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Abstract
BirdNET is a popular machine learning tool for automated recognition of bird sounds. Here we evaluate
how BirdNET settings affect the model performance both at vocalization and species levels, using 4,225
one-minute recordings from 67 recording locations worldwide.

Giving equal importance to recall and precision, a low con�dence score threshold (0.1-0.3) appears
optimal for detecting bird vocalisations, whereas higher thresholds (around 0.5) are more suitable for
characterising bird communities.

Based on our �ndings, we recommend increasing the Overlap parameter from its default value of 0
seconds to 2 seconds, as this consistently improves BirdNET performance in detecting both individual
vocalisations and species presence.

The effect of the Sensitivity parameter varied across regions. However, a value of 0.5 maximises global
performance for community-level analyses across all con�dence thresholds, while a value of 1.5
generally yields better results for vocalisation-level studies, particularly at low con�dence thresholds.

INTRODUCTION
Passive acoustic monitoring (PAM) is a non-invasive, automated method extensively used for bird
monitoring (e.g., Darras et al., 2019; Pérez-Granados and Traba, 2021). A key advancement in this �eld
has been the development of machine learning (ML) and deep learning algorithms for the automated
identi�cation of bird vocalisations (Stowell, 2022; Xie et al., 2023), with BirdNET being amongst the most
widely used software (Kahl et al., 2021; Pérez-Granados, 2023). BirdNET is based on a convolutional
neural network, capable of identifying over 6,500 bird species worldwide (Kahl et al. 2021). BirdNET
divides recordings into 3-second segments and generates multispecies predictions of species presence
for each segment. Each prediction is assigned a quantitative Con�dence score from 0.01 (low model
certainty in the identi�cation) to 1 (very high model certainty), allowing users to �lter BirdNET outputs
based on a con�dence score threshold. Setting a low con�dence score threshold minimises the risk of
false negatives (i.e., missed detections) but increases the likelihood of false positives (i.e., mislabelled
detections), and vice versa for a high con�dence threshold (Wood and Kahl, 2024).

In addition to the Con�dence score threshold, BirdNET allows users to adjust two other parameters: 1)
Overlap (range: 0–3 s), which controls the degree of overlap between consecutive 3-second segments,
and 2) Sensitivity (range: 0.5–1.5), which adjusts how sharply BirdNET separates con�dence scores for
each species: values < 1 of Sensitivity increase the model’s certainty in its top predictions, while values > 
1 make con�dence scores more uniform across predictions. In summary, low Con�dence score
thresholds combined with high Overlap and Sensitivity values maximise the recall rate, i.e., the
proportion of vocalisations detected among those in a recording, to the detriment of precision, i.e., the
proportion of vocalisations correctly identi�ed by BirdNET. As a result, an inherent trade-off emerges
between recall and precision (Funosas et al., 2024).
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Although prior research has explored the impact of adjusting the input values of BirdNET parameters
(e.g., Wood et al., 2023, Funosas et al., 2024), evidence on optimal settings for automated bird
monitoring remains scarce. BirdNET performance varies signi�cantly across species and environmental
contexts (Funosas et al., 2024, Pérez-Granados, 2025). Large-scale research is therefore needed to
de�ne parameter settings that optimise monitoring outcomes for bird monitoring using BirdNET. To
address this gap, we provide a comprehensive evaluation to identify the best set of settings —at both
vocalisation (i.e., the best settings to correctly classify a vocalisation) and dataset levels (i.e., the best
settings to correctly identify the species appearing in a collection of recordings)— to optimise the
balance between BirdNET precision and recall. To achieve this, we analysed 4,225 one-minute audio
recordings collected from 67 recording locations, with 89,061 �ne-grained annotations of all bird
vocalisations (strong labels) made by expert ornithologists worldwide. We hope our results will guide
future studies in determining optimal parameter settings and support the continued re�nement of
BirdNET for both ecological monitoring of bird species and for the characterisation of novel bird acoustic
communities (sensu Hartig et al. 2024).

METHODS

SOUNDSCAPE COLLECTION
The analysed soundscapes are part of the World Annotated Bird Acoustic Dataset (WABAD, Pérez-
Granados et al. 2025). These recordings were annotated at the vocalisation level by local experts. For
consistency across datasets, our analyses only include sites with 1-minute audio recordings and strong
labels (i.e., annotations with exact start and end times for each bird vocalisation present in the
recording). In total, we analysed 4,225 1-minute recordings collected at 67 recording locations (Fig. 1;
see Supplementary Table S1 for details on the biome, location, and speci�c coordinates of the surveyed
sites). For more detailed information, including the particular recordings and annotations used in this
study, refer to Pérez-Granados et al. (2025).

AUDIO ANNOTATIONS
Expert ornithologists familiar with the local avifauna examined each 1-minute audio recording
spectrogram and identi�ed every single bird vocalisation at the species level. All annotations followed
the Clements Checklist (Clements et al., 2021), which guarantees taxonomic alignment with
nomenclature used in BirdNET. The experts annotated each vocalisation using bounding boxes: the start
and end points of the box (x-axis) mark the duration of the sound and the top and bottom boundaries (y-
axis) indicate its frequency range (lowest to highest). Two vocalisations from the same species could be
included in the same box whether they were separated by less than one second; otherwise, a separate
annotation was made. A detailed description of the annotation process, along with all audio annotations,
can be found in Pérez-Granados et al. (2025).
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BIRDNET SETTINGS
We analysed the recordings by running BirdNET-Analyzer v2.4.0 (model
BirdNET_GLOBAL_6K_V2.4_Model_FP32.t�ite) with varying input parameter values via a Linux shell
script interfacing with the algorithm’s Python codebase, following Funosas et al. (2024). We processed
the data with the default minimum Con�dence score threshold of 0.1 and nine value combinations for
the Overlap and Sensitivity settings (i.e., a mixture between 0 s, 1 s, and 2 s Overlap and 0.5, 1, and 1.5
Sensitivity). We con�gured BirdNET to �lter the list of potentially detectable species based on the
following criteria: 1) recording site location (Supplementary Table S1), 2) recording date (week of the
year), and 3) a minimum occurrence threshold of 0.02 (probability threshold of a species occurrence at a
site and week of the year; see Funosas et al. 2024).

BIRDNET ASSESSMENT
We assessed BirdNET performance across the nine combinations of settings by comparing model
predictions to the annotations made by experts through a series of custom R scripts (version 4.2.2; R
Core Team 2025). The assessments were conducted at two levels: i) vocalisation level, which provides a
�ne-grained assessment of BirdNET performance for bird monitoring, and ii) dataset level, which offers
insights into BirdNET ability to characterise the composition of bird communities in a collection of
recordings from the same location. BirdNET predictions were categorised into four possible outcomes
(Supplementary Fig. S1):

True Positives (TP): At the vocalisation level, a BirdNET prediction was classi�ed as a TP when an
expert labelled the same species at the same time. At the dataset level, a bird species was
considered a TP whether there was at least one correct identi�cation of that species by BirdNET in
any of the audio recordings from the same study site (i.e. dataset).

False Positives (FP): At the vocalisation level, a BirdNET prediction was classi�ed as a FP when an
expert did not detect the same species at the same time. At the dataset level, a bird species was
considered a FP when all BirdNET predictions of that species in the dataset were incorrect.

True Negatives (TN): A prediction was classi�ed as a TN when a vocalisation or species not
identi�ed by the expert was also not predicted by BirdNET either at the dataset level or the
vocalisation level.

False Negatives (FN): A prediction was classi�ed as a FN when a vocalisation or species identi�ed
by the expert was not predicted by BirdNET .

Following the above categorisation criteria, we evaluated BirdNET precision, recall, and False Positive
Rate (FPR) at both vocalisation and dataset levels. Precision is de�ned as the proportion of species or
vocalisations correctly predicted relative to the total number of species or vocalisations predicted by
BirdNET. The recall rate measures the proportion of species or vocalisations correctly predicted relative
to the total number of species or vocalisations present in the recording (Pérez-Granados, 2023). The FPR
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measures the likelihood of BirdNET falsely identifying an absent species as present. These three metrics
were estimated using 90 different minimum con�dence thresholds (from 0.1 to 0.99 with a step of 0.01;
Funosas et al. 2024). We controlled for the possible double counting of the same bird vocalisation
detected in two overlapping segments. Analyses at the vocalisation level compare BirdNET predictions
within 3-second segments to expert annotations, while dataset-level assessments match expert-
annotated species lists to BirdNET-predicted species, counting only correct matches. The speci�c
formulas used to calculate precision, recall, and FPR are the following:

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

FPR = FP / (FP + TN)
The three metrics were calculated at each level of analysis: vocalisation and dataset. It is essential to
note that, according to our categorisation criteria, a single correct prediction of a species by BirdNET
was su�cient for the species to be considered a true positive at the dataset level, thereby favouring
higher recall results in datasets of longer duration. The values obtained for the precision, recall, and FPR
metrics were used to plot the Precision-Recall (PR) and Receiver Operating Characteristic (ROC) curves,
both accompanied by an estimation of the Area Under the Curve (AUC; Davis and Goadrich, 2006). The
PR curve plots precision against recall for each minimum con�dence threshold considered, illustrating
these two metrics’ trade-offs. Similarly, the ROC curve plots recall against the FPR for each minimum
con�dence threshold, revealing the trade-off between these two metrics. For both curves, the AUC serves
as a measure of the algorithm’s predictive power, with values ranging from 0 to 1; higher values indicate
greater predictive power.

The AUC of Precision-Recall (PR AUC) integrates precision across the entire recall range, meaning that
extending this range —even toward lower recall values— can increase the total area under the curve.
Consequently, a PR curve with a broader recall range can have a higher AUC than one with a narrower
range, even if the latter maintains higher precision at every overlapping recall level. The same principle
applies to AUC of Receiver Operating Characteristic (ROC AUC) scores and FPR ranges. Higher
Sensitivity values are associated with greater variability in both recall and FPR scores across con�dence
levels, resulting in a broader range of recall and FPR values than with lower Sensitivity values
(Supplementary Fig. S3). Hence, to ensure comparability across different Sensitivity values, PR AUC was
adjusted for the recall range and ROC AUC for FPR range using the following formulas:

adj_PR_AUC =
PR AUC

max (recall) − min (recall)

adj_ROC_AUC =
ROC AUC

max (FPR) − min (FPR)
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Additionally, we estimated the F-score across con�dence score thresholds, which evaluates an
algorithm’s predictive power by integrating both precision and recall, calculated using the following
formula:

F-score = (1 + β2) ∗ precision ∗ recall/(β2 ∗ precision + recall)

For consistency and to facilitate comparisons with other studies, we computed the F-score with a β
equal to 1 (i.e., assigning equal importance to precision and recall). F-score values range from 0 to 1,
with higher F-score values indicating better model performance (i.e., a value of 1 represents perfect
precision and recall).

RESULTS
Optimising BirdNET parameters at vocalisation level

Both the Overlap and the Sensitivity values impacted BirdNET performance at the vocalisation level
(Table 1). The AUC scores for the PR curves evaluated globally across all datasets consistently
increased with higher Overlap values at each speci�c Sensitivity score. We also found that a Sensitivity
value of 0.5 yielded the highest PR AUC scores across the three Overlap values considered. However, the
in�uence of Sensitivity on PR AUC scores appeared substantially less than that of Overlap. Our results
also show that, at the vocalisation level, the PR AUC score is maximised with an Overlap of 2 and a
Sensitivity of 0.5 (Table 1). However, the optimal Sensitivity value for maximising PR AUC scores varied
across biogeographic regions, being 0.5 in three regions and 1.5 in the other three (Table 2). Regarding
the AUC scores for the ROC curves, the largest differences appeared between the Sensitivity values of
1.0 and 1.5, with the latter yielding the lowest ROC AUC scores for the three Overlap values analysed
(Table 1). The highest ROC AUC score was obtained with an Overlap of 2 and a Sensitivity of 1 or 0.5
(Table 1).

Optimising BirdNET parameters at dataset level

At the dataset level, Sensitivity had the strongest in�uence on BirdNET performance. Under all Overlap
values considered, the highest PR AUC scores were obtained using a Sensitivity of 0.5, with large
differences across Sensitivity values (Table 1). This result is consistent across different geographic
regions, with all regions reaching their highest PR AUC scores at a Sensitivity of 0.5 (Table 2). The
impact of Overlap on the PR curve was small, but higher PR AUC scores were obtained at the dataset
level when using higher Overlap values. The set of settings maximising PR AUC was an Overlap of 2 and
a Sensitivity of 0.5 (Table 1), which was consistent in four of the six regions analysed (Table 2).

Regarding the ROC AUC scores, we found small differences between the different groups of settings
tested. Nonetheless, the lowest ROC AUC scores corresponded to a Sensitivity of 0.5 at any given
Overlap value. Differences in ROC AUC scores across Overlap values were small and variable. However,
the highest ROC AUC score across all regions was achieved with an Overlap of 0 and a Sensitivity of 1.5.
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F-score curves: impact of con�dence score threshold

The F-score curves showed that BirdNET performance remained relatively consistent across the three
Overlap settings at both vocalisation and dataset levels (Figure 2). However, at the vocalisation level,
performance showed a slight overall improvement as Overlap increased. In contrast, Sensitivity had a
substantial impact on BirdNET performance at both levels. The effect of the Sensitivity setting varied
between the two levels of analysis. At the vocalisation level, when using Sensitivity values of 0.5 and 1,
the F-score declined almost linearly as the minimum con�dence thresholds increased. However, with a
Sensitivity of 1.5, the F-score increased until reaching its maximum around a con�dence score threshold
of 0.3. Interestingly, the F-score curve with a Sensitivity of 1.5 showed better performance than the F-
score curves obtained with the other two Sensitivity settings between con�dence thresholds of 0.15 and
0.6, while also showing poorer performance at both very low (<0.15) and very high (>0.75) con�dence
thresholds.

The highest F-scores at the vocalisation level were obtained with an Overlap of 2, a Sensitivity of 1.5, and
a con�dence score threshold around 0.3. At the dataset level, the highest F-scores were consistently
achieved with a con�dence threshold of around 0.5 across all settings. The best overall BirdNET
performance was achieved with a Sensitivity of 0.5, followed by 1.0, while a Sensitivity of 1.5 yielded the
lowest performance. Under all settings, the highest and nearly identical F-scores were obtained with
con�dence score thresholds around 0.5. The largest differences in F-scores appeared between
Sensitivity values at the lowest and highest minimum con�dence score thresholds, particularly at the
higher end.

DISCUSSION
BirdNET has become a widely adopted tool for automated bird sound recognition, yet the majority of
past studies have relied heavily on its default settings, with minimal parameter adjustments (e.g.,
reviewed by Pérez-Granados 2023; see also Funosas et al. 2024). Here, we demonstrated that parameter
tuning can substantially improve performance, with optimal settings varying according to the monitoring
goal—whether focused on identifying individual vocalisations or detecting species presence in acoustic
datasets. The large variability observed in BirdNET outputs across different parameter con�gurations
highlights the need for optimised standardised parameter guidelines. Such standards would improve
cross-study comparisons, ensure temporal and spatial reproducibility, and enhance the integration of
acoustic data into broader biodiversity monitoring platforms.

Our �ndings provide strong evidence that increasing the Overlap parameter from its default value of 0 to
2 consistently improves BirdNET performance at both the vocalisation and dataset levels. This
improvement is likely due to the increased ability for BirdNET to detect short, split or faint bird
vocalisations when higher degrees of overlap are used —vocalisations that might otherwise be missed
between non-overlapping segments (Funosas et al. 2024). While the bene�ts were most evident at the
vocalisation level, higher Overlap also led to performance gains at the dataset level, albeit to a lesser
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extent. Importantly, this improvement in recall appears not to come at a general cost of reduced
precision, as shown by consistently higher PR and ROC AUC scores at both levels when using an Overlap
of 2 (Table 1). Although higher Overlap values increase processing times, this limitation can be offset by
using computing systems and server-based analyses. Overall, given the clear advantages in output
quality using higher degrees of Overlap, BirdNET capabilities may be limited by the conservative default
setting of zero Overlap.

Notably, BirdNET performance —both at the vocalisation and dataset levels— varied more across
Sensitivity values than across Overlap values, particularly at the vocalisation level, where the most
effective setting varied greatly between regions. As expected, assigning a high Sensitivity value in
BirdNET increased the number of predictions, especially those with lower con�dence scores
(Supplementary Fig. S2). However, it remains unclear why, in half of the regions, the best performance at
the vocalisation level was obtained with a value of 0.5, while in the other half it was achieved with a value
of 1.5. Further research should aim to evaluate whether such differences among regions might be
related to different bird diversity, bird song parameters, local vegetation structure, or environmental
noise. Our results suggest that high Sensitivity values may not be optimal for maximising PR AUC scores
at the dataset level, primarily due to very low precision at low con�dence thresholds and very low recall
at high con�dence thresholds. In contrast, low Sensitivity values yield a more balanced trade-off between
precision and recall across all con�dence thresholds. This results in similar F-score values and
sensitivity levels across Sensitivity values for minimum con�dence thresholds ranging from 0.35 to 0.6,
and with comparatively poor results for high Sensitivity values when either lowering or increasing the
minimum con�dence thresholds beyond this range. However, because higher Sensitivity values
strengthen the correlation between con�dence scores and precision (Supplementary Fig. S4), they
enable targeted optimisation: combining high Sensitivity with a high con�dence threshold maximises
precision, while pairing with a low con�dence threshold boosts recall. Therefore, despite their low PR
AUC scores, high Sensitivity values appear to be the most appropriate choice for users who strongly
prioritise either precision or recall.

Our analyses also reveal how BirdNET performance varies depending on the minimum con�dence score
threshold used. At the vocalisation level, the best performance (i.e., the highest F-score) was achieved at
low con�dence thresholds —around 0.1 for Sensitivity values of 0.5 and 1.0, and around 0.3 for a
Sensitivity of 1.5. In contrast, at the dataset level, optimal performance was consistently achieved with
minimum con�dence thresholds around 0.5, regardless of the Sensitivity setting. This elevated
performance at the dataset level likely stems from the greater number of opportunities for correctly
predicting a species across the dataset duration (i.e., only a single correct prediction is required for the
species to be classi�ed as a true positive), such that raising the minimum con�dence threshold at the
dataset level —up to a certain point— improves precision more than it decreases recall.

The results of our study must be interpreted in light of the following three primary limitations: i) the
limited amount of data available for certain regions (Fig. 1); ii) the assumption that the expert human
annotations —used as the benchmark to compare BirdNET against— are always correct (see Campbell
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and Francis 2011); and iii) the consideration of a species as correctly identi�ed when one prediction was
correct, regardless of the number of incorrect predictions for that species within the dataset. Although
our datasets were annotated by local experts following a strict protocol (Pérez-Granados et al. 2025),
differences in the annotation effort among sites may still occur, potentially biasing the results for certain
locations. Further research should aim to develop reference annotation catalogues in which acoustic
samples are annotated in agreement by at least two expert observers —to reduce biases— and,
whenever possible, to collect a similar number of samples at each site to avoid positive biases toward
sites or regions where longer acoustic samples are used. Furthermore, we gave equal importance to
recall and precision to evaluate BirdNET performance; however, future research could explore the impact
of variable settings on BirdNET output depending on whether higher recall or precision is prioritised.

Our results provide practical guidance for future studies that employ BirdNET for the automated
identi�cation of bird vocalisations and the detection of species presence in audio recordings. The broad
spatial scope of our study, combined with consistent performance trends across different setting values,
suggests that the optimal BirdNET con�gurations, particularly when setting higher Overlap values, can
serve as a reliable starting point for BirdNET usage in other regions. Nonetheless, it would be advisable
to assess the impact of BirdNET settings before applying them in regions underrepresented in our
acoustic dataset, such as Africa, Asia, and Oceania. It is also worth noting that BirdNET performance
improves with the development of updated versions (Funosas et al., 2024). Therefore, the annotated
acoustic dataset used in this study, which is freely available, may serve as a valuable benchmark for
evaluating the comparative performance of future versions of BirdNET, as well as serving as a basis for
comparative studies between BirdNET and other machine learning tools (e.g. Ghani et al. 2023, Mor� et
al. 2019).
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Table 1: Area Under the Curve (AUC) scores for both Precision-Recall (PR) and Receiver Operating
Characteristic (ROC) curves using nine combinations of values for the Overlap and Sensitivity settings.
The results shown have been obtained with the default minimum Con�dence Score threshold (0.1).
Results are presented at the vocalisation and dataset levels. The best results are highlighted in bold.

    AUC VALUES

Overlap Sensitivity Vocal_PR Vocal_ROC Dataset_PR Dataset_ROC

0 0.5 0.102 0.083 0.342 0.119

0 1 0.092 0.085 0.238 0.135

0 1.5 0.099 0.070 0.138 0.156

1 0.5 0.120 0.085 0.369 0.124

1 1 0.109 0.089 0.260 0.136

1 1.5 0.118 0.069 0.141 0.152

2 0.5 0.155 0.090 0.380 0.130

2 1 0.138 0.091 0.262 0.148

2 1.5 0.151 0.065 0.153 0.150

Table 2: Continent-speci�c optimal Overlap and Sensitivity settings for BirdNET-analyser to maximise
Area Under the Curve (AUC) scores for the Precision-Recall (PR) curve. Nine combinations of settings —
3 levels of Overlap between consecutive predictions (0 s, 1 s and 2 s) and 3 Sensitivity values (0.5, 1 and
1.5) — were evaluated using a minimum Con�dence Score threshold of 0.1. To measure model
improvement, we report the variation (Δ) in AUC scores for both PR and Receiver Operating
Characteristic (ROC) curves between the best-performing settings for PR AUC optimisation and the
default settings (Overlap = 0, Sensitivity = 1). Results are presented separately for vocalisation-level and
dataset-level analyses.
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Analysis level Region Overlap (s) Sensitivity Δ PR_AUC Δ ROC_AUC

Vocalisation Africa 2 0.5 0.020 0.029

Asia 2 1.5 0.026 0.005

Central-South America 2 0.5 0.057 0.029

Europe 2 1.5 0.084 -0.053

North America 2 0.5 0.122 0.009

Oceania 2 1.5 0.139 -0.038

Dataset Africa 2 0.5 0.111 -0.005

Asia 2 0.5 0.105 -0.016

Central-South America 2 0.5 0.124 -0.004

Europe 1 0.5 0.140 -0.024

North America 2 0.5 0.118 0.007

Oceania 0 0.5 0.211 -0.023

Supplementary Material
Supplementary Table S1 not available with this version

Figures
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Figure 1

(A) Global mapping of 67 recording sites considered in the study. Colours and size of circles refer to the
number of minutes annotated per recording site. The small circles show the location of recording sites in
Europe and Central America. (B) Number of minutes annotated per location. Colours of the recording
locations in this panel refer to different regions, with the total number of minutes annotated per location
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provided in brackets. * Although Hawai‘i is part of the United States, we classi�ed it separately within the
Oceania region based on biogeographical criteria.

Figure 2

BirdNET-analyser F1-score curves for nine combinations of settings. The three panels on the left (A, C,
and E) present results at the vocalisation level, while the three panels on the right (B, D, and F) show
results at the dataset level. The panels are organised by Overlap settings: the top panels (A and B)
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correspond to Overlap = 0, the middle panels (C and D) to Overlap = 1, and the bottom panels (E and F) to
Overlap = 2. Within each panel, the three different Sensitivityvalues (0.5, 1, and 1.5) are represented by
three distinct colours.
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