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Abstract
Local optima networks (LONs) capture fitness landscape informa-

tion. They are typically constructed in a black-box manner; infor-

mation about the problem structure is not utilised. This also applies

to the analysis of LONs: knowledge about the problem, such as

interaction between variables, is not considered. We challenge this

status-quo with an alternative approach: we consider how LON

analysis can be improved by incorporating subfunction-based infor-

mation — this can either be known a-priori or learned during search.

To this end, LONs are constructed for several benchmark pseudo-

boolean problems using three approaches: firstly, the standard al-

gorithm; a second algorithm which uses deterministic grey-box

crossover; and a third algorithm which selects perturbations based

on learned information about variable interactions. Metrics related

to subfunction changes in a LON are proposed and compared with

metrics from previous literature which capture other aspects of a

LON. Incorporating problem structure in LON construction and

analysing it can bring enriched insight into optimisation dynamics.

Such information may be crucial to understanding the difficulty

of solving a given problem with state-of-the-art linkage learning

optimisers. In light of the results, we suggest incorporation of prob-

lem structure as an alternative paradigm in landscape analysis for

problems with known or suspected subfunction structure.
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1 Introduction
In recent years fitness landscape analysis has increased in popular-

ity [16], probably because of expanding interest in the notion of
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explainability [44] for optimisation algorithms. Local optima net-

works (LONs) [21] are a landscape analysis tool which have been

successfully used to help explain optimisation dynamics across

several domains [28, 36, 37, 41]. Typically, LONs are visualised and

metrics are computed to achieve these aims. Many metrics have

been proposed: complex network measurements such as node de-

grees, clustering coefficients, and assortativity [21], metrics related

to neutrality and plateaus at the level of local optima [17], to fractal

dimension [31], and to the notion of funnels [22] — among others.

Something which has not been incorporated in the analysis of LONs

is knowledge of problem structure: in particular, the existence of

subfunctions. Many optimisation problems can be represented in a

subfunction-based manner. For instance, the 𝑘-bounded problems

[40] can be represented as a sum of subfunctions which take no

more than k arguments. The subfunction structure can be known in

advance [7, 43] or learned during search [9]. Previous works have

constructed LONs for 𝑘-bounded problems such as MAX3SAT [20]

and NK landscapes [4]; however, the measurements taken from

the LONs did not consider subfunction structure which may be

crucial to understand the effectiveness (or its lack) of state-of-the-

art gray-box mechanisms [33, 35] and optimizers using linkage

learning [24, 25]. Our main contribution in this paper is to address

this gap. We construct LONs for well-known 𝑘-bounded problems

and analyse them in a new way. Novel visualisations and metrics

are proposed and used to compare algorithms and problem types.

We find that incorporating subfunction structure into LON analysis

is promising for bringing insight into optimisation dynamics on

𝑘-bounded problems.

2 Preliminaries
2.1 Optimisation problems
All problems used in this study have objective functions which are

subject to maximisation. We now describe each of the problems in

turn.

Deceptive functions. We consider problems whose solutions are

represented by binary vectors of size 𝑛: 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛). Decep-
tive functions [7] were proposed to support tools for modelling hard

artificial problems for binary search spaces. They are frequently

used as benchmarks in the research concerning Genetic Algorithms

[10, 25, 29]. We consider standard and bimodal deceptive functions

of unitation. The standard deceptive function of order 𝑘 is defined

as:

trap𝑘 (𝑢) =
{
𝑘 − 𝑢 − 1 , 𝑢 < 𝑘

𝑘 ,𝑢 = 𝑘
(1)

where 𝑢 is the sum of binary values (so-called unitation) of the
function’s argument. The standard deceptive trap function has one
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local optimum (for 𝑢 = 0) and one global optimum (for 𝑢 = 𝑘). It

may be considered hard to solve because starting from the random

solution, any local search algorithm that greedily flips a single bit

will converge to the suboptimal solution with 𝑢 = 0. Such a local

search will find the optimal solution only if it is randomly hit or

starts from the solution whose unitation is 𝑢 = 𝑘 − 1, and the first

flipped bit is the only ’0’ in such a genotype.

The bimodal deceptive function is defined as [8]

bimTrap𝑘 (𝑢 ) =
{
𝑘/2 − |𝑢 − 𝑘/2 | − 1 ,𝑢 ≠ 𝑘 ∧𝑢 ≠ 0

𝑘/2 ,𝑢 = 𝑘 ∨𝑢 = 0

(2)

Bimodal deceptive functions have two optimal solutions (all ’0’s

and all ’1’s) and

(𝑘/2
𝑘

)
or

(𝑘/2+1
𝑘

)
of locally optimal solutions for

even and odd 𝑘 , respectively.

Problem structure. Deceptive functions can be assembled to cre-

ate larger problems, e.g., they can be concatenated. In such a prob-

lem, subfunctions do not share any arguments, and each subfunc-

tion can be optimised separately. However, they can form more

sophisticated problems if they share variables. Then, the subfunc-

tions will overlap. The example of overlapping problems are cycling

traps [43], where each deceptive function shares 𝑜 variables with its

left and right neighbours. In conforming overlapping problems, the

optimal solution of each subfunction is a part of the globally optimal

solution. In conflicting overlapping problems, the optimal solution

of each subfunction is not a part of the globally optimal solution.

The differences between conflicting and conforming overlapping

problems are discussed in subsequent sections. More information

can be found in [15, 26].

NK Landscapes. were designed to model heavily overlapping

problems. In NK Landscapes, each variable forms the subfunction

argument set with 𝑘 subsequent variables. Thus, every subfunction

takes 𝑘 + 1 variables and each variable is an argument of 𝑘 + 1

subfunction.

MAX-SAT. The maximum satisfiability problem (MAXSAT) is a

real-world problem in which we are to satisfy clauses that consist

of logical variables that may overlap. Any MAXSAT can be refor-

mulated to MAX3SAT, where each clause contains three variables

[40]. We consider artificial MAX3SAT instances and the genera-

tor employed in [10], using the typical clause-to-variable ratio of

𝑐𝑟 = 4.27.

2.2 Local Optima Networks
LON nodes. We consider a solution to be a local optimum 𝑙𝑜𝑖

if its fitness according to a function 𝑓 is better than the fitnesses

within its neighbourhood𝑁 . In practice, the neighbourhood is often

sampled rather than fully enumerated — which is the case in this

work. Formally: ∀𝑛𝑒𝑖𝑔ℎ ∈ 𝑆𝑁 (𝑙𝑜𝑖 ) : 𝑓 (𝑙𝑜𝑖 ) > 𝑓 (𝑛𝑒𝑖𝑔ℎ) (assuming

maximisation, as is the case for this study) where 𝑆𝑁 (𝑙𝑜𝑖 ) is the
sampled neighbourhood and 𝑛𝑒𝑖𝑔ℎ is a particular neighbour. In a

LON, the nodes are a set of local optima according to the definition

just defined.

LON edges. Two local optima 𝑙𝑜𝑖 and 𝑙𝑜 𝑗 have a LON edge traced

between them under the condition that 𝑙𝑜 𝑗 can be reached from

applying random perturbation to 𝑙𝑜𝑖 and then subsequently local

search [this type of edge has been termed an escape edges [37] in
previous LON literature], and additionally 𝑓 (𝑙𝑜 𝑗 ) ≥ 𝑓 (𝑙𝑜𝑖 ) (max-

imisation). This last criterion renders the edgesmonotonic in nature

because they record only non-deteriorating, directed connections

between local optima [22]. Edges have weights: the frequency of

transition between the two local optima. That is: 𝑙𝑜 𝑗 was reached

through perturbation applied to 𝑙𝑜𝑖 followed by local search. The

set of edges is denoted by 𝐸.

Local optima network (LON). We can now define a LON = (𝐿𝑂, 𝐸),
which comprises nodes 𝑙𝑜𝑖 ∈ 𝐿𝑂 i.e. the local optima, and edges

𝑒𝑖 𝑗 ∈ 𝐸 between pairs of nodes 𝑙𝑜𝑖 and 𝑙𝑜 𝑗 with weight 𝑤𝑖 𝑗 iff

𝑤𝑖 𝑗 > 0.

3 Related Work
3.1 Local optima networks
The first ever study on LONs [21] used NK landscapes as the domain,

but did not consider subfunction structure in the analysis. The same

is true for some subsequent studies on NK landscapes and LONs

[13, 30]. Although LONs are usually constructed in a ‘black-box’

manner [22, 37]; that is, with no problem structure information used

— there have been a few works which use grey-box optimisation to

construct LONs. Chicano et al. [4] used greybox iterated local search
with recombination to optimise high-dimensional NK landscapes

and construct LONs. The LONs were visualised but not subject to

subfunction analysis. Ochoa et al [20] also used greybox operators

to construct LONs for MAX3SAT, but the metrics were ‘black-box’

LON measurements such as the number of local optima plateaus.

Two recent studies [3, 27] extract LONs using greybox operators

for PUBOi and NKQ problems, respectively. Although subfunction

structure is not considered in the LON analysis, the papers show

a trend and interest in the community towards utilising problem

structure in landscape analysis.

3.2 Variable dependencies in evolutionary
optimisation

Gray-box optimisation uses the a-priori available knowledge about
problem structure to leverage its effectiveness and efficiency [39].

This includes taking advantage of subfunction-based function rep-

resentation that may utilise the additive form defined as [40]:

𝑓 (𝒙) =
𝑆∑︁
𝑠=1

𝑓𝑠 (𝒙𝐼𝑠 ), (3)

where 𝐼𝑠 are subsets of {1, ..., 𝑛}, which can overlap (i.e., do not

have to be disjoint) and 𝑆 is the number of these subsets.

The additive form is convenient to represent the k-bounded
problems, i.e., the problems that can be represented by a sum of

subfunctions where each subfunction does not take more than k
arguments [40]. Consider a situation in which the additive form of

such a problem is known, which is the case in gray-box optimisa-

tion, and we have evaluated solution 𝒙𝒂 . Thus, we have computed

the values of all subfunctions. By 𝒙
𝒈
𝒂 , we denote solution 𝒙𝒂 with

gth gene flipped. To evaluate 𝒙
𝒈
𝒂 , we do not have to evaluate all

subfunctions. Knowing the subfunction values for 𝒙𝒂 is enough to

compute only those subfunctions that take 𝑥𝑔 as an argument. This

phenomenon is employed by partial evaluations and decreases the
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computational costs of optimisation significantly [2, 42]. Thus, the

fewer subfunctions are modified by one move, the cheaper it is to

evaluate.

In gray-box optimisation, it is typical to consider non-linear

dependencies, i.e., variables 𝑥𝑔 and 𝑥ℎ are dependent if [18]:

𝑓 (𝒙 ) + 𝑓 (𝒙𝑔,ℎ ) ≠ 𝑓 (𝒙𝑔 ) + 𝑓 (𝒙ℎ ) (4)

where by 𝒙𝑔 , 𝒙ℎ , and 𝒙𝑔,ℎ , are solutions obtained from 𝒙 by modi-

fying gene 𝑔, gene ℎ or both of them, respectively.

Frequently, the non-linear dependencies arise from decomposing

the optimised function using the Walsh decomposition [12]

𝑓 (𝒙 ) =
2
𝑛−1∑︁
𝑖=0

𝑤𝑖𝜑𝑖 (𝒙 ) (5)

where𝑤𝑖 ∈ R is the 𝑖thWalsh coefficient,𝜑𝑖 (x) = (−1)iTx generates
a sign, and i ∈ {0, 1}𝑛 is the binary representation of index 𝑖 .

If there exists at least one nonzero Walsh coefficient𝑤𝑖 such that

the 𝑔th and ℎth elements of i are equal to one, then variables 𝑥𝑔 and

𝑥ℎ are non-linearly dependent [33]. In gray-box optimisation, the

knowledge about variable dependencies is frequently represented

by the Variable Interaction Graph (VIG) [6] that is a square ma-

trix. VIG entry equals one if two variables are dependent and zero,

otherwise. Gray-box operators frequently utilise this structure to

obtain variation masks.

The Partition Crossover (PX) [35] is a recombination operator. It

uses VIG to exchange only those variables that should be processed

jointly. To mix two individuals 𝒙𝒂 and 𝒙𝒃 , PX removes from VIG all

dependencies for which at least one variable meets the condition

𝒙𝒂 (𝑖) = 𝒙𝒃 (𝑖), where 𝒙 (𝑖) is the value of the ith variable in 𝒙 . Then,
PX joins variables in clusters using the remaining VIG dependencies.

Each cluster can be used for mixing 𝒙𝒂 and 𝒙𝒃 . Consider a PX

offspring individual 𝒙𝒂 ′ = 𝒙𝒂 + 𝑃𝑋𝑚𝑎𝑠𝑘 (𝒙𝒃 ) created by inserting

genes from 𝒙𝒃 marked by a PX mask into 𝒙𝒂 . The key feature of PX
is that individuals 𝒙𝒂 ′ and 𝒙𝒃

′
will refer only to those subfunction

argument subsets that exist in 𝒙𝒂 and 𝒙𝒃 even if subfunctions

overlap. If VIG concerns the non-linear dependencies, then it is

guaranteed that 𝑓 (𝒙𝒂 ′) + 𝑓 (𝒙𝒃 ′) = 𝑓 (𝒙𝒂) + 𝑓 (𝒙𝒃 ). The above

features make PX particularly useful in optimizing the overlapping

problems [24].

VIG-based perturbation (VIGbp) [33] is a gray-box operator using

VIG to produce variation masks. It randomly chooses a gene 𝑥𝑟
and considers all genes that are dependent on 𝑥𝑟 concerning VIG.

If the number of genes dependent on 𝑥𝑟 is equal or lower than a

user-defined parameter 𝛼 , then all genes are included by a mask.

Otherwise, we randomly choose 𝛼 genes from the 𝑥𝑟 -dependent

genes set. VIGbp is employed by the Iterated Local Search (ILS),

which flips all genes marked by a mask and performs a local search

on such perturbed genotypes. ILS aims to improve solutions step

by step by improving only one part of a solution at a time. VIGbp

perturbs a set of overlapping subfunctions instead of spreading the

perturbation all over the genotype. VIGbp was shown to be highly

effective in solving overlapping problems [33].

4 Problem structure and the expected LON
This section shows and analyses an example of an artificial problems

and how LONs that describe its features should look. The objective

is to present the key intuitions that will be helpful while considering

the experimental results.

Consider 𝑓𝑠𝑒𝑝 (𝑥0, 𝑥1, ..., 𝑥8) = 𝑓1 (𝑥0, 𝑥1, 𝑥2) + 𝑓2 (𝑥3, 𝑥4, 𝑥5) +
𝑓3 (𝑥6, 𝑥7, 𝑥8), where each 𝑓𝑠 (𝒙𝐼𝑠 ) = 𝑡𝑟𝑎𝑝3 (𝑢 (𝒙𝐼𝑠 )). Subfunctions in
𝑓𝑠𝑒𝑝 are separable, i.e., each of the argument sets (0,1,2), (3,4,5), and

(6,7,8) can be optimised separately. If we start from a random solu-

tion, in most of the cases, we will converge to solution 000 000 000.

If we use dependency-aware ILS, e.g., ILS using VIGbp [33], to

optimise 𝑓𝑠𝑒𝑝 , then we will variate a variable subset that refers to

one subfunction (a single 𝐼𝑠 in Formula 3). Thus, local optima that

are worth showing in LON can be divided into four groups:

• Group 1 consists of a single solution: 000 000 000.

• Group 2 consists of three solutions: 111 000 000, 000 111 000,
and 000 000 111.

• Group 3 consists of three solutions: 111 111 000, 111 000 111,
and 000 111 111.

• Group 4 consists of a single optimal solution: 111 111 111.

All solutions in Group 2 are one subfunction modification
away from the solution in Group 1: that is, the value of exactly one

subfunction [from the three separable subfunctions] is different.

Every solution in Group 2 is one modification away from some of
the solutions in Group 3. Finally, all solutions in Group 3 are one

modification away from the optimal solution in Group 4. This ex-

ample shows that we can start from any solution, greedily optimise

it, and (if we know the problem structure) it is enough to optimise

only one subfunction at a time to get to the optimal solution. Thus,

the LON we wish to get is presented in Figure 1.

Figure 1: Decomposition-aware LON showing the number of
modified subfunctions in each move

Consider an overlapping problem 𝑓𝑜𝑣𝑟 (𝑥0, ..., 𝑥9) = 𝑓1 (𝑥0, ..., 𝑥3)+
𝑓2 (𝑥3, ..., 𝑥6)+𝑓3 (𝑥6, ..., 𝑥9), where each 𝑓𝑠 (𝒙𝐼𝑠 ) = 𝑏𝑖𝑚𝑇𝑟𝑎𝑝4 (𝑢 (𝒙𝐼𝑠 )).
Each subfunction in 𝑓𝑜𝑣𝑟 shares one or two variables with its neigh-

bours. Thus, the modification of shared variables influences more

than one subfunction. Optimal solutions to 𝑏𝑖𝑚𝑇𝑟𝑎𝑝4 are 0000 and

1111. Locally optimal solutions contain two zeros and two ones,

e.g., 0110 and 1001.

In Figure 2, we present a LON, which concerns two locally opti-

mal solutions as its roots. The left LON part starts from the solution

in which the arguments of each subfunction are 1001, while in the

right part of a LON, the arguments of each subfunction are 0110.

Same as in Figure 1, we consider the improvement of a single sub-

function. The optimal solutions (built only from ’1’s or only from

’0’s) are located on the top of the two LON parts. In a jump from
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Figure 2: Decomposition-aware LON for overlapping problem

any solution on the left part of the LON to any solution on the right

part of the LON, all subfunctions must be modified. Such a situation

would not occur if the subfunction did not overlap. Thus, the over-

laps have caused the creation of two separate attraction basins of

the two global optima. Moving between these two attraction basins

is hard because it requires the modification of all subfunctions. In

the latter part of this work, we show that we can observe such

separate attraction basins in the proposed decomposition-aware

LONs obtained experimentally.

5 Methods
5.1 LON Construction

Traditional (black-box) ILS. Hereafter referred to as algorithm

TRAD. In accordance with LON literature [17, 22, 32], we base the

traditional construction algorithm on sampling using iterated local

search (ILS). Several independent runs of ILS are executed; these

follow cycles of perturbation followed by local search. In our case,

the mutation operator is a single bitflip. Perturbation is three bit-

flips, and the local search is first-improvement — accepting strictly

improving solutions. For the local optimum acceptance criterion,

improving or equal local optima are accepted.

Deterministic recombination ILS. Hereafter referred to as al-

gorithm PX. Instead of perturbation chaining together the local

searches, partition crossover [as described in Section 3.2] is used.

This algorithm is from a previous work [4] except we use ordinary

first-improvement local search instead the specialised speedup hill-

climber employed in that paper [they were optimising very high-

dimensional problems]. The approach has been called deterministic

recombination iterated local search (DRILS) in previous literature.

VIGp with FIHCwLL. Hereafter referred to as algorithm VIGP.

Based on the approach in a previous work [34], this algorithm uses

VIGp as described in Section 3.2 as the perturbation operator. We

use first improvement hill climber with linkage learning (FIHCwLL)

[25] to locally optimise solutions and learn dependencies simultane-

ously. FIHCwLL optimises a solution by flipping its genes. If a gene

flip improves fitness, then it is preserved, or it is rejected. In each

iteration, FIHCwLL considers all genes in a random order. Iterations

are executed until at least one gene is modified during the preceding

iteration. Fitness evaluations that are used for local optimisation

are also used to perform variable dependency checks. Since we

consider k-bounded problems that are additively decomposable, we

use the non-linearity dependency check (Formula 4) that requires

performing four fitness evaluations, i.e., 𝑓 (𝒙), 𝑓 (𝒙𝑔), 𝑓 (𝒙ℎ), and
𝑓 (𝒙𝑔,ℎ). In FIHCwLL, three of them are the side-effect of the lo-

cal search, and only one must be computed for linkage discovery

purposes, which significantly reduces the cost of decomposition.

FIHCwLL was inspired by [33].

5.2 LON metrics
Subfunction structure. We propose metrics relating to subfunc-

tion structure in LONs. These can be described as follows:

• number of subfunction changes associated with a LON di-

rected edge between two local optima: that is, the number

of subfunctions which changed when comparing the desti-

nation node to the source node

– a LON typically contains several edges, so we consider

the mean, median, and standard deviation of this metric

across the network

• the number of positive subfunction changes in LON edges

– for a decision problem such as MAX3SAT, this is the num-

ber of subfunctions which changed from unsatisfied in the

source node to satisfied in the destination node

– for an optimisation problem such as NK landscapes, this is

the number of subfunctions which increased in value (as-

suming maximisation) from the source to the destination

node

– the mean, median, and standard deviation of this metric

across a LON are considered

– the number of negative subfunction changes in LON edges

∗ this is the same as just described, except for negative

changes to subfunction values

Previous metrics. In addition to the subfunction metrics, we also

compute 14 LONmetrics from previous literature: [14, 22, 32]. None

of these aim at capturing subfunction structure, but we would

nevertheless like to compare them and ascertain whether they

capture different information. Two of the metrics relate to the

number of local and global optima; two describe neutrality at the

local optima level; nine are related to the notion of landscape funnels
[basins of attraction at the local optima level]; and one considers

the pagerank centrality of the global optimum.

6 Experimental Setup
6.1 Problem instance generation
We consider a set of well-known benchmarks that include NK-

landscapes, MAX3SAT, and deceptive functions. All instances are

of toy size: 15 bits for NK-landscapes and MAX3SAT, and between

15 and 18 bits for the deceptive functions due to varying subfunction

structure setups which necessitate different problem sizes. Thus, it

is easy to analyse the obtained LONs in terms of their expected and

obtained features. For NK-landscape and MAX3SAT generation, we

have adopted the software from [10] and generated 30 instances

each. For the deceptive functions, there is no element of random-

ness in their construction. We consider 11 different problems of

this type, with varying numbers of subfunctions and degrees of
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(a) Algorithm TRAD (b) Algorithm PX (c) Algorithm VIGP

Figure 3: Local optima networks for an NK landscape of size 15 with 𝑘 = 2. Node size, colour, and position on the 𝑦-axis is
relative to fitness (maximisation). Position on the 𝑥-axis is obtained through multi-dimensional scaling of the binary solutions
using Hamming distance

subfunction overlap. All instances used in this work are available

in the supplemental material [see footnote 1].

6.2 LON Construction
For all three LON construction algorithms, there are 30 independent

runs per problem instance. ILS runs terminate when there has not

been a [strict] improvement to local optimum quality in 30 full

cycles. These numbers are sufficient given the search space sizes

under study, which comprise a maximum of 2
18

= 262,144 solutions.

LON construction and analysis are coded from scratch in Python.

6.3 Visualisation
The LON visualisations are implemented using the Python libraries

NetworkX [11] andMatplotlib [1] For all network visualisations

shown, the position of a node on the 𝑥-axis is the result of applying

multi-dimensional scaling (MDS) to the local optima sample, using

Hamming distance between the binary vectors as the measurement

of distance. scikit-learn [23] is used for MDS and SciPy [38] for

the distance computations.

7 Results
7.1 Network visualisation
Figure 3 shows local optima networks for an NK landscape instance

constructed using the three different algorithms. Note that visu-

alisations for all other algorithms and problems under study are

available in the supplemental material
1
. In the Figure, each node

is a local optimum and each edge is a directed transition between

them. Node size, colour, and position on the 𝑦-axis are relative

to fitness (maximisation). Position on the 𝑥-axis is the result of

multi-dimensional scaling on the solution sample. The red numbers

annotated onto edges capture the number of subfunctions which

changed in the transition from the source local optimum to the

destination local optimum.

Comparing the three sub-plots, we can immediately notice that

there is a difference between Algorithm VIGP (Figure 3c) and the two

others. While Algorithms TRAD and PX lend to rather sparse and

simple networks, Algorithm VIGP leads to a denser view with more

1https://zenodo.org/records/14767046

information. Notice that although all three reach the same fitness

level, Algorithms TRAD identifies only a single edge leading towards

the solution with this fitness. On the other hand, Algorithms PX and

VIGP reveal three and four edges (respectively) directed towards

the highest fitness level. Looking at the edge labels, it seems that

these transitions require quite dramatic subfunction alterations in

the solution: as many as 8-10 changes. It is interesting that these

two algorithm were able to identify the dramatic changes which

are needed to ascend.

7.2 LON subfunction metrics
Next we consider the distribution of metrics related to subfunction

changes associated with edges of a LON. For every directed edge we

assess which subfunctions changed in value; for those, we consider

the number and direction of those changes: did the subfunction

value increase (positive) or decrease (negative)? Figure 4 shows,

for 30 MAX3SAT instances with a clause-to-variable ratio of 4.27:

the mean, median, and standard deviation number of subfunction

changes encoded in LON edges. Results are shown for the three

construction algorithms, and indications of statistical difference

betwween pairs of distributions are annotated, as described in the

caption.

Looking across the plots in Figure 4, we can see that with respect

to mean and median number of changes Algorithm VIGP appears

to have significantly different distributions when compared to Al-

gorithms TRAD and PX. From visual inspection of the boxes we can

see that the Algorithm VIGP distributions are lower than those of

the other two algorithms (that is, there are less subfunction changes

in the directed edges between two local optima). Algorithms TRAD

and PX have no significant difference in these two metrics. With

respect to the standard deviation (the right-most plot), none of the

algorithms differ significantly from one another.

Figure 5 has the same layout as Figure 4 but presents different

metrics. Instead of the number of subfunction changes, these mea-

surements consider the direction: that is, how many subfunctions

a.k.a clauses changed from not satisfied to satisfied —- a positive

change — and how many changed from satisfied to not satisfied

— a negative change —- between the source and destination of a
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Figure 4: Distribution of LON edge subfunction metrics for 30 MAX3SAT instances [clauses-to-variable ratio 4.27]. Metrics
consider the number of subfunctions which change in value between the start and end of LON edges [for improving edges
only]. An indication of significant difference between pairs according to a Mann-Whitney test is annotated on the plots; ns
means not significant; * means 𝑝 < 0.05, ** means 𝑝 < 0.01, *** means 𝑝 < 0.001

Figure 5: Distribution of LON edge subfunction metrics for 30 MAX3SAT instances [clauses-to-variable ratio 4.27]. The metrics
consider the number of positive (+ve) and negative (-ve) changes between the start and end of LON edges [for improving edges
only]. Indication of significant difference between pairs according to a Mann-Whitney test is annotated on the plots: ns means
not significant; * means 𝑝 < 0.05, ** means 𝑝 < 0.01, *** means 𝑝 < 0.001

LON edge. We notice that for the positive changes, there is sig-

nificant difference between Algorithm VIGP and the two others

with respect to the mean and median. Algorithm VIGP makes less

positive changes; however, we can recall from Figure 4 that this

algorithm makes less changes overall. Such an observation indi-

cates that it makes smaller steps in terms of the number of the

modified subfunctions. Such a feature may be considered important

because VIGbp can be considered as making more precise steps.

Therefore, VIGbp-generated LONs are more dense, and VIGbp visits

more local optima than PX. Note that considering smaller variation

masks that allow the improvement makes finding this improvement

easier. Therefore, some studies focus on limiting the variation of

mask sizes [5, 19]. There is no significant difference between the

algorithms with respect to negative changes.

Plots for the other problems are available in the supplemental

material [see footnote 1]. In the case of NK landscapes, Algorithm

PX makes less subfunction changes than the other two algorithms,

and this difference has statistical significance. Algorithms TRAD and

VIGP make more positive changes than Algorithm PX — although

this may be an artefact of the fact that they make more changes

in general. In terms of negative subfunction changes, Algorithm

VIGP makes more of them when compared with the other to algo-

rithms [with indication of statistical significance]. The deceptive

problem group, on the other hand, is not associated with significant

differences between the three algorithms. This may be due to the

low number of problems in the group [10, because one of the prob-

lems has LONs with no edges and therefore no edge subfunction

metrics].

7.3 LON metric comparison
We would like to consider to what extent the LON subfunction

metrics proposed here are similar to different, previously-proposed

metrics for LONs. To this end, Figure 6 presents, for the deceptive
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(a) Kendall-tau correlation (b) Spearman correlation

Figure 6: Similarity between LON metrics (algorithm VIGP) for deceptive functions. The proposed LON subfunction metric
names contain the substring "changes"; all other metrics are from previous LON literature

(a) Subfunction overlap of 2; Algorithm TRAD (b) Subfunction overlap of 2; Algorithm PX (c) Subfunction overlap of 2; Algorithm VIGP

(d) Subfunction overlap of 4; Algorithm TRAD (e) Subfunction overlap of 4; Algorithm PX (f) Subfunction overlap of 4; Algorithm VIGP

Figure 7: Local optima networks for two deceptive problems with different degrees of subfunction overlap. Node size, colour,
and position on the 𝑦-axis is relative to fitness (maximisation). Red text on an individual edge is the number of subfunction
changes between the source and destination node. Red text in brackets indicates the range of subfunction changes needed
to jump between the two fitness levels beside it. Position on the 𝑥-axis is obtained through multi-dimensional scaling of the
binary solutions using Hamming distance
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problem set, the Kendall-Tau correlation and also the Spearman cor-

relation for pairs of LONmeasurements. LONmetrics are named on

each axis [the proposed subfunction metric names contain ‘changes’

and the colour in a square captures the similarity metric, as indi-

cated in the colourbar.

Looking across Figure 6a, we can notice from looking along

the rows associated with the subfunction metrics that while they

have moderate-to-strong correlations with each other, they have

only weak or very weak correlation to other LON metrics from the

literature. The Spearman correlations in Figure 6b show that the

subfunction metrics have moderate-to-strong correlations among

themselves, and weak-to-moderate correlations with other LON

metrics from the literature. In most cases this is a [weak] nega-

tive correlation, but there are a few metrics from previous works

which show [weak] positive correlations with the subfunction mea-

surements. Correlation matrices for the other problems and algo-

rithms can be found in the supplemental material [footnote 1]; these

showed similar trends to those just described.

7.4 Case study: subfunction overlap
To demonstrate the insights that can be gained using our approach,

we consider a case study where we would like to analyse the differ-

ence in landscape structure when problems have a different degree

of subfunction overlap. To this end, we choose two bimodal decep-

tive problems for comparison: one has subfunctions with a variable

overlap of two, and the other has an overlap of four. LONs for both

of them, constructed using the three algorithms, are presented in

Figure 7. In these plots, red text on an individual edge represents

the number of subfunction changes between the source and desti-

nation node. Red text in brackets indicates the range of subfunction

changes needed to jump between the two fitness levels beside it.

Looking at the first row of plots, which relates to the problem

with lower subfunction overlap, we can observe that only Algo-

rithm VIGP found the global optimum fitness (which is 12). In fact,

it identifies both of the global optima. The Algorithm TRAD and

Algorithm PX LONs are very sparse — both of them have only four

edges. On the other hand, Algorithm VIGP is a densely-connected

network, with plenty of opportunities for search to transition be-

tween fitness levels. From the red text annotations, we can see that

moving up one fitness level is associated with a low number of sub-

function changes: typically one and maximum two. Thus, thanks to

using smaller steps, it is easier for VIGP to traverse the network of

local optima. This observation is coherent with the aforementioned

research direction to eliminate dependencies irrelevant to optimisa-

tion and obtain shorter variation masks [5, 19]. Indeed, Algorithm

VIGP can find a path to a global optimum from almost any initial

state (e.g., Fig 7f). Oppositely, for TRAD- and PX-based LONS, the

number of paths from a randomly chosen state to global optimum

is low (e.g., Fig 7d) and 7d.

Looking now at the lower row of plots, which are for the instance

with a higher degree of subfunction overlap. When compared to the

problem with lower subfunction overlap, both Algorithm TRAD and

Algorithm PX have an increased number of connections in Figure

7d and 7e. Comparing the top row of plots with the bottom row,

we can notice that the problem with higher subfunction overlap

has LONs with more dramatic subfunction changes between fitness

levels. On the higher-overlap problem (Figures 7d-7f), all of the

three algorithms reach at least one global optimum (fitness of 24).

Algorithm PX reaches only one global optimum and there is a single

connection towards it. Algorithms TRAD and VIGP reach both global

optima, but we notice that the Algorithm VIGP LON contains several

connections towards them, while the Algorithm TRAD LON has

only two. Another interesting observation is that Algorithms PX and

VIGP find connections which require eight subfunctions to change

between the second and third-highest fitness levels. Algorithm

TRAD did not find these options and this may be a reason for the

sparse connectivity of its LON in relation to the global optima.

8 Conclusion
We have considered whether including problem structure informa-

tion into local optima network (LON) construction and analysis

can bring additional insights into optimisation dynamics. Three

well-known 𝑘-bounded problem domains were included in the anal-

ysis: MAX3SAT, NK landscapes, and deceptive bimodal problems.

We constructed LONs in different ways: the standard ‘black box’

approach of iterated local search (ILS) runs; an ILS algorithm us-

ing partition crossover which incorporated subfunction structure

information a-priori; and an ILS algorithm which learns and uses

subfunction structure during the search. The LONs were visualised

in a newmanner which conveys the number of subfunction changes

between local optima. New metrics were proposed: these relate to

the number and direction of subfunction changes between optima.

These were compared across the three LON algorithm approaches

and also compared against existing LON metrics from the literature.

The results showed considering subfunction structure in the

analysis of LONs can increase the amount of insight gained into

optimisation dynamics: for example, identifying howmany subfunc-

tions must change in order to ascend fitness levels. The proposed

metrics were shown to contain different information to existing

LON metrics from the literature. Lastly, a case study was presented.

We used the new approach to compare landscape structure and

algorithm trajectories between problems with differing degrees of

subfunction overlap. Future work will consider the scalability of

our approach, as well as comparing the LON subfunction structure

analysis with an analysis done using only partial learned problem

information. Code, data, and additional plots associated with this

work are available in a dedicated Zenodo repository [see footnote

1].

Acknowledgements. The work of Michal W. Przewozniczek was

supported by the Polish National Science Centre (NCN) under Grant

2022/45/B/ST6/04150.

References
[1] Niyazi Ari and Makhamadsulton Ustazhanov. 2014. Matplotlib in python. In 2014

11th International Conference on Electronics, Computer and Computation (ICECCO).
IEEE, 1–6.

[2] Anton Bouter, Tanja Alderliesten, Arjan Bel, Cees Witteveen, and Peter A. N.

Bosman. 2018. Large-scale parallelization of partial evaluations in evolutionary

algorithms for real-world problems. In Proceedings of the Genetic and Evolutionary
Computation Conference (Kyoto, Japan) (GECCO ’18). Association for Computing

Machinery, New York, NY, USA, 1199–1206. doi:10.1145/3205455.3205610

[3] Lorenzo Canonne, Bilel Derbel, Francisco Chicano, and Gabriela Ochoa. 2023. To

Combine or not to Combine Graybox Crossover and Local Search?. In Proceedings
of the Genetic and Evolutionary Computation Conference. 257–265.

92



Subfunction Structure Matters:
A New Perspective on Local Optima Networks GECCO ’25, July 14–18, 2025, Malaga, Spain

[4] Francisco Chicano, Darrell Whitley, Gabriela Ochoa, and Renato Tinós. 2017.

Optimizing one million variable NK landscapes by hybridizing deterministic

recombination and local search. In Proceedings of the genetic and evolutionary
computation conference. 753–760.

[5] Francisco Chicano, Darrell Whitley, Gabriela Ochoa, and Renato Tinós. 2024.

Generalizing and Unifying Gray-Box Combinatorial Optimization Operators. In

Parallel Problem Solving from Nature – PPSN XVIII: 18th International Confer-
ence, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part I
(Hagenberg, Austria). Springer-Verlag, 52–67.

[6] Francisco Chicano, Darrell Whitley, and Andrew M Sutton. 2014. Efficient identi-

fication of improving moves in a ball for pseudo-boolean problems. In Proceedings
of the 2014 annual conference on genetic and evolutionary computation. 437–444.

[7] Kalyanmoy Deb and David E. Goldberg. 1993. Sufficient Conditions for Deceptive

and Easy Binary Functions. Ann. Math. Artif. Intell. 10, 4 (1993), 385–408.
[8] Kalyanmoy Deb, Jeffrey Horn, and David E. Goldberg. 1993. Multimodal Decep-

tive Functions. Complex Systems 7, 2 (1993).
[9] Arkadiy Dushatskiy, Tanja Alderliesten, and Peter A. N. Bosman. 2021. A Novel

Approach to Designing Surrogate-assisted Genetic Algorithms by Combining

Efficient Learning of Walsh Coefficients and Dependencies. ACM Trans. Evol.
Learn. Optim. 1, 2, Article 5 (July 2021), 23 pages. doi:10.1145/3453141

[10] Brian W. Goldman and William F. Punch. 2014. Parameter-less Population

Pyramid. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation (Vancouver, BC, Canada) (GECCO ’14). ACM, 785–792.

[11] Aric Hagberg and Drew Conway. 2020. Networkx: Network analysis with python.

URL: https://networkx. github. io (2020).
[12] R. B. Heckendorn. 2002. Embedded Landscapes. Evolutionary Computation 10, 4

(2002), 345–369.

[13] Sebastian Herrmann, Gabriela Ochoa, and Franz Rothlauf. 2016. Communities of

local optima as funnels in fitness landscapes. In Proceedings of the Genetic and
Evolutionary Computation Conference 2016. 325–331.

[14] Sebastian Herrmann, Gabriela Ochoa, and Franz Rothlauf. 2018. PageRank

centrality for performance prediction: the impact of the local optima network

model. Journal of Heuristics 24 (2018), 243–264.
[15] Marcin Michal Komarnicki, Michal Witold Przewozniczek, Renato Tinós, and

Xiaodong Li. 2024. Overlapping Cooperative Co-Evolution for Overlapping

Large-Scale Global Optimization Problems. In Proceedings of the Genetic and
Evolutionary Computation Conference (Melbourne, VIC, Australia) (GECCO ’24).
Association for Computing Machinery, New York, NY, USA, 665–673. doi:10.

1145/3638529.3654171

[16] Katherine Mary Malan. 2021. A survey of advances in landscape analysis for

optimisation. Algorithms 14, 2 (2021), 40.
[17] Werner Mostert, Katherine M Malan, Gabriela Ochoa, and Andries P Engelbrecht.

2019. Insights into the feature selection problem using local optima networks. In

Evolutionary Computation in Combinatorial Optimization: 19th European Confer-
ence, EvoCOP 2019, Held as Part of EvoStar 2019, Leipzig, Germany, April 24–26,
2019, Proceedings 19. Springer, 147–162.

[18] M. Munetomo and D.E. Goldberg. 1999. A genetic algorithm using linkage identi-

fication by nonlinearity check. In IEEE SMC’99 Conference Proceedings. 1999 IEEE
International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028),
Vol. 1. 595–600 vol.1. doi:10.1109/ICSMC.1999.814159

[19] Masaharu Munetomo and David E. Goldberg. 1999. Linkage identification by

non-monotonicity detection for overlapping functions. Evol. Comput. 7, 4 (dec
1999), 377–398. doi:10.1162/evco.1999.7.4.377

[20] Gabriela Ochoa and Francisco Chicano. 2019. Local optima network analysis for

MAX-SAT. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. 1430–1437.

[21] Gabriela Ochoa, Marco Tomassini, Sebástien Vérel, and Christian Darabos. 2008.

A study of NK landscapes’ basins and local optima networks. In Proceedings of
the 10th annual conference on Genetic and evolutionary computation. 555–562.

[22] Gabriela Ochoa, Nadarajen Veerapen, Fabio Daolio, and Marco Tomassini. 2017.

Understanding phase transitions with local optima networks: number partition-

ing as a case study. In Evolutionary Computation in Combinatorial Optimization:
17th European Conference, EvoCOP 2017, Amsterdam, The Netherlands, April 19-21,
2017, Proceedings 17. Springer, 233–248.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,

Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[24] Michal W. Przewozniczek, Renato Tinós, Bartosz Frej, and Marcin M. Komar-

nicki. 2022. On Turning Black - into Dark Gray-Optimization with the Di-

rect Empirical Linkage Discovery and Partition Crossover. In Proceedings of
the Genetic and Evolutionary Computation Conference (Boston, Massachusetts)

(GECCO ’22). Association for ComputingMachinery, New York, NY, USA, 269–277.

doi:10.1145/3512290.3528734

[25] Michal Witold Przewozniczek, Renato Tinós, and Marcin Michal Komarnicki.

2023. First Improvement Hill Climber with Linkage Learning – on Introducing

Dark Gray-Box Optimization into Statistical Linkage Learning Genetic Algo-

rithms. In Proceedings of the Genetic and Evolutionary Computation Conference
(Lisbon, Portugal) (GECCO ’23). ACM, 946–954.

[26] Y. Sun, X. Li, A. Ernst, and M. N. Omidvar. 2019. Decomposition for Large-scale

Optimization Problems with Overlapping Components. In Proc. IEEE Congr. Evol.
Comput. (CEC). 326–333.

[27] Sara Tari, Gabriela Ochoa, Matthieu Basseur, and Sébastien Verel. 2023. On the

Global Structure of PUBOi Fitness Landscapes. In Proceedings of the Companion
Conference on Genetic and Evolutionary Computation. 247–250.

[28] Matheus C Teixeira and Gisele L Pappa. 2022. Understanding AutoML search

spaces with local optima networks. In Proceedings of the Genetic and Evolutionary
Computation Conference. 449–457.

[29] Dirk Thierens and Peter A.N. Bosman. 2013. Hierarchical Problem Solving with

the Linkage Tree Genetic Algorithm. In Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation (GECCO ’13). ACM, 877–884.

[30] Sarah L Thomson, Fabio Daolio, and Gabriela Ochoa. 2017. Comparing commu-

nities of optima with funnels in combinatorial fitness landscapes. In Proceedings
of the Genetic and Evolutionary Computation Conference. 377–384.

[31] Sarah L Thomson, Gabriela Ochoa, and Sébastien Verel. 2022. The fractal geome-

try of fitness landscapes at the local optima level. Natural Computing 21, 2 (2022),
317–333.

[32] Sarah L Thomson, Nadarajen Veerapen, Gabriela Ochoa, and Daan van den

Berg. 2023. Randomness in local optima network sampling. In Proceedings of the
Companion Conference on Genetic and Evolutionary Computation. 2099–2107.

[33] Renato Tinós, Michal W. Przewozniczek, and Darrell Whitley. 2022. Iterated Local

Search with Perturbation Based on Variables Interaction for Pseudo-Boolean Op-

timization. In Proceedings of the Genetic and Evolutionary Computation Conference
(Boston, Massachusetts) (GECCO ’22). ACM, 296–304.

[34] Renato Tinós, Michal W Przewozniczek, and Darrell Whitley. 2022. Iterated local

search with perturbation based on variables interaction for pseudo-boolean opti-

mization. In Proceedings of the Genetic and Evolutionary Computation Conference.
296–304.

[35] Renato Tinós, Darrell Whitley, and Francisco Chicano. 2015. Partition Crossover

for Pseudo-Boolean Optimization. In Proceedings of the 2015 ACM Conference on
Foundations of Genetic Algorithms XIII (Aberystwyth, United Kingdom) (FOGA
’15). Association for Computing Machinery, New York, NY, USA, 137–149. doi:10.

1145/2725494.2725497

[36] German Treimun-Costa, Elizabeth Montero, Gabriela Ochoa, and Nicolás Rojas-

Morales. 2020. Modelling parameter configuration spaces with local optima

networks. In Proceedings of the 2020 Genetic and Evolutionary Computation Con-
ference. 751–759.

[37] Sébastien Verel, Fabio Daolio, Gabriela Ochoa, and Marco Tomassini. 2012. Local

optima networks with escape edges. In Artificial Evolution: 10th International
Conference, Evolution Artificielle, EA 2011, Angers, France, October 24-26, 2011,
Revised Selected Papers 10. Springer, 49–60.

[38] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,

Jonathan Bright, et al. 2020. SciPy 1.0: fundamental algorithms for scientific

computing in Python. Nature methods 17, 3 (2020), 261–272.
[39] D. Whitley. 2019. Next generation genetic algorithms: a user’s guide and tutorial.

In Handbook of Metaheuristics. Springer, 245–274.
[40] Darrell Whitley, Hernan Aguirre, and Andrew Sutton. 2020. Understanding

Transforms of Pseudo-Boolean Functions. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference (Cancún, Mexico) (GECCO ’20). Association
for Computing Machinery, New York, NY, USA, 760–768.

[41] Darrell Whitley and Gabriela Ochoa. 2022. Local optima organize into lattices

under recombination: an example using the traveling salesman problem. In

Proceedings of the Genetic and Evolutionary Computation Conference. 757–765.
[42] L. Darrell Whitley, Francisco Chicano, and Brian W. Goldman. 2016. Gray Box

Optimization for Mk Landscapes Nk Landscapes and Max-Ksat. Evol. Comput.
24, 3 (Sept. 2016), 491–519. doi:10.1162/EVCO_a_00184

[43] Tian-Li Yu, Kumara Sastry, and David E. Goldberg. 2005. Linkage Learning,

Overlapping Building Blocks, and Systematic Strategy for Scalable Recombina-

tion. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’05). ACM, 1217–1224.

[44] Ryan Zhou, Jaume Bacardit, Alexander EI Brownlee, Stefano Cagnoni, Martin

Fyvie, Giovanni Iacca, John McCall, Niki van Stein, David J Walker, and Ting

Hu. 2024. Evolutionary Computation and Explainable AI: A Roadmap to Under-

standable Intelligent Systems. IEEE Transactions on Evolutionary Computation
(2024).

93


