
© The Author(s) 2025. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open 

Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence 

(https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution 

of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work 

is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for 

reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article 

page on our site—for further information please contact journals.permissions@oup.com. 

1 

Biomarkers of insulin resistance and their performance as predictors of treatment response 1 

in overweight adults. 2 

 3 

Robert James Brogan1,2, Olav Rooyackers3, Bethan E Phillips4, Brigitte Twelkmeyer3, Leanna M 4 

Ross5, Philip James Atherton4, William E Kraus5, James A Timmons2,6* and Iain James 5 

Gallagher7*  6 

 7 

Affiliations 8 

 9 
1Anaesthesia, Pain and Perioperative Medicine, Fiona Stanley Hospital, Perth, WA, Australia 10 
2Augur Precision Medicine LTD, Stirling, Scotland 11 
3Division of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Sweden 12 
4Clinical, Metabolic and Molecular Physiology Research Group, School of Medicine, University 13 

of Nottingham, Derby, England 14 
5Duke University School of Medicine, Durham, NC, USA 15 
6Faculty of Medicine and Dentistry, Queen Mary University of London, London, England  16 
7Center for Biomedicine and Global Health, Edinburgh Napier University, Edinburgh, Scotland  17 

*Senior Authors 18 

 19 

Key words: Exercise, Obesity, Bayesian projective prediction 20 

 21 
Corresponding author: j.timmons@qmul.ac.uk, ORCID ID 0000-0002-2255-1220 22 
 23 

ACCEPTED M
ANUSCRIP

T D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaf285/8129735 by guest on 14 M

ay 2025



2 

Disclosure summary 1 

There are no financial conflicts of interest to disclose. JT is a major shareholder in Augur 2 

Precision Medicine (APM) LTD, a bioinformatics company, and there is no commercial links 3 

between APM and the present study. 4 

 5 

Funding statement 6 

The clinical data utilised in this study was funded by multiple sources: European Union Seventh 7 

Framework Programme (META-PREDICT, HEALTH-F2-2012-277936); STRRIDE II 8 

(NCT00275145) by NHLBI grant HL-057354 and STRRIDE-PD (NCT00962962) by NIDDK 9 

DK-081559 and R01DK081559. The data modelling was supported by Augur Precision 10 

Medicine LTD. 11 

 12 

Abstract 13 

Context. Insulin Resistance (IR) contributes to the pathogenesis of type 2 diabetes mellitus 14 

(T2DM) and is a risk factor for cardiovascular and neurodegenerative diseases. Amino acid and 15 

lipid metabolomic biomarkers associate with future T2DM risk in several epidemiological cohorts. 16 

Whether these biomarkers can accurately detect changes in IR status following treatment is 17 

unclear.  18 

 19 

Objective. Herein we evaluated the performance of clinical and metabolomic biomarker models to 20 

forecast altered IR, following lifestyle-based interventions.  21 

 22 

Design. We evaluated the performance of two distinct insulin assay types (high-sensitivity ELISA 23 

and Immunoassay) and built IR diagnostic models using cross-sectional clinical and metabolomic 24 

data. These models were utilised to stratify IR status in pre-intervention fasting samples, from 25 

three independent cohorts (META-PREDICT (M-P, n=179), STRRIDE-AT/RT (S-2, n=116) and 26 
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STRRIDE-PD (S-PD, n=149)). Linear and Bayesian projective prediction strategies were used to 1 

evaluate models for fasting insulin and HOMA2-IR and change in fasting insulin with treatment.  2 

 3 

Results. Both insulin assays accurately quantified international standard insulin (R2>0.99), yet 4 

agreement for fasting insulin was less congruent (R2=0.65). A mean treatment effect on fasting 5 

insulin was only detectable using an ELISA. Clinical-metabolomic models were statistically 6 

related to fasting insulin (R2 0.33-0.39) but with modest capacity to classify IR at a clinically 7 

relevant HOMA2-IR threshold. Furthermore, no model predicted treatment responses in any 8 

cohort.  9 

 10 

Conclusion. We demonstrate that the choice of insulin assay is critical when quantifying the 11 

influence of treatment on fasting insulin, while none of the clinical-metabolomic biomarkers, 12 

identified in cross-sectional studies, are suitable for monitoring longitudinally changes in IR status. 13 

 14 

Introduction 15 

 16 

Chronic hyperinsulinaemia, a feature of type 2 diabetes mellitus (T2DM), contributes to a cycle of 17 

events that may drive further insulin resistance (IR). 1 IR also appears to promote cardiovascular 2 18 

and neurodegenerative diseases 3 while extreme IR represents a distinct category of T2DM.4 19 

Lifestyle-based treatments are effective at reducing the risk of developing T2DM.5–8 Such 20 

programs typically include prescription of physical activity and modify IR with high intra-21 

individual variability.9–14 IR responses to drug treatment are also highly variable.15,16 While 22 

monitoring the efficacy of any treatment on blood glucose is straightforward,17 the same cannot be 23 

said for monitoring insulin action.18,19 Furthermore, the divergent performance of commonly used 24 

insulin assays complicate comparison between studies,20,21 while routine measurement of IR in 25 

clinical practice is considered too costly. Established clinical definitions exist for T2DM and 26 

impaired glucose tolerance (IGT), but a clear definition of IR is less well developed. This is 27 

problematic because insulin sensitivity (IS) is distinct from glucose tolerance and may precede 28 

T2DM by decades. There is, therefore, a requirement to develop suitable technologies for 29 

diagnosing and tracking IR.22,23 These IR biomarkers should offer practical (e.g. cost, simplicity) 30 

advantages over relying on cold-storage laboratory insulin assays. If such IR biomarkers can be 31 

ACCEPTED M
ANUSCRIP

T D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaf285/8129735 by guest on 14 M

ay 2025



4 

shown to accurately predict longitudinal changes in IR, then efforts to configure low-cost 1 

standardised assays from minimally invasive sampling could be beneficial. 2 

 3 

Interest in identification of robust and cost-effective IR diagnostics has led to the development of 4 

several clinical24 and molecular prototypes including assays that measure branched-chain amino 5 

acids (BCAA),25–28 plasma lipoproteins29–31 and multi-protein signatures32 all of which correlate 6 

with IR status in cross-sectional cohorts. Useful biomarkers of IR should reliably detect when a 7 

treatment is ineffective, allowing an alternative treatment to be initiated.14–16,33,34 There have been 8 

few attempts to establish if plasma BCAA abundance tracks treatment responses, and these have 9 

yielded conflicting conclusions (partly because the studies were too small to reliably explore such 10 

relationships).35,36 Exercise is the most common treatment for IR and determinants of insulin action 11 

combine multiple factors, including acute signalling changes in the hours post-exercise, as well as 12 

more stable long-term adaptive changes37 – such as increased tissue vascularisation.38 Immediately 13 

post-exercise insulin action and glucose tolerance can be impaired, while insulin responses to an 14 

oral glucose tolerance test (OGTT) appear lowest 72hr following the previous exercise training 15 

session.39 Such temporal influences have not been considered when judging if the available IR 16 

biomarkers are useful (here we consider IR status within 24hr and 48-72hr of the final exercise 17 

training session). We evaluated, in hundreds of individuals at-risk for T2DM, the performance of 18 

established BCAA and lipid biomarkers, combined with simple to measure clinical phenotypes to 19 

estimate fasting IR and predict changes in insulin following supervised lifestyle 20 

interventions.9,12,40,41 We established that choice of insulin assay is critical for capturing 21 

interactions with exercise status and, using Bayesian projective prediction, that robust plasma 22 

biomarkers of IR status in cross-sectional and prospective studies are unable to predict treatment 23 

responses following exercise-training based treatments. 24 

 25 

Materials and Methods 26 

 27 

Clinical Cohorts 28 

A useful molecular biomarker should be able to track insulin resistance status and changes with a 29 

clinical intervention, regardless of the nature of the intervention. In the present modelling we 30 

contrast diverse life-style interventions in multiple studies, with comparable metabolic health and 31 
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5 

sedentary behaviours and comparable treatment effects. The META-PREDICT study was 1 

approved by local ethics committees at all trial centres (the University of Nottingham Medical 2 

School Ethics Committee: D8122011 BMS; the Regional Ethical Review Board Stockholm: 3 

2012/753-31/2; the ethics committee of the municipality of Copenhagen and Frederiksberg in 4 

Denmark: H-3-2012-024; Comite etico de Investigacion Humana de la ULPGC: CEIH-2012-02; 5 

and the Loughborough University Ethics Approvals Human Participants Sub-Committee: 6 

12/EM/0223). All complied with the 2008 Declaration of Helsinki. Both STRRIDE I and AT/RT 7 

study protocols were approved by the institutional review boards at Duke University and East 8 

Carolina University.  The STRRIDE-PD study protocol was approved by the institutional review 9 

board at Duke University. All participants provided both verbal and signed written informed 10 

consent as previously reported.12 11 

 12 

META-PREDICT (M-P) cohort: The M-P consisted of 189 active participants, recruited as 13 

previously described from 5 geographical regions across Europe.12 All clinical methods relied on 14 

cross-site standard operating procedures (SOPs), while insulin and metabolomic measures were 15 

performed in a single central laboratory. All participants were classified as sedentary (<600 16 

metabolic equivalents (METs) min·wk-1) using a modified International Physical Activity 17 

Questionnaire,42 and had a fasting blood glucose level consistent with World Health Organisation 18 

(WHO) criteria for impaired fasting glucose (6.1-6.9 mmol·l-1), and/or a BMI >27 kg·m-2. 19 

Participants were excluded if they had evidence of active cardiovascular, cerebrovascular, 20 

respiratory, gastrointestinal or renal disease or had a history of malignancy, coagulation 21 

dysfunction, musculoskeletal or neurological disorders, recent steroid or hormone replacement 22 

therapy, or any condition requiring long-term drug prescriptions. Exercise training was supervised 23 

and consisted of three high intensity cycling sessions (5-by-1 minute at 125% VO2 max) per week 24 

for 6 weeks.12 Prior to the baseline assessments, participants were instructed to refrain from 25 

exercise for three days. Supine blood pressure (Omron M2, Omron Healthcare, Kyoto, Japan) and 26 

resting heart rate (RHR) were determined as the average of three consecutive measurements. 27 

 28 

STRRIDE AT/RT (S-2) cohort (NCT00275145): The S-2 study examined the independent and 29 

combined effects of aerobic and resistance exercise on cardiometabolic health in sedentary, 30 

overweight or obese adults with mild to moderate dyslipidaemia (LDL 3.37-4.92mmol/l or HDL 31 
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1.03mmol/l in males and 1.16mmol/l in females). Participants were randomized to one of three 1 

groups for eight months: 1) aerobic training only: 14 KKW at 65-80% VO2peak; 2) resistance 2 

training only: 3 days/week, 8 exercises, 3 sets/exercise, 8-12 repetitions/set; 3) full combination of 3 

the aerobic and resistance training programs.41 4 

 5 

STRRIDE PD (S-PD) cohort (NCT00962962): The S-PD study enrolled older sedentary, 6 

overweight or obese adults without or without impaired fasting glucose into one of four 7 

intervention groups for six months: 1) low amount/moderate intensity (10 KKW at 40-55% 8 

VO2reserve): 2) high amount/moderate intensity (16 KKW at 40-55% VO2researve); 3) high 9 

amount/vigorous intensity (16 KKW at 65-80% VO2reserve); 4) clinical lifestyle prescription, which 10 

included low amount/moderate intensity exercise of 10 KKW at 40-55% V̇O2reserve plus diet to 11 

achieve 7% body weight loss (comparable to the Diabetes Prevention Program (DPP).40 12 

 13 

Plasma sample glucose and insulin analysis 14 

Blood glucose was analysed using a YSI 2300 STAT Plus glucose analyser (Yellow Springs Inc. 15 

Ohio, USA) in M-P and S-2, and with a Beckman-Coulter DxC600 clinical analyser (Brea, CA, 16 

USA) in S-PD. The samples from all cohorts were analysed using high sensitivity insulin ELISA 17 

(Dako A/S, Sweden – Now Agilent-Dako. ELISA antibody RRID=AB_2783838). Two levels of 18 

QC solutions were run for insulin. Coefficients of variation (CV) were acceptable; 4.68-8.03 % 19 

on both levels. In the M-P study we also used an automated analyser (Immulite 2000, RRID= 20 

AB_2756390) for analyses of insulin sampled during an oral glucose tolerance test. To assure 21 

comparability of the results, we independently checked the assay performance for cross detection 22 

of insulin and C-peptide. The WHO standard for insulin and C-peptide were obtained from 23 

NIBSC (The National Institute for Biological Standards and Control). A dilution series for both 24 

analytes was prepared and run on Dako ELISA and Immulite 2000. The diluted WHO insulin 25 

standards were subjected to the same procedure as the samples.  26 

 27 

Plasma sample metabolomic analysis 28 

Metabolomic analyses for M-P has not been previously published (other than fasting glucose and 29 

insulin). Samples were randomized for sample preparation and analyses resulting in an equal 30 

distribution of all centres and possible responders and non-responders. We used hierarchical 31 
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clustering of metabolomic variables to evaluate if there was an obvious systematic centre specific 1 

bias (Figure S1).43  Samples were taken after an overnight fast as arterialized venous blood and 2 

run in duplicate. Results within ±20% CV were accepted by the core lab (Stockholm), and if this 3 

limit was not met, the sample was rerun. Quality controls (QC) were run for all analyses and with 4 

each batch of sample preparation to ensure stable performance of the analysis procedure. QC for 5 

all analyses included in house controls made from pooled EDTA plasma from healthy controls. 6 

The following methods were used for each metabolite. Sample analysis used a Konelab 20XTi 7 

photospectrometer (Thermo Fisher Scientific, Thermo Electron Oy, Vantaa Finland) for high 8 

density lipoprotein HDL cholesterol, LDL cholesterol and triacylglycerides (TAG). Amino acids 9 

were analyzed using HPLC 2695 (Waters, Watford, UK) with online derivatization and a 10 

fluorescence detector 474 (Waters, Watford, UK) using a method described previously.44,45 Fatty 11 

acids were analyzed using ultra-high performance liquid chromatography (Ultimate 3000 UHPLC, 12 

Thermo Fisher Scientific, Germering, Germany) coupled to a TSQ Vantage with electrospray 13 

ionization (ESI) and triple quadrupole mass spectrometer (MS/MS) (Thermo Fisher Scientific, San 14 

Jose, CS, USA). For the S-2 and S-PD cohorts, samples were analysed for plasma glucose 15 

concentration at the research site (Duke University, USA) using a Beckman–Coulter DxC600 16 

clinical analyser (Brea, CA, United States). Plasma samples were analysed on 400 MHz nuclear 17 

magnetic resonance (NRM) profilers at LipoScience, now LabCorp (Morrisville, NC, United 18 

States), as previously described.46 The lipoprotein parameters and the BCAA were identified by 19 

retrospectively analysing digitally stored spectra using the newly developed NMR-based 20 

lipoprotein LP4 algorithm, which correlate with mass spectrometry methods.47  21 

 22 

As distinct methodologies were utilised for the metabolomic analyses between M-P and, S-2 and 23 

S-PD cohorts (e.g. mass spectroscopy versus NMR profiling) we explored the compatibility of the 24 

metabolomic data common to our diagnostic models. For S-2 and S-PD, both mass spectroscopy 25 

and NMR methodologies were utilised for lipid related metabolomics and Bland-Altman analysis 26 

was performed to assess measurement agreement between HDL and TAG (Figure S2-5).43 There 27 

was high correlation between methods for HDL (S-2 r2 0.96, p<0.001; S-PD r2 0.89, p<0.001; 28 

Figure S2A 43 and Figure S3A. 43 and TAG (S-2 r2 0.99, p<0.001; S-PD r2 0.95, p<0.001; Figure 29 

S4A43 and Figure S5A.43 Bland-Altman analysis revealed a mean HDL measurement error of -30 

0.066 mmol/L in S-2 (Figure S2B) 43 and -0.064 mmol/L in S-PD (Figure S3B) 43 and mean TAG 31 
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measurement error of +0.02mmol/L in S-2 (Figure S4B) 43 and +0.04mmol/L in S-PD (Figure 1 

S5B) 43 with 95% of observations within 1.96 standard deviation of mean. Work by Wolak-2 

Dinsmore et al demonstrated that NMR overestimates VAL and LEU by >25% (mean value) and 3 

underestimates ILE by 10-15% (mean value). While MS was used in M-P, S-2 and S-PD relied on 4 

NMR for BCAA quantification.47 Based on these known systematic differences, modelling was 5 

performed independently in each cohort, using cross-validation methods. 6 

 7 

Statistical Modelling 8 

Raw data from the clinical chemistry analyses was analysed with GraphPad Prism 5 (Software 9 

MacKiev, 2007, version 5.01) and more advanced analysis was accomplished using STATISTICA 10 

10 (StatSoft Inc., 2011, version 10.0.228.2). All subsequent analysis was performed in R versions 11 

4.1.1 and 4.3.2. We utilised conventional and Bayesian strategies to model data. Potentially 12 

predictive variables were selected based on known associations with IR and T2DM. Linear 13 

regression modelling was applied to investigate associations between dependent and independent 14 

variables. Briefly, after reducing each dataset to complete cases common variables were identified 15 

across all three cohorts. The criterion for considering a clinically useful variable was pragmatic – 16 

it had to be low cost and reliably measured in a primary care setting e.g. maximal aerobic capacity 17 

relates to IR status in some but not all cohorts, but it was not considered because of the time and 18 

cost required to measure it accurately. From the variables selected, some were dropped because of 19 

high collinearity (e.g. systolic blood pressure was retained in favour of diastolic blood pressure 20 

and mean arterial pressure in the Bayesian analysis). We removed participants with obesity class 21 

III (BMI >40kg/m2) for the Bayesian analysis and all continuous variables were normalised. The 22 

latter steps were carried out using the tidymodels in R (10.32614/CRAN.package.tidymodels)48 23 

and applied consistently across all datasets. Collinearity between variables was checked for each 24 

dataset separately (Figure S6).43 Apart from BCAA in the M-P dataset, there were no pairwise 25 

correlations with an absolute value >0.5. Linear models were built with student-t priors on both 26 

the intercept and slope coefficient terms (df=3, mean=0 and scale=4). These were mildly 27 

informative on the scale of the normalised data. More details are provided in the supplementary 28 

material.43 We built Bayesian multivariable linear models using the brms package to predict 29 

change in circulating insulin using relevant clinical variables, circulating BCAA levels and 30 

selective lipids.49 These full models were considered reference models. We then used projective 31 
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9 

prediction to identify a subset of variables with predictive performance as close as possible to that 1 

of the reference model.50 Briefly, projective prediction first generates a solution path - the variable 2 

ranking - for each sub model examined. Then a leave-one-out cross-validation process determines 3 

the predictive performance of each sub model along the predictor ranking. Data, supplemental 4 

figures and tables, and the R script can be found at 10.5281/zenodo.15307219.43 5 

 6 

Results 7 

 8 

Demographic, blood and metabolomic data for the three independent cohorts; M-P, S-2 and S-PD 9 

are presented in Table 1.  10 

 11 

Comparison of insulin assay and metabolomics assay performance 12 

A long-standing challenge in studying the physiology of insulin is that commercial assays show 13 

distinct specificity and sensitivity profiles, with no agreement to move to a single standard 14 

assay.20,21 Older insulin assays, utilised in exercise intervention studies (e.g. HERITAGE)51 or 15 

some included in genome-wide association modelling,52 do not show molecular associations 16 

consistent with modern high sensitivity assays.13 In the present study we produced a large-scale 17 

comparison of two typical insulin assays (Immulite 2000) and a high sensitivity ELISA kit (Dako, 18 

Stockholm, Sweden), run concurrently, on samples obtained before and after exercise-training that 19 

reduced IR. Both Immulite 2000 and Dako ELISA showed a strong correlation between expected 20 

and measured insulin; R2=0.999 and R2=0.992, respectively (International WHO standard for 21 

insulin, The National Institute for Biological Standards and Control, Figure S7).43 No cross 22 

reaction between insulin and c-peptide standards was detected (data not shown). When plotting 23 

both insulin values from the same fasting samples, there was moderate agreement between the two 24 

assays (R2=0.65, Figure S8).43  Critically, using insulin measurements from the high-sensitivity 25 

ELISA, we were able to detect a significant reduction in IR following 6 weeks exercise, while the 26 

Immulite 2000 immune-assay was unable to detect a change (Figure 1). All the subsequent 27 

analyses in this article relied on insulin values obtained from the Dako high-sensitivity ELISA 28 

(produced in the Stockholm laboratory).  29 

 30 

 31 
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10 

Biomarker association with fasting insulin and HOMA2-IR status 1 

Potential predictor variables were selected based on the literature summarised above and 2 

availability in all three cohorts. Univariable linear regression analysis was performed to explore 3 

individual relationships between fasting insulin and the selected clinical and metabolomic 4 

biomarkers (Figure 2; full results in Table S1).43 In M-P, all pre-selected variables except age 5 

(p=0.09) reached statistical significance for linear association with fasting insulin (age is a reliable 6 

covariate but the age-range in M-P was limited). In S-2 log10 BMI (p<0.001), fasting glucose 7 

(p<0.001), HDL (p=0.007), TAG (p<0.001) and amino acids (isoleucine (ILE) p=0.0005, leucine 8 

(LEU) p=0.006, valine (VAL) p<0.001, alanine (ALA) p=0.0027) were significant for a linear 9 

association with fasting insulin. Univariate associations were very similar for S-PD except ALA 10 

(p=0.068). For subsequent integrated models and treatment responses predictions, variables which 11 

showed a statistically significant association in one or more of the cohorts were considered further 12 

(given each was already supported with previously published evidence for having a cross-sectional 13 

association with IR status).  14 

 15 

As each study used distinct metabolomic methods (see Methods) we performed multivariable 16 

linear regression and logistic regression with K-fold cross validation (k=10) separately in each 17 

cohort. Table S2) 43 demonstrates the same models discussed below, to predict fasting insulin 18 

using K-fold cross validation multiple linear regression, with the combined model demonstrating 19 

the strongest association with directly measured insulin (r2 0.33 – 0.39). Fasting glucose was 20 

excluded when using HOMA2-IR as the dependant variable due to its inclusion in the HOMA2-21 

IR model. To evaluate classification performance, cohorts were divided into insulin sensitive 22 

(HOMA2-IR <1.3) and insulin resistant (HOMA2-IR 1.3) based on values obtained in a large 23 

population study (n=95,540), where a HOMA2-IR 1.3 was associated with a hazard ratio of 3.2 24 

(95% CI 1.9-5.3) for the development of T2DM over a median of 4.7y.53  The non-diabetic subjects 25 

in this study (n=93,710) are Caucasians living in Denmark. They were of similar age and metabolic 26 

health to the STRRIDE cohorts described in this study (84.8% of S-2 and 78.2% of S-PD were 27 

Caucasian). The M-P cohort are of the similar ethnicity and metabolic health to the population 28 

study but were younger (median age 38 vs 57) with a higher BMI (median BMI 31 vs 26). Four 29 

models were assessed in each cohort (Figure 3); a baseline model (age, BMI and gender), a BCAA 30 

model (age, BMI, gender and sum of BCAA), a lipid model (age, BMI, gender, HDL, LDL and 31 
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11 

TAG) and finally, a combined model (age, BMI, gender, BCAA, HDL, LDL and TAG). This 1 

allowed us to evaluate if lipids (HDL, LDL and TAG) and BCAA (ILE, LEU and VAL) add value 2 

to risk estimation from simple clinical variables. The baseline (‘clinical’) model had no 3 

discriminatory performance in S-PD, so the addition of metabolomic variables improved the model 4 

substantially. The statistical advantage of including metabolites in the model applied to S-PD may 5 

reflect the more homogeneous nature of that cohort, for the utilised clinical parameters. Otherwise, 6 

inclusion of BCCA and/or lipids offered no meaningful value, with poor sensitivity (Table 2).  7 

 8 

Biomarker based prediction of IR status in response to lifestyle intervention. 9 

The results above established that each potential biomarker associates with fasting insulin in some 10 

or all trials (Table S1)43 but that multivariable models do not accurately classify IR status (based 11 

on a HOMA2-IR threshold) in any cohort (Figure 3, Table 2). The utility of the same biomarkers 12 

for predicting exercise treatment related insulin responses was subsequently examined. For this 13 

we included changes in fasting glucose (as it is easy and inexpensive to measure, and we were no 14 

longer evaluating the HOMA2-IR model). Figure 4 displays the univariable linear relationships 15 

of changes in clinical and metabolomic biomarkers with changes in fasting insulin as measured 16 

with the high sensitivity ELISA. Figure S6 43 shows the same data but displaying correlation 17 

coefficients (including individual amino acids). To further examine the predictive utility of 18 

individual and combinations of biomarkers we built Bayesian linear models independently for each 19 

cohort modelling change in circulating insulin after the exercise interventions used. These models 20 

included age and changes over the intervention in individual BCAA, fasting glucose, BMI, lipids, 21 

systolic blood pressure and alanine. The full models (“reference” models) were considered as the 22 

optimum solution, given the present data, to the prediction task.54 The posterior predictive 23 

distributions showed the models performed well (Fig 5A-C). Using projective prediction, we 24 

found that the biomarkers did not improve predictive performance over a null model i.e. the 25 

intercept term (Figure 5D-F).50 Thus, change in biomarkers (alone or additively combined) did 26 

not predict change in insulin following an exercise intervention.  27 

 28 

 29 

 30 

 31 
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Discussion 1 

 2 

Development of robust and cost-effective diagnostics should contribute to combating the T2DM 3 

epidemic, and facilitate alignment of clinical practice with the recommendations of the 4 

International Diabetes Federation,55 namely earlier detection and prevention of pre-diabetes. 5 

Insulin is not routinely measured in clinical practice and thus crucial information, regarding the 6 

temporal characteristics of the development of disease, are lacking. Previous work identified 7 

several potential biomarkers for IR from cross-sectional and prospective studies.25–27,29–31,56 The 8 

present study extends this body of work to evaluate if these IR biomarkers forecast changes in 9 

insulin following life-style intervention, including exercise training.  10 

 11 

Importance of the insulin assay  12 

To our knowledge we are the first to study the importance of insulin assay technical performance 13 

on tracking insulin changes in response to exercise training. The M-P cohort represents typical 14 

younger-middle aged individuals with multiple risk factors for T2DM.12 We found that the 15 

Immulite 2000 immunoassay was unable to detect changes in fasting insulin status following 16 

supervised exercise training.12 In contrast, concurrent measurements using a high sensitivity 17 

ELISA assay detected a significant reduction in fasting insulin. Neither assay demonstrated any 18 

cross-reactivity with c-peptide and both show a strong correlation with the WHO standard. The 19 

American Diabetes Association has previously attempted to establish a consensus on standardizing 20 

the measurement of insulin.20,21 Our analysis indicates that when environmental influences are to 21 

be studied, a high-sensitivity ELISA insulin assay must be utilised. We have previously observed 22 

that some older insulin assays, with unclear specificity57 were unsuitable for genomic association 23 

analysis.13 Indeed, it is plausible that the use of insulin assays insensitive to variations within the 24 

‘normal’ range, or with some cross-reactivity with C-peptide, limited genome-wide association 25 

modelling of fasting insulin.58 While suboptimal insulin assays will not be voluntarily retired by 26 

manufacturers, it would seem sensible that the research community adopt the use of a limited 27 

number of high-sensitivity assays for studies of fasting insulin in most situations20,21, especially 28 

when more subtle gene-environment interactions are being modelled.  29 

 30 

 31 
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Metabolomic components of the IR biomarker models 1 

There is a well-established positive correlation between individual blood BCAA and IR.25–27 As 2 

such, pathways that control BCAA catabolism have gained interest as possible targets for reversing 3 

IR.28,59,60 Furthermore, BCAA have been combined with clinical parameters to increase the 4 

performance of models that predict both IR and risk of T2DM.29,31,56 We previously identified, in 5 

four independent cohorts, a transcriptional signature including genes controlling BCAA 6 

catabolism pathways, that related to IR after adjustment for age, VO2max and BMI (n=564). We 7 

also found that in response to four independent lifestyle interventions (n=196), expression of 16 8 

genes in human skeletal muscle changed in proportion to improvements in insulin sensitivity, with 9 

25% of these related to BCAA metabolism.13 By mass, skeletal muscle has the largest capacity for 10 

BCAA catabolism in humans supporting the plausibility of these observations.61 11 

 12 

We found changes in plasma BCAA were unable to predict changes in IR status. Insulin mediated 13 

BCAA clearance, however, may rely on other organs including the liver, meaning that blood levels 14 

may not accurately reflect metabolism of BCCA.62 In a recent study, Lee et al reported that baseline 15 

plasma BCAA levels related to change in glucose infusion rate during a 16 

hyperinsulinaemic−euglycaemic clamp as a measure of insulin sensitivity and liver fat content.36 17 

This association occurred despite no change in total plasma BCAA levels and a reported increase 18 

in muscle BCAA catabolism pathway gene expression. We also found no change in BCAA levels 19 

with any exercise training protocol (Table 1), which might be understandable as only ~40% of 20 

subjects demonstrate a numerical improvement in HOMA2-IR while some demonstrate an 21 

increase in IR.12,13 Our observations are consistent with earlier and distinct modelling approaches 22 

applied to the STRRIDE cohorts. There combinations of BCAA and lipid -based IR biomarkers 23 

did not reliably detect changes in insulin sensitivity produced by a combination of resistance and 24 

aerobic training.17 Various other combinations of BCAA and protein metabolites have been 25 

considered in IR models and while some variation in outcomes have been observed,63 these are 26 

likely random associations common to small cohorts. Using energy restriction to modify IR, we 27 

recently reported that group mean differences in plasma BCAA abundance were unchanged, 28 

despite group mean improvements in IR. 63 These observations contrast with a previous study, 29 

relying on a sample size ten times smaller, where changes in plasma BCAA abundance did track 30 

with improved IR status.35  31 
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14 

In the present analysis we considered several strategies, including several distinct clinical and 1 

metabolomic variables, to model both fasting insulin and HOMA2-IR. A practical approach would 2 

combine informative but easy to measure (cost effective) clinical variables with metabolomic 3 

markers (that could be measured in the future, using a cost-effective device). Bayesian modelling 4 

and projective prediction54 was used to establish a sparse model that retained the ability to provide 5 

useful predictions of circulating insulin changes. Projective prediction uses the predictions from 6 

the reference (full) model to identify a subset of variables with predictive ability as close as 7 

possible to that of the full model. This was unable to identify a smaller set of variables (or indeed 8 

any variables) useful for predicting change in circulating insulin after lifestyle intervention using 9 

this strategy. Conventional regression modelling, against changes in HOMA2-IR also failed to 10 

identify a useful model. 11 

 12 

Clinical evaluation of IR biomarker models 13 

Diagnosing IR is challenging not least because the definitions of being “IR” remains imprecise. 14 

The gold standard methods are commonly stated as being the ‘clamp’ technique or intravenous 15 

glucose tolerance test (IGTT).19,64 However, these require substantial resources and therefore they 16 

are rarely used for diagnosis. Further, the ‘clamp’ by its very nature can be non-physiological 17 

where individuals are exposed to non-physiological conditions. Alternative indices of IR and 18 

pancreatic beta cell function exist and include the homeostatic model assessment (HOMA) and 19 

HOMA2,65,66 Matsuda index67 and the disposition index (DI).68 These indices are also not used 20 

widely, because insulin is not routinely measured. The lack of routine insulin measurement in turn 21 

limits the basis for producing reliable criteria for diagnosis of IR. Although several 22 

epidemiological studies have used the HOMA and HOMA2 models, there is limited work defining 23 

what a clinically useful cut-off value for IR would be. Several studies used a percentile cut off and 24 

then applied ROC analysis to determine the threshold for a diagnosis of IR. This was then related 25 

to relative risk for relevant clinical outcomes e.g. progression to T2DM or cardiovascular disease. 26 

As a result, the HOMA-IR threshold reported to define ‘at risk’ varies from 1.8 to 3.9 depending 27 

on cohort characteristics and methods used.18 One study in 95,450 subjects, estimated that a 28 

HOMA2-IR of more than 1.3 represented a hazard ratio of >3.2 for developing T2DM over ~5 29 

years. This is the largest study linking a particular HOMA2-IR value to incipient diabetes and we 30 

used this HOMA2-IR cut-off in the present study. Interestingly, in exploratory analysis we 31 
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conducted, 83% of those with the most severe IR (HOMA2-IR ≥ 2.4) were not classified as 1 

metabolically compromised based on fasting glucose or 2-hour-glucose OGTT data. This 2 

illustrates that the current reliance on glucose-centric only assays limits our ability to identify (and 3 

hence intervene) in those people with metabolic disease. Nevertheless, all surrogate variables 4 

investigated in the present study had only a modest ability to diagnose IR in a cross-sectional 5 

setting, and no ability to track changes in IR with exercise or diet. Thus, new large-scale trials, 6 

where IR is treated by various means, and insulin and biomarker measurements are made, are 7 

urgently required. 8 

 9 

In summary, we evaluated multiple novel predictive models for IR, including models incorporating 10 

cholesterol species and BCAA. These models failed to predict change in IR status following 11 

supervised lifestyle modification using multiple interventions. A main limitation of our study is 12 

the limited availability of common metabolomic variables across cohorts. Nevertheless, we are not 13 

aware of any blood based metabolic disease biomarkers that sensitively track improvements in 14 

insulin sensitivity across multiple independent cohorts.  15 

 16 
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 4 

Figure Legends 5 

 6 

Figure 1. Insulin assay statistical performance for identifying a statistically significant difference 7 

in pre vs post exercise training samples from all included exercise protocols. Fasting insulin 8 

(pmol/L) was measured using a high sensitivity ELISA (right) and the Immulite 2000 automated 9 

analyser (left). P-values are calculated from paired t-tests on log10 fasting insulin (pmol/L). 10 

 11 

Figure 2. Scatter plots with OLS line of best fit (95% CI shaded) between log10 fasting insulin 12 

and clinical and metabolic variables. A) M-P, B) S-2 and C) S-PD 13 

 14 

Figure 3. Utility of baseline clinical and metabolomic variables to classify HOMA2-IR status at 15 

1.3 unit threshold reflecting the analysis of Marott et al53. K-fold cross validation logistic 16 

regression ROC curves for A) M-P, B) S-2 and C) S-PD. 17 

 18 

Figure 4. Scatter plots with OLS line of best fit (95% CI shaded) between delta fasting insulin 19 

and clinical and metabolic variables. A) M-P, B) S-2 and C) S-PD 20 

 21 

Figure 5. Left panel; Posterior predictive distributions for A) M-P, B) S-2 and C) S-PD. Right 22 

panel; Expected log predictive density (Elpd, upper trace) and root mean square error (RMSE, 23 
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lower trace) for D) M-P, E) S-2 and F) S-PD. Elpd and RMSE are shown with 95% nominal 1 

coverage intervals. 2 

 3 

Table Legends 4 

 5 

Table 1. Demographics. Median and IQR. All available samples were utilised for baseline 6 

modelling. In each analysis, only subjects with complete data were used in the pre/post 7 

modelling, resulting in ~ 20% fewer subjects than recruited or completing the intervention. 8 

 9 

Table 2 - K-fold cross validation logistic regression model statistics for combined model 10 

predicting insulin resistance (HOMA2 IR 1.3) using age, BMI, gender, sum of branched chain 11 

amino acids, HDL, LDL and triglycerides. 12 

  13 
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Table 1. 1 

 2 
 3 
  4 

 
MP 

Pre             Post 

S2 

Pre          Post 

S-PD 

Pre          Post 

N 179 109 116 85 149 122 

Gender 

(f:m) 
100:79 58:51 58:58 43:41 89:60 71:51 

Age 38 (18) 38 (18) 50 (14.5) 50 (17) 59 (11) 59 (12) 

Weight (kg) 91.5 (20.1) 91.6 (21) 88 (17.5) 85.5 (13.2) 86.2 (17.4) 83.7 (16.5) 

BMI 31 (5.5) 30.6 (4.766) 30.4 (4.88) 30 (5) 30.2 (4.45) 29.4 (4.6) 

SBP 

(mmHg) 
125 (14) 121 (16) 119 (16) 121 (18) 126 (16) 122 (21) 

DPB 

(mmHg) 
78 (13) 77 (14) 80 (14) 80 (14) 75 (12) 72 (13) 

MAP 

(mmHg) 
94 (13) 90 (12) 93 (15) 80 (14) 91 (13) 89 (13) 

Resting HR 70 (12) 68 (12) 74 (16) NA NA NA 

VO2 max 

(mL/min/kg) 
27.5 (10) 30.2 (11) 26.7 (7.56) 30.7 (9.6) 23.8 (7.05) 26 (8.25) 

Fasting 

glucose 

(mmol/L) 

4.61 (0.43) 4.6 (0.4) 5.26 (0.65) 5.33 (0.77) 5.78 (0.78) 5.81 (0.74) 

2-hour 

glucose 

(mmol/L) 

6.67 (1.51) 6.32 (1.9) NA NA 7.66 (3.43) 7.22 (2.3) 

Fasting 

insulin 

(imm) 

84.4 (65.4) 78.7 (51.7) 55.7 (43.7) 44.3 (33.5) 236 (234) 195 (199) 

Fasting 

insulin 

(ELISA) 

57.7 (42.5) 50.9 (37.6) 30.7 (43.7) 36.6 (33.2) 49.6 (58.4) 40.3 (47.2) 

HOMA2 IR 1.2 (0.9) 1.07 (0.8) 1.07 (1) 0.81 (0.71) 1.12 (1.3) 0.95 (1.07) 

Sum BCAA 

(µmol/L) 
424 (133) 438 (139) 424 (90.4) 465 (85.5) 439 (99.1) 429 (96.1) 

Leucine 

(µmol/l) 
120 (40.6) 126 (39) 

153 

(36.2) 
171.7 (39.5) 148 (37.9) 148 (35.1) 

Isoleucine 

(µmol/L) 
62.89 (22.6) 63.8 (21.7) 

66.8 

(20.1) 
65.6 (22.5) 62.8 (19.7) 59.8 (14.5) 

Valine 

(µmol/l) 
239 (70.2) 247 (75.5) 208 (51.8) 230 (50) 221 (50.2) 220 (49.5) 

HDL 

(mmol/L) 
1.02 (0.39) 1.04 (0.4) 

0.9 

(0.33) 
1.12 (0.33) 1.06 (0.39) 1.11 (0.37) 

LDL 

(mmol/L) 
2.64 (0.99) 2.5 (0.96) 

2.45 

(0.87) 
2.72 (0.75) 3.12 (0.96) 2.96 (0.82) 

TAG 

(mmol/L) 
1.17 (0.75) 1.09 (0.72) 

1.4 

(0.85) 
1.25 (0.78) 1.3 (0.83) 1.18 (0.95) 

ALA 

(µmol/L) 
321 (107) 326 (127) 

419 

(110) 
405 (150) 399 (98) 390 (123) ACCEPTED M

ANUSCRIP
T D
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Table 2. 1 
 2 

 MP S2 S-PD 

Accuracy (95% CI) 0.676 (0.602-

0.744) 

0.707 (0.615-

0.788) 

0.644 (0.562-0.721)   

Kappa 0.339 0.347 0.27            

Sensitivity 0.58           0.512 0.563         

Specificity 0.755 0.822 0.706 

PPV 0.662 0.629 0.59 

NPV 0.685 0.741 0.682 

Prevalence 0.453           0.371 0.43 

Detection rate 0.263 0.19 0.242 

 3 
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 1 

Figure 1 2 
190x275 mm ( x  DPI) 3 

  4 

ACCEPTED M
ANUSCRIP

T D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaf285/8129735 by guest on 14 M

ay 2025



29 

 1 

Figure 2 2 
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Figure 3 2 
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Figure 4 2 
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Figure 5 2 
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