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A B S T R A C T   

As a viable alternative to traditional and electric cars and vans, e-cargo bikes have the potential to improve the 
sustainability of urban logistics operations, particularly for last-mile deliveries. In this study, e-cargo bike trips 
are modelled from a small business pilot rental scheme, and the effects of identified variables of: a) trip length 
and b) rainfall conditions on the attractiveness of e-cargo bikes as a mode of goods delivery are assessed. For the 
study, an intelligent modelling framework consisting of a) Data Acquisition System, b) Intelligent Learning Unit, 
and c) Output Unit is built. The effectiveness of the learning system is evaluated through its application as a case 
study in Dublin, Ireland. It is discovered that small businesses prefer e-cargo bikes for goods delivery over longer 
distances in warmer and drier weather conditions. There is a strong interaction effect between weather and 
distance. A drop in temperature exacerbates the deterring effect of the wet weather, making e-cargo bikes less 
appealing as a mode of goods delivery for small businesses. Following weather conditions, the critical variable 
influencing trip length is trip hour, a spatial variable used in the study as a lurking variable representing the 
traffic flow peak. The study concludes a strong joint effect of wet weather and temperature that affects the 
attractiveness of e-cargo as a mode of small business goods delivery. The study demonstrates the benefit of using 
a hybrid modelling framework in trip and mode choice modelling for sustainable logistics modes.   

1. Introduction 

Available in a variety of forms in the modern day [1], the use of 
cycles designed explicitly for the transport of goods has occurred as early 
as the 1880s. Historically, these “cargo cycles” were used for a variety of 
functions, such as the delivery of newspapers, post, and food, as well as 
street vending [2]. However, use of cargo cycles declined with the 
advent of automobility and the decrease in customer delivery as a 
business practice. Recently, cargo cycles are again rising to prominence 
once again due to their potential is delivering a sustainable trans-
portation system and a green future. More importantly, these are 
increasingly being viewed as a potential vehicle for goods transport in 
response to transformed patterns of shopping and increased interest in 
sustainable logistics [2]. This is recognized by “New EU Urban Mobility 
Framework” [3], that explicitly refers to the possible value of cargo 
cycles as a vehicle for moving goods more sustainably in and through 
urban areas. Interestingly, they note how the demand for last-mile home 
delivery is increasing through the rising practice of shopping online 
across the European Union. Indeed, there have been many European 
countries trialling cargo cycle schemes to promote more sustainable 

logistics, such as Germany, Italy, Austria, Spain, the United Kingdom, 
and Sweden [4]. 

Outside of the policy sphere, there is an (arguably greater) drive 
within the EU private sector for the mainstream integration of cargo 
cycles into urban logistics operations [5]. From a socio-technical tran-
sitions perspective [6], while cargo cycles are currently at the level of 
niche innovation, this private sector effort represents an industry push 
from below for greater integration of cargo cycles into broader logistics 
regimes. There is an increase in policy-maker and local authority 
engagement to help support, grow and legitimise such innovation – such 
as the electric cargo cycle trail upon which this study is based [7]. 

As a particularly niche innovation, electrically-assisted cargo cycles 
might offer an avenue for faster, farther, heavier, and easier cycle goods 
transport compared to traditional cargo cycles, thereby expanding the 
scope of cargo cycles as a vehicular substitute in logistics operations [8]. 
E-cargo bikes is a promising way to decarbonise a significant proportion 
of last-mile deliveries as a vehicular substitute to vans and cars. 
Modelling various scenarios of electric cargo cycle use for Munich, 
Germany, Llorca and Moeckel [9] reported that electric cargo cycles for 
last-mile delivery could reduce total carbon emissions, primarily by 
reducing the total distance travelled by diesel van alternatives. 
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Similarly, modelling various substitution scenarios for Porto, Portugal, 
Melo and Baptista [10] reported that replacing van and truck logistics 
journeys with electric cargo cycles could result in carbon emission re-
ductions of up to 73% at full market penetration. 

Alongside the potential carbon emissions impact of e-cargo bike lo-
gistics, broader metrics of logistics performance have also been exam-
ined [1,9–12]. Depending on the context and journey type, e-cargo bikes 
have been found to have a substitution potential of up to 68% for car 
deliveries [12] and 55% for van deliveries [9], while (cargo cycles in 
general) likely offering competitive commercial journey times relative 
to cars [1], particularly when the superiority of e-cargo bikes in terms of 
urban dwell times and travel distances relative to urban delivery vehi-
cles is considered [11]. With increasing urban congestion in many cities 
and decreasing motor-vehicle access, Gruber and Narayanan [1] argue 
that cargo cycle times are likely to become more competitive in the 
future. 

The factors influencing both the uptake and use of cargo cycles in 
general [13–17] and electric cargo cycles in particular [12,18,19] have 
also been investigated. One prominent field of inquiry in this area in-
vestigates the factors that influence the willingness to trial/use electric 
cargo cycles, intention to purchase and actual purchase of electric cargo 
cycles (i.e. uptake) [12,18,19]. This body of work analysed survey data 
gathered from messengers [12,18] and cargo cycle trail participants 
[19] in Germany. Among messengers, lower age, male gender, lower 
income, and higher education were associated with greater willingness 
to trial/use an e-cargo bike [12,18], while higher age and income were 
associated with the rejection of e-cargo bikes as a messenger mode [18]. 
In a study of cargo bike (mainly e-cargo bike) trials, Narayanan et al. 
[19] report that e-cargo bike purchase decisions were significantly 
associated with higher levels of average daily cargo cycle distance; 
trailing during the winter; perceiving that cargo cycles offer operational, 
“soft” and cost benefits; and a perception that conditions for normal 
commercial vehicles were deteriorating. On the other hand, there was a 
statistically significant decrease in the decision to purchase a cargo cycle 
following the trial with larger organisational catchment areas for com-
mercial cargo cycle trips – thereby indicating the importance of com-
mercial trip density. 

Research has also been carried out more broadly to identify the en-
ablers and constraints for cargo cycle uptake and use from groups with 
significant expertise and experience with cycle logistics [13,15–17]. 
Overall, many constraints related to non-electric cargo cycles [15]: 
problems with weight, low cargo capacity, difficulty cycling uphill [13], 
and legal regulations on electric cargo cycle max weight [16]. Infra-
structure was a factor raised that can constitute a critical enabler or 
constraint [13,15–17], along with regulations on vehicular transport 
modes in terms of access, parking, tolls and taxation relative to cargo 

cycles [13,15]. The development of urban consolidation centres in 
particular was widely cited as a critical enabler for cargo cycle adoption 
and success [13,16] along with transport infrastructure that caters for 
the unique characteristics of cargo cycles [16,17]. 

In light of the reviewed research examining the substitution potential 
of electric cargo cycles and the factors that influence cargo cycle uptake 
and use, the paper appears to be the first study in this area that uses 
observed GIS data to investigate how various factors such as journey 
length, temperature, rainfall, and time/day/month of use influence 
actual electric cargo cycle use among a small sample of eCargobike trail 
participants using this mode primarily for last-mile delivery and service 
trips. In particular, developing and using an intelligent modelling 
framework specifically designed for the study, we examine patterns of 
eCargobike use from local business participants in relation to the above 
variables. In this way, the aim of this study is to investigate critical 
determinants of eCargobike use among small business pilot participants 
using detailed Geographic Information System (GIS) tracker journey 
data and weather data gathered during the pilot scheme. The specific 
research questions for this study are.  

1.1. How does trip length vary depending upon the following 
variables:  
1. Day maximum temperature  
2. Flow conditions that are represented by Trip Hour, Month and 

Day.  
3. Rainfall in mm  
4. Trip on Weekday/Weekend  

1.2. How does a trip in rainfall vary depending upon the following 
variables:  
1. Day maximum temperature  
2. Flow conditions that are represented by Trip Hour, Month and 

Day.  
3. Trip length  
4. Trip on Weekday/Weekend 

With these objectives in mind, we intend to model e-cargo bike trips 
and comprehend the impact of varied trip lengths and weather condi-
tions on the decision of small businesses to complete their goods delivery 
using an e-cargo bike. 

2. Study context 

The context of this study is Dún Laoghaire-Rathdown (DLR), which is 
an electoral county of Dublin, Ireland, situated in the province of Lein-
ster. Examining available data for cycling in Dublin in general, cycling 
journeys as a percentage of total journeys is reported as 3.4% in 2019 
[20] and, at present, there is a lack of well-developed cycling infra-
structure within the county [21]. However, during the pandemic, 
numerous temporary cycling infrastructures were constructed and 
designated across the city, thereby enhancing its cyclability [22]; a 
similar process took place in DLR county with the construction of a 3.6 
km stretch of dedicated two-way cycling infrastructure – the “Coastal 
Mobility Route” [23] – with evidence of increased and more diverse 
cycling following the implementation of this facility [24]. Building on 
this progress, further major cycle infrastructure developments are being 
planned in the county with a route described as the “DLR Connector” in 
the pre-design stage at present; this project aims to connect villages and 
neighbourhoods across the county through the provision of high-quality 
cycling route [25]. In this way, the cyclability of the context for this 
study is positively evolving at present. A map of the county is displayed 
in Fig. 1. 

The eCargobike Pilot Scheme upon which this study is based is a 
collaborative initiative between an Irish local authority (Dun Laoghaire- 
Rathdown County Council), a leading dockless bike share operator 
(Bleeper), Smart Dún Laoghaire, and numerous local Dun Laoghaire- 
Rathdown small businesses and companies. The scheme enabled local 

Nomenclature 

SDG Sustainable Development Goal 
e-bikes Electric bikes 
DLR Dún Laoghaire-Rathdown 
BP Back Propagation 
SS Sum of squares 
T Magnitude of weighted connection between neurons in 

deep learning 
La Activation of the ath output neuron 
Df Degree of freedom 
X mean 
Of Observed value 
Ef Expected value 
χ 2 Chi-square statistic 
V Cramer V statistic  
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businesses in Dún Laoghaire-Rathdown county to access eCargobikes at 
a discounted rate for a six month trial period during 2021, thereby 
providing an opportunity to experimentally substitute delivery and/or 
service trips currently undertaken by vans or cars with eCargobikes. The 
GIS tracker data used in this study were gathered from twelve businesses 
based in Dún Laoghaire-Rathdown county who participated in the trial. 
These businesses were in the following sectors: food (n: 7), flowers (n: 1), 
cycles (n: 2), motor parts and accessories (n: 1), and regional business 
promotion (n: 1). Customer delivery was the primary purpose for the 
eCargobike amongst participants followed by service trips (Narayanan 
and Antoniou, 2022). Three different models of electric cargo cycles 
were used by participants, each with different cargo capacity and elec-
tric ranges: the Raleigh Pro Cargo Bike (80 kg cargo box, 60 km range, n: 
7), Raleigh Pro Cargo Trike (100 kg cargo box, 70 km range, n: 1) and 
Cube Cargo Hybrid (60 kg cargo box, 60 km range, n: 4). All three of 
these electric cargo cycles had an electric-assist up to a speed of 25 km/h 
and an approximate charge time of 6 h. Among these participants, the 
average trip length was 3.34 km while the average trip time was 14 min. 
No data on trips by other modes were gathered in this study. 

3. Intelligent modelling framework for E-cargo bike small 
business deliveries 

An intelligent modelling framework consisting of a) Data Acquisition 
System, b) Intelligent Learning Unit, and c) Output Unit was constructed 
for this study. Data was continuously collected in the data acquisition 

system. The GIS tracker data from each bike was collected continuously 
from each of the twelve businesses. These data were supplemented by 
Met Eireann’s (Irish weather service) weather data on rainfall and daily 
maximum temperature for each trip. This weather data was licenced to 
the research group. The entire dataset was saved in a secure location, 
and a base input file was created. This was fed into the learning unit for 
modelling, and the results obtained are discussed in the following sec-
tions. A real-time intelligent learning unit is built and designed specif-
ically for the study. The learning unit’s goal is to create a modelling 
framework that can identify critical variables influencing mode selec-
tion, rank them, statistically validate them, and quantify the results in 
context of this small business e-cargo bike pilot scheme. Mode selection 
is multifactorial and varies spatially and temporally [26]. As a result, a 
hybrid modelling framework is built that combines Artificial Intelli-
gence (AI), Statistical, and Mathematical approaches. 

3.1. AI approach 

The three standard AI approaches are used for modelling, i.e., Deep 
Learning, Back propagation (BP), and a neural network classifier. Deep 
learning is a reliable, adaptable, data-driven computing technique 
replicating diverse processes and accurately capturing nonlinear, 
complicated, underlying linkages. It is frequently employed in 
conjunction with the Back Propagation learning technique to address 
various classification and forecasting issues. Between different neurons 
belonging to different layers. The input and output are inserted into the 

Fig. 1. Dún laoghaire-rathdown county map.  
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network in the form of neurons belonging to different layers. Through 
deep learning, two additional layers (hidden layers) are inserted be-
tween the two layers of input and output. The primary benefit of this 
combination is that it imitates the learning process of the human neuron 
by adjusting the initial connection weights. Based on the size of the error 
the model predicts, the backpropagation modifies the weights of the 
connection with the incorrectly categorised output. The learning un-
dergoes continual iteration as part of this adaptive process to enhance 
their accuracy and precision. 

The input data is randomly separated into training (65%), validation 
(30%), and testing (5%). Bernoulli distribution is used for random di-
vision. Two data learning models are constructed representing each of 
the modelled variables: trip length and weather conditions. Weighted 
connections, which represent the strength and relationship of the link by 
a real number, allow neurons from different layers to communicate with 
one another. Through these weighted connections, the network learns to 
map the input with the output and carry out higher-order nonlinear 
mapping that cannot be done using traditional mathematical ap-
proaches. Modelling is done by a four-step iterative learning method. 
Similar to how a signal is conveyed between two brain neurons in a 
synaptic cleft, a signal is transmitted throughout the network through 
the developed activation functions. First, random weights are set be-
tween the input and hidden layers; the first and second hidden layer, and 
the hidden and output layer. The Sum of squares error function is used to 
model the error between the predicted output and the real output. The 
error is due to the randomly assigned initial weights. The back-
propagation method then updates the starting weights considering this 
modelled error. Every new training epoch updates the weighted 
connection by adding the most recent weight. This process is iterated 
using scaled conjugate gradient optimisation (step 1–4). 

Step 1: Signal Transmission: For signal transmission between the 
synaptic cleft activation function, ‘Hyperbolic tangent’ for hidden 
layers and ‘Identity function’ for the output layers is used. 
Step 2: Error modelling: Sum of Squares is used to model the error 
between the output obtained through modelling and the desired 
output in the training dataset. 
Step 3: Synaptic weight update: The randomly assigned synaptic 
weights are updated based on the error obtained in previous step. 
The backpropagation algorithm calculates the gradient of the 
training error in each training case (epoch); a) Nodes between the 
input and hidden layers, b) Nodes within the different hidden layers, 
and c) Nodes between the hidden and output layers. Following the 
error calculation, the weights are updated in each epoch by adding it 
to the previously updated weights. 
Step 4: Scaled conjugate gradient learning: The above steps are 
continuously iterated until either the maximum number of epochs or 
minimum training error change is achieved. 

To find the critical variables, the data learning method employs a 
variable importance approach. To compare variables, the normalised 
significance of each variable to the most critical variable is calculated. 
This is based upon both the testing and validation datasets. The 
importance of the independent variable calculates how much the ex-
pected output value varies when the input variable changes. Each input 
variable’s normalised significance is derived by dividing each unique 
importance value by the most important importance value and expresses 
the result as a percentage. Table 1 specifically defines the network 
structure of the AI model. The structure in terms of the topology of the 
network, training variables and the criterion that is used to stop the 
iteration and the memory limitations. 

Table 2 explicitly defines the AI model layers for modelling trip 
length, while Table 3 explicitly defines the AI model layers for modelling 
rainfall conditions. The table explicitly defined the neurons in each layer 
in terms of the variables modelled, and the number of units in each layer 
(neurons). The input variables used for each target output are based on 

the critically identified literature variables. The variation in traffic flow 
conditions in a particular region can be represented (for mathematical 
modelling only) by variables, such as trip hour, day, month, or week-
day/weekend, and hence have been used as lurking variables for 
modelling [see27-28]. 

Table 1 
Network Structure of the constructed AI-based models.  

Function Variable 
Type 

Function Variable Function Selected/ 
Value 

Network Topology Activation function between the 
hidden layers 

Hyperbolic 
Tangent 

Activation function between hidden 
and output layer 

Identity 

Training Learning type Supervised 
Optimisation method Gradient Descent 

(Batch) 
Method of Iteration Scaled conjugate 

gradient 
Lambda 0.000001 
Sigma 0.000001 
Centre 0 
Offset 0.000001 

Stopping and Memory 
Criterion 

Maximum continuous steps without 
error deviation 

999 

Maximum allocated training time 60 
Maximum epochs allowed in 
training 

999 

Minimum change in training error 0.000001 
Maximum stored cases in modelling 
memory 

0.000001  

Table 2 
Data Learning model constructed for trip length.  

Neuron Layer Modelled Variable Type Variable/Values 

Input Layer Input variables Rainfall   
Day Max Temp   
Weekday/ 
Weekend  

Variables representing the variation in traffic 
flow conditions 

Day of the week  
Month  
Hour  

Total input units 153 
Hidden Layer 

(s) 
Hidden Layers 2 
First hidden layer units 50 
Second hidden layer units 50 

Output Layer Dependent Variables Length 
Rescaling Method for Scale Dependents Standardised 
Error Function Sum of Squares  

Table 3 
Data Learning model constructed for rainfall conditions.  

Neuron Layer Modelled Variable Type Variable/Values 

Input Layer Factors Month  
Hour  
Service launch  
Trip length  
Day Max Temp  
Weekday/Weekend  
Day of the week  
Trip time  
Average speed 

Total input Units 584 
Hidden Layers Hidden Layers 2 

First hidden layer units 50 
Second hidden layer units 50 
Activation Function Hyperbolic tangent 

Output Layer Dependent Variables Rainfall 
Rescaling Method for Scale Dependents Standardised 
Activation Function Identity 
Error Function Sum of Squares  
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3.2. Statistical and mathematical modelling 

The AI-based modelling must be followed by statistical validation of 
the determined critical variables. In such cases, the non-parametric 
technique is the best statistical method, especially when the sample 
size is small. The two assumptions must be met: a) Randomness of 
samples and b) Independence of observations [29]. Mode selection is a 
random phenomenon [30], and, independent of the previous decision to 
complete the trip on an e-cargo bike, satisfies the two prerequisites. The 
Chi-square test for goodness of fit, a non-parametric technique explicitly 
designed to solve such complex nonlinear problems, determines whether 
a relationship exists between two variables and uses sample data to test 
the hypothesis regarding the shape of the proportion of population 
distribution. It assesses how closely sample proportions produced fit the 
population proportion indicated by the null hypothesis. Each variable in 
the sample is assigned an n-dimensional frequency distribution matrix. 
The chi-square test of independence is used to determine whether the 
observed values deviate significantly from the anticipated values for the 
cells. 

χ2 =
∑

(
Of − Ef

)2

Ef  

Where Of = observed value, Ef = expected value 
A probability value is computed in addition to the χ2 statistic. The 

value of p represents the likelihood that the difference between Of and 
Ef , as determined by the χ2 statistic, is attributable to chance. The 
frequently accepted value in the literature is p < 0.05 [31]. In this case, 
the observed value differs significantly from the predicted value, 
implying that the two variables are not independent of one another. The 
inability to quantify the influence of each variable is a drawback of χ2. 
Pearson proposed the phi φ statistic to solve this issue. If the matrix is 
larger than 2 × 2, the Cramer V statistic is applied [32]. It is a post-test 
used to determine the significance of correlation following the 
chi-square test. 

V =

̅̅̅̅̅̅̅̅̅̅̅
χ2

n(df )

√

where df is the smaller number of rows and columns. 
The output is a single value that needs to be converted into a cate-

gorical value using the Cohen’s table. It is determined by the degree of 
freedom as well as the numerical V value [32]. Consider the case of 
variables with df = 2, the following quantification can be inferred 
depending upon the V value; Small: 0< V ≤ 0.07, Medium: 0.07 < V ≤
0.21, and Large: 0.21 < V ≤ 0.35. Similarly, the V value can be calcu-
lated for various df’s [33]. 

4. Results 

In this e-cargo bike pilot project, twelve businesses performed 1801 
e-cargo bike trips during the trial period of July–November 2021. For 
these trips, the e-cargo bike was used despite the availability of an 
alternative mode for each participating small business. Namely, each 
small business had access to their primary delivery modes prior to the 
pilot, which chiefly consisted of either an ICE van or car. In the following 
sections, we model the critical variables influencing trip length (4.1) and 
e-cargo bike mode choice in wet conditions (4.2). Weather. 

4.1. Trip length 

The deep learning identified critical variables influencing trip length. 
These are presented in Table 4 and illustrated in Fig. 2. Identity function 
is used for activation function. It is a diagonal mapping where inputs are 
plotted against identical outputs. Target values used to train a model 
with a linear activation function in the output layer are scaled prior to 

modelling using normalization or standardization transforms. The var-
iable importance approach is employed, that estimates the sensitivity of 
the model, towards each input variable. The output results values in the 
range of 0–1, which is an estimate of the sensitivity of the input variable 
to the model’s ability to distinguish between the set-out target variables. 
The importance of each variable is presented in the form of normalised 
importance (percentage) that is estimated by dividing the individual 
importance of the each of the input variables by the importance of most 
critical input variable. In this case, the most critical variable is the daily 
maximum temperature, hence its normalised importance is 100%, and 
the normalised importance of all the other variables are calculated with 
respect to the daily maximum temperature’s importance, and are pre-
sented in Table 4. Overall, the model suggests that there is a strong 
interaction between the weather (temperature and rainfall), and the 
distance traversed for delivery for an e-cargo bike (i.e., trip length). This 
is followed by the trip hour and the day of the week that the trip is being 
undertaken: the spatial variables. The least important variable is 
whether the trip is made during the week or weekend (i.e., Weekday/ 
Weekend). 

Where I = Importance, and NI = Normalised Importance. 
The results from deep learning/neural models are sensitive to the 

combined variable effect. To overcome this limitation, statistical 
modelling is performed. This also develops confidence in the results, 
which will help in the application of the results by practitioners. Firstly, 
the existence of the relationship is confirmed using non-parametric 
modelling and compared to the deep learning model results. The re-
lationships are then quantified using the standard Cramer’s V. Table 5 
presents the results of the non-parametric modelling. The statistical non- 
parametric modelling results indicate that there exists a statistical 
relationship between the daily maximum temperature, rainfall, hour, 
and month of the trip, with the trip’s length. However, there is no sta-
tistical relationship between trip day or whether a trip is performed on a 
weekday or a weekend. These are the least essential variables deter-
mined by the variable importance through deep learning. The statistical 
quantification of the relationship of each of the input variable in the AI 
mode with the length of the trip, performed through Cramer’s V is 
presented in Table 6. Each of the relationships Pearson statistic, degree 
of freedom, and p value is also presented in the corresponding tables. 

4.2. Rainfall conditions 

Using a neural network classifier, an accurate prediction model is 
built. Fig. 3 depicts the predicted vs observed values for the variable 
rainfall conditions. The predicted vs observed line is mostly inclined at a 
45◦ angle, with a few outliers. However, the overall accuracy is signif-
icantly high, considering that mode choice is a multifactor variable 
involving several human factors, demand requests, and other trip- 
related variables.’’ 

The critical variables influencing the decision to travel during wet 
weather conditions, as identified through the variable importance 
approach, are presented in Table 7 and illustrated in Fig. 4, with the 
importance and normalised importance calculated for each of the input 
variable of the AI model. The most critical variable is the daily maximum 
temperature, with a normalised importance of 100%. All the other 

Table 4 
Importance and normalised importance of input variables in the data learning 
model for modelling trip length.  

Input Variable I NI 

Weekday/Weekend 0.082 29.20% 
Month 0.098 35.00% 
Day of the week 0.126 44.90% 
Hour 0.197 70.00% 
Daily rainfall in mm 0.216 77.10% 
Day Max Temp 0.281 100.00% 
Total 1.000   
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variables are calculated with respect to the importance of daily 
maximum temperature. In order of importance, the critical factors 
influencing users’ decision to use an e-cargo bike for delivery during wet 
weather are: a) Maximum daily temperature, b) Total trip time, c) 
Months since the service’s launch, and d) trip length. The least impor-
tant variables are the spatial variables of hour, day, month and whether 
the trip is being performed on the weekday or the weekend (least 
important variable). 

Where I = Importance, and NI = Normalised Importance. 
The results from the non-parametric modelling are shown in Table 8, 

and the statistical quantification of the relationship is shown in Table 9. 
Each of the relationships Pearson statistic, Cramer’s V, degree of 
freedom, and p value is also presented in the corresponding tables. The 
statistical non-parametric modelling results conclude a statistical rela-
tionship between all the input variables used in data modelling and 
weather conditions. There is a powerful association correlation between 
rainfall and daily maximum temperature. There is a strong correlation 
between a) trip time, b) months since the service’s launch and c) traffic 
flow conditions (day, month, weekday/weekend). There is a medium 
association for a) trip length, b) average speed, and c) travel time. These 
findings validate the results of the deep learning neural model with 
identical inference. 

5. Discussion 

5.1. Trip length 

It is found that the most critical variable affecting e-cargo bike trip 
length within this small business pilot programme is daily maximum 
temperature, followed by rainfall conditions (both of which can be 
described as ‘weather conditions’). This implies that small businesses 
prefer using e-cargo bikes for deliveries during warmer and drier 
weather conditions for longer distances. The findings are consistent with 
the British study [34], that concluded that weather conditions signifi-
cantly influence bicycle use. A Canadian study [35] based on the 
perception-based model also reported weather conditions as a strong 
deterrent to bicycle use. These studies reported results based on user 
perception rather than mathematically validating their findings against 
real-world data. A mathematically validated result that colder and 
wetter weather conditions are a strong deterrent to use of e-cargo bike 
for goods delivery by small businesses in an Irish context is a unique 
contribution to the literature. Following weather conditions, the critical 
variable influencing trip length is the trip hour, representing the flow 
peak. The daily or monthly variation in traffic flow does not significantly 
affect the choice of e-cargo bike as a mode of small business goods de-
livery. The least important variable is whether the trip is made during 
the week or weekend. Hence it can be concluded that when designing 
and encouraging the use of e-cargo bikes for small business rental 
schemes in which an alternative mode of delivery is available (e.g., van 
or car), the strong influence of local weather conditions compared with 
spatial variables should be an important consideration in any mode 
choice modelling. 

The results from non-parametric modelling validate the deep 
learning results. The statistical non-parametric modelling results 

Fig. 2. Graph of the normalised importance of each variable in the trip length predictive data model.  

Table 5 
Results from non-parametric modelling of the triptrip length with the input 
variable of the data learning model.  

Variable Output Pearson’s 
Statistic 

Df Sig 

Weekday/Weekend Trip 
length   

.125 

Month Trip 
length 

798.2 600 <0.001 

Day of the week Trip 
length 

792.7 720 0.031 

Hour Trip 
length 

3101.5 2280 <0.001 

Rainfall Trip 
length 

5649.5 4320 <0.001 

Day maximum 
temperature 

Trip 
length 

14246.2 10,200 <0.001  

Table 6 
Mathematical quantification of each input variable.  

Variable Output Cramer’s V Sig Relation 
type 

Weekday/Weekend Trip 
length  

.125 n/a 

Month Trip 
length 

.298 <0.001 Medium 

Day of the week Trip 
length  

0.031 n/a 

Hour Trip 
length 

.302 <0.001 Medium 

Rainfall Trip 
length 

.296 <0.001 Medium 

Day maximum 
temperature 

Trip 
length 

.306 <0.001 Medium  
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indicate that a statistical relationship exists between the daily maximum 
temperature, rainfall, hour, and month of the trip, with trip length. 
However, no statistical relationship exists between trip day, whether a 
trip is performed on a weekday or a weekend and trip length. These are 
the least important variables estimated through the variable importance 
approach. The results from the Cramer’s V modelling demonstrate that 
all the four statistically significant variables of: a) Daily maximum 

temperature, b) Rainfall, c) Trip Hour, and d)Trip Month, have a me-
dium level of association with the chosen trip length. The probability of 
using an e-cargo bike for goods delivery increases significantly as the 
daily temperature rises. During dry weather, an e-cargo bike appears to 
become a more appealing option in the context of this study. Similarly, 
during non-peak hours, e-cargo bikes appear to become a much more 
appealing option for small business deliveries. This could be attributed 
to a variety of factors not accounted for in this study, such as potentially 
easier and faster use of road spaces as an e-cargo bike rider during non- 
peak hours due to less motor-vehicle traffic. As e-cargo bikes are much 
larger vehicles than standard e-bikes, during peak hours, they may not 
be as suitable for filtering through motor-vehicle traffic congestion or 
riding within (currently available) segregated cycle spaces as standard e- 
bikes, as indicated in the study of Blazejewski et al. [36]. Furthermore, 
an e-cargo bike delivery rider may be more sensitive to other environ-
mental conditions than delivery drivers, particularly weather conditions 
for longer trips – as this study suggests. A small business may be more 
likely to perform a delivery trip on an e-cargo bike for a shorter trip; 
however, as the trip length increases, the influence of weather condi-
tions become more significant in mode choice. The results demonstrate 
that a small business is more likely to select an e-cargo bike as a delivery 
mode for a longer trip when weather conditions are drier and warmer. 

Fig. 3. Predicted vs observed values for the constructed predictive rainfall model.  

Table 7 
Importance and normalised importance of input variables in the data learning 
model for modelling rainfallconditions.  

Input variables I NI 

Weekday/Weekend 0.042 12.90% 
Month 0.065 19.90% 
Day of the week 0.068 21.00% 
Hour 0.079 24.50% 
Average speed 0.084 25.90% 
Length 0.102 31.60% 
Service launch 0.108 33.40% 
Trip time 0.128 39.50% 
Day Max Temp 0.324 100.00%  

Fig. 4. Normalised importance of input variables in the data learning model for modelling rainfall conditions.  
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Explanations for this phenomenon in the context of this pilot scheme are 
not accounted for in this study. However, one possibility is that during 
wet weather conditions, wet road surfaces may increase the likelihood of 
losing traction while riding a (loaded) e-cargo bike – particularly for 
inexperienced riders – thereby deterring from the choice of this mode. 
Contact with the drain covers during wet weather conditions could also 
lead to a less safe cycling environment [see37]. Furthermore, e-cargo 
bike riders with an alternative delivery mode may be poorly equipped 
for riding in wet and/or cold weather (e.g., keeping themselves and their 
goods dry and warm) due to a lack of experience using this delivery 
mode in varying conditions and a lack of access to insulating and 
waterproofing materials. It is widely reported and acknowledged in the 
literature that a single bad experience in cycling mode can cause the user 
to hesitate and even switch modes [38], although e-cargo bikes for small 
business logistics in particular do not appear to have been explored in 
this respect. 

5.2. Rainfall conditions 

The most critical variable affecting the selection of e-cargo bike 
during wet weather conditions is daily maximum temperature, thereby 
suggesting that there is a combined effect of these two weather 

variables. These variables are followed by the variables of total trip time, 
time since the launch of the service, and trip length. Consequently, it can 
also be calculated that even if the weather changes from dry to wet, an e- 
cargo bike is still an appealing mode for small business deliveries in the 
context of the study if the temperature of the day is not low, and vice 
versa. The deterring effect of wet weather on e-cargo bike use for small 
business deliveries is exacerbated by a drop in temperature. However 
the mode remains appealing even if weather conditions are wet when 
the expected trip time is short. The attractiveness of the mode gets 
further compounded as the trip time increases. Trip length is the fourth 
critical variable. The length and time of the trip are covariates; however, 
it has been discovered that the trip time is a more critical variable than 
the length of the trip in relation to rainfall conditions. The results vali-
date various generalised cost models for mode choice (see Ref. [39]), 
indicating that travel time is a more significant impediment than travel 
distance. Another critical variable is the time since the service has been 
launched. As these schemes are still in their infancy, the potential users 
and small business owners are likely inexperienced in operating e-cargo 
bikes for deliveries and in incorporating their use into their everyday 
business logistics operations. This context-specific study suggests that as 
small businesses become more familiar with the e-cargo bike as a po-
tential mode of goods delivery, they may use it more; this is promising in 
light of the potential for major market penetration of e-cargo bikes and 
e-bikes as goods delivery mode alternatives to cars and vans in urban 
areas [9,12]. Schemes that enable e-cargo bike access may necessitate an 
initial government push/subsidisation [36], particularly in light of the 
potential costs of e-cargo bike use relative to cars and vans – especially 
for larger logistics operations [40–42]. As e-cargo bikes may become 
integrated into small business logistics operations and, more broadly, a 
city’s transportation system, other groups may begin to consider e-cargo 
bikes as a viable alternative to cars and vans for making cargo journeys. 
The promotion of e-cargo bike subsidy schemes can provide an impor-
tant enabler for the adoption of e-cargo bikes because they allow people 
to trial these vehicles before renting them at full price or purchasing 
them as a cargo vehicle. 

The results from both the models (trip length and rainfall conditions) 
clearly demonstrates that both the variables of wet weather and tem-
perature are the critical variables most affecting the decision of small 
businesses to select an e-cargo bike for the delivery of their goods. It can 
be concluded that there is a strong joint effect of rainfall and tempera-
ture, that affects the attractiveness of an e-cargo bike as a mode of small 
business goods delivery. This joint effect could be considered in e-cargo 
bike mode choice modelling in future small business e-cargo bike pro-
motion schemes. Due to the insulation and protection from weather 
conditions that motor-vehicle transport provides, it is unlikely that such 
an effect is as prevalent for car and van deliveries. On this basis, these 
findings could inform broader measures to promote e-cargo bike use 
within – for example – mobility-as-a-service schemes. Namely, measures 
could be taken that disincentivise the choice of car and van use in dry 
and warm weather (i.e., when e-cargo bike use appears to be more 
appealing) conditions and incentivise e-cargo bike use in wet and cold 
weather (i.e., when e-cargo bike use appears to be less appealing). 
However, other potential measures might be relevant, such as improving 
the insulation from cold and protection from wet conditions for both e- 
cargo bike riders and their goods; the study of Blazejewski et al. [36], for 
example, remarks on how loss of warmth for hot foot deliveries was a 
barrier to e-cargo bike use by small businesses. Furthermore, research 
examining bike-sharing in Ireland has also highlighted the significance 
of weather conditions on bike-sharing usage, reporting shorter trips in 
wetter conditions [43]. Importantly, similar to public bike-share usage, 
reduced cycling in wetter and colder conditions in the context of this 
study – where alternative modes were available for delivery – could 
perhaps be additionally explained by cultural factors regarding what is 
‘normal’ and ‘practical’ transport in particular weather conditions. This 
perspective has been convincingly argued by Hudde [44], who dem-
onstrates that variations in cycling rates between the Netherlands – 

Table 8 
Results from non-parametric modelling of rainfall with the input variable of the 
data learning model.  

Variable Output Pearson Chi-Square 
Statistic 

df p-value 

Weekday/Weekend Rainfall in 
mm 

460.7 36 <0.001 

Month Rainfall in 
mm 

2054.8 180 <0.001 

Day of the week Rainfall in 
mm 

2735.1 216 <0.001 

Hour Rainfall in 
mm 

1327.4 684 <0.001 

Average Speed Rainfall in 
mm 

6631.5 5112 <0.001 

Length of trip Rainfall in 
mm 

5649.5 4320 <0.001 

Service Launch Rainfall in 
mm 

2054.8 180 <0.001 

Trip time Rainfall in 
mm 

14,089 13,752 <0.001 

Daily maximum 
temperature 

Rainfall in 
mm 

37385.3 3060 <0.001  

Table 9 
Mathematical quantification of each input variable.  

Variable Output Cramer’s 
V 

p-value Relation 
type 

Weekday/Weekend Rainfall in 
mm 

0.507 <0.001 Strong 

Month Rainfall in 
mm 

.476 <0.001 Strong 

Day of the week Rainfall in 
mm 

.504 <0.001 Strong 

Hour Rainfall in 
mm 

.197 <0.001 Medium 

Average Speed Rainfall in 
mm 

.321 <0.001 Medium 

Length of trip Rainfall in 
mm 

.296 <0.001 Medium 

Service Launch Rainfall in 
mm 

.476 <0.001 Strong 

Trip time Rainfall in 
mm 

.467 <0.001 Strong 

Daily maximum 
temperature 

Rainfall in 
mm 

.761 <0.001 Very Strong  
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which has relatively stable year-round cycling rates – and Germany – 
which demonstrates much greater seasonal variation – is not explained 
by variations in seasonal weather conditions. Accordingly, measures to 
change dominant cultural beliefs around cycling as a predominantly ‘fair 
weather’ activity that is impractical in wet and cold conditions could be 
another important area for intervention, including with e-cargo bikes. 

Further research should develop new mode and route choice 
modelling theories explicitly designed for small business e-cargo bike 
deliveries and consider their revealed preferences within varied 
weather, traffic flow, and infrastructural conditions. A hybrid method-
ology involving artificial intelligence and mathematical modelling, as 
demonstrated in this study, would be helpful in such modelling. 

6. Conclusion 

E-cargo bikes are receiving growing interest as vehicle for moving 
goods more sustainably in and through urban areas [3] and there have 
been a considerable number of cargo bike trials across Europe promoting 
their integration into logistics operations [4]. This study models e-cargo 
bike use for the delivery of goods by small businesses and provides 
insight into the impact of different trip lengths and weather conditions 
on e-cargo bike selection. Based on an e-cargo bike trial with small 
businesses in Dún Laoghaire-Rathdown, Ireland, this study designed a 
new intelligent learning system that explicitly combines artificial in-
telligence and mathematical approaches for e-cargo bikes. 

An intelligent modelling framework consisting of a) Data Acquisition 
System, b) Intelligent Learning Unit, and c) Output Unit was con-
structed. The learning unit identifies, ranks, statistically validates, and 
quantifies critical variables influencing mode selection. The twelve 
businesses that took part in the study made 1801 trips between July and 
November 2021. The daily maximum temperature is found to be the 
most critical variable influencing trip length, followed by the prevalent 
rainfall conditions and flow peak. Small business users prefer e-cargo 
bikes for goods delivery over longer distances and in warmer and drier 
weather. For a shorter trip, a small business may be inclined to perform 
delivery by e-cargo bike; however, as the trip length increases, envi-
ronmental factors such as weather and traffic flow conditions influence 
mode choice. The following important factors influence the decision of 
small business to use an e-cargo bike for cargo delivery during wet 
weather: a) Maximum daily temperature, b) Total trip time, c) Months 
since the service’s launch and d) trip length. The effect of wet weather is 
exacerbated by a drop in temperature, making e-cargo bikes less 
appealing as a delivery mode for small businesses. As travel time in-
creases, the mode’s attractiveness decreases significantly. In the context 
of this study, it has been discovered that trip time is a more critical 
variable than trip length in relation to rainfall conditions. The study 
clearly demonstrates that there is a strong joint effect of rainfall con-
ditions and temperature on e-cargo bike mode choice by small busi-
nesses which could be considered in e-cargo bike mode choice modelling 
in future small business e-cargo bike promotion schemes. More broadly, 
these results support measures to enable riders to use e-cargo bikes in all 
weather conditions, including by tackling potential cultural beliefs 
regarding the appropriate weather conditions for cycling [44]. 

As an alternative to traditional generalised cost modelling, inte-
grated mode and route choice modelling for a e-cargo riders may be 
beneficial for transportation practitioners, as demonstrated by the study. 
Namely, this study has exemplified the benefits of a hybrid methodo-
logical framework that could be applied to various e-cargo bike schemes 
being trialled in different parts of the world. In this way, the model 
developed in this study could contribute to greater adoption of e-cargo 
bikes in last-mile urban logistics, thereby contributing to the decar-
bonisation of the transport logistics sector. 
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