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Abstract: The requirement for privacy-aware machine learning increases as we continue
to use PII (personally identifiable information) within machine training. To overcome the
existing privacy issues, we can apply fully homomorphic encryption (FHE) to encrypt data
before they are fed into a machine learning model. This involves generating a homomorphic
encryption key pair, where the public key encrypts the input data and the private key
decrypts the output. However, there is often a performance hit when we use homomorphic
encryption, so this paper evaluates the performance overhead of using an SVM (support
vector machine) machine learning technique with the OpenFHE homomorphic encryption
library. This uses Python and the scikit-learn library to create an SVM model, which can then
be used with homomorphically encrypted data inputs and then produce a homomorphically
encrypted result. The experiments include a range of variables, such as multiplication
depth, scale size, first modulus size, security level, batch size, and ring dimension, along
with two different SVM models, SVM-poly and SVM-linear. Overall, the results show that
the two main parameters that affect performance are ring dimension and modulus size,
and SVM-poly and SVM-linear show similar performance levels.

Keywords: homomorphic encryption; support vector machine; privacy-preserving

1. Introduction
The rise of machine learning (ML) has led to increasing demand for large volumes of

data to train accurate and effective models. However, these data often contain personally
identifiable information (PII), which must be protected, especially in sensitive domains
such as healthcare, finance, and the Internet of Things (IoT). For instance, in healthcare
applications, training ML models on patient records can significantly improve diagnostics
and treatment recommendations, but it also raises serious privacy concerns.

While data protection mechanisms such as encryption are commonly applied over
the air and at rest, data are frequently left vulnerable in-process, where they are decrypted
and exposed during computation. This critical gap has motivated research into privacy-
preserving machine learning (PPML), which aims to enable model training and inference
on encrypted or otherwise protected data.

Among the PPML techniques, homomorphic encryption (HE) provides a mathemat-
ically robust method for securing data during computation. HE thus allows arithmetic
operations to be performed directly on ciphertexts, producing encrypted results that, when
decrypted, match the output of the operations performed on the plaintexts. This capability
is offered through different classes of HE: partial homomorphic encryption (PHE), which
supports only limited operations (e.g., addition or multiplication), and fully homomor-
phic encryption (FHE), which supports arbitrary computations and provides the strongest
privacy guarantees.
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FHE schemes, particularly those based on lattice cryptography, offer a high level
of security but are often computationally expensive, posing challenges for real-time or
resource-constrained applications. These trade-offs must be rigorously evaluated to deter-
mine their practical applicability in machine learning workflows.

In this paper, we investigate the integration of fully homomorphic encryption into
support vector machine (SVM) learning, a widely used classification algorithm known for
its robustness and interpretability. An SVM model aims to define the input data within a
number of different classes in a multidimensional space. This type of approach matches
well with the processing of homomorphically encrypted data with matrix and vector
computations of lattice methods.

Our contributions are three-fold: (1) we implement a privacy-preserving SVM model
using FHE, (2) we evaluate the feasibility and performance of the model using multiple
datasets and encryption parameters, and (3) we analyze the trade-offs between computa-
tional efficiency and classification accuracy. All the experiments are conducted using the
OpenFHE library [1], a state-of-the-art FHE framework.

By providing an empirical evaluation of FHE-based SVMs, this work contributes to
the growing field of secure machine learning and offers insights into the deployment of
privacy-preserving models in sensitive data environments.

2. Background
Homomorphic encryption supports mathematical operations on encrypted data. In

1978, Rivest, Adleman, and Dertouzos [2] were the first to define the possibilities of
implementing a homomorphic operation and used the RSA method. This supported
multiply and divide operations [1] but not addition and subtraction. Overall, PHE supports
a few arithmetic operations, while FHE supports add, subtract, multiply, and divide.

Since Gentry defined the first FHE method [3] in 2009, there have been four main
generations of homomorphic encryption:

• 1st generation: Gentry’s method uses integers and lattices [4], including the
DGHV method.

• 2nd generation. Brakerski, Gentry, and Vaikuntanathan (BGV) and Brakerski/Fan–
Vercauteren (BFV) use a ring-learning-with-errors approach [5]. The methods are
similar to each other, and there is only a small difference between them.

• 3rd generation: These include DM (also known as FHEW) and CGGI (also known as
TFHE) and support the integration of Boolean circuits for small integers.

• 4th generation: CKKS (Cheon, Kim, Kim, and Song), which uses floating-point
numbers [6].

Generally, CKKS works best for real number computations and can be applied to
machine learning applications as it can implement logistic regression methods and other
statistical computations. DM (also known as FHEW) and CGGI (also known as TFHE) are
useful in the application of Boolean circuits for small integers. BGV and BFV are generally
used in applications with small integer values.

2.1. Public Key or Symmetric Key

Homomorphic encryption can be implemented either with a symmetric key or an
asymmetric (public) key. With symmetric key encryption, we use the same key to encrypt
as we do to decrypt, whereas, with an asymmetric method, we use a public key to encrypt
and a private key to decrypt. In Figure 1, we use asymmetric encryption with a public key
(pk) and a private key (sk). With this, Bob, Alice, and Peggy will encrypt their data using the
public key to produce ciphertext, and then we can operate on the ciphertext using arithmetic
operations. The result can then be revealed by decrypting with the associated private key.
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In Figure 2, we use symmetric key encryption, where the data are encrypted with a secret
key, which is then used to decrypt the data. In this case, the data processor (Trent) should
not have access to the secret key as it could decrypt the data from the providers.

Figure 1. Asymmetric encryption (public key).

Figure 2. Symmetric encryption.

2.2. Homomorphic Libraries

There are several homomorphic encryption libraries that support FHE, including
ones that support CUDA and GPU acceleration, but many have not been kept up to date
with modern methods or have only integrated one method. Overall, the native language
libraries tend to be the most useful as they allow the compilation to machine code. The
main languages used for this are C++, Golang, and Rust, although some Python libraries
exist through wrappers of C++ code. This includes HEAAN-Python and its associated
HEAAN library.

One of the first libraries that supported a range of methods is Microsoft SEAL [7],
with SEAL-C# and SEAL-Python. While it supports a wide range of methods, including
BGV/BFV and CKKS, it has lacked significant development for the past few years. It does
have support for Android and has a Node.js port [8]. Wood et al. [9] defined a full range of
libraries. One of the most extensive libraries is PALISADE, which has now developed into
OpenFHE. Within OpenFHE, the main implementations of this library are as follows:
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• Brakerski/Fan–Vercauteren (BFV ) scheme for integer arithmetic.
• Brakerski–Gentry–Vaikuntanathan (BGV) scheme for integer arithmetic.
• Cheon–Kim–Kim–Song (CKKS) scheme for real-number arithmetic (includes approxi-

mate bootstrapping).
• Ducas–Micciancio (DM) and Chillotti–Gama–Georgieva–Izabachene (CGGI) schemes

for Boolean circuit evaluation.

This research paper supports the use of OpenFHE as it directly supports a range of
machine learning methods, including SVM and neural networks.

2.3. Bootstrapping

A key topic within fully homomorphic encryption is the use of bootstrapping. Within a
learning-with-errors approach, we add noise to our computations. For a normal decryption
process, we use the public key to encrypt data and then the associated private key to decrypt
them. Within the bootstrap version of homomorphic encryption, we use an encrypted
version of the private key that operates on the ciphertext. In this way, we remove the noise
that can build up in the computation. Figure 3 outlines that we perform an evaluation on
the decryption using an encrypted version of the private key. This will remove noise in the
ciphertext, after which we can use the actual private key to perform the decryption.

Figure 3. Bootstrap.

The main bootstrapping methods are CKKS [6], DM [10]/CGGI, and BGV/BFV. Over-
all, CKKS is generally the fastest bootstrapping method, while DM/CGGI is efficient with
the evaluation of arbitrary functions. These functions approximate math functions as
polynomials (such as with Chebyshev approximation). BGV/BFV provides reasonable
performance and is generally faster than DM/CGGI but slower than CKKS.

2.4. BGV and BFV

With BGV and BFV, we use a ring-learning-with-errors (LWE) method [5]. With BGV,
we define a modulus (q), which constrains the range of the polynomial coefficients. Overall,
the methods use a modulus that can be defined within different levels. We then initially
define a finite group of Zq and then make this a ring by dividing our operations with
(xn + 1), where n− 1 is the largest power of the coefficients. The message can then be
represented in binary as

m = an−1an−2 . . . a0 (1)

This can be converted into a polynomial with

m = an−1xn−1 + an−2xn−2 + . . . + a1x + a0 (mod q) (2)
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The coefficients of this polynomial will then be a vector. Note that, for efficiency, we
can also encode the message with ternary (such as with −1, 0, and 1). We then define the
plaintext modulus with

t = pr (3)

where p is a prime number and r is a positive number. We can then define a ciphertext
modulus of q, which should be much larger than t. To encrypt with the private key of s, we
implement the following:

(c0, c1) =
( q

t
.m + a.s + e,−a

)
mod q (4)

To decrypt

m =
⌊ t

q
(c0 + c1).s

⌉
(5)

This works because

mrecover =
⌊ t

q

( q
t

.m + a.s + e− a.s
)⌉

(6)

=
⌊(

m +
t
q

.e
)⌉

(7)

≈ m (8)

For two messages of m1 and m2, we will obtain

Enc(m1 + m2) = Enc(m1) + Enc(m2) (9)

Enc(m1.m2) = Enc(m1).Enc(m2) (10)

2.4.1. Noise and Computation

Each time we add or multiply, the error also increases. Thus, bootstrapping is required
to reduce the noise. Overall, addition and plaintext/ciphertext multiplication is not a
time-consuming task, but ciphertext/ciphertext multiplication is more computationally
intensive. The most computational task is typically the bootstrapping process, and the
ciphertext/ciphertext multiplication process adds the most noise to the process.

2.4.2. Parameters

We thus have parameters of the ciphertext modulus (q) and the plaintext modulus (t).
Both of these are typically to the power of 2. An example of q is 2240, and for t 65,537. As
the value of 2q is likely to be a large number, we typically define it as a log_q value. Thus, a
ciphertext modulus of 2240 will be 240, defined as a logq value.

2.5. CKKS

HEAAN (Homomorphic Encryption for Arithmetic of Approximate Numbers) defines
a homomorphic encryption (HE) library proposed by Cheon, Kim, Kim, and Song (CKKS).
The CKKS method uses approximate arithmetic over complex numbers [6]. Overall, it
is a level approach that involves the evaluation of arbitrary circuits of bounded (pre-
determined) depth. These circuits can include add (X-OR) and multiply (AND).

HEAAN uses a rescaling procedure to measure the size of the plaintext. It then
produces approximate rounding due to the truncation of the ciphertext into a smaller
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modulus. The method is especially useful in that it can be applied to carry out encryption
computations in parallel. Unfortunately, the ciphertext modulus can become too small,
where it is not possible to carry out any more operations.

The HEAAN (CKKS) method uses approximate arithmetic over complex numbers
(C) and is based on ring learning with errors (RLWE). It focuses on defining an encryption
error within the computational error that will happen within approximate computations.
We initially take a message (M) and convert it to a cipher message (ct) using a public key pk.
To decrypt ([〈ct,sk〉]q), we produce an approximate value along with a small error (e).

Craig Gentry [11] outlined three important application areas within privacy-preserving
genome association, neural networks, and private information retrieval. Along with this,
he proposed that the research community should investigate new methods that do not
involve the use of lattices.

2.5.1. Chebyshev Approximation

With approximation theory, it is possible to determine an approximate polyno-
mial p(x) that is an approximation to a function f (x). A polynomial takes the form
of p(x) = an.xn + an−1.xn−1 + a1.x + a0, where a0 . . . an are the coefficients of the powers,
and n is the maximum power of the polynomial. In this case, we will evaluate arbitrary
smooth functions for CKKS and use Chebyshev approximation. These were initially created
by Pafnuty Lvovich Chebyshev. This method involves the approximation of a smooth
function using polynomials.

Overall, with polynomials, we convert our binary values into a polynomial, such
as 101101,

x5 + x3 + x2 + 1 (11)

Our plaintext and ciphertext are then represented as polynomial values.

2.5.2. Approximation Theory

With approximation theory, we aim to determine an approximate method for a function
f(x). It was Pafnuty Lvovich Chebyshev who defined a method of finding a polynomial
p(x) that is approximate for f(x). Overall, a polynomial takes the form of

p(x) = an.xn + an−1.xn−1 + a1.x + a0 (12)

where a0 . . . an are the coefficients of the powers, and n is the maximum power of the
polynomial. Chebyshev published his work in 1853 as “Theorie des mecanismes, connus
sous le nom de parall elogrammes”. His problem statement was “to determine the devi-
ations which one has to add to obtain an approximated value for a function f , given by
its expansion in powers of x− a, if one wants to minimise the maximum of these errors
between x = a− h and x = a + h, h being an arbitrarily small quantity”.

3. Related Work
Homomorphic encryption supports the use of machine learning methods, and some

core features include a dot product operation with an encrypted vector and logistic func-
tions. With this, OpenFHE supports a range of relevant methods and even has a demon-
strator for a machine learning method.

3.1. State of the Art

Iezzi et al. [12] defined two methods of training with homomorphic encryption:
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• Private Prediction as a Service (PPaaS). This is where the prediction is outsourced to a
service provider who has a pre-trained model where encrypted data are sent to the
service provider. In this case, the data owner does not learn the model used.

• Private Training as a Service (PTaaS). This is where the data owner provides data to a
service provider, who will train the model. The service provider can then provide a
prediction for encrypted data.

Wood et al [9] added models of

• Private outsourced computation. This involves moving computation into the cloud.
• Private prediction. This involves homomorphic data being processed into the cloud

and not having access to the training model.
• Private training. This is where a cloud entity trains a model based on the client’s data.

3.2. GWAS

Blatt et al. [13] implemented the genome-wide association study (GWAS), which is a
secure large-scale genome-wide association study using homomorphic encryption. The
chi-squared GWAS test was implemented in OpenFHE (https://github.com/openfheorg/
openfhe-genomic-examples/blob/main/demo-chi2.cpp, accessed on 20 May 2025). With
this, each of the participants in the student group is given a public key from a GWAS
(genome-wide association study) coordinator, who then encrypts the data with CKKS and
sends them back for processing. The computation includes association statistics using full
logistic regression on each variant with sex, age, and age squared as covariates. Pearson’s
chi-squared test uses categories to determine if there is a significant difference between
sets of data (it implements as RunChi2 from https://github.com/openfheorg/openfhe-
genomic-examples/blob/main/demo-chi2.cpp, accessed on 20 May 2025).

χ̃2 =
1
d

n

∑
k=1

(Ok − Ek)
2

Ek
(13)

where

• χ̃2 is the chi-squared test statistic.
• O is the observed frequency.
• E is the expected frequency.

Overall, the implementation involved a dataset of 25,000 individuals, and it was
shown that 100,000 individuals and 500,000 single-nucleotide polymorphisms (SNPs) could
be evaluated in 5.6 hours on a single server [13].

Linear Regression

The GWAS method is also implemented with linear regression for homomorphic en-
cryption (see RunLogReg in https://github.com/openfheorg/openfhe-genomic-examples/
blob/main/demo-logistic.cpp, accessed on 20 May 2025). The results show that the ac-
curacy of both the chi-squared and linear regression tests was good. The runtime varied
linearly with the number of participants in the test.

3.3. Support Vector Machines (SVMs)

With the SVM (support vector machine) model, we have a supervised learning tech-
nique. Overall, it is used to create two categories (binary) or more (multi) and will try to
allocate each of the training values into one or more categories. Basically, we have points in
a multidimensional space and try to create a clear gap between the categories. New values
are then placed within one of the two categories.

https://github.com/openfheorg/openfhe-genomic-examples/blob/main/demo-chi2.cpp
https://github.com/openfheorg/openfhe-genomic-examples/blob/main/demo-chi2.cpp
https://github.com/openfheorg/openfhe-genomic-examples/blob/main/demo-chi2.cpp
https://github.com/openfheorg/openfhe-genomic-examples/blob/main/demo-chi2.cpp
https://github.com/openfheorg/openfhe-genomic-examples/blob/main/demo-logistic.cpp
https://github.com/openfheorg/openfhe-genomic-examples/blob/main/demo-logistic.cpp
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Overall, we split the input data into training and test data and then train with a sklearn
model with unencrypted values from the training data. The output from the model includes
the weights and intercepts. Next, we can encrypt the test data with the homomorphic
public key and then feed the result into the SVM model. The output values can then be
decrypted by the associated private key, as illustrated in Figure 4.

Figure 4. Process of exporting SVM model into the OpenFTE environment.

CKKS and SVM

The CKKS scheme is a homomorphic encryption method designed for encrypted
arithmetic operations. For a given plaintext feature vector of

x = (x1, x2, . . . , xn) (14)

and a public key of pk, the encryption function is

Enc(x, pk) = cx (15)

where cx is the encrypted representation of x [6]. For support vector machine (SVM)
classification with linear SVM, we use a linear decision function of

flin(x) = wTx + b (16)

where x is the feature vector, w is the weight vector, and b is the bias term.
For classification,

y = sign( flin(x)) (17)

Using FHE, the computation is performed on encrypted values [6]:
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Enc( flin(x)) = Enc(wTx + b) (18)

A polynomial-kernel SVM extends the decision function to

fpoly(x) = (wTx + b)d (19)

where d is the polynomial degree, and where the rest of the parameters are the same as the
linear SVM. For classification,

y = sign( fpoly(x)) (20)

With homomorphic encryption, we compute this function without decrypting

Enc( fpoly(x)) = Enc((wTx + b)d) (21)

which follows prior encryption-based SVM work [6,11]. After computation, the result is
decrypted using the private key ( sk:

Dec(c f , sk) = f (x) (22)

The final classification is

y = sign(Dec(c f , sk)) (23)

4. Methodology
This paper explores the integration of fully homomorphic encryption (FHE) with

support vector machines (SVMs) for privacy-preserving machine learning. The proposed
framework employs the CKKS encryption scheme, implemented via the OpenFHE library,
to enable encrypted inference while maintaining classification accuracy. Homomorphic
encryption allows computations to be performed directly on encrypted data without de-
cryption, ensuring data privacy throughout the machine learning pipeline [6]. OpenFHE is
an open-source library that provides implementations of lattice-based encryption schemes,
including CKKS, which supports approximate arithmetic operations on encrypted data [1].

The dataset used for this experiment is the Iris dataset, which contains measurements
of iris flowers, including sepal length, sepal width, petal length, and petal width [14]. This
dataset, originally introduced by Fisher [15], is widely used in machine learning research
due to its simplicity and well-separated class distributions. The objective of using this
dataset is to evaluate the effectiveness of the encrypted SVM framework in classifying iris
species while ensuring data privacy. The dataset is publicly available from the UCI ML
Repository [16].

The methodology consists of environment setup and data preprocessing. The SVM
model, originally introduced by Cortes and Vapnik [17], is trained on plaintext data before
being used for encrypted inference. To analyze the trade-offs between encryption security,
computational efficiency, and model accuracy, the implementation is conducted using
OpenFHE within a Python-based machine learning pipeline, leveraging libraries such as
Scikit-Learn and NumPy [18].

4.1. Environment Setup

The encryption parameters in the fully homomorphic encryption (FHE) framework
are essential for balancing security, computational efficiency, and model accuracy. The
following section outlines the installation process, provides a detailed explanation of each
parameter, and presents the system specifications, as shown in Table 1.
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Table 1. Experimental setup.

Component Description

Compute Environment AWS EC2 t3.medium (Two vCPUs, Intel Xeon 3.1 GHz,
4 GB RAM)

Operating System Ubuntu 20.04
Programming Language Python 3.x
ML Library scikit-learn (for SVM training and evaluation)
HE Library OpenFHE (CKKS scheme for encrypted inference) [1]
Dataset Iris Dataset (150 samples, four features) [15]
Preprocessing Standardization (zero mean, unit variance), Train–Test

Split (80–20%)
Encryption Parameters N, D, S, M, L, B (Ring Dim, Mult Depth, Scaling Factor,

Modulus Size, Sec Level, Batch Size)
SVM Models Linear SVM, Polynomial SVM (homomorphic kernel

approximation) [17]
Performance Metrics Classification Accuracy, Encryption Overhead, Inference

Time, Memory Use, Scalability

4.1.1. Experimental Setup

The implementation of the encrypted SVM framework followed a structured approach
to ensure efficiency and reproducibility. The setup commenced with the installation of
openfhe-python , adhering strictly to the official guidelines [1]. This library provided the
essential cryptographic primitives required for executing encrypted computations securely.

Following the installation, the model training phase was conducted using the
model_training.py script. This process involved training an SVM classifier and saving the
learned parameters, which were subsequently utilized for encrypted inference. The trained
model served as the foundation for performing secure classification without exposing
sensitive data.

To facilitate a standardized evaluation, the dataset was organized within the data/
directory. If necessary, the dataset could be regenerated by executing the get_data.py script,
ensuring consistency and reproducibility across experiments.

For encrypted inference, two dedicated scripts were employed: encrypted_svm_
linear.py and encrypted_svm_poly.py. These scripts enabled inference using linear- and
polynomial-kernel SVM models, respectively, allowing for a comprehensive assessment
of encrypted classification performance under different kernel settings. Through this
structured approach, the framework effectively demonstrated the feasibility of privacy-
preserving machine learning using homomorphic encryption.

4.1.2. Encryption Parameters

Homomorphic encryption relies on several key parameters that impact computational
efficiency, security, and accuracy [6]. The primary encryption parameters used in this
study are

• Ring Dimension (N): Defines the size of the polynomial ring used in encryption.
A larger N increases security but also raises computational cost [5]. Typical values
include N = 210, 212, 214, . . ..

• Multiplication Depth (D): Represents the number of consecutive multiplications
a ciphertext can undergo before noise accumulation becomes a limiting factor [11].
Higher D enables more complex computations, which is essential for polynomial-
kernel approximation in SVM.
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• Scaling Factor (S): Determines the precision of fixed-point arithmetic in CKKS en-
cryption. A higher S improves numerical accuracy but increases computational
complexity [19].

• First Modulus Size (M): Defines the initial modulus size, impacting ciphertext preci-
sion and computational overhead [20].

• Security Level (L): Specifies the cryptographic strength of encryption (e.g., 128-bit,
192-bit, or 256-bit security). A higher L enhances security but introduces additional
computational costs [21].

• Batch Size (B): Represents the number of encrypted values processed in parallel. A
larger B improves computational efficiency, particularly for batch inference.

These parameters significantly impact the feasibility of encrypted machine learning. In
our experiments, we analyze their influence on classification accuracy, encryption overhead,
and inference efficiency.

4.1.3. System Specifications

The system was deployed on an AWS EC2 t3.medium instance, equipped with
two virtual CPUs (Intel Xeon 3.1 GHz) and 4 GB of RAM, providing a balanced environ-
ment for machine learning and encrypted computations. Python was used as the primary
programming language for software, enabling seamless integration between machine learn-
ing and encryption frameworks. scikit-learn then supports the training and evaluation of
traditional SVM models, ensuring a robust baseline for comparison. Meanwhile, OpenFHE
is used to perform encryption, ciphertext operations, and homomorphic inference, thus
enabling secure computation without compromising model performance.

4.2. Data Preprocessing

Data preprocessing is a crucial step to ensure reliable and efficient machine learning,
particularly when incorporating homomorphic encryption [22]. In this study, we use the
Iris dataset (150 samples, four features) and apply standardization to achieve zero mean
and unit variance, improving model stability. The data are then split into 80% training
and 20% testing to enable fair evaluation. Given the constraints of encrypted computation,
categorical features are appropriately encoded. These steps help to maintain accuracy while
minimizing computational overhead in secure inference.

4.2.1. Dataset Overview

The Iris dataset is a widely recognized benchmark in machine learning, frequently
employed for evaluating classification algorithms [19]. It provides a structured framework
for distinguishing between different iris flower species based on their physical attributes.
The dataset consists of 150 samples, each representing an individual iris flower, and is
characterized by 4 key features: sepal length, sepal width, petal length, and petal width,
all measured in centimeters. These features enable effective classification by capturing the
morphological differences among species.

The dataset comprises 3 distinct classes, each containing 50 samples, corresponding to
3 species: Iris setosa (label ‘0’), Iris versicolor (label ‘1’), and Iris virginica (label ‘2’). It is well
structured, balanced, and contains no missing values, making it particularly suitable for
both educational purposes and experimental evaluations in machine learning research.

Due to its simplicity and interpretability, the Iris dataset is commonly used for demon-
strating data preprocessing techniques, exploratory data analysis, and classification models,
including support vector machines (SVMs) and decision trees [17]. Furthermore, its fea-
tures can be visualized through pair plots, enabling an intuitive understanding of feature
relationships and class separability.
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In this study, the Iris dataset serves as a controlled environment for analyzing the
effects of homomorphic encryption on SVM classification. By leveraging its structured
nature, we facilitate a reliable comparison between traditional and encrypted inference
methods, allowing for a comprehensive assessment of computational performance and
classification accuracy.

The Iris dataset is a classic benchmark for machine learning algorithms, favored for
its simplicity and accessibility. It is widely used in educational settings and can be easily
accessed through libraries like scikit-learn in Python.

4.2.2. Data Preprocessing and Feature Encoding

To ensure robust and efficient encrypted classification, the dataset was subjected to a
systematic preprocessing pipeline implemented by get_data.py. This process involved
feature selection, transformation, and structuring to optimize the data for FHE-based
machine learning.

The dataset contains 150 rows (samples) and 4 columns (4 predictive features): sepal
length, sepal width, petal length, and petal width. There is one target column of species
classification. Standardization was applied to normalize values, ensuring a mean (µ) of ap-
proximately zero and a standard deviation (σ) of approximately unity. This improves model
performance by placing features on a similar scale. The data were split into 120 training
samples and 30 test samples, ensuring a well-balanced split for model evaluation. Further-
more, categorical labels were encoded into numerical representations to facilitate seamless
integration into the machine learning framework.

This preprocessing stage establishes a structured and standardized foundation for en-
crypted SVM training. Harmonizing feature distributions, optimizing data representation,
and preparing the dataset for secure computation enhance both the accuracy and efficiency
of privacy-preserving machine learning.

5. Implementation
This section presents the approach used to implement privacy-preserving classification

using FHE. The support vector machine (SVM) model is adapted to operate on encrypted
data using the CKKS encryption scheme [6].

The implementation consists of dataset preprocessing, encryption of feature vectors,
SVM training, and encrypted classification. The process follows established principles from
privacy-preserving machine learning [23]. The overall workflow is visualized in Figure 5.

Figure 5. Experimental setup for encrypted classification. The pipeline includes data encryption,
encrypted inference, and decryption of results.
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The evaluation of the impact of homomorphic encryption on machine learning perfor-
mance involves a number of experiments measuring key performance metrics. Classifica-
tion accuracy was assessed by comparing encrypted and non-encrypted inference, with
the SVM model achieving high accuracy. Computation time was also analyzed, including
encryption, inference, and decryption durations. Additionally, the scale-up runtime was
examined by calculating the ratio of non-encrypted to encrypted execution times.

Memory overhead was evaluated to determine the effect of homomorphic encryption
on resource consumption, particularly memory use. Finally, scalability was assessed by an-
alyzing performance variations as the ring dimension and multiplication depth increased.

5.1. Encryption Using CKKS

The CKKS encryption scheme was employed to encrypt feature vectors, allowing
privacy-preserving computations on floating-point values [6]. CKKS supports approximate
arithmetic operations, making it well suited for machine learning applications. The en-
cryption parameters used in our experiments were selected based on a balance between
computational efficiency and security. The multiplicative depth (D) ranged from 1 to 7,
scaling factor (S) values varied between 10 and 50, and the first modulus size (M) was
tested at 20, 30, 40, 50, and 60. The security level (L) was evaluated at 128-bit, 192-bit, and
256-bit configurations. Batch sizes (B) included 128, 256, 512, 1024, 2048, and 4096. The
ring dimension (N) was tested at 214 (16,384), 215 (32,768), 216 (65,536), and 217 (131,072),
providing insights into the scalability of homomorphic encryption in machine learning.

5.2. Encrypted Classification Algorithm

In this work, we propose an FHE-based approach for SVM classification that supports
both linear and polynomial kernels. The classification process involves encrypting the
feature vector and model parameters, performing homomorphic computations to evalu-
ate the decision function, and decrypting the result to obtain the classification outcome.
The detailed steps are outlined in Algorithm 1, which describes the encrypted inference
procedure for both linear and polynomial SVM models.

Algorithm 1 Homomorphic SVM Classification [6,11]

Require: Feature vector x, public key pk, private key sk, degree d (for polynomial SVM)
Ensure: Classification result y

1: Encrypt Features: cx ← Enc(x, pk) (Equation (15))
2: Encrypt Model Parameters:
3: cw ← Enc(w, pk)
4: cb ← Enc(b, pk)
5: Compute Encrypted Decision Function:
6: if linear SVM then
7: c f ← Enc(wTx + b) (Equation (18))
8: else polynomial SVM
9: c f ← Enc((wTx + b)d) (Equation (21))

10: end if
11: Decrypt the Result: f (x)← Dec(c f , sk) (Equation (22))
12: Classify Output:

y←
{

1, f (x) ≥ 0
−1, f (x) < 0

(Equation (23))

13: return y
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5.3. Model Training

The model training example is given in Appendix A.

6. Results
The experimental results provide a comprehensive evaluation of the impact of homo-

morphic encryption on SVM inference. We implement both linear SVM and polynomial
SVM kernels to investigate how different model complexities influence encrypted compu-
tation. A key observation is the trade-off between encryption depth and computational
efficiency, where higher security parameters lead to increased execution time and memory
consumption. This behavior is consistent with the theoretical complexity of homomorphic
encryption, which introduces overhead due to polynomial arithmetic and ciphertext ex-
pansion. Our comparison between linear and polynomial kernels further highlights the
performance differences under encrypted settings, demonstrating the cost–benefit trade-offs
when applying homomorphic encryption to models of varying computational depth.

Beyond computational cost, the study examines the extent to which encrypted infer-
ence preserves classification accuracy. By systematically tuning the encryption parameters,
particularly ring dimension and modulus size, we explore their critical roles in determining
both performance efficiency and security guarantees. Larger ring dimensions and modu-
lus sizes enhance cryptographic strength but also increase computational overhead and
memory use, thereby impacting inference latency and scalability. In the context of fully
homomorphic encryption (FHE), these parameters govern the depth of allowable compu-
tations and the noise budget, which in turn affect the feasibility of complex operations
such as SVM decision functions. Understanding this trade-off is essential for optimizing
privacy-preserving machine learning pipelines. The following sections present a detailed
discussion of these findings, grounded in both empirical observations and theoretical
considerations.

Tables 2 and 3 include the gathered data. MD is multiplicative depth, SS is scalar size,
FM is first mod size, BS is batch size, and RD is ring dimension. AEA is average encryption
accuracy, NEA is non-encrypted accuracy, AET is average encryption time, and ANT is
average non-encryption time.

• Execution Time: This metric reflects the total time taken to complete inference op-
erations, comparing encrypted and plaintext implementations. It serves as a direct
indicator of the computational overhead introduced by homomorphic encryption,
which is particularly sensitive to parameter configurations such as ring dimension
and multiplicative depth.

• Memory Use: Although memory consumption is not explicitly tabulated, it is inher-
ently influenced by cryptographic parameters. Larger ring dimensions and deeper
circuits result in bulkier ciphertexts and increased memory demands during interme-
diate computations.

• Model Accuracy: We compare the classification performance using average encrypted
accuracy (AEA) and non-encrypted accuracy (NEA). Our empirical results demon-
strate negligible differences between the two, indicating that model accuracy is well
preserved under encryption.

These metrics are supported by detailed results and visual comparisons in Tables 2 and 3,
which showcase the trade-offs between security, computational efficiency, and classification
performance under varying cryptographic parameter settings. This analysis underscores
the feasibility of encrypted inference with minimal compromise in model utility.
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Table 2. Results for SVM-linear.

MD SS FM SL BS RD AEA NEA AET ANT Scale-Up

1 30 60 128 1024 16,384 0.967 0.967 0.643458 0.000623 1032.838
2 30 60 128 1024 16,384 0.967 0.967 0.782 0.000067 1172.735
3 30 60 128 1024 16,384 0.967 0.967 0.924 0.000161 1397.215
4 30 60 128 1024 16,384 0.967 0.967 1.101 0.000613 1794.548
5 30 60 128 1024 16,384 0.967 0.967 1.283 0.000624 2056.393
6 30 60 128 1024 16,384 0.967 0.967 1.391 0.000627 2097.537
7 30 60 128 1024 16,384 0.967 0.967 1.530 0.000658 2324.503

1 10 60 128 1024 16,384 0.817 0.967 0.649 0.000067 9697.24
1 20 60 128 1024 16,384 0.967 0.967 0.672 0.000065 10,332.49
1 30 60 128 1024 16,384 0.967 0.967 0.651 0.000073 8919.69
1 40 60 128 1024 16,384 0.967 0.967 0.650 0.000029 22,431.52
1 50 60 128 1024 16,384 0.967 0.967 0.650 0.000027 24,084.56

1 30 20 128 1024 16,384 0.967 0.967 0.627 0.000076 8251.12
1 30 30 128 1024 16,384 0.967 0.967 0.632 0.000067 9434.24
1 30 40 128 1024 16,384 0.967 0.967 0.635 0.000074 8573.4
1 30 50 128 1024 16,384 0.967 0.967 0.643 0.000065 9905.05
1 30 60 128 1024 16,384 0.967 0.967 0.641 0.000067 9574.09

1 30 60 192 1024 16,384 0.967 0.967 0.204 0.000184 1108.59
1 30 60 256 1024 16,384 0.967 0.967 0.197 0.000188 1050.52
1 30 60 512 1024 16,384 0.967 0.967 0.201 0.000191 1050.31
1 30 60 1024 1024 16,384 0.967 0.967 0.198 0.000193 1023.06
1 30 60 2048 1024 16,384 0.967 0.967 0.202 0.000193 1048.5
1 30 60 4096 1024 16,384 0.967 0.967 0.647 0.000711 910.78

1 30 60 128 128 16,384 0.967 0.967 0.198 0.000109 1817.4
1 30 60 128 256 16,384 0.967 0.967 0.195 0.000107 1822.5
1 30 60 128 512 16,384 0.967 0.967 0.196 0.000109 1808.7
1 30 60 128 1024 16,384 0.967 0.967 0.200 0.000109 1834.9
1 30 60 128 2048 16,384 0.967 0.967 0.206 0.000109 1878.6
1 30 60 128 4096 16,384 0.967 0.967 0.213 0.000109 1945.3

1 30 60 128 1024 16,384 0.967 0.967 0.638 0.000662 963.82
1 30 60 128 1024 32,768 0.967 0.967 1.265 0.000624 2026.52
1 30 60 128 1024 65,536 0.967 0.967 2.583 0.00067 3646.68
1 30 60 128 1024 131,072 0.967 0.967 5.103 0.00065 8245.34

Table 3. Results for SVM-poly.

MD SS FM SL BS RD AEA NEA AET ANT Scale-Up

1 30 60 128 1024 16,384 0.967 0.967 0.648 0.000708 915.2
2 30 60 128 1024 16,384 0.967 0.967 0.783 0.000730 1093.3
3 30 60 128 1024 16,384 0.967 0.967 0.919 0.000763 1405.0
4 30 60 128 1024 16,384 0.967 0.967 1.097 0.000629 1527.7
5 30 60 128 1024 16,384 0.967 0.967 1.288 0.000773 1665.7
6 30 60 128 1024 16,384 0.967 0.967 1.399 0.000712 1954.9
7 30 60 128 1024 16,384 0.967 0.967 1.562 0.000715 2248.4

1 10 60 128 1024 16,384 0.784 0.967 0.649 0.000067 973.8
1 20 60 128 1024 16,384 0.967 0.967 0.671 0.000065 1032.4
1 30 60 128 1024 16,384 0.967 0.967 0.651 0.000073 889.4
1 40 60 128 1024 16,384 0.967 0.967 0.650 0.000029 1033.9
1 50 60 128 1024 16,384 0.967 0.967 0.650 0.000027 1036.4
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Table 3. Cont.

MD SS FM SL BS RD AEA NEA AET ANT Scale-Up

1 30 20 128 1024 16,384 0.967 0.967 0.627 0.000076 927.7
1 30 30 128 1024 16,384 0.967 0.967 0.632 0.000067 940.1
1 30 40 128 1024 16,384 0.967 0.967 0.634 0.000074 941.8
1 30 50 128 1024 16,384 0.967 0.967 0.643 0.000065 998.1
1 30 60 128 1024 16,384 0.967 0.967 0.641 0.000067 961.3

1 30 60 192 1024 16,384 0.967 0.967 0.203 0.000184 1090.9
1 30 60 256 1024 16,384 0.967 0.967 0.197 0.000188 1049.6
1 30 60 512 1024 16,384 0.967 0.967 0.201 0.000191 1052.2
1 30 60 1024 1024 16,384 0.967 0.967 0.197 0.000193 1023.7
1 30 60 2048 1024 16,384 0.967 0.967 0.202 0.000193 1048.9
1 30 60 4096 1024 16,384 0.967 0.967 0.646 0.000711 908.7

1 30 60 128 128 16,384 0.967 0.967 0.641 0.000067 961.3
1 30 60 128 256 16,384 0.967 0.967 0.204 0.000184 1090.9
1 30 60 128 512 16,384 0.967 0.967 0.197 0.000188 1049.6
1 30 60 128 1024 16,384 0.967 0.967 0.201 0.000191 1052.2
1 30 60 128 2048 16,384 0.967 0.967 0.198 0.000193 1023.7
1 30 60 128 4096 16,384 0.967 0.967 0.202 0.000193 1048.9

1 30 60 128 1024 16,384 0.967 0.967 0.680 0.000747 910.6
1 30 60 128 1024 32,768 0.967 0.967 1.269 0.000668 1951.5
1 30 60 128 1024 65,536 0.967 0.967 2.549 0.000604 3935.1
1 30 60 128 1024 131,072 0.967 0.967 5.245 0.000687 7716.4

6.1. Key Performance Metrics

To evaluate the performance and practicality of encrypted SVM inference, we intro-
duce and analyze three key performance metrics: execution time, memory use, and model
accuracy. These metrics collectively provide a comprehensive view of the computational
and predictive trade-offs involved when deploying homomorphic encryption (HE) in
machine learning workflows:

6.1.1. Classification Accuracy

Table 4 presents the classification accuracy of plaintext and encrypted SVM models.
The results show that, in this experiment, homomorphic encryption has no significant
impact on model accuracy as both versions achieve similar performance. This confirms
the effectiveness of the CKKS encryption scheme in preserving the integrity of machine
learning inference.

Table 4. Classification accuracy comparison.

Model Accuracy (%)

SVM (Plaintext) 96.7
SVM (Encrypted) 96.7

6.1.2. Computational Overhead

Homomorphic encryption introduces additional computational costs due to the en-
cryption, encrypted inference, and decryption steps. Table 5 compares the execution times
for the plaintext and encrypted models.

The encrypted inference process is around 1000 times slower than plaintext execution,
primarily due to polynomial evaluations performed under encryption.
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Table 5. Runtime analysis (s).

Operation Plaintext Encrypted

Feature Encryption - 0.2029
Inference 0.0002 0.2029
Decryption - 0.0001

6.1.3. Scalability and Resource Utilization

Scalability ensures stable performance as data grow, while resource utilization opti-
mizes computational efficiency. Balancing encryption parameters helps to maintain security,
accuracy, and performance.

6.1.4. Impact of Ring Dimension

The effect of increasing the ring dimension on encrypted inference time is shown in
Table 6 and Figure 6. Larger ring dimensions increase computation time due to expanded
ciphertext size.

Table 6. Homomorphic scale-up with varying ring dimensions.

MD SS FM SL BS RD SVM-Linear SVM-Poly

1 30 60 128 1024 16 K 963.8 910.6
1 30 60 128 1024 32 K 2026.5 1851.7
1 30 60 128 1024 64 K 3646.7 3935.1
1 30 60 128 1024 128 K 8245.3 7716.4
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131,0720
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Figure 6. Homomorphic scale-up vs. SVM-linear and SVM-poly ring dimensions.

6.1.5. Impact of Multiplication Depth on FHE Scale-Up

Table 7 presents the effect of increasing multiplication depth D on encrypted inference
speed, as visualized in Figure 7.

The experimental results highlight key trade-offs in homomorphic encryption for SVM
inference. Table 4 confirms that the encrypted SVM model maintains 96.7% accuracy, similar
to the plaintext model, demonstrating that CKKS encryption does not affect classification
performance. Table 5 shows that encrypted inference is approximately 1000 times slower
than plaintext inference, primarily due to the polynomial evaluations under encryption.
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This slowdown arises from the computational complexity of homomorphic operations,
particularly ciphertext multiplication and relinearization [6]. Unlike plaintext arithmetic,
where multiplication is a constant-time operation, homomorphic multiplication involves
modular reductions, rescaling, and key-switching, leading to significant overhead [24].

1 2 3 4 5 6 70
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1,000

1,500

2,000
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MultDepth Range
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E
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e-
up

SVM-poly
SVM-linear

Figure 7. Homomorphic scale-up vs. SVM-linear and SVM-poly MultDepth.

Table 7. Homomorphic scale-up for SVM-linear and SVM-poly with varying multiplication depth.

MD SS FM SL BS RD SVM-Linear SVM-Poly

1 30 60 128 1024 16,384 1032.8 915.2
2 30 60 128 1024 16,384 1172.7 1093.3
3 30 60 128 1024 16,384 1397.2 1460.5
4 30 60 128 1024 16,384 1794.5 1527.7
5 30 60 128 1024 16,384 2056.4 1665.7
6 30 60 128 1024 16,384 2097.5 1954.9
7 30 60 128 1024 16,384 2324.5 2248.4

6.2. Comparison Between Linear and Polynomial SVMs Under Fully Homomorphic
Encryption (FHE)

In this subsection, we present a comparison between the linear SVM and polynomial
SVM kernels within the context of fully homomorphic encryption (FHE). We evaluate
these two kernels based on their computational costs , training and prediction times,
scalability, and accuracy when applied to encrypted data. The results highlight the trade-
offs between the linear SVM, which is computationally efficient, and the polynomial SVM,
which offers flexibility for non-linearly separable data but incurs higher computational
overhead under FHE.

6.2.1. Computational Efficiency and Prediction Time

As shown in Table 8, the linear SVM kernel performs significantly better in terms of
computational efficiency under FHE. The training time and prediction time for the linear
SVM are noticeably shorter compared to the polynomial SVM due to the simplicity of its
operations, which primarily involve dot products and linear transformations.
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In contrast, the polynomial SVM kernel requires more complex polynomial operations,
such as raising values to powers and performing cross-products, resulting in significantly
longer prediction times and higher overall computational overhead. This discrepancy is
especially apparent when performing encrypted inference as the homomorphic operations
involved with the polynomial SVM are more demanding.

Table 8. Comparison of linear SVM vs. polynomial SVM under fully homomorphic encryption.
For the datasets used in this study, both models exhibited similar accuracy, indicating that kernel
selection did not significantly impact classification performance under FHE.

Feature Linear SVM Polynomial SVM

Computational Complexity Low (Efficient operations) High (Polynomial evaluations)

Prediction Time Fast Slower

Scalability More scalable Less scalable

Training Time Faster Slower

Accuracy on Non-linear Data Dataset-dependent Dataset-dependent

Accuracy on Linear Data Dataset-dependent Dataset-dependent

Observed Accuracy in Iris Dataset no significant difference observed no significant difference observed

Homomorphic Encryption Cost Lower (Fewer operations) Higher (Complex operations)

Suitability for Non-linear Data Suitable if performance is critical Suitable if flexibility is needed

6.2.2. Scalability and Homomorphic Cost

The scalability of each kernel under FHE is a critical consideration. Our results indicate
that the linear SVM is much more scalable in encrypted environments. The prediction pro-
cess involves fewer homomorphic operations, making it more suitable for datasets where
real-time predictions are required. On the other hand, the polynomial SVM demonstrates
poorer scalability as the cost of homomorphic encryption increases substantially with larger
datasets. The multiple ciphertext comparisons required for polynomial-kernel evaluations
lead to increased computational cost and slower performance.

6.2.3. Accuracy and Suitability for Non-linear Data

Although the linear SVM is generally faster, the polynomial SVM can offer better per-
formance when dealing with non-linearly separable data. Our experiments confirm that
the polynomial SVM tends to have slightly higher accuracy for certain types of data, partic-
ularly when the data exhibit complex decision boundaries. However, the accuracy benefit
of the polynomial SVM is marginal compared to its significantly higher computational cost
under FHE.

In contrast, the linear SVM performs well on linearly separable problems and main-
tains stable accuracy with minimal overhead when operating under encryption. This
makes it a better choice in scenarios where efficiency is prioritized over handling complex
non-linear decision boundaries.

Overall, the kernel choice in FHE-SVM models significantly affects both performance
and efficiency. The linear SVM is preferable when computational efficiency and scal-
ability are prioritized, especially in real-time prediction scenarios. On the other hand,
the polynomial SVM can be useful for non-linearly separable data but requires careful
consideration due to the higher computational overhead and longer prediction times
induced by the polynomial operations under FHE. Our findings suggest that the linear
SVM is generally a better fit for FHE-based machine learning applications given its lower
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homomorphic cost and faster execution, while the polynomial SVM can be explored for
more complex datasets in future work where performance trade-offs are acceptable.

6.2.4. Impact of Multiplication Depth

Table 7 and Figure 7 illustrate the significant impact of increasing multiplication depth
on execution time. Specifically, for the polynomial-kernel SVM, inference time rises from
915.2 s at depth 1 to 2248.4 s at depth 7. This exponential growth is attributed to the core
properties of homomorphic encryption, where multiplication depth governs the number of
consecutive homomorphic multiplications that can be performed before ciphertexts must
be refreshed via bootstrapping [11].

As the multiplicative depth increases, several compounding factors contribute to
performance degradation:

• Noise Growth: Each homomorphic multiplication operation amplifies ciphertext
noise. To manage this, relinearization and rescaling are required after multiplications,
both of which are computationally expensive [6].

• Larger Ciphertexts and Moduli: Supporting deeper computation necessitates
larger ciphertext modulus values, which increase ciphertext size and memory
consumption [25], thereby slowing down arithmetic operations and raising storage
requirements.

• Bootstrapping Overhead: Once the noise exceeds the permissible threshold, bootstrap-
ping becomes necessary to refresh ciphertexts. This operation is known to be one of
the most computationally intensive components of homomorphic encryption [24,26].

Beyond the computational costs, we also assess the impact of encryption on model
accuracy. As detailed in Section 6.1.1 (Classification Accuracy), Table 4 presents the clas-
sification accuracy of plaintext and encrypted SVM models. The results indicate that
homomorphic encryption has no significant effect on model accuracy, with both the en-
crypted and plaintext versions achieving comparable performance. Specifically, for the
experiments conducted, encryption using the CKKS scheme preserves the integrity of the
machine learning inference, showing negligible deviation in accuracy [6].

To mitigate the computational challenges associated with increasing multiplication
depth, several optimization strategies have been proposed and discussed in prior work.
While not all the techniques were implemented in this study, they provide valuable insights
for future work aimed at improving the efficiency of encrypted machine learning:

• Ciphertext Packing: Batching multiple data points into a single ciphertext using
SIMD-style encoding can enhance throughput while reducing the computational costs
of each operation [25].

• Approximate Arithmetic: The use of schemes like CKKS for approximate arithmetic
allows for real-valued computations with controlled error, providing an efficient
balance between precision and performance [6].

• Efficient Bootstrapping: Recent advancements in partial and lazy bootstrapping
techniques [26] offer opportunities to reduce the frequency and cost of bootstrapping,
which is one of the most computationally expensive operations in FHE.

• Hardware Acceleration: Utilizing GPUs or FPGAs for homomorphic encryption
operations can help to alleviate latency and memory constraints, making encrypted
machine learning more feasible in large-scale applications.

These observations highlight the critical role of optimization and careful parame-
ter tuning in making homomorphic encryption a viable solution for privacy-preserving
machine learning while ensuring that model accuracy remains unaffected.
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To address these challenges, several optimization strategies have been explored or
proposed in the literature. While not all of these techniques were implemented in the
current study, they offer promising directions for enhancing the efficiency and practicality
of encrypted inference:

• Ciphertext Packing: By encoding multiple data points into a single ciphertext using
batching techniques, the overall throughput can be significantly improved while
reducing the number of required operations [25].

• Approximate Arithmetic: Employing schemes like CKKS allows for efficient fixed-
point computations with controllable error, reducing overhead in applications where
exact precision is not critical [6].

• Efficient Bootstrapping: Recent improvements in bootstrapping algorithms, includ-
ing partial and lazy bootstrapping techniques [26], offer potential reductions in
execution time.

• Hardware Acceleration: Parallelization via GPUs or FPGA-based implementations
may further alleviate latency and memory bottlenecks, making encrypted machine
learning more feasible at scale.

These findings reinforce the need for careful parameter tuning and algorithmic opti-
mization when deploying homomorphic encryption in privacy-preserving machine learn-
ing workflows. They also provide a roadmap for future work aimed at minimizing compu-
tational costs while maintaining strong security guarantees.

6.2.5. Limitations and Future Work

While the proposed approach demonstrates promising results, certain limitations
must be addressed to enhance its practical applicability. The most significant challenge
lies in the high computational cost of homomorphic encryption, which leads to substantial
execution time overhead. This limitation poses a significant barrier to real-time applications,
particularly in scenarios where rapid inference is required. Furthermore, the large memory
footprint associated with ciphertext storage presents scalability concerns, especially for
deployment on resource-constrained devices.

The increased computational burden can be attributed to the underlying complexity
of homomorphic encryption operations, which involve polynomial arithmetic over large
integer rings [6]. The reliance on number-theoretic transforms (NTTs) for polynomial
multiplication introduces an inherent O(n.log n) computational cost, while the quadratic
complexity of matrix–vector operations within SVM classification further compounds
execution time [11]. Additionally, the trade-off between multiplication depth and accuracy,
dictated by the hardness of the ring-learning-with-errors (RLWE) problem, influences both
performance and security [5].

To mitigate these challenges, future research should explore hardware acceleration
techniques, such as leveraging GPUs and FPGAs, to enhance computational efficiency [27].
Additionally, optimizing the encryption parameters—such as ring dimension and coeffi-
cient modulus selection—can significantly reduce latency and memory consumption [6].
Exploring alternative cryptographic schemes, such as hybrid encryption approaches (typi-
cally merging a fast symmetric encryption scheme with a secure asymmetric encryption
scheme to balance efficiency and security), may further improve the feasibility of encrypted
machine learning in real-world applications [28].

7. Conclusions
The use of homomorphic encryption in machine learning holds great potential for

privacy-aware learning. However, it introduces computational overhead, which must
be carefully managed. This paper demonstrates that using an extracted SVM model
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is an effective method for creating a privacy-preserving model capable of processing
encrypted data.

To identify the key parameters influencing performance, we evaluate several factors,
including multiplication depth, scale size, first modulus size, security level, batch size, and
ring dimension, along with two different SVM models: SVM-poly and SVM-linear.

Our findings reveal that ring dimension and modulus size are the two most influ-
ential parameters affecting system performance. In particular, increasing the dimension
of the ring from 16,384 to 131,072 led to a substantial increase in the training time from
915.2 to 7716.4 s, representing an 8.4x increase in the execution time. Despite the higher
computational cost, the model’s accuracy remained consistent across all the parameter
configurations. Furthermore, both the linear SVM and polynomial SVMs demonstrated
comparable performance trends, suggesting that the choice in kernel has a limited effect on
the overall impact of homomorphic encryption with respect to performance overhead.

In conclusion, while homomorphic encryption introduces substantial computational
overhead, the trade-off between security and performance can be optimized by carefully
tuning parameters such as ring dimension and modulus size. Our study provides a data-
driven basis for future work aiming to make encrypted machine learning more efficient
and practical without compromising model accuracy.

Author Contributions: W.J.B. and H.A. contributed to the paper for conceptualization, methodology,
software creation, validation, and drafting the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The code and data is available at https://github.com/openfheorg/
education/tree/main/examples/FHE_SVM_Examples, accessed on 20 May 2025.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A
In applying our SVM implementation, we can use sklearn to train the model. The code

and data for this is available at https://github.com/openfheorg/education/tree/main/
examples/FHE_SVM_Examples, accessed on 20 May 2025.
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