,
energy consumption and other related parameters [9].

Terahertz Communi-
cation

Small coherence window and
Localization issues

Open new possibilities for
high speed devices through
broad spectrum

To solve the localization problems under small coherence
time window, DTs can be used as predictive models.

6G
The AI/ML’s involvement in
network management within
6G may pose challenges in en-
suring network reliability

There is a major motive to sup-
port the diverse applications
that have the unique quality of
service requirements

The DTs can be used to model the network and predict
the outcomes in real-time of one control action before
applying to the physical network [10]. This means that
the reliability of the network can be increased.

highly effective in balancing network resource utilization,
improving service reliability, and reducing congestion.

Overall, the simulation results validate WIND’s capability to
optimize next-generation wireless networks by bridging real-
time edge intelligence with federated global learning. The
framework’s ability to continuously refine scheduling policies
based on evolving network conditions makes it a scalable, self-
adaptive solution for future wireless ecosystems, particularly
in 6G and beyond networks.

IV. USE CASES, STANDARDIZATION, CHALLENGES AND
FUTURE DIRECTION

This section focuses on the main challenges, standardization
efforts, and future research directions related to the evolution
of DT in wireless communication.

A. Use Cases

DTs have the potential to revolutionize various sectors, in-
cluding industrial IoT, healthcare, and manufacturing. Recog-
nizing their impact, standardization bodies are actively work-
ing to develop frameworks for DT integration. Key sectors
where DTs hold great potential [2]:

• Industrial IoT & Healthcare: DTs enable autonomous
monitoring, tracking, and control of industrial systems. Be-
yond operational data, they can capture environmental data
such as location, configuration, and financial models, which
are crucial for activities such as anomaly detection and future
operations prediction. Similarly, DTs can be used to create
virtual models of healthcare systems, which may help reduce
costs, improve patient monitoring, and enable personalized
healthcare delivery.

• Automation & Manufacturing: DTs have a wide range of
applications in the automotive sector, such as creating virtual
models of connected vehicles. The model depicted in Fig.
1 can be adapted to capture the behavioral and operational
data of intelligent transportation systems, helping to analyze
the performance of connected vehicles. Additionally, DTs

can transform the design, manufacturing, and maintenance
of products, leading to more efficient processes, optimized
operations, and reduced throughput times.

B. Standardization Efforts

There is growing interest in DTs, and several standardiza-
tion initiatives are underway to establish guidelines for their
effective deployment. These efforts are essential to ensuring
interoperability, security, and efficiency in the integration of
DTs into wireless communication networks. Key standardiza-
tion bodies include: a) International Telecommunication Union
(ITU): The ITU Telecommunication Standardization Sector
(ITU-T) is actively developing standards for DT networks.
Notably, Recommendation ITU-T Y.3090 outlines the frame-
work for 2030 network services, b) IEEE: The IEEE Standards
Association has initiated efforts, such as IEEE P2806, to
standardize DT technologies across various sectors, includ-
ing wireless communications. c) 3rd Generation Partnership
Project (3GPP): Within the context of 5G and evolving 6G
technologies, 3GPP has been exploring the incorporation of
DT concepts to enhance network management and orchestra-
tion. These initiatives aim to create virtual representations of
network elements to improve monitoring, optimization, and
predictive maintenance.

C. Challenges

Table I summarizes the key challenges and opportunities as-
sociated with DTs in modern wireless communication systems
[11]. These challenges include:

• DT migration: DTs are often designed for specific envi-
ronments, leading to challenges when migrating them to new
contexts. Reusing a DT model without redesigning or redevel-
oping it can result in reduced accuracy and effectiveness. In
wireless communications, each user may have unique require-
ments, leading to compatibility issues when migrating the DT
across different networks. Additionally, constantly changing
wireless topologies increase the risk of data corruption during
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migration. Factors such as noise, interference, and bandwidth
limitations can further affect the DT’s accuracy. To mitigate
these challenges, it is important to evaluate the available
options in the new wireless communication environment and
ensure compatibility with the existing DT model [12].

• Data management and storage: Wireless communication
signals are subject to fluctuations, which are captured by BSs
and transmitted to users. As DTs continuously monitor these
variations, they generate large data volumes leading to latency
and reliability issues. Effective data management and scalable
storage solutions are necessary to address these challenges and
ensure the smooth operation of DT systems [13].

• Safety, security and privacy: Ensuring the secure de-
ployment of DT technology requires addressing key safety,
security, and privacy challenges in wireless communication.
The integration of DTs expands the threat landscape, as the
data and control flows between physical and virtual entities
are vulnerable to interception and cyberattacks, particularly
in open-air wireless environments. Furthermore, storing and
processing real-time user traffic data raises concerns about
unauthorized access and privacy breaches. Furthermore, while
FL improves privacy by keeping raw data at the edge devices,
it introduces new security risks, including model poisoning
attacks, inference attacks, and communication interception.
These vulnerabilities necessitate robust security measures,
such as secure encryption protocols, anomaly detection mecha-
nisms, Byzantine-resilient aggregation, and privacy-preserving
techniques, to ensure the integrity, confidentiality, and re-
silience of DT and FL-driven wireless networks. Implementing
backup systems and intrusion detection mechanisms further
enhances network reliability against potential threats [14].

• Synchronization: DTs depend on synchronized systems
that convert real-time operations into virtual models. Fluctu-
ations in real-time operations, like signal quality degradation,
can adversely affect system performance. Synchronization is
critical for effectively modeling real-time projects in virtual
systems. To achieve optimal synchronization, delays must
be minimized, and accurate conversion techniques must be
employed. Wireless communication systems often face in-
terference and attenuation, which can degrade signal quality
and reliability. Overcoming these challenges requires advanced
hardware and agile software that can reliably transfer data
to the physical system. Proper technology implementation
minimizes synchronization issues, ensuring accuracy and time-
liness [14], [15].

D. Future Research Directions:

As discussed, DTs offer numerous advantages, opening up
exciting possibilities for the future. Some key future research
directions include:

• New Era of Modern Technologies: To enhance the per-
formance of wireless communication systems, various ad-
vanced technologies (e.g., AI, ML, DL, Blockchain, Cloud
Computing, Multi-Access Edge Computing, IoT, etc.) can be
integrated, as shown in Table I. Implementing these technolo-
gies at the ground level requires modifications to architecture
components such as antennas, radio units, and remote radio
heads. A DT-integrated system can help modernize cellular

systems, making them more flexible and efficient in terms of
power and spectrum utilization.

• Different types of QoS Requirements: Modern cellular
communication has enabled a wide range of applications,
while various non-cellular devices (e.g., LORA, Bluetooth,
Sigfox, Ethernet, Wi-Fi) are also wirelessly interconnected.
These devices have differing requirements in terms of data
rate, range, latency, and reliability. Meeting these QoS re-
quirements using existing infrastructure is challenging, and as
these needs diversify in the future, DT integration can help
modernize and enhance infrastructure to meet these demands.

• Features of Self-Automation Systems: A review of previ-
ous cellular generations (i.e., 3G, 4G) reveals that significant
capital investment is required to modify infrastructure during
each generation’s rollout. To reduce costs, vendors are moving
towards automation of cellular system components. This will
reduce hardware dependence, making the system more flexible
and software-oriented, and ease the transition to future gener-
ations (e.g., Beyond 5G). DTs can support self-automation by
enabling system adaptation and reducing deployment costs.

• Emergence of decoupling and virtualization at the soft-
ware end: 5G/6G use cases involve diverse requirements that
place stress on existing infrastructure in areas such as beam-
forming, user coordination, resource allocation, and baseband
processing. Some vendors are addressing these challenges
through decoupling and virtualization of the radio access net-
works. DTs can streamline the virtualization and decoupling
of subsystems, improving efficiency and scalability.

• Towards localization and sensing type applications: 5G
is advancing cellular technologies, with Beyond-5G and 6G
targeting even more complex applications, including UAVs,
drone swarms, autonomous vehicles, industrial robots, and
underwater communications. These applications require high
reliability and robust localization, sensing, and control sys-
tems. Integrating DTs into cellular infrastructure will enhance
these capabilities, making such applications more efficient and
reliable.

V. CONCLUSIONS

This paper introduced WIND (Wireless Intelligent Network
Digital Twin), a novel framework that extends beyond tra-
ditional digital twins for wireless networks by incorporating
both network-layer and application-layer intelligence. By in-
tegrating hierarchical ML models, where edge-based models
handle real-time, low-latency resource allocation and FL opti-
mizes long-term network performance, WIND enables a self-
adaptive, self-regulating, and self-monitoring wireless ecosys-
tem. The proposed WIND framework establishes a multi-layer
DT that models both the underlying communication network
and the applications running on top of it, ensuring seamless
interaction between infrastructure and services. Through this
dual-layer approach, WIND enhances context-aware network
adaptation, allowing for more efficient and intelligent decision-
making. The combination of localized ML models at the edge
and FL at the global level ensures that short-term optimizations
do not compromise long-term network efficiency, making the
system robust and scalable. Future work will explore more
comprehensive performance evaluation results and compara-
tive analysis with other state-of-the-art solutions.
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