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Hyperfoams: Energy dissipation and shock wave formation
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Abstract. It has been found that highly porous organic foams (hyperfoams) modeled by the Blatz–Ko and Hill hyperelastic
potentials may exhibit mechanical energy loss caused by the formation and propagation of strain discontinuities arising
when a portion of a faster wave pulse overtakes a slower one. This observation opens up a possibility for creating a new type
of shock absorbers containing no viscous or dry friction elements. For example, the considered Blatz–Ko-type hyperelastic
potential is a good material behavior model for moderately stiff polyurethane (PU) foams both at large compression and
at large extension strains. The analysis utilizes a combined method consisting of the explicit time integration technique
coupled with the finite element method for spatial discretization.
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1. Introduction

1.1. Overview

Currently, various rigid highly porous organic foam materials (hyperfoams) are widely used as shock
absorbers due to their ability to attenuate mechanical wave energy [1]; also see Fig. 1a. It was assumed
that this attenuation takes place because of two main mechanisms (i) scattering of acoustic waves by pores
[2] and (ii) viscoelastic properties of the skeleton material [3]. Meanwhile, theoretical studies based on the
two-scale asymptotic analysis testify that waves with wavelengths that are several orders of magnitude
larger as compared to the typical pore dimension can hardly be scattered by small pores [4,5]. Similarly,
the considered viscoelastic effects can make a significant impact on multiple loading cycles (e.g., during
vibration) [6,7], but are not able to provide sufficient attenuation for propagating bulk waves, especially
single short-duration pulses at sufficiently small distances from the excitation source [8,9]. Note that a
stochastic hyperfoam structure can also be observed in aerogels [10] (Fig. 1b).

The majority of non-porous stitched polymers exhibiting almost no compressibility in a large range
of principal stretches, which are actually eigenvalues of the Cauchy–Green strain tensors, are modeled
by the non-compressible versions of the Ogden potential [12,13], Mooney–Rivlin potential [14–18], Yeoh
potential [19–21], or Arruda–Boyce potential [22–25]. However, the considered highly porous polymers
demonstrate large compressibility with a complicated but monotonic variation of Cauchy stress vs. strain
[26–30].

To model highly porous elastic materials, Hill [31] proposed the following potential
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Fig. 1. Microstructure of typical hyperfoams

where λk, k = 1, 2, 3 are the eigenvalues (principal stretches) of the strain gradient F, Cm are the
experimentally defined coefficients, M is a finite set of real numbers, and

J ≡ det(F) = λ1λ2λ3. (1.2)

With potential 1.1, the principal components of the Cauchy stress tensor become

σi = λ−1
i

∑

m∈M

Cm

(
λm

i − J−nm
)
. (1.3)

Note that according to [31] neither of the exponents m or n need to be positive and integer. Considering
uniaxial tension–compression with conditions

λ1 = λ; σ2 = σ3 = 0 (1.4)

and taking into account Eqs.1.3, Stor̊akers [32] constructed expressions for the eigenvalues λk k = 2, 3

λk = λ− n
2n+1 , k = 2, 3. (1.5)

Blatz & Ko [33], analyzing hyperfoams made of polyurethanes, revealed that the general potential 1.1
can be reduced to the following one-parametric form with m = −2 and n = 2−1, which yields

W (λ1, λ2, λ3) =
μ

2

(
3∑

k=1

λ−2
k + 2J − 5

)
. (1.6)

Equation 1.5 for the Blatz–Ko potential 1.6 yields

λk = λ− 1
4 , k = 2, 3. (1.7)

The apparent non-smooth variation of the potential at λ → 1 ± 0 visible in Fig. 2a disappears when
moving from the semi-logarithmic scale to the Cartesian scale in Fig. 2b. The plots in Fig. 2 demonstrate
the nonlinear behavior of the elastic potential over the whole range of uniaxial stretches λ ∈ [0.2; 1.2],
ensuring nonlinearity in the stress–stretch relation [27]. It should also be noted that the considered
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Fig. 2. The Blatz–Ko potential for hyperfoam under uniaxial compression–tension

potential 1.6 along with a more general potential 1.1 is quite often used for modeling different polymeric
materials with high porosity [34–37]. Karp and Durban [38] reported a comprehensive analysis of dynamic
spectral response of prestressed plates with material behavior given by Blatz–Ko potential.

1.2. Problem statement

Herein, uniaxial wave propagation in a hyperfoam rod modeled by the Blatz–Ko potential 1.6 is analyzed,
revealing, apparently for the first time, (i) the formation and propagation of (strong) shock wave fronts
associated with discontinuities in the strain field; (ii) the attenuation of displacement magnitudes with
distance from the excitation source; therefore, (iii) the attenuation of both kinetic and strain energy; and
(iv) the simultaneous release of thermal energy. These observations may indicate that the most probable
mechanism for the attenuation of waves in a hyperfoam material can be associated with the formation
and propagation of shock wave fronts and not the previously assumed viscous properties of the material
[39,40], or scattering by micropores [3]. Thus, it is demonstrated that mechanical energy dissipation can
be achieved in a purely hyperelastic system without viscous or dry friction properties.

The current analysis is based on solving nonlinear hyperbolic equation for a traveling stress wave in
a hyperfoam material modeled by the Blatz–Ko potential 1.6. The solution for the considered hyperbolic
equation is constructed by the finite element (FE) method for spatial discretization coupled with an
explicit energy-preserving Lax–Wendroff numerical scheme for time integration.

2. Governing equations

2.1. Cauchy stress, tangent modulus, and rod velocity

The Cauchy principal stress [41] for potential 1.6 and conditions 1.7 takes the form

σ1(λ) ≡ ∂λW (λ) = μ
(
λ

5
2 − 1

)
λ−3, (2.1)
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Fig. 3. The Blatz–Ko potential

Hereafter, the subscript at the principal stress will be omitted. Differentiating this principal stress
with λ yields the tangent elastic modulus

E(λ) ≡ ∂λσ(λ) =
1
2
μ

(
6 − λ

5
2

)
λ−4. (2.2)

The material density is defined as [41]

ρ(λ) ≡ ρ0J
−1 = ρ0λ

− 1
2 , (2.3)

where ρ0 is the material density at the natural state, assumed to be at λ = 1. Now, following [42–44]
and accounting Eqs.2.2, 2.3 introduce the rod velocity, which is the propagating velocity of an arbitrary
stress pulse in a one-dimensional rod

c(λ) ≡
√

E(λ)
ρ(λ)

=
√
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2ρ0
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5
2

)
λ− 3

2 . (2.4)

Remark. The obtained expression 2.2 for tangent elastic modulus is valid for

λ < 6
2
5 ≈ 2.048, (2.5)

from where the Blatz–Ko potential 1.6 becomes non-convex (loses ellipticity). This fact was mentioned
and studied in several works [32,45–50]. Herein, it is assumed that the tensile stretches do not exceed the
estimate 2.5. The plots in Fig. 3 show the variation of Cauchy stress and tangent modulus with stretch,
varying in the range λ ∈ [0.5; 2.0].

2.2. Equation of motion

The equation of motion for the considered one-dimensional case can be written in the form [41]

∂xσ(λ) = ρ(λ)∂2
ttu(x, t), (2.6)

where u(x, t) is the displacement field, related to the principal stretch λ of the corresponding diagonal
deformation gradient F

F = ∂xu(x, t)n ⊗ n + I (2.7)
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Fig. 4. Semi-infinite rod

by the following relation [13]
λ = 1 + ∂xu(x, t). (2.8)

In Eq. 2.7 I is the unit 3 × 3-matrix (tensor), and n is the unit vector directed along the axis of the
rod.

Now, in view of Eqs.2.1, 2.2, and 2.8, the desired equation of motion takes the form of a nonlinear
hyperbolic equation

F (∂xu(x, t)) ∂2
xxu(x, t) = ∂2

ttu(x, t), (2.9)
where

F (∂xu(x, t)) ≡ μ

2ρ0

(
6 − (1 + ∂xu(x, t))

5
2

)
(1 + ∂xu(x, t))− 3

2 . (2.10)

2.3. Boundary and initial conditions

Consider a semi-infinite rod with a triangle loading applied at the left edge:

p(t) = p0

⎧
⎪⎪⎨

⎪⎪⎩

0, t < 0
t, 0 < t < t0
2t0 − t, t0 < t < 2t0
0, 2t0 < t

, (2.11)

where 2t0 is the pulse duration and p0 is a dimensional constant, specifying the intensity of the applied
force load (Fig. 4).

The Sommerfeld attenuation condition [51,52] is imposed at the right end (x → ∞):

u(x, t)|x→∞ = 0; ∂xu(x, t)|x→∞ = 0. (2.12)

The initial conditions correspond to the state of rest:

u(x, t)|t=0 = 0 ∂tu(x, t)|t=0 = 0. (2.13)

2.4. Equations of energy balance

The equation of energy balance can be written in the form [41]
t∫

0

P (τ)dτ = Ek + Es + Q, (2.14)

where Q is the heat release, defined by the release of specific thermal energy, as

Q ≡
t∫

0

∞∫

0

q(x, τ)dxdτ. (2.15)

In Eq. 2.14 Ek and Es are the kinetic and strain energy, respectively

Ek =
1
2

∞∫

0

ρ(λ(x, t))(∂tu(x, t))2dx Es =
1
2

∞∫

0

W (λ(x, t))dx, (2.16)
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and P (τ) is the power of external force f(τ)

P (τ) = f(τ)∂τu(0, τ). (2.17)

When shock wave fronts associated with discontinuities in strain appear, Eq. 2.14 needs to be supple-
mented with a balance equation at the shock wave front [53,54]

ρ0V [W ] +
1
2
ρ0V

[
c2

]
= − [σc] + [Q] , (2.18)

where the square brackets denote the jump at the discontinuity and V is the velocity of the moving
shock wave front. Equation 2.18 allows us to define the shock wave velocity:

V =
[Q] − [σc]

ρ0 [W ] + 1
2ρ0 [c2]

. (2.19)

Note that according to [41]
cmin < V < cmax, (2.20)

where cmin, cmax are the limiting values of particle velocities at both sides of the shock wave fronts.

2.5. FE formulation

The governing equations are solved by applying FE method for spatial discretization and the FD method
in the time-domain coupled with an explicit Lax–Wendroff energy conservation numerical scheme [51,55].
To achieve a conditionally stable numerical algorithm, the Courant–Friedrichs–Lewi (CFL) condition is
imposed on the time increment Δt, which for the considered problem reads as [56,57]

Δt < ΔtCFL ≡ Δx

max
λ

c(λ)
, (2.21)

where ΔtCFL is the CFL time increment, Δt is the time increment, Δx is the spatial increment
(mesh size), and c(λ) is the rod velocity, defined by Eq.2.4; the principal stretch λ satisfies the convexity
condition

∂2
λλW (λ) =

1
2
μ

(
6 − λ

5
2

)
λ−4 > 0, (2.22)

and, thus, λ should satisfy condition 2.5. In the current analysis, a two-step predictor–corrector form
of the Lax–Wendroff scheme is used [51]

u
(
xj+1/2; tn+1/2

)
= 1

2 (u (xj+1; tn) + u (xj ; tn)) −
Δt

2Δx (F (u (xj+1; tn)) − F (u (xj ; tn)))
, (2.23)

where xj is a spatial node and F is the nonlinear function, defined by Eq.2.10.
The explicit dynamics finite element commercial software ANSYS LS-DYNA [58] was utilized to

solve the problem numerically. There was no possibility to utilize simplest two-node linear elements with
Blatz–Ko material model in LS-DYNA R© software, so more complicated 2D elements with rotational
symmetry were used to simulate wave propagating in the rod (Fig. 4), with a load given by Eq. 2.11. To
perform mesh convergence analysis, total number of elements was varied in the range 7K ≤ N ≤ 22K.
The mesh convergence analysis reveals almost identical displacement and stress fields for N ≥ 10K;
hence, N ≈ 10K was chosen for the further computational analysis. Instead of imposing the Sommerfeld
attenuation condition 2.12 at x → ∞, the points of observation were chosen in such a way to ensure the
absence of reflected waves from the right end of the rod. In the current model, the load at the left end of
the rod was defined by Eq. 2.11 with t0 = 30 μs and p0 = 150N .
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Fig. 5. Compressive load pulse traveling along the rod. Different colors are referred to different times

3. Numerical analysis

The force loading shown in Fig. 4 and defined by Eq. 2.11 reveals that the applied delta-like pulse
generates the initially triangle pulse propagating with variable velocity dependent upon ε by Eq. 2.4.
Since the speed of propagation and material density are highly dependent upon strain ε, as plots in Fig. 3
show, some parts of the pulse may travel faster than others. These overtakes result in (i) an overlap of the
slower moving parts of the leading wave front by the faster moving parts contained inside the pulse; this
phenomenon causes the formation of multiple shock wave fronts; (ii) spreading out the initially narrow
triangle and its distortion; and (iii) decrease in mechanical energy due the formation and propagation
of shock wave fronts, at which the mechanical energy dissipation occurs [53]. All these phenomena are
observed at propagating wave pulse in the considered Blatz–Ko rod (see Fig. 5), where the variation of
the principal component of the Cauchy stress tensor versus time is plotted. Herein, the Cauchy stress
tensor is defined as [41]

σ = J−1 ∂W

∂F
· F, (3.1)

yielding the desired principal component for σ, and the Lagrangian finite strain tensor

E =
1
2

(B − I) . (3.2)

The typical stress pulses at the origin (t = 120μs) and somewhere in the middle of the rod (t =
8.52ms), where the shock wave front is formed, are given in Fig. 6.

The variation of the pulse stress amplitude versus distance is plotted in Fig. 7, revealing a substantial
decrease in the stress amplitudes with distance.
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Fig. 6. The compressive wave shape for: a) initial time and b) time when the shock wave front is formed

Fig. 7. The amplitude of the stress pulse as a function of distance traveled by the pulse along the rod

It has also been observed that both kinetic and strain energy decrease with time and distance from
the left end of the rod, while heat is released in the expense of the losses in mechanical energy.

4. Concluding remarks

Analyzing excitation of the delta-like acoustic waves propagating in a semi-infinite rod modeled by the
Blatz–Ko hyperelastic potential, which describes the stress–strain relations of various foams, including
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polymer hyperfoams [9] and aerogels [10,30,59], revealed that the elastic tangent modulus (Fig. 3a) varies
monotonically with strain in the whole range of admissible values of the principal stretch 2.5, ensuring the
convexity of the considered potential. Regarding the propagation of the delta-like pulses along the rod,
it has been observed that the Cauchy stress attenuates with the distance (Figs. 5 and 7), caused by the
formation and propagation of the shock wave fronts, which appear at the head fronts of the pulses (Fig.
6). Moreover, the performed analysis also revealed that both kinetic and strain energy dissipate resulting
in the significant thermal energy release. Cohen and Durban [60] proposed a theoretical framework for the
propagation of longitudinal shock waves in elastoplastic solids, utilizing an analogy to the piston-driven
shock tube model commonly employed in fluid dynamics. This formulation was subsequently extended
to account for steady shock waves in porous elastoplastic media [61]. The findings from these studies
elucidate an additional dissipation mechanism for shock wave energy, namely plastic deformation within
the solid matrix. Thus, apparently for the first time, the loss of mechanical energy is observed at the
propagation of acoustic waves in a purely mechanical system, modeled by the Blatz–Ko potential, ensuring
a continuous and smooth variation of mechanical properties. This phenomenon reveals a possibility for
the mechanical wave attenuation due to the formation and propagation of the shock wave fronts.
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