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Abstract—With the increasing frequency of extreme weather
events, there is a growing demand from the public for rapid
and accurate short-term heavy precipitation forecasts. This study
proposes a lightweight deep learning model, MMST-LSTM,
which integrates Multiscale Context Feature Fusion Mecha-
nism (MCFFM) and Mixed-Domain Attention Fusion Mecha-
nism (MAFUM). While maintaining high prediction accuracy,
MMST-LSTM significantly improves forecast speed. The MMST-
LSTM model is particularly suitable for deployment in Mobile
Edge Computing (MEC) environments, enabling fast localized
forecasting. Experimental results demonstrate MMST-LSTM’s
excellent predictive performance on two radar echo datasets,
particularly in rapid response and handling localized data.
Moreover, leveraging Smart Data-Driven Modeling (SDDM) tech-
nology with consumer-generated data enhances its application
potential in smart consumer electronics products, providing an
efficient tool for disaster weather alerts. This study introduces an
innovative meteorological forecasting method and provides robust
technical support for accurate weather warning systems, offering
consumers timely and reliable weather information. This enables
them to make more informed decisions, effectively reducing the
potential risks and economic losses caused by extreme climate
events.

Index Terms—Radar Echo Extrapolation, Smart Data-driven
Modeling, Spatiotemporal Sequence Prediction, Deep Learning.

I. INTRODUCTION

IN addressing the challenges posed by global climate
change, short-term precipitation forecasting plays a crucial
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role. Its core objective is to predict the intensity and distribu-
tion of rainfall within specific regions in the next 0 to 6 hours,
necessitating forecast systems with high spatial and temporal
resolution [1]. In recent years, weather-related disasters have
increased significantly around the world. A typical example
is that short-range extreme precipitation can cause serious
floods and other secondary disasters [2]. With the increasing
frequency of extreme weather events, the public’s demand for
rapid and accurate near-term forecasts has grown significantly
[3]. According to statistics from the World Meteorological
Organization (WMO), weather-related natural disaster events
have increased fivefold over the past 50 years, with cumula-
tive economic losses exceeding $3.64 trillion. Furthermore, a
survey in southern China revealed that more than 85% of the
public seeks more accurate short-term precipitation forecasts
to better cope with sudden weather changes. Accurate forecasts
not only help in timely identification of destructive weather
but also provide crucial early warning information for both
the public and industries [4]. Moreover, rapid-response short-
term forecasts exert a profound positive effect on safeguarding
public safety and enhancing the overall quality of life. They
provide real-time guidance for daily life arrangements, travel
plans, and route planning for autonomous vehicles, effectively
preventing life and property losses due to sudden weather
changes [5]. Since data processing occurs closer to the data
source, edge environments can significantly reduce the time
required for data transmission, thereby decreasing both data
transmission latency and response latency [6]. In environ-
ments requiring rapid and lightweight forecasting models,
such capabilities are crucial for fast localized data processing
and real-time response, this meets contemporary demands
for immediate and personalized meteorological services. Con-
sequently, developing a model for swift and precise short-
term heavy precipitation forecasting holds significant scientific
value in meteorology and enhances public disaster response
capabilities. Due to the complexity of weather patterns and
the rapid evolution of storm cloud systems, short-term pre-
cipitation forecasting is a task of high demands within the
field of meteorology. As extreme weather events become
more frequent, the demand for rapid and accurate short-term
weather forecasts has become increasingly urgent. This not
only imposes higher demands on meteorological research but
also underscores the pivotal role of precise early warning
systems in safeguarding public safety and protecting property
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from the adverse effects of disasters [7]. In precipitation event
forecasting, two main approaches are commonly used: one
relies on Numerical weather prediction-based (NWP-based)
method, and the other approach utilizes predicting radar echo
data into the future based on current observations. The essence
of NWP-based methods is a set of nonlinear equations, and the
forecast results are obtained by giving initial conditions and
boundary values [8]. However, achieving accurate predictions
may present significant challenges if the initial conditions are
not appropriately set [9]. Furthermore, methods relying on
Numerical Weather Prediction often perform poorly when high
spatiotemporal resolution is required, and their high computa-
tional cost makes them unsuitable for immediate to near-future
rainfall prediction [10]. techniques for forecasting radar echo
progression predict the distribution of radar echoes at a future
time by analyzing historical radar images captured by Doppler
weather radar, then, the precipitation estimation results can
be obtained according to the Z-R correlation [11]. Traditional
radar echo extrapolation methods can be categorized into three
types: centroid tracking, correlation analysis, and optical flow
methods. The centroid tracking method predicts by tracing
changes in the centroid of echo intensity distribution. While it
is computationally simple and suitable for small-scale systems,
it performs poorly under complex scenarios such as merging
or dissipation [12], [13]. The correlation analysis method
leverages the correlation of historical data to extract overall
features, yet its capability to capture rapid local variations
remains limited [14], [15]. The optical flow method calcu-
lates motion fields by analyzing the trajectories of feature
points in image sequences. It is well-suited for handling
complex motion patterns but exhibits limited adaptability to
nonlinear changes and incurs high computational costs [16]–
[18]. Each of these methods has its own advantages and
limitations, however, they exhibit significant constraints in
scenarios requiring high spatiotemporal resolution and rapid
dynamic adaptability. Their core idea is to perform linear
extrapolation by calculating the motion field between adjacent
maps, but they have difficulty in obtaining satisfactory results
when complex changes such as aggregation and dissipation of
radar echoes happen or performing long-term extrapolation
tasks [19]. Furthermore, these approaches fail to leverage
the abundant historical observational data effectively, so the
potential patterns of radar echo variations in specific regions
are ignored [20].

Neural networks can automatically extract features, han-
dle nonlinear relationships, and possess strong generalization
capabilities, enabling efficient and accurate predictions of
complex meteorological data [21] [22]. Recently, artificial
neural network (ANN) represented by deep learning has
developed rapidly as a new technique in the field of com-
puter science [23], which can recognize potential patterns
and model complex nonlinear relationships from the huge
amount of existing training data [24]. This approach has
attracted the attention of meteorological researchers due to
its remarkable performance across a range of tasks, including

semantic segmentation [25] and image quality control [26].
Researchers have explored its potential as a solution for radar
echo extrapolation and precipitation estimation [27], [28]. At
its core, the approach formalizes the radar echo extrapola-
tion problem within the framework of deep learning as a
spatiotemporal sequence prediction task, aiming to achieve
precise predictions across spatial and temporal dimensions.
Consequently, certain models originally designed for video
prediction or other spatiotemporal sequence prediction tasks
can be effectively applied to radar echo extrapolation tasks
after structural optimization. For example, Shi et al. [29]
introduced an innovative modification to LSTM by replacing
its standard linear operations with convolutional operations.
This advancement significantly enhanced the model’s accuracy
and efficiency in spatiotemporal sequence prediction, outper-
forming ROVER (a variational method-based real-time radar
echo optical flow estimation technique) and fully connected
networks. Klein et al. [30] introduced an innovative structure
known as dynamic convolutional layers, which has been imple-
mented in the realm of short-term weather prediction. Wang et
al. [31] added a spatiotemporal memory cell to the ConvLSTM
to constitute the Spatiotemporal-LSTM (LSTM) recurrent unit.
This unit are used to build the PredRNN network, which obtain
excellent results in several spatiotemporal prediction tasks.
Guen et al. [32] integrated principles of partial differential
equations (PDEs) with deep learning techniques to create
a novel network architecture called PhyDNet, this architec-
ture integrates physics-driven branches with residual learning
branches. Compared to previous approaches, these novel meth-
ods have achieved significant advancements in enhancing the
performance of radar echo extrapolation. However, they often
suffer from underestimation of high reflectivity values when
predicting radar echo regions. This problem becomes more
noticeable as the prediction time frame extends further into
the future. It’s noteworthy that these high reflectivity echoes
are closely associated with events that may lead to severe
convective weather [33], [34]. The failure to predict them
successfully may bring severe consequences, and therefore
the successful prediction of high-intensity echo areas is very
critical.

This problem is mainly caused by two factors. First, im-
portant contextual features are forgotten when most RNN-
based or its variants-based methods perform memory update
operations [35]. Although these key features are not entirely
disregarded, models still face challenges in capturing and
focusing on them, often resulting in underestimation of the
intensity of high reflectivity regions in predicted radar echo
maps. Moreover, during model training, loss functions such as
Mean Squared Error (MSE) and Mean Absolute Error (MAE)
are often employed to optimize prediction accuracy. However,
this can sometimes result in predictions being biased toward
the median or mean values. This bias is particularly evident
in cases of highly uneven radar echo intensity distributions,
where high reflectivity points constitute a very small pro-
portion, thus causing predicted radar echo intensities to be
generally underestimated.

Edge computing optimizes the MMST-LSTM model
through localized data processing and storage, significantly
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reducing latency and enhancing responsiveness. This makes it
particularly suitable for resource-constrained real-time applica-
tions such as weather forecasting and intelligent transportation.
Traditional centralized computing often fails to meet these
demands due to high costs or inefficiencies. The MMST-LSTM
model is specifically designed for resource-limited scenarios,
leveraging model compression and efficient scheduling tech-
niques to balance computational load and prediction accuracy
within constrained resources. It dynamically adapts to real-
time data inputs, providing precise and timely services.To ad-
dress the issue of underestimating radar echo intensity, MMST-
LSTM builds upon the ST-LSTM network and integrates
the MCFFM and MAFUM modules. The MCFFM extracts
multi-scale features and combines them with hidden states to
retain critical information, while the MAFUM identifies and
emphasizes key features, optimizing the gating mechanism.
Additionally, the model employs the BMSE loss function [36],
[37] , assigning higher weights to high-intensity echo regions.
This resolves the underestimation of critical features inherent
in traditional loss functions such as MSE and MAE, enhancing
robustness to non-uniform data distributions and significantly
improving the prediction accuracy of extreme weather events.

The development and application of edge intelligence are
crucial for creating an efficient computing environment [38].
In edge computing (MEC) scenarios, the MMST-LSTM model
efficiently processes radar echo data on edge devices, signif-
icantly reducing data transmission delays and network loads.
The application of such models holds critical significance for
achieving real-time environmental perception and prediction,
providing robust technical support for fields such as intelligent
traffic management, environmental monitoring, and disaster
early warning, thereby driving the intelligentization and ef-
ficiency of related applications [39]. The proposed MMST-
LSTM model integrates multi-scale feature extraction and
hybrid-domain attention mechanisms, achieving high-precision
environmental data processing and weather forecasting while
meeting strict requirements for real-time performance and
accuracy. The model excels in handling high-dimensional
spatiotemporal data and rapidly changing environments, with
significantly enhanced sensitivity to high-reflectivity regions,
which greatly improves the prediction accuracy of high-
intensity radar echoes, a critical factor for extreme weather
forecasting.With its technical advantages, the MMST-LSTM
model can provide real-time weather warnings and environ-
mental monitoring support for smart devices in the consumer
electronics sector, significantly enhancing the market compet-
itiveness of related products and expanding their application
prospects. Overall, the MMST-LSTM model combines ad-
vanced multi-scale feature extraction, hybrid-domain attention
mechanisms, and the Balanced Mean Squared Error (BMSE)
loss function to offer efficient and intelligent data processing
solutions for edge computing and consumer electronics, driv-
ing innovation and development in the industry.

II. RELATED WORK

Deep learning approaches exhibit superior performance over
traditional methods in radar echo analysis, particularly in

complex applications such as precipitation nowcasting [40].
This section of the paper will explore and provide a detailed
overview of various deep learning-based radar echo progres-
sion forecasting methods, while also reviewing approaches
used in video prediction and other spatiotemporal sequence
forecasting tasks.

A. Deep Models Designed for Radar Echo Extrapolation

Deep learning strategies have fostered the creation of a
multitude of model frameworks within the domain of radar
echo forecasting, primarily utilizing Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs).
Some studies have further integrated adversarial training and
attention mechanisms with the aim of enhancing prediction
accuracy [41].

Shi et al. [29] introduced the ConvLSTM recurrent unit
as part of their proposal and build an encoder-prediction
network to perform radar echo extrapolation tasks based on
the data observed by the Hong Kong Observatory. Zhuang
[42] introduced a groundbreaking model known as the spatio-
temporal convolutional neural network (ST-CNN), offering an
innovative approach to deeply explore spatiotemporal features
in precipitation data for the prediction of extreme precipitation
events. In addressing the challenge of position invariance
within convolutional recurrent architectures, Shi et al. [36] de-
veloped the Trajectory-Gated Recurrent Unit (TrajGRU). This
innovative mechanism, introduced to enhance ConvLSTM
performance, represents a significant advancement in their re-
search. This TrajGRU unit actively identifies positional differ-
ences in natural movements and variations, thereby effectively
capturing spatio-temporal relationships in meteorological data.
Wang et al. [31] enhanced ConvLSTM by integrating a spatio-
temporal memory component, improving its ability to model
the spatio-temporal dynamics in radar-captured images for
echo detection. Building on this ST-LSTM unit, the PredRNN
network further advances this by introducing skip connections
across multiple time steps, increasing the network’s depth
and enhancing its ability to capture long-range dependencies.
While ConvLSTM effectively integrates spatial and temporal
information, it struggles with long-term dependencies. The
addition of skip connections in PredRNN significantly en-
hances its ability to model complex, rapidly evolving systems,
such as radar echo progression. Wang et al. [43] innovatively
introduced the Memory in Memory (MIM) component for
RNNs, aiming to overcome the limitations of traditional LSTM
forget gates. These gates, being overly simplified, struggle
to accurately capture complex higher-order non-stationary
patterns in radar echo images. Agrawal et al. [44] treated
radar echo prediction as a visual representation translation
task and employed the U-Net architecture to forecast rainfall
across the continental United States. Their methodology drew
inspiration from U-Net and SegNet, originally intended for
tasks that required dividing data into two distinct segments,
Ayzel et al. [45] proposed the RainNet. Its extrapolation
results surpass those of the operational nowcasting model
provided by the German Weather Service (DWD). Jing et
al. [46] developed the MLC-LSTM model, which can deeply
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analyze the spatio-temporal relationships between radar echoes
at different levels and model their dynamic characteristics.
Han et al. [47] presented a 3D-CNN network that converts
the radar echo extrapolation problem into the classification
of reflectivity intensity. The experiment results demonstrate
that its performance is superior to traditional machine learning
methods [48]. Trebing et al. [49] introduced the depthwise
separable convolution and attention mechanism into U-Net to
constitute the SmaAt-UNet. Comparative experiment results
show that its predictive performance is comparable to models
which are of much larger scale [50]. Geng et al. [51] proposed
an extrapolation model named MCCS-LSTM with Context
Sensing Block and Multi-Scale Spatiotemporal block (MS
block). This model effectively alleviates the blurring problem
in long-term extrapolation tasks and enhances prediction ac-
curacy. Yang et al. [52] utilized a self-attention mechanism
by incorporating aglobal feature storage component into the
ST-LSTM recurrent unit, overcoming the limitations of con-
volutional kernel size on the model’s perceptual range. Huang
et al. [53] designed a new Location-Refining (LR) neural
network for heavy rainfall areas that are more threatened
by human activities, including a localization network and a
refinement network. The two networks are used to accurately
predict the location of rainfall, and estimating the intensity,
respectively. The application of deep learning in radar echo
prediction has achieved substantial advancements, particularly
within the context of edge computing. Modern approaches,
ranging from convolutional neural networks (CNNs) to frame-
works integrating attention mechanisms and physics-informed
models, have significantly enhanced predictive accuracy and
computational efficiency, meeting the stringent demands of
real-time operations. The transition of radar echo prediction
from theoretical research to practical deployment, particularly
in edge computing environments, has enabled rapid, localized,
and highly efficient forecasting. These advancements not only
improve predictive precision but also enhance the real-time
processing capabilities of models, laying a solid foundation for
the development of intelligent meteorological early warning
systems and driving innovation in extreme weather forecasting.

B. Deep Models for Other Spatiotemporal Sequence Predic-
tion Tasks

Radar echo prediction fundamentally involves the forecast-
ing of spatiotemporal sequences. Models in this domain share
similarities with those used in tasks such as video prediction,
traffic flow analysis, and typhoon path prediction, and are
equally applicable to radar echo prediction tasks.

Srivastava et al. [54] used a network constructed by LSTM
to learn the representation of video sequences for multi-
frame video prediction. Wang et al. [55] introduced a Causal
LSTM, which incorporates a Gradient Highway Unit (GHU)
and a unique dual-cascade gating structure. GHU alleviates
the vanishing gradient problem inherent in traditional re-
current neural networks by introducing new gradient prop-
agation paths. This enables gradients to flow along shorter
paths, enhancing the model’s ability to capture both short-
and long-term dependencies and improving the accuracy of

short-term precipitation forecasting. These two structures are
usually used to build the PredRNN++ network, which can
further alleviate the vanishing gradient problem that often
occurs in spatiotemporal sequence prediction tasks. Byeon
et al. [56] crafted a comprehensively context-aware model
framework that employs Parallel Multi-Dimensional LSTM
units to seize historical context data for each pixel, and
integrates these with hybrid units to enhance model clarity
in video prediction tasks. In order to tackle the issue that
earlier models had with grasping both immediate temporal
linkages and extended, complex interdependencies within data
sequences, Wang et al. [57] proposed the Eidetic 3D LSTM
(E3D-LSTM), which employs 3D convolution to enhance the
capture of short-term features by extracting information across
temporal, spatial, and channel dimensions. Unlike traditional
2D convolution, 3D convolution simultaneously processes the
dynamic variations of spatiotemporal data, thereby improving
the predictive capability for the short-term evolution of meteo-
rological events such as precipitation. Moreover, by employing
an attention mechanism, the model facilitates the interaction
between the historical state and the current memory state. This
approach enables more effective integration and utilization
of past information. Fan et al. [58] proposed a new video
prediction unit (CubicLSTM) to process temporal and spatial
states separately by two independent convolutional kernels
to obtain better prediction performance. Proposing a novel
approach, Lin et al. [59] developed the Self-Attention Memory
(SAM) module. This component is meticulously designed to
adeptly capture enduring interdependencies across spatial and
temporal dimensions. The SAM component is embedded into a
standard ConvLSTM unit to form the SA-ConvLSTM, which
can be applied to human action prediction and traffic flow
forecasting. Inspired by the idea of Partial Differential Equa-
tions (PDEs) describing physical knowledge, Guen et al. [32]
designed a dual-branch network PhyDNet for unsupervised
video prediction. The network has a physical branch composed
of PhyCell and a residual branch composed of ConvLSTM
units. This architecture enables PhyDNet to disentangle the
dynamic prior knowledge inherent in video content from
other variables required for video prediction, thereby achieving
more accurate modeling capabilitie. Su et al. [60] proposed a
higher-order convolutional LSTM model (Conv-TT-LSTM) to
learn long-term spatiotemporal correlations from video frames
in response to the poor performance of previous methods
for tasks involving long-term forecasting in video sequences.
Chai et al. [61] innovatively proposed the CE block focusing
on contextual interactions and the SE block for multi-scale
spatiotemporal representation. The two blocks are used to
constitute the CMS-LSTM to tackle the challenge posed by the
inherent uncertainty in predicting using continuous frames. Wu
et al. [62] proposed a Motion RNN network, which is able to
model complex changes of motion, while avoiding the problem
of motion disappearance in stacked multi-layer models.

III. METHODOLOGY

To thoroughly investigate the architecture and operational
mechanisms of the proposed components or models, this sec-
tion covers the Multi-Source Context Feature Fusion Module



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JULY 2024 5

C

3×3 Conv
Dilation=1

3×3 Conv
Dilation=2

3×3 Conv
Dilation=3

Conv

σ

·

Conv

σ

·

Conv

σ

·

Conv

σ

·

: Element-Wise Addition

: Hadamard Product

𝑯𝟎
	

𝑿𝟎	 𝑿𝟏	

𝑯𝟏
	

·
+

input

input

output

output
+

input
σ : Sigmoid Function

Conv𝑿𝒕𝒍

𝑯𝒕#𝟏
𝒍𝑯𝒕#𝟏

𝒍#𝟏

𝑯# 𝒕#𝟏𝒍

𝑿#𝒕𝒍

: Tensor ConcatC

Fig. 1. The structure of Multi-scales Contextual Feature Fusion Module (MCFFM). The left part shows the extraction operation of multi-source contextual
features, while the lower part is the obtained multi-order features. The right part shows the process of the fusion of these two types of features.

(MCFFM), the Feature Update Module incorporating Mixed-
Domain Attention (MAFUM), the MMST-LSTM recurrent
unit, and its corresponding data extrapolation network.

A. Module for fusing contextual features from multiple sources

To address the issue of potential neglect of high-intensity
radar echo features due to insufficient contextual connections
across adjacent frames in the gating process, this study in-
troduces an innovative Multi-Source Context Feature Fusion
Module (MCFFM). This module is positioned at the frontend
of the recurrent unit’s gating mechanism. Its structure is de-
picted in Fig. 1, where l denotes the lth level, and t denotes the
tth time step. X is the input state, and H is the hidden state.
The data fed into this module includes multi-scale features
obtained from X , and multi-order features obtained from H .
By introducing a multiscale feature extraction mechanism,
this module integrates multilevel information from both input
and hidden states to capture the spatiotemporal characteristics
of high-intensity echoes at different scales. The module is
designed to address the issue of significant feature loss caused
by increased depth in deep neural networks. Unlike existing
single-scale feature extraction methods, the Multiscale Context
Feature Fusion Module (MCFFM) captures echo region details
at varying resolutions, preventing the omission of critical infor-
mation during the complex evolution of echoes. Experimental
results demonstrate that MCFFM effectively enhances the pre-
diction accuracy for high-intensity echo regions, particularly
under complex weather patterns.

The operational process of the module begins with the use
of three dilated convolution kernels, similar to the structure of
Atrous Spatial Pyramid Pooling (ASPP), to extract and learn
features of radar echo changes from the new input state X l

t

[63]–[65]. The size of these three dilated convolutional kernels
is 3 × 3, and the dilation rates are specified as 1, 2, and 3,
respectively. Therefore, the size of their receptive fields is 3
× 3, 5 × 5 and 7 × 7, respectively. This can prevent the
holistic motion features of high-intensity radar echo areas from
being missed due to the size limitation of a lone convolutional

filter. The results from the dilated convolution operation,
consisting of three separate feature maps, they are combined
along the channel axis. Subsequently, the channel count is
modified using a 1 × 1 convolutional kernel. This step can be
represented by the equation given in Eq.(1). The convolutional
kernel w1×1 is employed to modify the channel count, while
wDk denotes the 3 × 3 convolutional kernel with a dilation
rate k. The selection of dilation rates is crucial for multiscale
feature capture. Smaller dilation rates (e.g., 1 or 2) focus on
local features, suitable for high-resolution and short-time-scale
radar echo data. Larger dilation rates (e.g., 4 or 8) expand
the receptive field, capturing long-range dependencies and
broader contextual information, thus improving global forecast
accuracy. This approach enhances the model’s ability to learn
long-term dependencies without significantly increasing com-
putational complexity, effectively balancing local details and
global context to improve predictions for complex temporal
data.

X0 = w1×1 ∗
([
wD1 ∗X l

t, wD2 ∗X l
t, wD3 ∗X l

t

])
(1)

Features of multiple orders are derived by summing the
previous hidden state H l

t−1 with the state H l−1
t−1 . Previous

models’ recurrent units typically only captured features from
H l

t−1, while H l−1
t−1 was only accessible across different points

in time and levels of the network. The proposed unit can
directly access state H l−1

t−1 , thereby preventing the accidental
omission of key feature information as with the expansion
of the network’s layers or temporal progression. The feature
information from various levels is held in H0. The information
can be alternatively expressed as: the unit directly acquires the
previous moment’s state information, avoiding potential loss
of critical feature information in deep networks or long time
series, and accumulates these multi-level feature details in the
initial state vector.

H0 = H l−1
t−1 +H l

t−1 (2)

Next, we integrate the input state X0 that encompasses
different scales or resolutions with the hidden state H0 that
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captures information across various orders or layers of com-
plexity through a feature fusion operation. A convolutional
kernel whx of size 5 × 5 is used for feature extraction from
H0, and the Sigmoid function is then utilized to scale the
values within the feature map to a range between 0 and 1. The
5 × 5 convolution kernel whx in image processing strikes an
optimal balance between computational efficiency and feature
extraction capability. Compared to the 3 × 3 convolution ker-
nel whx, the 5 × 5 kernel whx offers a broader receptive field,
enabling it to capture more intricate local details and complex
spatial patterns. The resulting map undergoes a Hadamard
product operation with X0. The outcome is denoted as X1.
Subsequently, we apply a second 5 × 5 convolutional kernel
wxh to extract features from X1, and then normalizing using
the function. The resulting map and H0 undergo element-wise
multiplication. The outcome is denoted as H1. By employing
this method, the early phases strengthen the contextual links
between the input and hidden states. This process is illustrated
as:

X1 = σ (Whx ∗H0)⊙X0 (3)
H1 = σ (Wxh ∗X0)⊙H0 (4)

Lastly, the above procedures are iterated to compute the
updated input state X̂ l

t and hidden state Ĥ l
t using Equations

Eq.(5) and Eq.(6). These two states are used as the input
of the gating mechanism operation. The important features
between them have been fused with each other. These two
states together form the foundational input for the gating
mechanism. Their key features have been mutually integrated,
enhancing the contextual connection between states. This
integration ensures that features linked to high-intensity echoes
are comprehensively taken into account during subsequent
gating processes, thus preventing any possible oversight.

X̂ l
t = σ (Whx ∗H1)⊙X1 (5)

Ĥ l
t = σ

(
Wxh ∗ X̂ l

t

)
⊙H1 (6)

The integration of the 5 × 5 convolution kernel and
multiscale feature extraction modules enhances the model’s
representation and feature-capturing capabilities, albeit with
increased computational complexity. Optimized resource
scheduling and model compression mitigate these demands
in edge computing, ensuring real-time performance [66].
The model excels in prediction accuracy and responsiveness,
particularly in disaster warning and intelligent transportation
applications.

B. Feature Update Module with Mixed-Domain Attention

Traditional models often exhibit limitations in effectively
capturing and modeling the dynamic variations of features
closely associated with high-intensity radar echoes [67]. In-
spired by advancements in image segmentation and object
detection fields [68], [69], to overcome this limitation, the
recurrent unit incorporates a novel Feature Update Module
guided by Mixed-domain Attention (MAFUM). Fig. 2 illus-
trates its structure. This module takes as input the hidden

state H ′l
t , the spatiotemporal memory cell unit M ′l

t obtained
by the gating mechanism operation of the current unit. The
element-wise addition of these is recorded as Fraw, which
is then forwarded to the subsequent operation of the mixed-
domain attention mechanism. Formulated as follows, this step
involves:

Fraw = H ′l
t +M l

t (7)

Subsequently, a mechanism designed to enhance the model’s
focus across multiple data domains is applied to Fraw, incor-
porating a mixed-domain attention mechanism. This mecha-
nism is specifically aimed at identifying key regions within
the input feature maps that are highly correlated with high-
intensity echoes. By combining spatial attention and channel
attention, the module addresses the uneven distribution of echo
intensities, thereby augmenting the model’s capacity to em-
phasize critical regions. The hybrid attention system integrates
channel attention, which selectively enhances certain feature
channels, with spatial attention, which prioritizes specific
spatial locations within the feature maps. These operations are
performed in a sequential manner. In contrast to conventional
single-domain attention mechanisms, MAFUM facilitates the
refined processing of features across multiple dimensions,
thereby significantly enhancing the model’s performance, par-
ticularly in the prediction of complex meteorological phenom-
ena. The input Fraw undergoes channel attention processing.
Both average pooling and max pooling operations are con-
currently conducted on it to gather spatial information from
the feature maps. This enables comprehensive spatial coverage
and improves the model’s capacity to detect a variety of
spatial patterns present in the input data. The results from
these two pooling operations, once excited and squeezed,
undergo an element-wise addition after being processed by
a shared Multilayer Perceptron (MLP) structure. The obtained
result by addition operation is applied Sigmoid function to
get the heat map, and then is multiplied element-wise with the
original input Fraw. The product result is the feature map FC ,
which required for subsequent spatial attention operation. By
incorporating the channel attention mechanism, the model is
able to efficiently identify and prioritize key features within the
input feature maps that are critical for the accurate prediction
of high-intensity radar echoes. This process is depicted as
follows:

Mc = σ (MLP (AvgPool (Fraw )) +MLP (MaxPool (Fraw )))
(8)

Fc = Mc ⊙ Fraw (9)

On this basis, a spatial attention mechanism is applied
to FC . This process prioritizes the input features by inde-
pendently performing average pooling and maximum pooling
across data points, followed by extracting the maximum values
within the channel dimension of the visual data arrays obtained
through convolution operations. Subsequently, these results are
merged across the channel dimension. The concatenated result
undergoes consecutive convolution operations followed by the
Sigmoid function to produce a heatmap that focuses on key
areas in the image. MS is element-wise multiplied (Hadamard
product) with the channel attention result FC , yielding a grid
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Fig. 2. The computation process within the Multi-Domain Attention-guided Feature Enhancement Unit (MAFUM). The left section illustrates the functioning
of the mixed-domain attention mechanism, which includes both channel-wise and spatial focus, allowing the model to efficiently concentrate on and learn
features crucial for high-intensity echoes, while the right part is the gating structure to update states and cells.

of detected features weighted by a mechanism that combines
different types of attention, such as spatial and channel, to
enhance feature processing. This series of operations can be
represented by the following equations:

Ms = σ (Ws ∗ [AvgPool (Fc) ,MaxPool (Fc)]) (10)
Fs = Ms ⊙ Fc (11)

Finally, the process of updating the hidden states and spatio-
temporal memory units mimics a control system for feature
flow found in GRU, as shown on the diagram’s right-hand
side. The calculations for the gating mechanism for input and
input modulation follow Eq.(12) and Eq.(13).

im = σ
(
Wm;fi ∗ Fs +Ws;mi ∗M ′l

t + bm;i

)
(12)

gm = σ
(
Wm;fg ∗ Fs +Ws;mg ∗M ′l

t + bm;ig

)
(13)

The obtained im and gm are used to update the spatiotem-
poral memory cell:

M l
t = im ⊙ gm + (1− im)⊙M ′l

t (14)

Similar to the other two gating processes, the output gate
om is calculated. The final hidden state is produced by taking
the result of the previous steps and applying the output
gate through an element-wise multiplication, which selectively
updates the state based on the relevance of the information.

om = σ
(
Wm;fo ∗ Fs +Ws;mo ∗M l

t + bm;io

)
(15)

H l
t = om ⊙H ′l

t (16)

After completing the above steps, the hidden states and
spatio-temporal memory units will be updated. This allows
the critical features that are closely associated with high-
intensity radar echoes to be effectively propagated across
different time steps and layers of the extrapolation network,

thereby enhancing the accuracy of predicting high-intensity
radar echoes. MMST-LSTM effectively addresses the lim-
itations of short-term and long-term dependency modeling
through multi-scale feature fusion and mixed-domain attention
mechanisms. While traditional LSTM performs well in model-
ing short-term dependencies, it struggles to capture long-term
dependencies [70]. By introducing an attention mechanism,
MMST-LSTM balances the modeling of short- and long-term
dependencies through weighted inputs across different time
steps. Compared to traditional LSTM and GRU, the attention
mechanism significantly enhances the model’s performance in
long-sequence tasks, demonstrating superior adaptability and
accuracy, particularly in complex temporal problems such as
extreme weather prediction.

C. Multi-Modal Spatio-Temporal LSTM Unit with its Projec-
tion Network

By leveraging the MCFFM and MA-FUM modules, the
capabilities of the ST-LSTM unit in handling complex spa-
tiotemporal data are significantly enhanced, particularly for
radar echo intensity prediction, culminating in the proposed
MMST-LSTM recurrent unit. Fig. 3 illustrates the architecture
of a single MMST-LSTM recurrent unit. The unit’s input
comprises the input state X l

t , the memory cell Cl
t−1 from the

previous time step, the unit’s input encompasses the memory
cell that amalgamates spatial and temporal data, represented
as M l

t−1, the encoded state H l−1
t−1 and H l

t−1. It’s important
to recognize that for units positioned in the first layer of
the network, their input is a tensor derived directly from the
current radar echo measurements. In other network layers,
the unit initiates its processing with the hidden state H l−1

t

inherited from the layer above. In other words, if the unit is
positioned in the highest stratum of the network, its input is
derived from the processed radar echo data. If the unit is in
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Fig. 3. The structure of a single MMST-LSTM recurrent unit. The MCFFM and MAFUM are the two components proposed in this paper. The upper part
and lower part are the two parallel gating structure to update the memory cells, which are same as those in original ST-LSTM unit.

the middle or bottom layers, its input is based on the output
state of the unit from the preceding layer.

The operational mechanism of the MMST-LSTM can be
described in the following manne. First, the previous hidden
statesH l−1

t−1 , the current hidden states H l
t−1 and the input at

time t, X l
t are all fed into the MCFFM for feature consoli-

dation, this step aims to reinforce the connection between the
current context and the most recent data input. The fusion
result is Ĥ l

t−1 and X̂ l
t . This step can be formulated as:

X̂ l
t, Ĥ

l
t−1 = MCFFM

(
X l

t, H
l−1
t−1 , H

l
t−1

)
(17)

Then, performing gated mechanism operation on Ĥ l
t−1, X̂ l

t

and two memory cells. The calculation process is same as that
in the original ST-LSTM cell. Two parallel gating mechanisms
are performed to update the memory cells. These two gating
structures each possess their own forget gate, data flow control
mechanism, and input influence modulation gate, while the
filter gate is shared. In the upper part of the recurrent unit,
the gate that decides what to discard from memory, the gate
for new information intake and the gate for adjusting input
influence are obtained by four different convolution kernels
from the input state and the gate for retaining and updating
memory content, according to Eq.(18) to Eq.(21):

ft = σ
(
Wxf ∗ X̂ l

t +Whf ∗ Ĥ l
t−1 + bf

)
(18)

it = σ
(
Wxi ∗ X̂ l

t +Whi ∗ Ĥ l
t−1 + bi

)
(19)

gt = tanh
(
Wxg ∗ X̂ l

t +Whg ∗ Ĥ l
t−1 + bg

)
(20)

ot = σ
(
Wxo ∗ X̂ l

t +Who ∗ Ĥ l
t−1 + bo

)
(21)

Upon successfully deriving the aforementioned four control
gates, the unit utilizes mechanisms from the original Long
Short-Term Memory (LSTM) network to systematically filter
and discard obsolete features within the memory cell C that

have become irrelevant over temporal progression. Meanwhile,
through the gate that filters new inputs into the memory cell
it and the gate that adjusts the influence of incoming data gt,
the unit can identify and absorb key features from the current
state of data being processed. In other words, the unit uses
these control gates to optimize its memory content, discarding
outdated or irrelevant information and focusing on valuable
features in the current input [71].

Cl
t = ft ⊙ Cl

t−1 + it ⊙ gt (22)

Consistent with the upper-layer structure of the unit, the
spatio-temporal memory cell M and the input state X are also
refreshed via an additional set of regulatory gates. This means
that, similar to the operation of the upper-layer units, the
memory cell and input state are updated by gating mechanisms
that align them with current data trends. This group of gates
computes by filtering and adjusting information flow is similar
to the calculation method of ft, it and gt. Another group of
convolutional kernels W ′

f , W ′
i and W ′

g are applied to X̂ l
t and

M̂ l−1
t to get them, according to Eq.(23) to Eq.(25):

f ′
t = σ

(
W ′

xf ∗ X̂ l
t +W ′

hf ∗ Ĥ l
t−1 + bf

)
(23)

i′t = σ
(
W ′

xi ∗ X̂ l
t +W ′

hi ∗ Ĥ l
t−1 + bi

)
(24)

g′t = σ
(
W ′

xg ∗ X̂ l
t +W ′

hg ∗ Ĥ l
t−1 + bg

)
(25)

The memory cell M is refreshed with key spatiotemporal
features, following a similar approach to how memory cell C
is updated:

M ′l
t−1 = f ′

t ⊙ C ′l
t−1 + i′t ⊙ g′t (26)

Subsequently, the feature representations of the two updated
memory cells are concatenated along the channel axis. The
output gate ot is then employed for an element-wise multipli-
cation, known as the Hadamard product on the concatenated



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JULY 2024 9

result to obtain the hidden state H ′l
t . This step can be encap-

sulated with the following equation:

H ′l
t = ot ⊙

[
Cl

t,M
′l
t−1

]
(27)

Finally, the intermediate hidden state H ′l
t and the modified

memory M̂ l−1
t are directed to the MAFUM, which directs

the model’s focus to features closely associated with high-
intensity radar echoes. Following this, the hidden states and
spatiotemporal memory units are reconfigured and propagated
to the subsequent recurrent unit, thereby enhancing the model’s
precision in predicting the trajectories of intense radar echoes.
This can be formally represented with a mathematical formula:

H l
t ,M

l
t−1 = MAFUM

(
X̂ l

t, Ĥ
l
t−1

)
(28)

Following the settings in some previous works [10], [31],
[52], [55], [59], [72], the proposed MMST-LSTM units are
arranged in a stack to construct a network with four layers,
and its architecture is shown in Fig. 4.

Each vertical stripe in the figure represents the sequence of
recurrent units present within each layer at a given time step,
while each row depicts the temporal flow of memory cells
and states within the current layer. At the first time step, all
memory cells and hidden states of the initial unit are initialized
with tensors comprising elements set to zero. For units in
the lth layer at time step t, the updated temporal memory
cell C is passed laterally to the unit within the same layer
at the subsequent time step, the revitalized spatiotemporal
memory unit M is conveyed vertically to the unit in the layer
immediately following, at the present time step. The memory
unit propagates to the recurrent unit of the subsequent layer.
For top-layer units, the memory unit M will propagate to the

first-layer unit at the subsequent time step. M is conveyed
simultaneously across spatial and temporal domains, thereby
incorporating spatiotemporal characteristics. For the output
hidden states, the proposed extrapolation network follows
the original structure of ConvLSTM and other LSTM-based
units, they are disseminated in both the horizontal and vertical
dimensions. It is important to note that for unit which are not
at the top layer, H is also transmitted to the unit at layer l+1
at moment t+ 1 as its input along the route of the red arrow
in the figure. In this manner, the recurrent unit acquires multi-
order features, enhancing contextual correlation and preventing
the omission of features closely associated with high-intensity
echoes.

IV. EXPERIMENTS

This section will cover the dataset used for experiments,
parameter configurations during the training phase, and evalu-
ation criteria. Additionally, it will present and deeply analyze
the quantitative results and visual outputs of the experiments.

A. Datasets

This study uses two real-world radar echo datasets to
evaluate the proposed model’s effectiveness and validate its
new features. The experimental findings from these datasets
underscore the model’s substantial applicability in advancing
intelligent applications, enabling secure and efficient data
exchange processes [73].

The first dataset, referred to as the GZ dataset, comprises
radar echo images captured by a Doppler weather radar in
Guangzhou, China, over four consecutive rainy seasons. The
data is partitioned into training, validation, and testing sets to
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ensure the independence of each segment. The sequences in
these three datasets consist of 5773, 670, the dataset is split
into distinct groups for training and validation, each containing
800 data points, while the test group comprises a separate
collection of instances, and the test set comprising 1000
instances, respectively. Each sample consists of a sequence
of 20 composite reflectivity (CR) images captured by the
meteorological radar within a 120-minute interval. In the
experiments, each model predicts the subsequent 10 images
based on the first 10 radar reflectivity maps in each sequence.
Each map in its original form measures 500 × 500 pixels,
with a spatial resolution of 1 kilometer per pixel. To alleviate
computational demands, the maps in the GZ dataset were
scaled down to 100 × 100 pixels.

The second dataset chosen is sourced from the 2017 CIKM
AnalytiCup contest, which provides publicly available radar
echo data. The dataset consists of 8,000 and 2,000 samples,
with the training set comprising 4,000 sequences, along with
validation and testing sets. Each group of data includes 15
radar echo images, captured at 6-minute intervals, with an
observation period of 90 minutes per sequence. In these
experiments, aevery model is tasked with forecasting the final
10 images of each sequence using the initial 5 radar echo
images as a reference. Each radar echo map has dimensions
of 101 × 101 pixels, corresponding to a coverage area of
101 by 101 kilometers in Shenzhen, China. To ease the
model training process, the dataset’s maps are partitioned into
smaller sections, and the peripheral areas of each section are
supplemented with zeros to maintain structure. Consequently,
the dimensions of the newly acquired radar echo image are
104 × 104.

To avoid the influence of non-precipitation data on the
extrapolated maps, points with intensity values below 10 dBZ
or above 70 dBZ were replaced with 0. This indicates no data
points in the two datasets [72], [74]. The conversion between
intensity value and pixel value are implemented by Eq.(29):

Pixel =

⌊
255×

(
dBZ

70

)
+ 0.5

⌋
(29)

B. Experimental Setup

To evaluate the performance of the proposed model in radar
echo prediction, a series of comparative experiments were
conducted. Several representative and innovative deep learning
models, published in top-tier computer science conferences,
were selected as benchmarks. The selection of these models
is attributed to their profound influence within both academic
and industrial domains [75]. By comparing our model against
these benchmarks, we aim to highlight the improvements and
optimizations in our model’s predictive performance, including
ConvLSTM [29], PredRNN [31], PredRNN++ [55], Memory
in Memory (MIM) [43], PhyDNet [32] and SA-ConvLSTM

[59]. All the aforementioned models are arranged in a four-
layer stack to form the radar echo prediction networks. The
number of feature maps is 64, and each layer of them has
a convolution kernel size of 5 × 5 and each layer of these
networks contains 64 feature maps. All models are trained on
Nvidia RTX 3080Ti with the optimizer Adam. Scheduled sam-
pling [76], early stopping training [77] and layer normalization
[78] strategies were used during the training process.

To address the issue of radar echo intensity being biased
towards the mean or median when using Mean Squared Error
(MSE) or Mean Absolute Error (MAE) as the loss function,
this study adopts the Balanced Mean Squared Error (BMSE),
as formulated in Eq.(30).

The dimensions of the radar echo map are represented by
H for height and W for width. Xt+1:t+k is the k observed
maps, and X̂t+1:t+k is the corresponding extrapolated maps.
The coordinates of the points in the maps are represented as
(i, j). The variable w(i, j) represents the weight corresponding
to the radar echo intensity at the coordinate (i, j). By judg-
ing the intensity range of each point, BMSE multiplies the
corresponding weights with the original intensity value, the
features of high-intensity echo areas that account for a small
proportion can be amplified, and thus be paid attention to by
the models. The weighting function w(i, j) is formulated in
the following manner:

ω(i, j) =


1, X(i, j) ≤ 20
2, 20 ≤ X(i, j) < 30
5, 30 ≤ X(i, j) < 40
10, 40 ≤ X(i, j)

(31)

C. Evaluation Metrics

When assessing the model’s efficacy in forecasting radar
echo images, this study introduced two widely recognized
metrics from the field of computer vision: Mean Square
Error (MSE) and Structural Similarity Index (SSIM). MSE, a
numerical measure assesses the variance between the predicted
radar imagery and the genuine observations, with smaller
values indicating higher prediction accuracy. SSIM assesses
the structural similarity of the images, enhancing MSE with
a broader assessment of the model’s predictive accuracy.
SSIM evaluates the structural similarity between predicted and
observed images, with higher SSIM values indicating greater
similarity between the two images in terms of structure. These
two metrics are calculated according to Eq.(32) and Eq.(33),
where µx and µy are the mean values of the extrapolated
map and observed map, respectively. The σx and σy are their

BMSE =

∑H
i=1

∑W
j=1 w(i, j)×

(
X̂t+1:t+k(i, j)−Xt+1:t+k(i, j)

)2

H ×W
(30)
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variances, respectively. C1 and C2 are positive constants.

MSE =

∑H
i=1

∑W
j=1

(
X̂t+1:t+k(i, j)−Xt+1:t+k(i, j)

)2

H ∗W
(32)

SSIM =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (33)

Furthermore, in alignment with prior studies [9], [36], [79],
[80], the Critical Success Index (CSI) and Heidke Skill Score
(HSS), both widely recognized as standard evaluation metrics
in meteorology, have been incorporated as supplementary
assessment criteria. CSI measures the proportion of correctly
predicted precipitation events among all predicted and ob-
served precipitation events. It reflects the model’s ability to
capture precipitation events, which is especially important in
forecasting extreme weather. HSS evaluates the skill of the
model’s predictions by comparing them to random predic-
tions, removing the influence of accidental correct predictions.
These two metrics effectively assess the model’s performance
in high-intensity precipitation and extreme weather events.
Higher CSI and HSS scores indicate better predictive accuracy
in high-reflectivity regions. The calculations for these two
metrics are conducted through the subsequent procedures.
Given a threshold τ of intensity, the Observation matrix O
correspond to the observed map, and Prediction matrix P
correspond to the extrapolated map. These two matrices are
binary matrices. For the point pair with coordinates (i, j) in the
real observed map X and the extrapolated map X̂ , comparing
the value of the two points with the threshold τ . If the value of
X(i, j) is greater than τ , then the value of O(i, j) is set to 1. If
it is less than τ , then the value of O(i, j) is set to 0. Similarly,
the value of each point in the Prediction matrix can be
obtained. The classification of the point pair is then determined
based on the categorization methodology outlined in Table
I, these metrics are based on four key prediction outcomes:
correct identification of events (TP), correct identification of
no events (TN), incorrect prediction of events (FP), and missed
events (FN).

TABLE I
THE RULES FOR DETERMINING THE CATEGORY OF THE POINT PAIR

O(i, j)AND P (i, j).

The value of O(i,j) The value of P(i,j) Category
1 1 True Positive (TP)
0 0 True Negative (TN)
0 1 False Positive (FP)
1 0 False Negative (FN)

In conclusion, tally the count for each type of outcome
pair. The CSI and HSS are subsequently calculated using the
equations provided in Eq.(34) and Eq.(35):

CSI =
TP

TP + FP + FN
(34)

HSS =
2× (TP× TN− FN× FP)

(TP + FN)× (FN + TN) + (TP + FP)× (FP + TN)
(35)

D. Comparative Experiment

Table II presents the numerical results of all models on the
GZ test set across the four selected evaluation metrics. The
data demonstrate that the extrapolation network constructed
with the proposed MMST-LSTM unit achieves the highest
scores across all evaluation criteria. The second-ranked is the
extrapolation network built by SAConvLSTM units, which
precisely captures the progression of radar echoes, aided by the
Spatial Attention Module (SAM), yielding superior outcomes.
However, due to the lack of structures that can help it pay
attention to the relevant features of high-intensity echoes, its
CSI and HSS scores are lower than the proposed MMST-
LSTM when the threshold τ is set to 40 dBZ. Compared
with SAConvLSTM, the Critical Success Index (CSI) scores
for the MMST-LSTM model at three thresholds are improved
by 2.48%, 1.84% and 15.00%, respectively. The average CSI
score improved by 4.68%. The Heidke Skill Score (HSS)
increased by, 1.49% and 11.47% at the three thresholds,
respectively. The average HSS was improved by 4.26%. Its
MSE score decreased by 6.72% and the Structural Similarity
Index Mean (SSIM) increased by 8.08%. Compared to the
baseline model ST-LSTM, MMST-LSTM reduces the MSE
score by 17.07% and improves the SSIM score by 14.02%.
When the threshold is set to 20 dBZ, CSI and HSS improve
by 5.05% and 4.82%, respectively; when the threshold is set
to 30 dBZ, they improve by 13.91% and 11.57%, respectively;
and when the threshold is set to 40 dBZ, CSI and HSS
increase by 40.11% and 32.75%, respectively. Higher thresh-
old settings prioritize high reflectivity regions, enhancing the
model’s ability to capture extreme weather phenomena. This
is especially evident in regions where the threshold reaches
40 dBZ, where the model’s performance shows significant
improvement. The increased sensitivity to high reflectivity
regions enables MMST-LSTM to achieve higher accuracy in
predicting high-intensity radar echoes. By introducing physical
constraints, particularly partial differential equation constraints
in high-intensity echo regions, the model’s ability to capture
the evolution of echoes is enhanced, significantly improving
prediction accuracy. Integrating the MCFFM and MAFUM
components results in improved accuracy in high-intensity
radar echo prediction. Nevertheless, this improvement may be
less pronounced in low-reflectivity regions or rapidly chang-
ing conditions, and the focus on high-intensity areas could
introduce trade-offs when handling lower-intensity patterns.
However, in extreme weather scenarios, such as heavy rainfall
events with reflectivity exceeding 40 dBZ, the errors are
primarily concentrated near the boundaries of high-intensity
echoes. This is hypothesized to be due to the relatively low
proportion of such scenes in the training samples. Furthermore,
the analysis suggests that the prediction errors in these regions
may stem from insufficient feature learning, which results
in the model’s insufficient attention to the dynamic changes
occurring in these areas.

To assess the robustness of the extrapolation performance
across all models, the score curves for the selected metrics with
respect to forecast lead time on the GZ test set are illustrated
in Fig. 5. It is evident that the extrapolation network built
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TABLE II
THE QUANTITATIVE RESULTS ON THE GZ TEST SET IN TERMS OF THE SELECTED FOUR METRICS IN THE COMPARATIVE EXPERIMENT.

Model CSI ↑ HSS ↑ MSE ↓ SSIM ↑CSI-20 CSI-30 CSI-40 Average HSS-20 HSS-30 HSS-40 Average
ConvLSTM 0.578 0.479 0.222 0.427 0.645 0.598 0.347 0.529 184.256 0.426
PredRNN 0.605 0.470 0.227 0.434 0.679 0.585 0.349 0.538 176.266 0.439

PredRNN++ 0.624 0.510 0.247 0.460 0.699 0.626 0.378 0.567 160.264 0.475
MIM 0.629 0.507 0.252 0.463 0.705 0.624 0.383 0.571 157.900 0.485

PhyDNet 0.608 0.507 0.242 0.452 0.683 0.627 0.373 0.561 159.537 0.497
SAConvLSTM 0.621 0.526 0.277 0.474 0.694 0.643 0.416 0.584 156.702 0.503
MMST-LSTM 0.636 0.536 0.318 0.497 0.711 0.653 0.464 0.609 146.169 0.5431

by the proposed MMST-LSTM outperforms other compared
models for all metrics at all time steps, showing its improved
extrapolation performance. Its curve exhibits a slower rate of
decline compared to other models, indicating greater stability
and sustained superior performance over time. In addition, in
terms of 40 dBZ, the highest threshold, the CSI and HSS
curves of MMST-LSTM have large distances from others’,
this suggests that the MCFFM and MAFUM empower the
model to efficiently hone in on the characteristics linked to
intense radar returns, thereby facilitating precise forecasts of
their subsequent developmen.

Fig. 6 shows the visualization of a typical sequence selected
from the results of comparative experiment conducted on the
GZ Dataset. This sequence depicts the movement of echoes
from the left part of the map toward the center. It should be
noted that, as marked by the red box, there is a red band-
area that represents high-intensity echoes, which is closely
related to possible destructive precipitation events. It is crucial
for models to predict it accurately. The ConvLSTM failed to
correctly predict the yellow and red areas in the map because
its structure is relatively too simple to capture features related
to the variations of high-intensity echoes. The PredRNN built
by ST-LSTM units, the baseline model, which are added
the spatiotemporal memory cells, had improved extrapolation
performance for high-intensity echoes. But notice that the
red area marked by the red box shows a scattered shape
rather than the band shape in the observed map. Although
PredRNN++, MIM and SA-ConvLSTM predicted the band-
like echo region successfully, the intensity of the echoes is still
underestimated due to the lack of components that can help
the model focus on features related to high-intensity echoes.
The last row is the extrapolated maps of the network built by

MMST-LSTM units. They are closest to the real observed echo
maps compared to those of other models. This is attributed to
the newly proposed components MCFFM and MAFUM. The
MCFFM enhance the contextual feature association between
the new input state at the current moment and the hidden state
from the previous moment, thus preventing some important
features from being forgotten during the gating operation and
not being recalled again. The MAFUM tells the model which
features in the newly obtained feature map are closely related
to high-intensity echoes and need special attention, and where
the model should find these features in the feature map for
capture and learning, so as to achieve accurate extrapolation
of variations of high-intensity echoes.

Despite the successes of PredRNN++, MIM, and SA-
ConvLSTM in predicting banded echo regions, their predic-
tions still fall short in echo intensity due to the lack of com-
ponents specifically designed for high-intensity echo features.
At the bottom row of the table are extrapolated images pro-
duced by networks using MMST-LSTM units, which closely
resemble actual observed radar echo images. This advantage
is primarily attributed to the newly introduced MCFFM and
MAFUM components.The MCFFM fortifies the relationship
between the current input’s contextual features and those of
the preceding hidden state, effectively preventing the loss of
important features during gating processes. MAFUM guides
the model in identifying features closely related to high-
intensity echoes in new feature maps, indicating where the
model should look and capture these features precisely to learn
and predict changes in high-intensity echoes accurately.

Comparative experiments were also conducted on another
publicly available radar echo dataset, CIKM 2017, to evaluate
the model’s generalization capabilities and substantiate its
broad applicability. When contrasted with the GZ Dataset, the

TABLE III
THE QUANTITATIVE RESULTS ON THE CIKM 2017 TEST SET IN TERMS OF THE SELECTED FOUR METRICS IN THE COMPARATIVE EXPERIMENT.

Model CSI ↑ HSS ↑ MSE ↓ SSIM ↑CSI-20 CSI-30 CSI-40 Average HSS-20 HSS-30 HSS-40 Average
ConvLSTM 0.394 0.214 0.087 0.232 0.466 0.332 0.159 0.319 140.614 0.486
PredRNN 0.389 0.227 0.097 0.238 0.445 0.345 0.174 0.321 157.030 0.479

PredRNN++ 0.402 0.241 0.104 0.249 0.469 0.364 0.185 0.339 150.002 0.485
MIM 0.415 0.249 0.114 0.259 0.485 0.374 0.203 0.354 138.125 0.505

PhyDNet 0.367 0.185 0.093 0.215 0.432 0.289 0.168 0.296 171.097 0.417
SAConvLSTM 0.404 0.234 0.118 0.252 0.471 0.352 0.208 0.344 167.122 0.478
MMST-LSTM 0.424 0.271 0.149 0.281 0.499 0.405 0.257 0.387 134.015 0.507
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Fig. 5. The score curves of selected metrics on the GZ test set with respect to the forecast lead time.
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Fig. 6. The score curves of selected metrics on the CIKM 2017 test set with respect to the forecast lead time.

echo map in this dataset covers a smaller area, so models re-
ceive less features of radar echo evolution, which increases the
challenge of the extrapolation task. Table III shows the quanti-
tative result of all models on the CIKM 2017 test set in terms
of the four selected metrics. The proposed MMST-LSTM still
obtained the best results, and the second-ranked is MIM.
Compared with it, the CSI scores of the proposed MMST-
LSTM saw an enhancement of 2.15%, 9.09% and 30.41%
for three thresholds, respectively. The proposed MMST-LSTM
model achieved a 2.82% boost in its Heidke Skill Score
(HSS), 8.28% and 26.70% for three thresholds, respectively.
The model realized an 8.52% increase in the mean CSI score
and a 9.30% increase in the mean HSS score, respectively. Its
MSE score decreased by 2.98% and SSIM score improved
by 0.48%. The SA-ConvLSTM followed the MIM, which
performs slightly worse than MIM because the model gets less
information about the holistic radar echo variation. Compared
with PredRNN, the MMST-LSTM improves significantly. Its
CSI scores improved by 8.86%, 19.48% and 53.56% under
three different thresholds, respectively. There was an 18.32%
rise in the average CSI score. the HSS score improved by
12.08%, 17.55% and 47.27% for the three different thresholds,
respectively. The average HSS score improved by 20.40%.
Its MSE score decreased by 14.66% and the SSIM score
improved by 5.85%. The above results illustrate the general
applicability and improved extrapolation performance of the
proposed MMST-LSTM built network at different scales of
radar echo datasets.

Fig. 7 shows all models’ score curves of four metrics on
the CIKM 2017 test set with respect to the forecast lead
time. Compared to the GZ Dataset, the increased extrapolation
difficulty causes a decrease in all models’ scores for each
metric. Although the distance between the curves of the pro-
posed MMST-LSTM and other models smaller, its curves still
decrease the slowest. It’s worth noting that at the 60-minute
lead time for the top threshold of 40 dBZ, the CSI and HSS
scores for many models are almost negligible, while the curve
of MMST-LSTM still lies above all the curves, indicating its
ability to maintain a better extrapolation performance with
increasing time.

Fig. 8 is the visualization of a representative sequence
selected from the test results of comparative experiment con-
ducted on CIKM 2017 dataset. This sequence dipicts the
aggregation process of the echo from the right part of the
map towards the center. The red and orange areas representing
possible heavy precipitation events are also marked by red
box. Except for PhyDNet, all other models predicted the trend
of radar echo movement relatively accurately. However, in
the extrapolated maps of ConvLSTM and SA-ConvLSTM,
the area of the echoes is smaller than that in the corre-
sponding observed map. PredRNN, PredRNN++, and MIM
failed to correctly predict the red area marked by the red
box representing high-intensity echoes. Only the extrapolation
network built by the proposed MMST-LSTM makes the most
accurate predictions of both the trend of radar evolution and
its intensity. The result again illustrates the improved ability
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Fig. 7. The score curves of selected metrics on the CIKM 2017 test set with respect to the forecast lead time.
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Fig. 8. The visualization of a typical sequence selected from the results of comparative experiment conducted on the CIKM 2017 Dataset. The extrapolation
network built by the proposed MMST-LSTM units obtained the best results. It accurately predicted the evolution trends and intensity of echoes. In extrapolated
maps of other models, the problem that echo dissipation or underestimation appeared.

TABLE IV
THE QUANTITATIVE RESULTS ON THE GZ TEST SET IN TERMS OF THE FOUR SELECTED METRICS IN THE ABLATION STUDY.

Model CSI ↑ HSS ↑ MSE ↓ SSIM ↑CSI-20 CSI-30 CSI-40 Average HSS-20 HSS-30 HSS-40 Average
Baseline Model 0.605 0.470 0.227 0.434 0.679 0.585 0.349 0.538 176.266 0.439
wo. MAFUM 0.614 0.521 0.252 0.4622 0.686 0.638 0.385 0.570 160.987 0.501
wo. MCFFM 0.619 0.513 0.276 0.470 0.693 0.630 0.415 0.580 155.222 0.530
MMST-LSTM 0.636 0.536 0.318 0.497 0.711 0.653 0.464 0.609 146.169 0.543

of MMST-LSTM for high-intensity echoes extrapolation.

E. Ablation Study

To demonstrate the effectiveness of the two proposed com-
ponents, the ablation study is conducted on the GZ Dataset.
MCFFM and MAFUM were added to the original baseline
model ST-LSTM unit, respectively. Therefore, the objects of
the ablation study including the baseline model ST-LSTM,
MMST-LSTM wo. MAFUM (MMST-LSTM without MA-
FUM), MMST-LSTM wo. MCFFM (MMST-LSTM without
MCFFM), and the standard MMST-LSTM. They are respec-
tively constructed the extrapolation network for performing ex-
trapolation tasks. Table IV shows the quantitative result of the
ablation study. The baseline model is added the MCFFM and

MAFUM, respectively, both scores of the two obtained models
in terms of all metrics are improved. With the MCFFM, the
original model is able to enhance the contextual correlation
between states and avoid some features from being forgotten,
so its CSI and HSS scores are higher at some thresholds. With
the help of MAFUM, the original model can focus on those
features that are closely related to high-intensity echoes in the
updated feature map, and then capture them, so the scores of
MMST-LSTM without MCFFM under the highest threshold is
significantly improved. The network built by standard MMST-
LSTM units achieved the best performance, which is attributed
to the cooperative work of these two components.Compared to
the baseline models, MMST-LSTM demonstrates exceptional
performance in predicting high-intensity echoes, proving the
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Fig. 9. The visualization of a typical sequence selected from the results of ablation study conducted on the GZ Dataset. In the echo map extrapolated by the
proposed MMST-LSTM, the red area marked by the red box representing the potential precipitation events is closest to ground truth. It shows the effectiveness
of MCFFM and MAFUM in improving extrapolation performance for high-intensity echoes.

effectiveness of the multi-scale feature extraction module in
capturing complex features. Moreover, while MMST-LSTM
slightly increases computational complexity, the significant
improvement in prediction accuracy more than compensates
for this cost.

Fig. 9 is the visualization of a representative sequence
selected from the results of ablation study conducted on
GZ dataset. This sequence presents the gradual aggregation
process of echoes in the center of map. The red box marks
a red echo area, and new echoes are continuously generated
and aggregate around it. As can be seen from the extrapolated
results, the baseline model failed to predict the red echo area
correctly due to the lack of MCFFM and MAFUM, and it
cannot focus on the important features in the feature map
updated by the gating structure. The intensity of some other
echoes in its extrapolated maps are also underestimated. The
MMST-LSTM wo.MAFUM and MMST-LSTM wo. MCFFM
only successfully predicted the orange echo area in the red box
but failed to predict the red echo area. This is mainly because
they have forgotten or failed to pay attention to important
features related to high-intensity echoes. The last row shows
the maps extrapolated by the standard MMST-LSTM. The
red area marked by the red box are the closest to the real
observed maps. With the help of MCFFM and MAFUM, the
high-intensity echo-related features are prevented from being
forgotten, and the features that evolve with the high-intensity
echoes in the updated feature map are effectively learned and
accurately predicted.

V. CONCLUSION AND FUTURE WORK

This study addresses a prevalent challenge in traditional
radar echo prediction techniques: the systematic underesti-
mation of high-density echo signals. This issue primarily

arises from two critical factors: the inherent limitations of the
model and the uneven distribution of intensity levels within
real-world radar echo datasets, both of which significantly
contribute to the complexity of the task. To address these
model shortcomings, this article presents two novel compo-
nents, the MCFFM and MAFUM are key enhancements to
the prediction model. The MCFFM integrates features from
various sources, while the MAFUM refines feature updates
through cross-domain attention, both contributing to improved
radar echo forecasting. These components form the core recur-
rent mechanism of the MMST-LSTM network. The MCFFM
is designed to operate before the gating mechanism of the
LSTM unit, enhancing the interconnection between input data
and hidden states by integrating feature information from
different scales and levels. This integration helps to effectively
prevent the loss of high-intensity echo features.The MCFFM
component is positioned before the gating mechanism of
the LSTM recurrent unit. This design aims to strengthen
the connection between input data and internal hidden states
by integrating feature information from different levels and
dimensions, ensuring that features related to high-density
echoes are effectively preserved. The MAFUM is positioned
subsequent to the LSTM unit’s gating mechanism. Its purpose
is to assist the model in identifying features closely related
to high-intensity radar echoes and to guide the model in
detecting and focusing on these features in critical areas.
For the second factor, this paper uses BMSE to train all
models, so that the features related to high-intensity echoes
that account for a small proportion are amplified and thus
attended to by the models. The MMST-LSTM model proposed
in this study demonstrates excellent performance on specific
radar echo datasets. In extreme weather conditions, particularly
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in high-intensity precipitation regions, the model effectively
predicts the dynamics of high-intensity echoes. The subsequent
incorporation of low-intensity echo data can enhance the
model’s ability to capture the early stages of storm devel-
opment, such as the formation of weak echoes before high-
intensity signals. By learning these initial patterns, the model
can better predict storm intensification and movement, aiding
in the prediction of the spatial and temporal progression of
extreme weather, leading to more accurate regional warnings.
In edge computing environments, although inference efficiency
has been optimized, computational complexity remains high
when processing large-scale data. Future research will focus
on enhancing the model’s generalization ability, especially its
adaptability across different climates and geographical regions.
Transfer learning will be a key technique to improve cross-
regional prediction capabilities, enabling rapid adaptation to
climatic differences and data scarcity in target domains by
transferring knowledge from the source domain. Furthermore,
integrating partial differential equations (PDEs) for modeling
the spatiotemporal evolution of echoes will further enhance the
model’s ability to handle extreme weather patterns, achieving
a deep integration of physical constraints and data-driven
methods to improve prediction accuracy and stability. In mo-
bile edge computing and consumer electronics, this integrated
model can efficiently operate in low-latency and low-power en-
vironments, providing real-time and accurate extreme weather
predictions for smart devices. By incorporating transfer learn-
ing and physical constraints into edge computing, the model
will adapt to complex climate conditions across regions. It
will also provide efficient meteorological services on resource-
constrained edge devices, driving the development of smart
hardware towards higher precision and intelligence. Future
research could combine physical constraints, such as partial
differential equations, with data-driven methods to improve
the accuracy and efficiency of extreme weather predictions.
When applied to consumer electronics, this could enable smart
devices to deliver more accurate real-time weather forecasts
under low-latency, low-power conditions.
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