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Abstract: Multi-energy systems (MESs) use more than one energy vector to fulfil users’
electrical, thermal, and cooling demands. This paper examines the recent developments in
the design, optimisation, and implementation of MESs, focusing on residential applications.
Firstly, recent advances in the design and optimisation of MESs are explained and analysed.
The field is characterised by the proliferation of bespoke optimisation methods suitable for
this kind of problem. Secondly, practical implementation in the laboratory of MESs and
microgrids supplying electrical and thermal loads is discussed. The hardware requirements,
in terms of controllers and converters, are critically analysed. This is contrasted with the
real-world implementation of MESs or multi-output microgrids in the real world. A
description of the communication infrastructure required for real-world implementation
is discussed. Finally, a critical review of the entire process, the areas of challenge, and
potential research opportunities are presented.

Keywords: multi-energy systems; integrated energy systems; battery energy storage
system; building integrated photovoltaic; IoT in multi-energy systems; multi-energy system
optimisation; energy management

1. Introduction
In recent years, there has been a growing emphasis on sustainable energy solutions

for residential and industrial applications, driven by the need to enhance energy efficiency,
reduce energy costs, and alleviate environmental impacts. Buildings are responsible for a
significant fraction of 40% of the total energy consumption in Europe and 32% globally [1].
In contrast, the heating and cooling demands of the residential energy sector consume 55%
of the total energy consumed. They are responsible for 17% of total carbon emissions in
the building sector in Europe [2]. Given the current environmental impact of the energy
demand in the residential sector, numerous research works and strategies are proposed to
promote decarbonisation and enhance energy efficiency [3].

Renewable energy systems are presented as a crucial alternative to fossil fuel-based
energy systems that solve the growing environmental and energy challenges sustainably.
Therefore, renewable energy systems have become an urgent solution to the difficulties
related to the global energy demand, rising emissions, and increasing energy costs. With
the introduction of sophisticated simultaneous control and management technologies,
the operation of various distributed generation (DG) systems as a unified architecture
is becoming popular in the literature. These DG systems are often deployed close to
consumption sites (small scale) and referred to as microgrids, which are locally controlled
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architecture and customised following consumer demand. The architecture of microgrids
mainly consists of renewable energy system (RES)-based resources for energy production
and intelligent control centres capable of enhancing consumption and supply interaction [4].
Intelligently controlled microgrids are considered one of the key pillars of smart grids,
which, along with advanced monitoring and control technologies, can guarantee the
efficient operation and management of energy networks [5].

Significant progress has been made in the decarbonisation of electrical power. How-
ever, the decarbonisation of thermal demands, such as hot water and space heating, is
lagging. A promising remedy is the integration and interaction of thermal and electrical
systems with simultaneous control, which can be beneficial for achieving decarbonisation
and economic and technical goals [6]. Integrating multiple energy generation resources
is often termed an MES—involving integrated and hybrid energy systems, etc. [7]. Multi-
energy generation systems are developed by integrating RES-based heat pumps (HPs),
boilers, and electric and absorption chillers to generate various forms of energy including
thermal, cooling, and electricity. MESs can exhibit significant advantages, such as improv-
ing efficiency and economic performance with reduced emissions [8]. The MES topology
integrates diverse energy sources, including electrical, gas, and thermal generators. These
energy sources are interconnected at multiple levels, such as generation and demand. A
unified operational management framework is utilised for this complex network to control
and optimise these energy sources at numerous levels simultaneously. The energy sources
utilised at the generation side mainly comprise RES-based thermal energy production and
storage systems (i.e., HPs, boiler, thermal energy storage, etc.), and electrical generators and
storage systems (i.e., photovoltaics (PVs) and wind turbines (WTs), etc.) [9]. A combined
heat and power (CHP) system is one of the earliest examples of “multi-energy systems” and
is often deployed on a smaller scale. It is based on fossil fuel technology, such as natural gas,
and it produces electricity via a generator while a heat recovery system collects heat [10]. In
the residential sector, thermal energy production is usually achieved through burning fossil
fuels, such as the natural gas used in a boiler, which presents a significant challenge in
transitioning to low-carbon alternatives [11]. Decarbonising the domestic heating sector is
the most challenging obstacle in achieving zero-emission targets. Therefore, the integration
and unified interaction of different energy carriers offer excellent potential energy systems
and end users, which is usually termed sector coupling [12]. Sector coupling focuses on
coupling the electric supply with other sectors, e.g., gas and hydrogen, which promotes
using RESs to reduce emissions and costs with increased efficiency and self-consumption
of RES resources [13]. Sector coupling is also considered crucial for integrated and hybrid
energy systems, which facilitate the flexibility and stability of the overall energy system.
These systems are developed on a larger scale and provide alternative use options to store,
deliver, and transform multiple energies, such as gas, electricity, cooling, etc. [14]. The
residential sector’s thermal demand electrification using RES-based electric HPs, efficient
boilers, and multi-energy storage systems can also be considered a cost-effective way of
decarbonising and reducing costs [15]. HPs operated by RESs can replace the presently
installed fossil fuel-based conventional heating systems, which can exhibit higher efficiency
with fewer emissions [16].

The coupling of the multi-energy sectors and components increases the complexity of
energy systems, which can be resolved using a sophisticated energy management strategy
(EMS) [17]. Optimisation algorithms are the backbone of these strategies, optimising the
scheduling of generation units and consumer load, component selection, and sizing [18].
Design, size, and planning optimisation can significantly reduce the initial investment costs
with a shorter payback time for the generation site. The component selection, capacity,
location, scale, variables, and other parameters of energy systems are also optimised using
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these techniques [19]. To make the energy system model more realistic, various variables,
constraints, and energy flow criteria of generation components are considered [20]. Energy
dispatch optimisation requires various real-time monitoring and control systems deployed
using communication infrastructure to ensure optimal energy management [21]. Therefore,
an optimised energy system is economically, environmentally, and technically more efficient
and provides economic benefits.

Modern energy systems need to intelligently meet a wide range of requirements and
integrate multiple microgrids with a high penetration of RESs, storage systems, and multi-
energy production capabilities [22]. These energy systems are mostly called smart grids and
aim to manage supply and demand, ensuring optimised energy generation, distribution,
and user consumption [23]. These functions are carried out by deploying smart metres
at consumption sites, which provides a bi-directional communication flow and helps in
achieving an efficient energy supply and management [24]. The communication flow
among the components of a smart grid can be used to achieve demand control through
demand-side management models and techniques. DRPs can also be implemented, through
which users’ demands can be shifted from peak to off-peak hours, and they can be rewarded
with incentives or low-priced energy [25]. The efficient and intelligent implementation of
smart grids with communication flow can also manage prosumers’ supply and generation.
Prosumers are energy users and producers who can produce and sell excess energy to
the main grid. Various complexities arise when a smart grid interacts with multi-energy-
producing microgrids, prosumers, and consumers. Therefore, supplying economical and
sustainable energy with efficient supply and demand balance infrastructure is important
when transitioning towards the smart grid paradigm [26].

Recently, multi-energy microgrid EMS have been studied extensively in the literature.
A list of recent review papers covering some aspects of MES microgrids is shown in Table 1
below. These studies highlighted and reviewed various architectures and optimisation-
based control strategies proposed for the multi-energy management of residential users.
Many alternative designs and architectures are available in the literature to provide con-
sumers with energy demands. Such designs have been studied by Liu et al. [27], who
focus on different aspects of MESs, including planning and operation using multi-objective
algorithms. Bozgeyik et al. [28] reviewed the sub-system design of RES-based MESs
and compared performances using energetic and exergetic analyses. To further discuss
the integration of RESs with MESs, Wu and Skye [29] and Nazari et al. [30], investigat-
ing the integration of PVs with a heat pump (HP) to supply multi-energy demands to
buildings, concluded that such a combination could lead to 50% lower costs with high self-
consumption, a 70% emission reduction, and energy savings. Pathak et al. [31] reviewed
the various solar energy-based heating systems to analyse the environmental, economic, ef-
ficiency, and exergy-economic performance. The authors conclude that solar-based heating
systems can achieve the highest reduction in carbon emissions of up to 70%, with a shorter
payback time when optimal sizing is considered in the design process. Bazdar et al. [32]
presented a detailed review to evaluate the energy storage devices used in MESs.



Electronics 2025, 14, 2221 4 of 63

Table 1. Comparative analysis of various review studies on MESs.

Ref. Year Architectures
Optimisation Techniques Loads Implementation

Discussed? IoT/ICT Contributions
Conventional Heuristic AI Electrical Thermal Cooling

[27] 2022 PV/WT/GB/GT/FC/AC/EC/CHP/HP/ESS TES/ISS ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✗
Reviewed various studies to reduce the

carbon emission life cycle using optimisation
techniques.

[28] 2022 PV/WT/CHP/PVT/AC/GT/FC/HP/GB/ESS/TES ✗ ✗ ✗ ✔ ✔ ✔ ✗ ✔

Reviewed various architectures supplying
CCHP loads to the multi-energy user and

evaluated the performance of each
architecture.

[29] 2021 PV/WT/ESS/GT/CHP/FC/HP/PVT ✔ ✔ ✗ ✔ ✔ ✔ ✔ ✗
Reviewed PV module-based HPs, which are
operated to supply multi-energy demands to

buildings.

[30] 2023 PV/WT/HP/TES/ESS ✔ ✔ ✗ ✗ ✔ ✔ ✗ ✗

Reviewed various architectures and
configurations of RES-based HP to supply

heating and cooling demands to residential
buildings.

[31] 2023 PV/PVT/PCM/TES ✔ ✔ ✗ ✔ ✔ ✗ ✗ ✗
Configurations for solar thermal collectors to
meet thermal and electrical demands based on

4E with and without PCM.

[32] 2022 PV/WT/CHP/ESS/TES/CAES ✔ ✔ ✗ ✔ ✔ ✗ ✗ ✗
Reviewed various architectures with CAES to
meet the multi-energy demands of residential

consumers.

[33] 2022 PV/WT/ESS/EB/EV ✔ ✔ ✔ ✔ ✔ ✗ ✗ ✗
Reviewed various studies providing electrical
energy to fulfil the demand of a smart home or

residential building.

[34] 2018 PV/WT/CCHP/EB/AC/GB/HP/TES/ESS ✗ ✔ ✗ ✔ ✔ ✔ ✗ ✗
Reviewed various studies implementing

heuristic algorithms only for the management
of CCHP systems.

[35] 2023 PV/WT/ESS/DG/FC ✔ ✔ ✗ ✔ ✗ ✗ ✗ ✗

Reviewed the applications of hybrid
optimisation algorithms and individual
algorithms in hybrid RES-based energy

systems for residential users.

[36] 2022 PV/WT/ESS/EV/EB ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✗
Carried out a review study on applying

optimisation techniques adopted for energy
management in smart microgrids.

[37] 2023 PV/WT/FC/HP/ESS/TES/DG/ ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✔
Reviewed the applications of optimisation

algorithms in MESs.

[38] 2022 PV/WT/ESS/DG/FC/CHP ✗ ✗ ✔ ✔ ✔ ✗ ✗ ✔

Reviewed the various applications of
AI-based optimisation in energy systems

providing only thermal and electrical energy,
primarily via electrical energy generators.

[39] 2022 PV/WT/ESS/CCHP/TES/GB/AC/EC/FC/HP/GT/CHP ✗ ✗ ✔ ✔ ✔ ✔ ✗ ✔
Reviewed studies considering AI-based

techniques and their applications in MESs,
reducing emissions and increasing efficiency.
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Table 1. Cont.

Ref. Year Architectures
Optimisation Techniques Loads Implementation

Discussed? IoT/ICT Contributions
Conventional Heuristic AI Electrical Thermal Cooling

[40] 2022 PV/WT/ESS/FC/DG CHP/EB/ ✔ ✔ ✔ ✔ ✔ ✗ ✗ ✗
Reviewed various architectures to achieve
multiple objectives by providing energy

demands to residential consumers.

[41] 2022 PV/WT/ESS/GT/FC/CCHP/AC/EC/TES/ISS ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✔

Reviewed the applications of optimisation
algorithms in energy hubs, providing CCHP
loads to residential users participating in the

energy markets.

[42] 2022 PV/WT/ESS/TES/CHP/FC/HP ✔ ✔ ✗ ✔ ✔ ✗ ✗ ✔
Reviewed various DRPs implemented for the

users with thermal and electrical loads
operated by electrical and CHP units.

[43] 2023 PV/WT/CCHP/EB/AC/GB/HP/TES/ESS ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✗
Various policies for implementing CCHP
systems were adopted by countries and

reviewed by multiple architectures.

[44] 2021 PV/WT/ESS/EB ✗ ✗ ✔ ✔ ✔ ✗ ✗ ✔
Reviewed various studies based on AI-based

self-management systems presented for
buildings.

[45] 2023 PV/WT/CHP/H2/GB/ESS/TES ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✔

Reviewed various studies with architectures
providing thermal and electrical demands and
networks facilitating multi-energy microgrids.

However, the implemented work and
optimisation algorithm classification and their

application are not fully covered.

[46] 2023 PV/WT/PVT/CHP/HP/FC ✔ ✔ ✗ ✔ ✔ ✔ ✗ ✗
Reviewed various architectures utilising

waste energy to produce heating, cooling, and
electrical energy for the multi-energy user.
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The optimisation strategies utilised for the optimal operation scheduling, planning,
and design optimisation of compressed air energy storage in energy systems for various
applications are studied in detail. The authors concluded that compressed air storage has a
longer time span of 40 years, which makes it suitable for integration in large-scale energy
systems. Ali et al. [33] reviewed various studies considering home energy management us-
ing optimisation techniques in smart homes with multi-energy demands. While extensive
simulation-based studies have been conducted tackling multi-energy demand management,
there remains a notable gap in comprehensive studies addressing the practical implemen-
tation of these frameworks. Nazari et al. [34] presented an extensive review of the use
of optimisation algorithms in the modelling process of MESs, whereas Gusain et al. [35]
focused on metaheuristic algorithms specifically utilised for optimising size and design.
In another study, Thirunavukkarasu et al. [36] concluded that MILP-based algorithms
can optimise microgrids and models due to their simplicity and effective performance in
obtaining optimal solutions. Thirunavukkarasu et al. [37] evaluated the optimisation-based
techniques for optimal sizing considering RES-based multi-energy structures with various
constraints and decision variables. The authors concluded that AI has more advantages
than heuristic and conventional algorithms in achieving objectives via fast convergence and
global optimisation with high-precision calculation. However, the training data required for
AI are highly complex, which limits its applicability. Liu et al. in [38] and Alabi et al. in [39]
also evaluated studies focused on applications of AI in the different sectors of MESs. The
studies assessed AI’s use in uncertainty modelling, forecasting techniques, and sizing opti-
misation approaches. Ammari et al. [40] also reviewed only AI-based algorithms, ignoring
other conventional and heuristic algorithms for MES optimal energy management. Studies
related to implementing control strategies for MESs have also been ignored. Ding et al. [41]
and Tiwari et al. [42] reviewed the communication infrastructure required to realise smart
MESs. Alabi et al. [43] highlighted challenges in the adoption of MESs. They evaluated
various policies Europe, Asia, and North America adopted to implement RES-based MESs
to decarbonise multi-energy production. EV integration is also recommended as a flexible
and economically feasible energy storage device.

Comprehensive literature studies have been conducted on MESs, focusing on various
aspects of MESs, such as optimisation techniques for MES energy management and opera-
tion planning, sizing, modelling, and scaling. These studies focus mainly on theoretical
and simulation-based studies; hence, there is a need for a study focusing on the simulation,
deployment, and practical implementation of the strategies and covering various aspects
of the modelling and realisation of a residential MES microgrid. In addition, there is a lack
of comprehensive review studies on the strategy implemented in hardware in laboratories,
showing their effectiveness when deployed. In this study, we focused on highlighting
theoretical, simulation, laboratory deployment, pilot studies, communication infrastructure,
and DRPs. Furthermore, a detailed understanding of the overall functionality of various
technologies, including multi-energy input and output vectors, energy storage systems,
and controller mechanisms, is discussed in detail. In summary, the main contributions of
the current review study are itemised below:

1. A comprehensive and detailed overview of technologies, laboratory developments,
and practical and real-world implementation, including pilot studies, is presented;

2. Various optimisation techniques, including conventional, heuristic, and artificial
intelligence-based residential multi-energy management strategies, are reviewed,
evaluated, and classified;

3. Configurations and architectures with intelligent energy management techniques
adopted to simultaneously provide power, heating, and cooling demands are dis-
cussed and presented in detail.
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This field of study contains a plethora of phrases and names that are either interchange-
able or signify adjacent concepts/technologies. For clarity, here, we explicitly mention
terms that are interchangeable or distinguish between different terms. In this study, specific
terminologies are employed to describe various energy generation and distribution archi-
tectures. The term “MES” is utilised to define an architecture that incorporates more than
one energy input (electricity and gas) to fulfil multiple energy demands (heating, power,
and cooling). This architecture is also known as integrated energy systems, energy hubs,
and hybrid energy systems, among other terms. However, in this study, the term “MES”
is used. RES refers to integrating and utilising one or more renewable energy resources
or conversion systems, such as solar or wind sources, PVs, or WTs, for energy production.
CHP refers to the use of gas-based combined heat and power generation units. However,
in several studies, CHP terminologies have also been used to represent solar-based power
and heat generation, fuel cell-based power and heat generation. Unlike CHP, the term
“CCHP” describes the combined cooling, heat, and power generation process, which in-
volves various input vectors and conversion units that can simultaneously generate cooling
and heat power.

Table 1 presents a comprehensive summary of the existing review studies, outlining
the architectures, techniques and methodological frameworks, loads met, and contributions.
The methods and methodological frameworks consist of optimisation technique-based
energy management strategies and applications in MESs, which are categorised into three
distinct columns: conventional algorithms, heuristic algorithms, and AI-inspired algo-
rithms. Additionally, the table includes a comprehensive summary of the types of loads
analysed by the recent studies, specifically electrical, thermal, and cooling loads. The scope
of the current study is also extended to hardware-based implementation in the existing
literature, which has not been focused on in the recent review studies. Most studies concen-
trate on or are limited to numerical simulations and modelling-based studies. Therefore,
the table also gives insight into practical implementation discussions in each existing re-
view study. Furthermore, the table highlights the contributions and scope of each study,
providing insights into the scope of the existing review study.

The remainder of the work is organised as follows: Section 2 delves into the tech-
nologies employed in MESs to generate multiple forms of energy, including thermal and
electrical energy. It also thoroughly examines the integration and coupling architecture of
MESs, detailing the energy input and output vectors and the storage of these energies as
heat and electricity. Energy management and dispatch strategies, utilising optimisation
techniques focusing on DRPs, are also discussed. Section 3 outlines the widely used tools
and software, physical technologies, controllers, implemented energy management strate-
gies, and communication infrastructure necessary to realise a practical MES architecture.
Section 4 describes the MES architecture developed in practice as part of a pilot study or
a complete project. This section also highlights key pilot projects that have been recently
completed or will be completed in the near future. Alongside these projects, it provides an
in-depth discussion of key analyses related to cost and feasibility measures, reliability and
operability measures, and the commercial prospects of various MES architectures. Finally,
Section 5 concludes the study with future recommendations.

2. Sizing and Optimisation
2.1. Technologies

This section outlines the technological architectural framework adopted to realise a
typical MES. These systems are often designed to integrate and manage multiple energy
production systems, including electricity, gas, and interaction with the district heating
networks. The input vectors are utilised to operate the DG systems and conversion units,
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which are capable of concurrently providing electrical power, heating, and cooling demand.
Figure 1 shows a typical MES framework—the selection of architectural frameworks utilised
depends on the input vectors’ availability and user demand. The green colour arrows
represent the flow of electricity, blue for cooling, red for heating and yellow for natural
gas flow. The core components include energy input vectors, production, conversion, and
storage units. To balance the energy flow, an intelligent controller is utilised to monitor and
manage the multiple energy flows within the system.

 

Figure 1. A typical MES framework.

2.1.1. Energy Systems
Energy Input Vectors and Conversion Units

Energy conversion units, including heat-only boilers (gas-to-heat), power plants (gas-
to-power), cogeneration plants (gas-to-heat and power), HPs (power-to-heat), and technolo-
gies that convert electric energy into fuel, such as hydrogen and methane (power-to-gas),
are integral components of modern energy systems. Heat-only boilers, for instance, are
designed to convert gas into heat, providing a reliable thermal energy source for various
applications, e.g., DHW and space heating. Conventional power plants, on the other hand,
focus on converting gas or fuel into electricity, offering a direct means to generate power for
use in the residential, commercial, and industrial sectors. CHP units can produce electricity
and heat and are considered efficient; however, the use of fossil fuels and emissions is a
big concern. The coupling of multiple energy generators becomes complex, and various
equipment characteristics should be considered for the optimal size, integration, and utili-
sation to maximise the energy output and conversion efficiency. The components utilised
are mainly PVs, WTs, CHP, FC, GTs, boilers, combustion engines, heat exchangers (HEs),
HPs, and electric and absorption chillers. At present, RES-operated HPs, fuel cells, boilers,
and chillers are becoming popular due to their low emissions, maximising the use of RESs.
Integrating PV thermal-based (PVT) collectors within poly-generation or tri-generation
systems is often carried out to enhance the utilisation of RESs, reduce operational costs,
and increase efficiency. However, RES generation has reliability and intermittency issues
due to weather variations, which can be resolved by installing storage devices or by robust
and accurate RES forecasting of RESs. At the same time, electrical, thermal, and gas storage
systems are also installed to increase the flexibility, reliability, and maximum utilisation
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of the available local energy. Modelling energy resource uncertainty and forecasting is
crucial when designing energy systems involving AI- and ML-based mathematical and
computational models. Jiang et al. [47] utilised deep learning methods for estimating
forecasted energy generation systems with uncertainty. Implementing the system model
increases power generation benefits by 6.18% by applying the short-term optimal load
scheduling of MESs. Another challenge for MES modelling is the uncertain consumption
behaviour of the user, which leads to the change and rise in the energy demand, which also
needs to be mitigated in real-time. Wang et al. [48] proposed a strategy for MESs to predict
and optimise the participation of the RES while considering uncertainty in a day-ahead
multi-energy market. The system model effectively bids in the day-ahead energy market
with risk aversion in an uncertain energy market and reduces the overall costs with the
optimal operation mechanism of the integrated energy system. Wan et al. [49] proposed a
combined deep learning and GA for predicting RES generation and optimising load schedul-
ing and distribution for MES microgrids. Deep learning is used to predict energy generation,
and GA is utilised for optimising consumption patterns. Deep learning exhibited a 1.3% lower
prediction error and accurately predicted heat and electrical load uncertainty, which increased
the revenue of the thermal power plant by up to CNY 6.26 million/yr. Stochastic and robust
programming approaches are proposed in various studies related to MES energy modelling
and management. Jordehi et al. [50] proposed a two-stage stochastic programming strategy for
scheduling MESs, participating in the day-ahead and real-time energy market structure. The
results show that the reliability increased from 90% to 95% with reduced costs. However,
increased reliability increases costs in several scenarios. By incorporating historical data
and statistical models, multi-energy systems can predict future energy demands, supply,
and prices. Furthermore, specific methods based on game theory, fuzzy logic, and neural
networks are utilised for the optimal bidding, scheduling, design, and modelling of the
uncertainty related to RES production.

Energy Output Vectors

In the context of MESs, energy output vectors refer to the various energy forms
produced or converted within the energy system. These output vectors include power,
heat, and cooling demands, which are crucial for meeting the multi-energy demands of
residential consumers. Integrating and managing these output vectors is essential for
achieving efficient and sustainable energy systems. Based on the energy demands of
the user, MESs can be categorised into cogeneration, tri-generation, and poly-generation.
Cogeneration describes the combination of architectures that provide two energy outputs,
while tri-generation is used for three energy demands. Similarly, poly-generation is used
for more than three energy demands, e.g., hydrogen production. CHP units and FC units
are widely utilised cogeneration systems. A similar system for the residential sector to
meet DHW and space heating demands was analysed by Elmer et al. [51]. The results
indicated that annual carbon emissions are reduced by up to 56% and cost by up to 177%
compared to the base case scenario. The high reduction in costs occurred from exporting
the energy back to the grid, as the base scenario lacks a mechanism for the export of energy.
However, the dependence on export mechanisms, the high initial costs of FC, and the lack
of detailed cost analysis make the fuel cell system less profitable, even after 15 years. This
is due to the higher cost of the FC. Ehsan and Yang [52] presented a tri-generation-based
energy system to reduce carbon emissions and costs. The study focused on optimising
the size and siting of isolated microgrids powered by CHP, WTs, PVs, and electricity
storage systems (ESSs). The thermal load is met through gas-fired boilers with TES, and
the cooling demand is met by deploying a combination of electric and absorption chillers.
The modelling of uncertainties related to generation and user demands is also considered.
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Ren et al. [53] utilised a PV-based hybrid CCHP to fulfil the energy demands of a residential
building. The NSGA-II algorithm optimises the multi-objective model, considering overall
costs, fossil-based energy consumption, and reducing carbon emissions. The strategy
outperforms the PVT framework in terms of cost, carbon emissions, and fossil-based energy
consumption by 8.91%, 34.58%, and 51.99% for the case of a hotel. Tri-generation and
poly-generation systems generally offer higher emissions and efficiency due to their ability
to simultaneously produce electricity, heat, and cooling. These systems’ economic and
environmental viability also depends on factors such as the overall cost of the technology
and management control strategy, etc. However, the integration of RESs, sizing, and energy
flow optimisation are key strategies for enhancing the profitability and sustainability of
MESs, regardless of the specific technology used.

Sector Coupling Through Electrification

The target set by the EU to cut down emissions by 80–95% by 2050 will be significantly
facilitated by the decarbonisation of energy systems. Sector coupling through electrification
emerges as a pivotal strategy that involves the increased use of RES-based electrical energy
production resources and enhanced interlinkages among various energy components to
meet multi-energy demands. The primary forms of electrification using sector coupling
involve consumer-side coupling and cross-vector integration. Consumer-side coupling
primarily focuses on enhancing the interactions between supply and end use and the
electrification of all energy demands, such as using electric HPs’ electrification of heating
and cooling. Cross-vector integration aims to integrate and use various energy architectures
and input vectors such as electricity, gas, and heat, which is mainly carried out on the
supply side. The process involves converting surplus energy/electricity into other useful
forms, which is often known as power-to-X technology. Nazari et al. [30] reviewed the
potential of utilising various configurations of coupling solar energy with heat pumps.
Many different configurations are suggested in the literature. PVs or PVT collectors were
used as supplementary sources of heating. Air-source, ground-source, or absorption heat
pumps were used to provide heating and cooling. Most studies found utilising thermal
storage to be beneficial in reducing reliance on the grid. It was also found that optimising
the operational schedule and control schemes helped to reduce costs by around 50% and
cut emissions by 70% in some cases. The authors also highlighted some challenges in
implementing the PV-HP configuration: the lack of policy incentives for such solutions,
the higher electricity costs associated with PV, and the complexity of proposed controls.
Patil et. al. [54] systematically discussed the key components of HP operation using PV
and highlighted with such combinations costs and emissions will be reduced and further
research needs to evaluate the performance and relaibility of PV-HP setups with high
variations in the solar irradiance and variability.

Some of the challenges are as follows: high levelised cost of electricity for PV-operated
HPs, difficulty of installation in existing residential buildings, and a lack of sufficient space
for PV installation. An illustrative study was conducted by Wang et al. [55], where different
sizes of PVs were coupled with reservable air-source heat pumps (for heating and cooling)
installed in central south China. A heat pump with a rated power of 2.2 kW and a CoP
of 3.2–3.5 for cooling and heating, respectively, was used. Five PV configurations were
coupled with the HP at capacities of 1.7 kW, 2.4kW, 3.2kW, 4kW, and 4.8kW. The rated
PV efficiency was 13%. It was found that the best results were achieved with a PV/HP
power ratio of 1.0 to 1.10. It was also found that cooling and heating loads make the PV
installation economically better.

Sorace et al. [56] analysed various combinations of energy resources consisting of
HP- and FC-based systems to facilitate electrification to meet the thermal demand of
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the residential user. It was found that SOFC-FC with an HP system exhibits a higher
efficiency of 81% and that the primary energy consumption was reduced by 30%, with
reduced operating costs compared with the PEM-FC. However, the initial cost for the
SOFC-FC is higher than that of the PEM-FC, thus having a longer payback time. Sector
coupling through electrification offers a promising solution to decarbonise the energy
sector, specifically the heating sector. It also provides a cost-effective solution for the
multi-energy demand sector using various technologies. Despite the mature research and
experimental advantages, there are still practical challenges in deploying and adopting
sector coupling. A study by Xu et al. [57] addressed the planning of MESs, including
electricity and gas networks, which improved the scalability and responsiveness to multi-
energy load variations. The authors utilised an alternating direction method of multipliers
to break down the planning into three stakeholder-specific problems: gas, electricity, and
local MES hubs. In the context of sector coupling, Sorrenti et al. [58] presented the recent
technologies of P-2-X in the context of their integration with hybrid renewable energy
systems (HRES). They distinguished three main types: P-2-H2, P-2-Gas, and P-2-ammonia.
The first will convert excess renewable energy into hydrogen for fuel cells. The second will
convert power into synthetic gas for current gas-burning equipment such as boilers and
turbines. The third will convert electricity into ammonia, a more suitable energy carrier
than hydrogen. The ammonia generated can then be used in fuel cells directly or after
conversion to hydrogen.

2.1.2. Energy Storage Systems

The most common energy storage technologies used in residential MESs are battery
energy storage systems (BESSs) and thermal energy storage (TES). Electrochemical-based
lithium-ion batteries dominate the market due to their high energy density and efficiency,
but they face challenges related to resource limitations, recycling difficulties, and safety
risks. The impact of ambient temperature and degradation affects BESS performance
and efficiency over time, occurring due to the chemical reactions within the BESS model.
TES is utilised to store cooling and heating excess energy for the short or long term. Gas
storage systems are also deployed in several architectures in the MES to store natural gas
or hydrogen gas, which is produced to utilise excess energy efficiently and convert it to
another useful form for later usage. Installing multi-energy storage systems raises several
problems that require an energy management strategy to simultaneously control and
schedule energy sharing among components to achieve technical and economic objectives.
In this context, Xu et al. [59] evaluated MESs with multi-energy storage for residential
buildings to reduce carbon emissions, energy consumption, and initial cost and maximise
self-consumption. MILP is used to optimally utilise the DRPs to store electrical energy from
the grid. The results demonstrated that thermal energy storage devices are economically
better options than electrical storage devices with shorter lifetimes and high investment
costs. Similarly, Marczinkowski and Østergaard [60] compared the installation of BESSs
and TES in two islands (more details on this project are given in Section 4.1.1). The aim
was to maximise self-consumption on the islands. They varied the system size for both
BESSs and TES. It was found that for BESSs, there are diminishing returns of adding more
capacity, both economically and in terms of the self-consumption ratios. This was not the
case for TES, which did not show such a trend. However, to utilise thermal energy, other
equipment needed to be upgraded, which affected the system’s total cost. Overall, TES
and sector coupling were more favourable solutions, as more energy vectors provide more
flexibility. The study has limitations related to the peculiar nature of island energy systems.
An analysis of national grids would be different. Ndwali et al. [61] discussed various
strategies and control techniques for using thermal, ice, and electrical energy storage
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systems that simultaneously meet solar energy’s cooling, heating, and electrical energy
demands. Violidakis et al. [62] compared two technologies of latent heat storage systems
powered by PVs for providing heat and electricity. The first technology involved a low-
temperature phase change material-based thermal energy storage system for residential
heating needs, while the second technology included an ultra-high-temperature thermal
energy storage system integrated into a building, as shown in Figure 2. The systems were
compared with a traditional air-to-water HP heating system, and the study concluded
that the ultra-high-temperature TES was more advantageous in terms of electricity supply.
Inkeri et al. [63] utilised HPs and TES architecture for DHW production. DHW is produced
using HPs operated at low energy pricing for electricity or solar energy. An updated NSGA
was implemented by Schmid et al. [64] to optimise the size of MESs and reduce energy
costs. PVs are used as a primary energy source, and electric heaters and air-to-water HP
are used to meet heat demands. The authors conducted long-term and short-term analyses
considering three locations with different energy prices. They found that low-energy hoses
show an additional 172% reduction in cost projection compared to low-seasonality locations.

 

Figure 2. The schematic diagram of the proposed architecture for multi-energy storage systems was
adopted from [62].

The dependence of the cost and performance of energy storage systems on their ageing
process has led to the introduction of ageing considerations as optimisation objectives and
constraints. A study by Neelam et al. [65] utilised differential evolution algorithms to
reduce the battery degradation costs by presenting a control strategy to manage the MES
demand, yielding the lowest total energy costs, battery degradation costs, and reduced
total energy consumption. Sharma et al. [66] proposed a two-stage robust optimisation
energy management strategy to reduce costs and enhance user comfort for a building with
multi-energy demands. The simulation results were computationally efficient, had the
least ESS degradation, and had a lifetime with maximum user comfort, with uncertainties
considered compared to stochastic and Monte Carlo simulations.

To summarise, the limitations of BESSs include high capital costs, moderate energy and
power densities, capacity degradation with cycling, thermal runaway, and environmental
concerns regarding material sourcing and disposal. On the other hand, TES has different
limitations based on the specific technology used. Water-based TES suffers from low energy
density, necessitating a large amount of space to store adequate energy. PCM-based energy
storage has a relatively high energy density but suffers from low thermal conductivity
and the instability of chemical compositions with cycling. Looking ahead, technological
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innovations in BESSs are focusing on next-generation batteries, such as solid-state and
flow batteries, which offer higher energy densities, longer lifespans, and improved safety
features. TES-related innovation includes heat transfer intensification techniques, additives
to improve thermal conductivity, and hybrid water–PCM systems with encapsulation
solutions. Finally, hydrogen is also gaining attention for its potential to provide long-
duration and seasonal storage, mainly produced through renewable-powered electrolysis.

2.1.3. Residential MES Hub/Microgrids

Residential MES microgrid subsystems can be categorised into four primary com-
ponents: energy generation systems, consumption sites, energy management con-
trollers/systems, and ESSs. In MES microgrids, grid and gas networks are widely used
to meet consumer demands for power, heating, and cooling. At a small-scale residential
level, gas and electricity networks are widely used energy inputs to various energy con-
version units, including boilers, chillers, HPs, mCHPs, etc. These energy conversion units
generate electricity, heat, and cooling energy, whereas TES can store electrical energy for
DHW and ESSs. The adoption of solar and wind energy can significantly reduce emis-
sions. However, the intermittent nature of these resources presents significant challenges
in balancing the energy supply with demand. These issues are often tackled through
implementing multi-energy storage systems, grid interaction via DRPs, and the design
and analysis of accurate models that account for uncertainty. Introducing and integrating
these solutions into energy systems necessitates management and dispatch strategies to
handle excess energy effectively. Consequently, optimal strategies are increasingly valuable,
particularly when considering energy storage and demand response programmes. On
the other hand, the recent advancement in communication infrastructure has led to their
widespread adoption in microgrids, specifically in the smart metres deployed in residential
sectors. These communication technologies have significantly enhanced the information
flow between the demand and consumer sides, enabling energy consumers to participate
in DRPs. DRP techniques include load shifting, peak clipping, and valley filling, where
the prime objective of implementation is to reduce costs and emissions and the burden
on the main grid. Several research works also focused on the interaction and sharing of
multi-energies, considering several buildings with MES equipment. The installation of
MESs for residential applications requires design, sizing, architectural, and technological
assessments, as well as optimisation, to select a feasible architecture with high efficiency
and low levelised costs.

For instance, Trillat-Berdal et al. [67] presented a strategy to meet the heating and
cooling demands by utilising solar energy captured through a thermal collector for water
heating, where the excess thermal energy is then injected back into the ground through
boreholes. This is claimed to be advantageous, as it helps to balance ground loads, increases
the operating time of the solar collectors, and prevents overheating issues. However, the
authors did not consider exporting or selling the excess heating energy to the neighbouring
buildings, which could be profitable in terms of operating costs. Calise et al. [68] proposed
a PV-, WT-, and HP-based strategy for fulfilling a building’s electrical, heating, and cooling
demands to reduce operational costs. The architecture consists of building-integrated PV
(BIPV) modules with HPs and WTs, whereas in the other case study, the authors utilised a
building-integrated PV-based thermal system (BIPVTS) with WTs and HPs. It was shown
that BIPV modules have a shorter payback time of 5 years compared with the BIPVTS case,
which has more than 7 years. However, in the case of the BIPVTS, 73% of carbon emissions
are reduced, whereas BIPV reduced 69%.

Within residential MESs, the challenges of integrating renewables have mostly been
on the electrical side. Previously, when renewable power sources constituted a small per-
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centage of the available power on the grid, grid operators would require the disconnection
of renewables in the case of fault. This allowed the operator to perform maintenance tasks
safely. However, the increased integration of renewables into the grid meant that removing
them from operation during grid incidents could result in further instability in the grid. As
such, many countries now require renewable plants to have a Voltage Ride-through (VRT)
capability and be able to withstand voltage sags (low VRT) and voltage surges (high VRT).
This requirement would stipulate a maximum voltage deviation during faults (e.g., 10%)
and quick recovery after fault clearing (e.g., 0.5 s). There are also requirements related to
power quality, such as harmonics, flicker, and voltage imbalance. For example, the UK
imposes a total harmonic distortion of less than 3% and a voltage imbalance of less than 2%
at the point of standard coupling [69–71].

2.2. Energy Management and Scheduling Strategies

Enhancing efficiency and reducing the costs and emissions of MESs are key research
objectives often addressed when introducing energy management strategies. Energy
management strategies based on mathematical optimisation techniques are used extensively
in the literature to achieve these objectives. In addition to these objectives, key focus
areas include dispatch strategy, energy flow, demand forecasting, operation, grid stability,
and energy balance. Optimisation strategies involve tackling these objectives based on
single- and multi-objective problems. To assess economic performance, initial investment,
net present value, levelised costs, operating costs, and net present value costs are some
primary objectives [72]. Whilst multi-objective optimisation is applied to solve optimisation
problems to provide a combination of solutions with trade-offs to keep balance among
various objective functions, which can be minimisation or maximisation problems, to
solve the multi-objective problem, several methods are adopted to divide the problem into
a single-objective problem. These methods include lexicographic and weighting factor
methods, whereas Pareto methods are deployed to generate a series of optimal solutions for
a multi-objective problem. The optimised solution is then selected based on the criteria set
for the optimised solution. Figure 3 illustrates and categorises the optimisation techniques
evaluated in this study, which are used in finding optimal or near-optimal solutions to
an energy management problem. This work categorises these techniques into four major
groups: conventional techniques, AI-based techniques, heuristics algorithms, and other
scheduling techniques.

2.2.1. Conventional Mathematical Techniques

Conventional mathematical optimisation techniques include mixed integer program-
ming (MIP), model predictive control (MPC), and stochastic and robust programming
techniques. These techniques are considered conventional due to their mathematical foun-
dation, reliability, and structured methodology for solving complex optimisation problems.
While solving the optimisation problems in MIP, decision variables are required to take
integer values. There are two types of mixed integer programming: MILP and MINLP.
MILP problems have linear objective functions and constraints, whereas MINLP problems
solve nonlinear objective functions and constraints. Table 2 summarises the architectural
framework, techniques, objectives, and outcomes of the studies that used these techniques
to solve MES energy management problems. Ghilardi et al. [73] developed a MILP-based
load control technique for 12 buildings, featuring various thermal and energy rating prop-
erties utilising RESs, HPs, and co-generation units. The strategy reduced the operating cost
by 83%, with acceptable thermal comfort compared with a benchmark strategy with fixed
indoor temperature set points.
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Figure 3. Classification of optimisation algorithms discussed in the current study.

Nasiri et al. [74] developed a MILP technique with information gap decision theory to
handle uncertain WT-integrated MESs. The strategy is used to bid in the wholesale MES
energy market to achieve particular objectives. The results show reduced user comfort
and operating costs, reducing the electrical and natural gas market clearing prices by
13.32% and 5.53%, respectively. Weber et al. [75] used MILP to design and optimise DG
integration with grids. The strategy reduced emissions for a town in the UK to provide
multi-energy demands. Similarly, Gabrielli et al. [76] utilised MILP to optimise MESs
and reduce costs and emissions. The strategy reduced the cost and carbon emissions by
22% and 73%, respectively. A multi-period MILP algorithm was designed by Kang and
Peng [77] to optimise the schedule of MESs with RES penetration. The total annual cost
was reduced by 11% with HSS and ESS, with a 45% increased usage of ESS and decreasing
emissions, among other scenarios. Solving complex optimisation problems with MILP
can lead to a long computational time due to non-integer variables. The optimal solution
to a problem can become stuck in local optima, which produces suboptimal results [78].
Large-scale optimisation problems are often solved via decomposition methods, where
complex issues are divided into subproblems to reduce complexity. These methods can
lead to an optimal solution with high efficiency and effectiveness when solving large-scale
optimisation problems [79].

MPC is another extensively utilised, sophisticated and powerful mathematical pro-
gramming technique to predict future behaviour over a finite period [80]. It comprises
several key steps: model formulation, prediction, optimisation, control execution, and
repeating the process. Feghali et al. [81] designed a MES DSLM strategy to optimise the
schedule of HPs with TES using MPC. Peak shaving and valley filling methods are used
to minimise energy consumption. Guo et al. [82] used robust dynamic programming to
optimise the energy flow for a prosumer with five scenarios. Stochastic dual dynamic
programming is also used as benchmark algorithm for these scenarios. Robust program-
ming solved the uncertain problems in a shorter computational time, with a suboptimality
of less than 4% compared to the benchmark. Daramola et al. [83] designed a stochastic
optimisation technique for integrating EV and ESS with MESs. The strategy reduced costs
by 32.22%, 44.49%, and 47.20% in the first, second, and third scenarios, respectively, and
emissions were reduced by 29.13%, 47.13%, and 47.90% in the first, second, and third
scenarios, respectively. However, stochastic programming approaches also have a long
computational time to solve an optimisation problem, which increases the sample size and
makes it not scalable to obtain the optimal solution.
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Table 2. A summary of studies utilising conventional mathematical techniques was reviewed in the current work.

Ref. Year Technique Objectives On-Grid? Architecture/Topology Loads Implementation Outcomes

[73] 2021 MILP Energy balancing and
overall costs Yes Grid/PV/WT/CCHP/NGB/HPs. Electrical, Thermal,

Cooling No Reduced costs by up to 80% when compared with the
baseline case.

[74] 2022 MILP Reliability and overall
electrical and gas costs Yes Grid/WT/CAES/CHP/NGB/TES Electrical, Thermal No Total operational cost was decreased by 4.7%.

[75] 2011 MILP Reliability, costs, and
emissions Yes Grid/HP/WT/CHP/PVT/GB/HEs. Electrical, Thermal No Reduced emissions by up to 20% with no additional cost.

[76] 2018 MILP Overall costs, operation,
emissions, and design Yes Grid/PV/PVT/FC/MGT/NGB/TES/HP/ESS Electrical, Thermal No Reduced costs by 22% and emissions by 73%.

[77] 2023 MILP Costs, emissions, and
comfort No PV/WT/ST/HSS/TES/ESS/GT/EC/HP/AC/GB Electrical, Thermal,

Cooling No Total costs were reduced by 12%, with annual carbon
emissions produced higher than baseline.

[84] 2023 MPC Costs and energy
consumption Yes On-grid system Electrical, Thermal No Electricity consumption decreased by 3% and 17% in

winter and spring, respectively.

[85] 2023 MILP, MINLP, GA, and
PSO Design and size of ESS Yes Grid/WT/PV/PCT/CHP/ESS/TES Electrical, Thermal No Up to 80% of costs can be saved when using optimisation

techniques.

[86] 2018 MILP Emissions and
operational cost savings Yes Grid/PV/FC/TES/EC/AC/ESS/PVT Electrical, Thermal,

Cooling No
The simulation results claim that the hybrid

SOFC-CCHP-based model implemented in Beijing’s hotel
achieves the overall best performance.

[87] 2017 MILP Sizing, overall costs, and
energy consumption Yes Grid/GT/ICE/Boiler/TES Electrical, Thermal No Reduced energy consumption by 64% and a 28%

reduction in total annual cost.

[81] 2022 MPC Operation and costs Yes Grid/HP/PV/WT/TES Electrical, Thermal No The overall energy consumption is reduced during the 24
h of operation.

[82] 2022 RP Manage and optimise
the energy flow Yes Grid/PV/WT/ESS Electrical No Improvement of 5% in all five case studies.

[83] 2023 SP Emissions and costs Yes Grid/FCs/CHP/RES/ESS Electrical, Thermal No Operational costs are reduced by 44% and emissions by 47.9%.

[88] 2020 MILP Sizing and overall costs No PV/WT/NGB/TES/EC/DG/ESS/CHP/AC Electrical, Thermal,
Cooling No

The authors optimised the location, size, and operation
schedule with lower investment costs and uncertainty and

found it less efficient in terms of cost.

[89] 2025 MILP
To reduce costs by

increasing
self-consumption

Yes Grid/DHN/PV/ESS/TES/HP Electrical, Thermal No In summer electric self-production is reached to 58%, and
in winter self-consumption reaches 81%.

[90] 2020 ED Efficiency and stability Yes Grid/CHP/PV/WT/ESS Electrical, Cooling,
Thermal No The efficiency and convergence time are effectively

managed using the hybrid algorithm.

[91] 2015 MILP Overall costs and
utilisation of PV Yes Grid/DG/ESS/PV/HP. Electrical, Thermal No Saved 114.06 kWh of energy and 68.09% reduced costs

using DRPs.

[92] 2014 Quasi-steady-state
simulation model

Costs, emissions, and
savings Yes Grid/BCS/CHP/DHN Electrical, Thermal No Saved 2010 MWh/year of energy, saving 0.81 €/MW with

38% reduced emissions.

[93] 2009 MIP
Overall costs, energy

consumption, and
emissions

Yes Grid/PGU/NGB/CCHP Electrical, Thermal,
Cooling No

Optimising one parameter may reduce or increase the
other two depending on the variation in the loads,
electricity, fuel costs, and environmental factors.

[94] 2021 Deterministic
optimisation

Costs, emissions, and
reliability Yes Grid/GT/AC/TES/WB Electrical, Thermal,

Cooling No Reduces the loss of load expectation by 108.4% and
increases the annual operation cost by 110.14%.
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2.2.2. Heuristic Optimisation Techniques

Heuristic algorithms are inspired by natural processes to efficiently explore the search
space to obtain an optimal solution to a problem. However, finding a global optimal
solution to a complex optimisation problem is not guaranteed, as most are stuck in the
near-optimal solution. Figure 4 shows a flowchart of optimisation algorithms functioning
for multi-energy management. Figure 4 provides a comprehensive overview of the op-
timisation algorithms’ frameworks, designed to achieve a complex energy management
problem solution. The optimisation framework utilised to solve the problem incorporates
various decision variables, objective functions, constraints, and key steps of the optimi-
sation process, as depicted in Figure 4. The process begins with initialisation and input
data, including building types or consumer data, load data, temperature, and emissions,
as well as the technical data of the integrated energy resources or RES-based DG systems.
These inputs and their constraints are utilised to design objective functions to minimise
costs, emissions, and energy consumption and optimise planning, design, size, etc. These
objective functions are some of the most widely used parameters to assess the optimisation
algorithm’s reliability and capability in solving a complex energy management problem.
Moreover, the constraints are primarily imposed on the operation strategies of the energy
generation and storage units to achieve energy balance and operation schedule optimisa-
tion. Multiple optimisation algorithms are applied to explore the predefined search space
and solve the optimisation problem. An iterative process is used to determine and refine
the potential problem solution until an iterative process or desired optimal solution is
achieved. As shown in Figure 4, each algorithm employs a specific strategy to achieve
the desired optimal solution, mainly evaluating the objective function, position updating,
exploration, exploitation, etc., to navigate towards the optimal solution in a predefined
search space. By leveraging such optimisation techniques and algorithms, the designed
framework can achieve an optimal or near-optimal solution, ensuring energy efficiency
and balancing reduced costs and emissions by load and generation units’ operational
schedule optimisation.

 

Figure 4. Flowchart of optimisation algorithms functioning for multi-energy management.
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Evolutionary Algorithms

Evolutionary algorithms are a type of heuristic algorithm inspired by the process of
the natural selection of various biological processes, i.e., natural selection and evolution.
Selection, reproduction, mutation, and cross-over are some steps modelled mathematically
to simulate the process of solving complex optimisation problems. GA has been used ex-
tensively in MESs in planning, management, scheduling, and operation. High investment
costs are often considered a barrier to adopting residential MESs. Despite high initial invest-
ment and operational costs, multiple economic analyses and case studies demonstrate that
implementing RES-based MESs in residential settings with optimised energy management
strategies can yield favourable cost-benefit ratios and significant long-term value. Energy
management and equipment operation optimisation leads to minimal operational costs.
Such a detailed study was carried out by Ahmadi et al. [95], who designed a strategy
based on NSGAII to reduce emissions and costs while increasing energy efficiency for a
residential user. The trade-offs between objectives such as emissions, exergy efficiency, and
costs are evaluated. A maximum efficiency of 33% is achieved with high costs, whereas
minimising costs reduces costs as an objective function. Das et al. [96] evaluated various
configurations for a MES using HOMER software. Operational costs and emissions are
reduced by increasing the use of RESs and optimising the size and design of MESs. Simi-
larly, Das et al. [97] also used GA to optimise MES operations to supply power to off-grid
multi-energy users. Costs are reduced by 27–29%, with an increased reliability of 99.92%
compared to not utilising excess energy and a diesel generator.

Differential evolution and evolutionary strategies belong to evolutionary algo-
rithms, which are also extensively utilised for energy management problem solutions.
Yang et al. [98] and Basu [92] formulated an energy management strategy based on DE
and ES to solve problems related to MESs, aiming to reduce emissions and costs. Basu [99]
evaluated three cases with different PV sizes with a benefit-to-cost ratio 1.4. The study
concluded that the annual operational and maintenance costs for 130 kW are the lowest
among the three cases. Arora et al. [100] designed a multi-objective ES with fuzzy logic to
optimise the performance of a solar-powered Stirling heat engine. Furthermore, an NSGA-
II algorithm was also used to investigate the optimal values of various decision variables to
optimise the technical performance. The system’s overall thermal efficiency, power output,
and thermal economic ratio were found to be 35%, 17%, and 10.5%, respectively. Table 3
summarises the studies that utilised heuristic algorithms, including the evolutionary and
swarm-inspired algorithms.
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Table 3. Summary of studies utilising heuristic (evolutionary and swarm-inspired) optimisation techniques reviewed in the current work.

Ref. Year Technique Objectives On-Grid? Architecture/Topology Loads Implementation Outcomes

[95] 2014 NSGA II Costs, emissions, and
exergy efficiency Yes Grid/FC/BCS/MGT/TES/AC/DHWH Electrical, Cooling, Thermal No

The results showed that the authors had an
essential effect on the trade-off between different

objectives.

[96] 2021 HOMER
Optimal sizing,
emissions, and

utilisation of RES
Yes Grid/PV/WT/MGT/Li-Ion ESS Electrical, Thermal No Emissions were reduced by 40%, with a 33%

higher consumption of RESs.

[97] 2021 HOMER and GA Reliability, overall costs,
and optimised sizing No PV/WT/ESS/TLC/NGBs/DG Electrical, Thermal No

Reliability is increased to 99.92%. The energy
cost is 0.255 $/kWh for the case of utilising PV,

WT, and ESS.

[98] 2022 DE
To optimise the

economic dispatch
strategy

Yes Grid/CHP Electrical, Thermal No The hybrid technique is utilised to enhance the
dispatch strategy.

[99] 2019 EA Overall costs and
emissions Yes Grid/PV/CHP Electrical, Thermal No The benefit-to-cost value is 1.4 at a PV capacity

of 130 kW.

[100] 2019 EA
Efficiency, power

output, and thermal
economic ratio

Yes Grid/PV/CHP/TES Electrical, Thermal No
Efficiency, power output, and thermal economic

ratio increased by 35%, 17%, and 10.5%,
respectively.

[101] 2019 Gradient descent
algorithm and PSO

Overall cost, reliability,
and optimal sizing of

RES
No PV/WT/BCS/ESS Electrical No

A combination of 300 Ah ESS, 0.25 kW PV, and 1
kW WT was selected as cost-effective and

reliable on a chosen site.

[102] 2019 MOPSO
Design of HP, energy

consumption, and
operational cost

Yes Grid/HP Thermal, Cooling No HP dual mode is 27% more efficient in terms of
cost than single operating mode.

[103] 2019 ACO Sizing and operation
scheduling Yes Grid/WT/PV/CHP/AC Electrical, Thermal, Cooling No Enhanced energy utilisation rate and economic

performance.

[104] 2022 Hybrid ACO Cost and operation
scheduling Yes Grid/PV/WT/CCHP/TES Electrical, Thermal, Cooling No Costs are reduced by up to 40–47%.

[105] 2017 Multi-objective firefly
algorithm Operation optimisation Yes Grid/PV/WT/NGB/CHP/IEEE bus 39 Electrical, Thermal, Cooling No Enhanced results with better trade-offs.

[106] 2017 Modified firefly
algorithm Costs and emissions Yes Grid/PV/WT/GB/AC/CHP Electrical, Thermal, Cooling No Lowered costs and emissions when compared

with the benchmark.

[107] 2021 Modified firefly
algorithm

Design, operation
strategy, costs, and

emissions
Yes Grid/FC/GB/AC/HE/TES Electrical, Thermal, Cooling No Emissions and fuel consumption reduction by

10.06% and 8.15%, respectively.

[108] 2021 Cuckoo search
algorithm Costs and emissions Yes Grid/SG/MT/PVT/AC Electrical, Thermal, Cooling No

The tri-objective optimisation problem is
achieved and outperforms the NSGAII

algorithm.

[109] 2015 Cuckoo search, PSO,
GA, DE, and mPSO

Optimisation of
operation Yes Grid/CHP/PV/WT Electrical, Thermal No Computational performance is 135 times faster

than dynamic programming.

[110] 2024 Hybrid GWO and Local
search heuristic

Enhanced economic
efficiency and System

reliability
Yes Grid/PV/WT/Super capacitor Electrical No

Reduced costs by 9.5% and enhanced reliability
by 0.3% when compared wolf search

optimisation algorithm
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Table 3. Cont.

Ref. Year Technique Objectives On-Grid? Architecture/Topology Loads Implementation Outcomes

[111] 2022 Cuckoo search and
GWO Frequency regulations Yes Grid/PV/CHP Electrical, Thermal No

The Cuckoo search tuned the PID controller’s
performance, outperforming the other

algorithms’ performance.

[112] 2021 Modified GWO Costs and emissions Yes Grid/PV/WT/DG/CHP/TES/ESS Electrical, Thermal No
Overall costs, emissions, and comprehensive

costs are reduced by 1.2%, 11%, and 3.27%,
respectively.

[113] 2021 Hybrid GWO Costs, emissions, PAR,
and comfort Yes Grid/CHP/PV/WT/ESS Electrical, Thermal No Costs, emissions, and peak-to-average ratio are

reduced by 25%, 20%, and 36%, respectively.

[114] 2021 GWO Costs and emissions Yes Grid/PV/WT/ESS Electrical No Costs are reduced by up to 21% under a 200 MW
system.

[115] 2020 PSO Generation utilisation
and reliability Yes Grid/WT/PV/CCHP/ESS/TES Electrical, Thermal, Cooling No The generation rate increases by up to 50%

during the peak demand hours.

[116] 2019 GA Overall costs and energy
consumption Yes Grid/HPs Thermal No HP’s performance increased during cold

weather.

[117] 2015 Fuzzy logic control with
GA

Emissions, NPC,
payback, and excess

energy
No PV/WT/FC/ESS/HESS Electrical No Optimised NPC is $192,485, % excess energy of

26%, and 274 kg/yr annual carbon emissions.

[118,
119] 2020, 2022 Optimisation Emissions, costs, and

computational time Both Grid/HP/TESS Thermal No

The study concluded that net-neutral
decarbonisation can be achieved, and various

modelling approaches can present
computational benefits and high-accuracy

results.

[120] 2021 PSO and machine
learning

Overall costs, operation,
and reliability Yes Grid/WT/PV/FC/ESS/EZY/MT/HSS/EV Electrical No An 8% cost reduction in the multi-energy

microgrid scenario.
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Swarm-Inspired Algorithms

Swarm-inspired algorithms are inspired by the collective behaviour of social animal
organisms such as elephants herding, birds flocking, insects searching for food, and fish
schooling. PSO, ACO, and other swarm-based optimisation algorithms have significant
applications in MES energy management. For instance, Patel et al., in [101], evaluated
various techniques utilised for optimal design and size to reduce the costs and emissions
of an off-grid MES with a RES. However, these optimisation algorithms can become stuck
in their local optima while exploring the search space. These limitations are resolved by
carefully selecting the design parameters of the algorithm. Kavian et al. [102] utilised a
MOPSO algorithm to optimise the schedule of a vertical ground HP system, which operates
in three modes: heating, cooling, and multi-usage. The irreversibility rate is related to the
efficiency and energy losses, which account for the amount of exergy (available energy
and useful work potential) destroyed in a closed system, representing the wasted work
potential. The irreversibility analysis is an important parameter, because the lower the
irreversibility rate, the higher the efficiency [121]. The results showed that the average
electricity cost per operation time in the multi-usage mode was 27% higher than in the single
heating mode and 8% higher than in the single cooling mode. The hourly costs for these
modes of operations are USD 0.139, USD 0.143, and USD 0.117 for multi-usage, cooling,
and heating, respectively. ACO is inspired by the movement of ants to find the shortest
possible path towards food from their nest using their pheromones for communication.
A primary limitation of the ACO algorithm is that it can be trapped in the local optima
due to excessive pheromone accumulation on suboptimal paths. Zhou et al. [103] used
ACO as a benchmark to validate their MES sizing and operation scheduling results. The
authors concluded that their proposed discrete immune parallel evolutionary algorithm
outperforms the benchmark algorithms, exhibiting an enhanced energy utilisation rate
and economic performance. The ACO algorithm’s complexity level is not high due to
its efficient convergence with an optimal solution within an acceptable computational
time, which makes it feasible for use with other optimisation algorithms. ACO-based
hybrid algorithms utilise one algorithm for global searches and ACO for local searches.
For instance, Ye et al., in [104] designed an ACO and PSO hybrid to solve a nonlinear
planning and scheduling problem for MESs. The study was carried out both in the grid-
connected and islanded operation modes. The results concluded that the hybrid algorithm
is feasible for solving the optimisation problem. The costs of supplying energy in both
operation modes are reduced by up to 40–47%. The ACO algorithm is considered slow in
starting the search for optimal solutions, whereas the PSO algorithm also has problems
with premature convergence towards the optimal solution. ACO often underperforms
in real-time applications, where a faster response with optimal results is needed. These
individual limitations of each algorithm necessitate the design of a hybrid algorithm to
keep a balance between exploration and exploitation dynamics, with higher efficiency in
providing optimal solutions.

Wang et al. [105] proposed a multi-objective firefly algorithm, which also belongs to
swarm algorithms and is inspired by firefly foraging and these insects’ attraction towards a
flashing light. The algorithm was applied to optimise the operation of MESs on an IEEE 39
bus system. A series of subproblems are developed, which helps in achieving the optimi-
sation problem effectively. The operational costs with this strategy are reduced by 4.97%,
whereas with other techniques, they are reduced by 5.74% and 6.20%. Abdelaziz et al. [106]
modified the firefly algorithm for MESs to reduce costs and emissions. The results suggest
that the strategy reduced costs and emissions compared to a conventional mathematical
dispatch strategy. However, the population and iteration values for the firefly algorithm
are usually higher, which increases the computational time. Guo et al. [107] proposed a



Electronics 2025, 14, 2221 22 of 63

hybrid algorithm comprising key steps from the firefly algorithm, GA, and PSO algorithms
to optimise the system design and operation strategy and reduce costs and emissions.
The control strategy decreased emissions and fuel consumption by 10.06% and 8.15%,
respectively, with reduced computational time.

Naeimi et al. [108] utilised the cuckoo search algorithm to optimise the design and
energetic, economic, and environmental performance. The configuration of the proposed
architecture consists of gas turbines, steam turbines, solar thermal collectors, heat exchang-
ers, and absorption chillers, whereas the simulation environment is built in Thermoflow
software. The results demonstrated that the tri-objective optimisation problem is achieved
and outperforms the NSGAII algorithm. This outperformance of the NSGA II is mainly
due to the slower convergence in complex search spaces. Ikeda et al. [109] utilised a meta-
heuristic algorithm to optimise ESS and TES operation scheduling in an MES for a building.
The authors concluded that the metaheuristic algorithms, including the cuckoo search
algorithm, are around 135 times computationally faster than dynamic programming for
their type of problem.

Hu et al. [110] presented a hybrid grey wolf algorithm inspired by grey wolves’ social
hierarchy and hunting behaviour to reduce costs and enhanced reliability by managing
power fluctuations and optimising consumption. The results demonstrates that costs
are reduced to 330595 USD when hybrid GWO was utilised, whereas simple PSO and
WSO exhibited around 350694 USD and 344974 USD, respectively. Similarly, reliability
is also increased to 0.8985 compared to 0.8930 for GWO and 0.8928 for PSO algorithm.
Khadanga et al. [111] developed a hybrid of GWO and CSA to tune the PID controller
parameters used for frequency regulation in MESs. Individual CSA and GWO algorithms
are used as benchmark techniques. However, various parameters related to CSA affect
its scalability, convergence speed, and limited exploration due to memoryless searching.
Simple GWO can suffer from limited adaptability and be trapped in local optima. Therefore,
to resolve these limitations, several hybrid optimisation techniques based on combining
two algorithms are developed, whereas the slight modification and proper tuning of the
optimisation techniques can also force the algorithm to perform better in several scenarios.
Another hybrid composed of GWO and TLBO was developed by Roustaee et al. [112] for
the multi-objective optimisation of multi-microgrids to reduce emissions and costs. The
proposed strategy outperforms the benchmark technique regarding costs, reliability, and
reducing emissions. Liu et al. [122] proposed a modified GWO to reduce the emissions and
costs of MESs. Compared with the conventional GWO, the daily economic costs, emissions,
and comprehensive costs of microgrid are reduced by 1.2%, 11%, and 3.27%, respectively.

WDO is another nature-inspired algorithm based on air parcels’ motion in the earth’s
atmosphere. Like ACO, its structure is simple and demonstrates effective results in solving
optimisation problems compared to other swarm-based algorithms. Rehman et al. [113]
presented a modified WDO algorithm for a smart home load scheduling operated by a RES
with ESS. The results were compared with the GA, WDO, PSO, and GWO algorithms. The
strategy reduced costs and emissions and peaked at the average rate of 25%, 20%, and 36%
compared to the benchmark. Comparatively, WDO is considered more robust and efficient,
effectively finding solutions to complex optimisation problems. Another combination of
the WDO and water wave algorithms was designed by Krishnan et al. [114] to solve the
scheduling problem of RES-integrated microgrids. Using the proposed strategy with PVs
and WTs as the input, the costs are reduced by 21% compared to the conventional WDO.

In conclusion, swarm-inspired techniques share similar limitations, such as being
trapped in local optima. This limitation can be overcome mainly by fine-tuning the
search parameters. This is usually carried out based on experience, by performing meta-
optimisation (optimising search parameters) or through trial and error. In all cases, tuning
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is time-consuming and reflects that improved performance comes at the expense of less
robustness in handling complex problems.

2.2.3. Artificial Intelligence Algorithms

AI-based methods are extensively used in the design of MESs. They can be classified
into five families: fuzzy logic, game theory, multi-agent, neural networks, and Reinforce-
ment Learning [36]. Figure 5 demonstrates the diverse and impactful role of AI in various
sectors of energy systems, whereas Table 4 summarises the studies that adopted AI-based
techniques for the energy management of MESs. One of the techniques based on AI,
game theory (GT), is widely used to model and predict consumers’ behaviour in DRPs.
A GT-based MES operation strategy was proposed by Liu et al. [123] to reduce emissions
and costs (fuel costs) by promoting the penetration of RESs. The strategy cut 10.5 kton of
emissions per year with 100% RES energy production and reduced the use of fossil fuels.
Wu et al. [124] proposed a two-stage GT model for MESs consisting of smart metres to
participate in energy markets. The proposed strategy is compared with the time of use of
a tariff-based system. The results confirm that the proposed strategy effectively reduces
energy costs and the peak-to-average ratio. Mitridati et al. [125] presented a strategy for
decentralised energy systems to balance the energy used by prosumers. The strategy
effectively performs energy trading and demonstrates the trade-off between the efficiency
stability and incentives provided by energy operators.

 

Figure 5. AI applications in MESs [126].

A fuzzy controller energy management and frequency regulation system in MESs
is proposed by Yu et al. [127]. The results show that the system’s production costs are
minimised, and revenue is increased. In another work, a fuzzy controller is proposed to
utilise the waste heat produced during the FC electrochemical reactions by Ma et al. [128].
The results show that the FC with the fuzzy control-based strategy works efficiently and
reduces the operation time of the CHP unit for a household.

Coccia et al. [129] proposed an MPC-ANN-based management strategy to increase the
self-consumption of RESs in grid-connected scenarios. With the use of MPC-ANN, up to
70% of energy consumption is reduced compared to the rule-based technique. In another
work, Buffa et al. [130] presented an MES management strategy for large-scale residential
users based on an MPC-ANN to reduce energy consumption in peak hours. Advanced
controllers utilised DRPs from the grid to use low-price electricity for hot water tanks. The
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strategy rescheduled the operation time from peak hours to off-peak hours, resulting in a
3.5% reduction in utility bills. Figure 6 illustrates the functioning of the strategy utilised by
Luo et al. [131] to solve energy management problems related to the design and operation of
MESs with RES to increase computational efficiency and accuracy. The problem is modelled
as a bi-multi-objective strategy where the government determines the optimal subsidy
policies (upper level), and the residents optimise the HRES design and operation (lower
level). ANN data are trained using the results from lower-level optimisation, which further
enhances the accuracy while supporting decision-making and system design. The strategy
utilised 57.01% of the solar energy of energy consumption in the standalone mode.

 

Figure 6. Flowchart of ANN-based hybrid algorithm for multi-energy management [130].

Q-learning falls into the reinforced learning category, enabling its capability of itera-
tive learning over time with improved results. A Q-learning-based algorithm is proposed
for balancing power and reducing the load fluctuation and peak load regulation cost for
residential homes in a coastal area by Lingmin et al. [131]. The strategy outperforms the
GA- and PSO-based techniques in balancing power and load fluctuations. However, the
peak load regulation cost is higher when compared to the PSO- and GA-based results.
Chen et al. [132] proposed a strategy based on a reinforced learning multi-objective optimi-
sation algorithm for 140 generating units of MESs. For this purpose, the authors considered
and applied the reinforced learning-based multi-objective optimisation algorithm to de-
termine and adjust the control parameters. The results suggest that the control strategy
reduced the overall costs and emissions compared to other multi-objective optimisation
algorithms deployed in the same scenario. These analyses highlight that while imple-
menting MESs requires a significant initial investment, long-term operational savings,
increased revenues, and environmental and social co-benefits can lead to attractive returns
on investment and greater economic resilience for residential stakeholders.

Heuristic algorithms like GA or PSO, which efficiently provide near-optimal solutions,
are nonetheless sensitive to parameter tuning and may converge prematurely. AI-based
approaches dynamically adjust to evolving operational contexts and implicitly handle
complex constraints through learned representations [133]. Empirical studies in microgrid
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energy management and multi-energy system scheduling demonstrated that AI-based
optimisation achieves a solution quality comparable to or exceeding that of conventional
and heuristic methods and significantly reduces computational overhead in real-time
applications. Consequently, integrating AI-based optimisation is increasingly recognised
as a critical enabler of the next generation of MESs. The computational complexity of the
AI-based framework for energy management depends on several factors, including the
dataset’s dimensionality, the model framework’s design, and the specific objectives related
to energy tasks (like demand forecasting or grid optimisation). To evaluate this complexity
rigorously, it is essential to quantify the efficiency of algorithms in terms of runtime, memory
usage, and scalability, especially when dealing with large-scale energy systems. More
specifically, AI techniques are used for optimising energy-efficient navigation routes for
autonomous agents, dynamic resource allocation in smart grids, or deploying infrastructure
in distributed renewable networks. AI can make a decision ensuring low latency and
high robustness to changing factors, such as varying energy prices or intermittent RES
generation. Therefore, the framework’s ability to adapt to these trade-offs is crucial for its
effectiveness in operational environments, where computational efficiency directly affects
system responsiveness and economic outcomes [134].
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Table 4. Summary of studies utilising AI- and machine learning-based optimisation techniques reviewed in the current work.

Ref. Year Technique Objectives On-Grid? Architecture/Topology Loads Implementation Outcomes

[123] 2021 GT Emissions and costs Yes Grid/PV/ET/CHP/HP/EC/AC/ESS Electrical No Cut 10.5 kton of emissions per year with 100% RES energy
production.

[124] 2018 GT Emissions and costs Yes Grid/GB/HE Electrical, Thermal No Effective in reducing the energy costs and peak-to-average
ratio.

[125] 2021 GT Efficiency, stability, and
costs Yes Grid/PV/WT/CHP/EB/HP/ESS/TES Electrical, Thermal No Reduced costs via trade-offs among the key objectives

while participating in energy markets.

[126] 2019 FLC Frequency oscillations Yes Grid/PV/FC/WT/CHP Electrical, Thermal No Effectively controlled the frequency oscillations of each
component of MESs.

[127] 2022 FLC Efficiency and
utilisation of FC Yes Grid/FC/ESS/TES/CHP Electrical, Thermal No Efficiently increased the operation time of the CHP unit.

[128] 2022 ANN Energy consumption
and costs Yes Grid/CHP/PV/HP Electrical, Thermal No Reduced energy consumption by 70%.

[129] 2020 ANN and MPC Energy consumption
and costs Yes District heating network with

various MES Electrical, Thermal No Reduced energy consumption by 3.5%.

[131] 2023 ML
Load fluctuations, peak

load regulation, cost,
and balance of power

Yes Grid/WT/PV/CHP/TES/ESS/EV/HP. Electrical, Thermal No Achieved balanced power and load fluctuation with a
higher cost than the PSO- and GA-based algorithms.

[132] 2023 RL Emissions and costs Yes Grid/CHP Electrical, Thermal No Control strategy reduced the overall costs and emissions.

[133] 2019 Exergo-economic
optimisation Design and overall costs No PVT/CCHP/TES/HP/HE/CE Electrical, Thermal,

Cooling No Reduced specific cost of the system products by 6.4%.

[134] 2020 Modelling in TRNSYS
Operational cost,
emissions, and

efficiency
Yes Grid/PVT/MGT/GG/GT Electrical, Thermal,

Cooling No Efficiency of 34% and 0.12 ton/MWh of emissions is
achieved with a cooling capacity of 4906 kWh.
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2.2.4. Other Scheduling Techniques

Optimisation studies that used techniques other than those presented earlier are
grouped here and summarised in Table 5. These techniques include rule-based optimisers,
exhaustive search, and proprietary solvers embedded in commercially available software.
These techniques have limited customisability but are general enough to be applied to
different problems without much tuning [135]. The downside is that they can be compu-
tationally expensive for large problems [136]. These optimisation techniques main aim
is to utilise RES and increase self-utilisation of local RES generation [137]. techniques
Facci et al. [138] utilised the PV-HPs system to fulfil the heating and electrical demands
of the residential consumer. Reductions of 41% in energy costs and 73% in CO2 emissions
were achieved compared to the benchmark system using natural gas heating. Wu et al. [139]
presented a two-stage rolling dispatch strategy to reduce energy consumption and address
the scheduling problem. The operation costs are reduced by 14.55%, and the utilisation of
renewable energy is increased by up to 13.3%. Mago et al. [140] proposed the following
(thermal or electrical) load-based strategies to reduce energy consumption and carbon
emissions. The system is designed to meet the electrical, heating, and cooling demands of a
building through a grid, fuel-based power-generating unit, boiler, chiller, and heating coil.
The system models are tested in different cities with different climatic conditions. Follow-
ing thermal loads reduced the primary energy consumption, energy costs, and emissions
compared to the electric load. This is due to the waste heat utilisation in the CCHP and CHP
modes. Patteeuw et al. [141] designed a load scheduling strategy for improving the electric
grid flexibility and operation of residential buildings. MPC is leveraged to manage the
operation of HPs and thermal load. Each user can participate in DRPs. Two DRPs—direct
load control and the dynamic time of use tariff—are used to evaluate the effectiveness of
HPs powered by RESs. The strategy achieves a reduction of 5% in operational costs and
a 6.6% reduction in emissions. Kumar and Tewary [142] conducted a techno-economic
assessment of standalone hybrid energy systems using a HOMER simulation toolkit. The
authors utilised an optimisation-based strategy for the operation of RESs with BSS and
diesel generators to meet the electrical energy requirements of the off-grid consumer. The
strategy generates 19.3% excess electricity of the required amount of energy annually,
thus reducing the overall operational costs and increasing the reliability of the standalone
urban hybrid generation system. Wang et al. [143] proposed an operation mode-based
strategy for MESs to reduce emissions and improve energy saving, exergy, and efficiency.
These operation modes include thermal and electrical demand management modes. Each
mode of operation can produce the required energy to meet the thermal and electrical
load. Considering the case of a commercial building in Beijing, China, simulation-based
environments are studied. The results indicate that the performance of the system model is
more effective and efficient in winter than in summer because of the use of heating energy.
The exergy efficiency is improved by 16.1–19%, emissions reduced by 25.1%, and energy
savings of 42.7% are recorded. The application of optimisation techniques is not limited to
the on-site MES; Yang et al. [144] introduced a two-stage robust planning method designed
to maximise the net present value. The optimisation-based strategy leads to a 10–15%
reduction in energy costs for the MES hub within a cruise ship.
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Table 5. Summary of studies utilising other rule-based optimisation techniques reviewed in the current work.

Ref. Year Technique Objectives On-Grid? Architecture/Topology Loads Implementation Outcomes

[138] 2019 Optimisation Cost, emissions, and
energy consumption Yes Grid/PV/GB/AC/HP/TES Electrical, Cooling,

Thermal No Energy cost savings of 41% and up to a 73% CO2 emission
reduction.

[139] 2023 Second-order cone
relaxation method

Utilisation of RES and
overall costs Yes Grid/PV/WT/nGT/ESS/FC/DG Electrical, Thermal No HRES utilisation increased by 13.3% and 14.55% reduction in

operational costs.

[140] 2009 Load following method Costs, emissions, and
energy consumption Yes Grid/PGU/GB/AC/HC Electrical, Thermal,

Cooling No CHP-FTL-based mode reduces the energy consumption,
emissions, and costs.

[141] 2016 Day-ahead optimisation Costs and emissions Yes Grid/HP/PV/WT/EV Electrical, Thermal No Operational costs were reduced by 0.9% and 5.5%, and
emissions between 0.4% and 6.6%.

[142] 2022 Optimisation using
HOMER

Costs, efficiency, and
operation optimisation No PV/WT/DG/ESS. Electrical No Excess electricity of 19.3% is generated annually.

[143] 2011 Operation mode-based
strategy

Emissions, energy
saving, and exergy

efficiency
Yes Grid/CHP/GB/HC/CCHP Electrical, Thermal,

Cooling No The exergy efficiency is improved by 16.1–19%, and
emissions are reduced by 25.1%, with 42.7% energy saving.

[145] 2023 Optimisation and
designing

Efficiency and COP of
the air-source HP No Grid/PV/HP/TES Thermal Yes

Yearly self-consumption, self-satisfaction rates of PVs, and
the COP of the air-source HP increased by 131.25%, 10.53%,

and 9.56%, respectively.

[146] 2021
HRES energy

management using
TRNSYS

Energy consumption
and efficiency Yes Grid/PV/TES/TLC/HP DWH/ESS Electrical, Thermal No

Energy consumption is reduced by 13%, and electricity
purchased from the grid for water heating is reduced by 90%

while using PV-HP.
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2.2.5. Comparative Analysis

As discussed earlier, the optimisation techniques used to solve problems related to
energy management in MESs mainly include mathematical programming-based techniques.
Each method exhibits distinct strengths and limitations concerning complexity, sensitivity,
and solution quality. Methods like MILP are valued for their ability to ensure global opti-
mality and manage complex constraints, which makes them suitable for MES optimisation
related to design, operation, and dispatch strategies. However, the computational complex-
ity of MILP increases exponentially with problem complexity, size, and constraints. Due
to these limitations, MILP becomes impractical for solving large-scale and highly nonlin-
ear problems, increasing computational time and complexity. In contrast, metaheuristic
algorithms such as GA and PSO can effectively explore large, non-convex and multi-model
solution search spaces to find an optimal solution to a complex problem. Delivering nearly
optimal solutions in significantly shorter time frames often comes at the expense of guaran-
teed optimality and requires careful tuning of the parameters and constraints. The quality
of Pareto fronts produced by these methods is typically inferior to those generated by
MILP, especially as the constraints become more complex or numerous. Advanced control
techniques, such as MPC, strike a balance by excelling in real-time operational control.
They incorporate forecasts and adapt to uncertainties. However, their effectiveness is
highly sensitive to the prediction horizon, the models’ accuracy, and the computational
burden they impose. Reinforcement Learning (RL) strategies, while promising for adaptive
and data-driven control, still encounter challenges in handling constraints and managing
high-dimensional state-action spaces. In many realistic scenarios, they often underperform
compared to MPC. Case studies in residential energy systems consistently show that while
mathematical optimisation provides the most robust and cost-effective solutions under
strict constraints, metaheuristics and hybrids of RL and MPC offer practical alternatives for
faster, scalable, and adaptive control, incredibly when computational resources or model
accuracy are limited.

Ultimately, the choice of optimisation technique depends on the trade-off between com-
putational tractability, sensitivity to model and parameter uncertainties, and the rigour needed
for constraint satisfaction. Hybrid and decomposed approaches are increasingly preferred to
leverage the advantages of each method in complex energy management applications.

2.3. Demand Response Programmes (DRPs)

Demand-side management strategies are widely utilised in the field of residential
MESs. DRPs’ prime objective is to manage or modify the energy consumption pattern of the
user by offering a price or incentive to shift loads to a more convenient time for the provider.
There are two primary types of DRPs: price-based DRPs and incentive-based DRPs. There
are various types of DRPs, which are discussed below. In price-based DRPs, consumers
are charged differently multiple times to encourage the change in consumption patterns
during the peak demand hours. Using incentive-based DRPs, users are incentivised by
energy operators to change their energy consumption patterns during peak demand hours.
These incentives are usually adjusted as bill credits or discounts on future electricity bills.
DRPs have been effectively implemented in residential MESs, significantly reducing energy
consumption and costs. For instance, a real-world implementation in a UK neighbourhood
with 66 homes showed that DRPs, managed through a cloud-based AI framework, allowed
for the automated scheduling of controllable appliances like dishwashers, washing ma-
chines, and dryers. This strategy prioritised locally installed PV generation over importing
from grids with variable energy pricing tariffs. As a result, the community experienced an
average reduction of 30% in energy costs and a 25.5% decrease in the daily peak load, all
while ensuring grid stability and complying with low-voltage constraints [147].
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2.3.1. Price-Based DRPs
Real-Time Pricing

Real-time pricing (RTP) adjusts the energy prices for the consumers following the
market prices; it is communicated in real-time to the consumers’ smart metres. For compet-
itive energy markets, RTP is considered one of the appropriate IDRPs because of real-time
energy market price signal regulation. Therefore, various recent studies adopted this type
of IDRP in the field of multi-EMS, which led to significant reductions in peak demands
and operational costs [148]. Jin et al. [149] implemented real-time IDRPs for optimal MES
operation management for residential buildings, reducing the peak load demand by 17%
and energy costs by up to 8.8%.

Critical Peak Pricing

Operators use critical peak pricing to manage energy demands by charging signif-
icantly higher prices to reduce electricity usage during peak demand periods, typically
lasting 4–5 h. Consumers are encouraged to shift their energy usage to non-peak hours,
thereby reducing the load on the grid, which helps stabilise the grid, reduce the risk of
blackouts, and contribute to a more efficient and reliable energy system. Wang et al. [150]
conducted a study related to the residential EMS to reduce energy demand during peak
hours. The mechanism connects the user and supply via communication infrastructure
for energy price regulation. It was shown that energy consumption during critical hours
decreased and that the supply-demand balance increased. Lin et al. [151] also utilised a
critical peak pricing DRP to reduce the grid peak load and enhance reliability and security,
reducing energy bills by scheduling the loads to low energy pricing hours.

Time of Use

Time of use is one of the most widely used IDRPs. Tariffs are changed at different
time slots, and consumers are encouraged to utilise the low energy prices. The consumers
adjust the loads following the energy price, which leads to reduced energy consumption
and, eventually, lower energy bills. Qi et al. [152] demonstrated dynamic control of the
DG systems with DRPs, which leads to reduced operational costs and energy savings for
consumers. Sichilalu et al. [84] and Firouzmakan et al. [153] demonstrated that leveraging
TOU, real-time pricing (RTP), and the inclining block rate (IBR) can effectively reduce
energy consumption and costs compared to RTP and IBR.

Extreme Day

The extreme day tariff resembles critical peak pricing; however, an extreme day tariff
is leveraged to lower the energy demand during critical situations such as energy market
or grid instability. This is also utilised when there is a risk of system failure due to intense
weather conditions. Extreme day tariffs can motivate consumers to invest in energy-efficient
technologies and practices, as doing so can help them avoid high energy pricing periods
and reduce their overall energy bills [154].

2.3.2. Incentive-Based DRPs

Incentive-based DRPs have two major types: market-based and conventional DRPs,
which are discussed below.

Market-Based DRPs

Energy Bidding

In energy bidding, the consumers give the control of loads to the operators to reduce
the load during peak hours, and in return, consumers receive revenue, perks, and incentives.
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This DR programme can benefit the consumer, as depending on the market conditions,
the energy price increases, and in this way, consumers can earn more when actively
participating in energy markets. Several research works utilised market bidding DRPs; for
example, Ostadijafari et al. [155] proposed a strategy for residential consumers to participate
in the wholesale energy market. Further, a stochastic optimisation technique is utilised
for the day-ahead demand bids, and the system is tested on the IEEE-123 bus system to
evaluate performance based on demand bidding for energy consumption cost reductions.

Ancillary Service Market

In this demand response scheme, the consumers suggest the threshold to which they
can reduce or curtail energy consumption to receive a market clearing price from the
providers. The energy management controllers installed at the user’s premises should
quickly respond to the changes required by the operators during peak demand hours. Can-
izes et al. [156] utilised such DRPs to mitigate grid flexibility, voltage, and congestion issues
through the participation of residential consumers in a low-voltage distribution network.

Conventional Incentive DRPs

Curtailment DRP

The curtailment demand response scheme is a load scheduling strategy where a group
of users apply and then select the load, and later, the operator provides directives to the
users to limit or reduce the energy consumption in certain hours to reduce the peak demand
periods for the operator [157]. In this way, the users can earn incentives, operators’ grid
reliability is increased, and the risk of system failure is mitigated [158].

Direct Load Control

Direct load control scheme users give the energy supplier access to appliances’ opera-
tion schedules, which enables the supplier to control the operation of user loads during
peak hours or critical events. This strategy reduces the user’s energy consumption, miti-
gating blackouts and load shedding and increasing grid flexibility and reliability during
peak hours. Calver et al. [159] demonstrated that HPs installed at the users’ premises can
be controlled by energy operators to manage their energy consumption. The users are also
offered additional benefits besides the reduced monthly energy bills. Sridhar et al. [160] also
demonstrated the effectiveness of the direct load control scheme considering residential
consumers, which showed that consumers’ participation could yield enhanced flexibility of
the power systems.

3. Laboratory Deployment
3.1. Energy System Tools and Software

The technical and economic evaluation of microgrids with various energy inputs and
conversion units is crucial for effectively assessing the overall system. This requires using
software tools for modelling to evaluate multiple topologies economically and technically.
Several software tools are mentioned in the literature to study and assess various aspects
of the MES. HOMER, TRNSYS, EnergyPlan, energyPro, MATLAB, Dymola/Modelica,
RETScreen, BALMOREL, BCHP Screening Tool, SOLSIM, Invert, and HYBRID2 are some
of the most widely used mathematical and model-based software tools for the evaluation of
MESs. Prefeasibility studies, sizing, integration, simulation, and comprehensive economic,
technical, and environmental analyses of an MES architecture were carried out. HOMER is
widely used to determine optimal sizing and energy flow within an energy system for a
standalone or grid-connected microgrid [161]. Technical and economic assessments can be
carried out for various combinations of generation, conversion, and storage units. Similarly,
TRNSYS has become a hybrid simulator that models and simulates electrical, thermal,
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and cooling systems. Its library comprises RESs, building models, HVAC systems, and
optimisation models, facilitating comprehensive MES analysis. EnergyPlan is a tool used
to design and simulate MESs from a smaller scale to a larger scale, exploring scenarios
for transitioning to a 100% RES. It is mainly known as a simulation tool rather than an
optimisation tool. Similarly, energyPro is also used to design and model single or thermal
MESs. This tool can also be useful for designing and analysing DHN integrated with
various RES resources [162]. MATLAB/Simulink is a high-level programming language
and numerical computing environment that provides a powerful platform for designing
and optimising MESs. A wide range of optimisation, control, and electrical power system
components are available, which can be used to model MESs and conduct various analyses.
Modelica can be useful to handle the complexities of MESs, including the integration
of optimised RESs. A toolkit of Modelica, OPTIMICA, offers advanced features for the
automation, simulation, and optimisation of energy systems [163]. BALMOREL, devel-
oped using the GAMS language model, also can analyse MESs. DHN, CHP, storage, and
RES-based generation units can be modelled and analysed [164]. The BCHP Screening Tool
and SOLSIM are also specifically designed and developed to analyse small-scale projects,
including commercial ones, to fulfil combined heat and power [165]. Large-scale MES
implementation and analysis cannot be carried out using the BCHP Tool. Hybrid2 was
developed to analyse the MES’s performance in the long term and to provide insights into
various performance indicators, including costs, emissions, and efficiency [166]. Further-
more, forecasting and probabilistic techniques can also be used to predict energy demands
and generation. However, this software tool also has limited access to adding various
parameters and, hence, less flexibility.

3.2. Choice of Physical Technologies

The design and deployment of MESs require various component analyses based on
the capacity requirements, availability of the required sizes, project goals, capital costs, etc.
The choice of physical technologies can also be significantly affected by the type of energy
the consumers demand. A detailed description of the required multi-energy microgrid
equipment and standards can be found in [167]. RES-based multi-energy generation
systems can also provide electrical and thermal energy simultaneously, including PVT
collectors. Detailed studies were carried out by Herrando et al. [168] and Sirin et al. [169],
demonstrating that installing PVs and WTs for electrical energy greatly facilitates electrified
heat production using electrical boilers, HPs, FC, etc. The cost of installing PVs is lower
than that of PVT collectors, as they are not yet as mature a technology as PV. Energy storage
units have also been installed to improve MES operation. ESS can help avoid peak demand,
schedule the load effectively, and reserve energy for peak tariff price periods. However,
installing these generators and storage systems can be costly for laboratory deployments
and experiments; therefore, to lower the costs of experiments, various studies utilised signal
generators to mimic the energy output of energy input vectors, e.g., FC and WTs, etc. [170].
A study by Cagnano et al. [171] explains the key characteristics and structure of the PrInCE
Laboratory [172], developed at the Polytechnic of Bari, to carry out various simulations
related to the MES. The laboratory includes multiple energy inputs, including electrical,
thermal, and cooling. The electrical and thermal components consist of 120 kW NG-CHP,
30 kW NG-MT, 50 kW PV, a 60 kW wind simulator, 210 kW of ESS with a maximum
charge/discharge capacity of 60 kW, 120 kW of programmable loads, and a V2G mode of
operation as well. The modelling of the overall system is greatly facilitated using simulation
models, which include the white box, black box, and grey box modelling. While the white
box modelling approach considers the detailed energy dynamics, black box modelling is
data-driven and mostly takes data profiles as the input and grey box modelling combines
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both white box and black box modelling approaches to facilitate the simulation process
and get close to the real-life implementation and behaviour of the simulation model. For
instance, Ghillardi et al. [73] demonstrated using a single-state grey box model derived
from [173] for a building load to lower the computational time and operation control
using a TRNSYS white box model. Johnson et al. [174] modelled and simulated a grid
connected hybrid RES using TRNSYS to supply load to multi energy user. A multi objective
optimisation-based energy management strategy demonstrated achievement of 80% solar
friction with 6.9 years of payback time for whole investment. The challenges related to
implementing MES energy management include modelling and testing the technologies
and replicating the behaviour of the energy conversion and generation systems.

3.3. Choice of Controller

Sophisticated control strategies are adopted to maximise the efficiency and self-
utilisation of RES-integrated MESs. Hardware-based implementation is used to validate the
control topologies. The laboratory setup can be classified into four categories, namely the
hardware-in-the-loop (HIL) microgrid, hybrid microgrid, real microgrid, and simulation-
based microgrid. The HIL microgrid architecture involves the real-time simulation of the mi-
crogrid using physical components, e.g., ESS, RES modules, loads, etc. A hybrid microgrid
scenario refers to using various physical components integrated for experimentation. It can
be a valuable tool for assessing microgrid functioning on an experimental scale. Small-scale
real microgrids are developed to facilitate the experimental validation. Some examples of
real microgrid facilities for research can be found in [175]. The simulation-based microgrid
is a mathematical modelling-based representation of a real microgrid. This type is the initial
setup of microgrid experimentation, which is later deployed using physical controllers
and hardware. A detailed study on microgrid development can be found in [176,177]. The
two most common setups used for laboratory experiments are hardware-in-the-loop and
hybrid microgrids. These setups present balanced approaches that ensure reliable outcomes
during the practical implementation of microgrid setups. MATLAB/Simulink is the most
common software used in the hardware-in-the-loop and hybrid microgrid setups. The
software interacts with the hardware connected with it in real-time using a control system
such as dSPACE, PLC, or FPGA [178], which are popular hardware-based controllers and
are widely used in the industry. The dSPACE control system serves as a real-time interface
between the simulated microgrid setup (e.g., on Simulink) and hardware components
(e.g., converters and programmable loads) [179]. Donoso et al. [180] used a dSPACE ds1103
controller with a SPARTAN 3 FPGA control system for a grid-connected microgrid. The
MPC-based algorithm produces a fixed switching frequency for a grid-connected three-
level neutral point-clamped converter. The controller maintains a fast dynamic response
in the presence of uncertainties, limiting the total harmonic distortion to under 2% for
the current supplied to the grid. Arafa et al. [181] utilised the dSPACE ds1202 controller
for the real-time implementation of the GWO optimisation algorithm with the PID and
fuzzy logic controllers to carry out the real-time implementation of the algorithm with the
hardware. Along with the dSPACE controller, several other controllers are also utilised to
implement the control strategy practically using hardware. Gundogdu et al. [182] used an
FPGA, dSPACE, and Altera DE2-115 control board to implement an algorithm for direct
torque control of a three-phase induction motor as hardware-in-the-loop. The authors used
MATLAB/Simulink for the simulations and performed the practical implementation using
the FPGA control board. The developers of dSPACE continuously update the documenta-
tion about implementing various models through manuals for implementation purposes.
However, there is limited information regarding the practical implementation of real-time
simulations, especially in a hybrid multi-energy microgrid. Therefore, there is a need for
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further exploration and documentation in the area of MESs’ practical implementation and
energy management.

3.4. Energy Management Strategy Implementation

Modelling and simulation-based theoretical study are essential in evaluating system
model performances. Theoretical study implementation into actual hardware-based setups
is often considered impractical or expensive. Research studies often focus on theoretical
validation; however, several studies practically implemented their proposed strategies,
which are discussed in the current section. Li et al. [183] demonstrated that optimal sizing,
planning, and investment costs for the system model’s deployment and implementation
result in increased profits with low investment costs. Various uncertainties related to the
energy balance are added to the system’s design. The MES consists of PVs, WTs, CCHP
plants, electric boilers, and a supply from the utility grid. ESS and TES are installed to
manage the energy flow during critical hours. The profits gained using the proposed
control strategy were three times more than those gained using the benchmark strategies,
where ESS and TES are controlled separately. With uncertainty added, the system model
exhibited a total of a 2.47% increment in profit with MESs and demand-side management.
Tiar et al. [170] designed an intelligent fuzzy controller-based strategy. They demonstrated
its performance using hardware to switch the mode of operation between the local hybrid
microgeneration system and the grid. A back-stepping technique-based inverter was used
to control the front-end single-phase inverter. The fuzzy logic-based intelligent controller
was deployed with the PV to maximise the extracted power from the PV. The work was
implemented in a lab with a test system consisting of dSPACE 1104. The FC stack supply
was reproduced using a continuous DC supply with boost choppers and grid-connected
voltage-source inverters. An interface card was employed to connect the convertors and
controller and to sense voltages and currents. The results show that the maximum power
was extracted from PVs. The excess power was sold back to the grid, and the invertor-
based strategy was optimally utilised for switching purposes. However, the authors did
not consider uncertainty in the load. In another work by Elsied et al. [184], the dSPACE
1104 controller is used for practical implementation in a laboratory with a GA optimisation
technique connected with MATLAB and ZigBee as a communication network. Li-ion
batteries and four DC supplies with variable energy supplies are used to replicate the
energy output of the generation architecture. Two programmable DC loads are connected
to the system, and the demand profile can be added accordingly. The work demonstrates
the performance of the control strategy in utilising low-price electricity from the grid
and exporting the excess electricity from the RES back to the grid to gain more profit.
Pean et al. [185] presented an experimental control strategy based on the MPC controller
to minimise energy costs and emissions and increase thermal comfort in a residential
building in Spain. The costs, flexibility, emissions, and thermal comfort of the user are
considered in the study. Flexibility is achieved via the optimised shifting of the thermal
loads of the building towards periods of lower electricity prices or grid CO2 emissions.
TRNSYS is used to model the building, MATLAB is used for the MPC algorithm, and
LabVIEW is used to exchange commands and information as the main simulation software.
The HP produces the required energy for the DHW by charging a 200-litre TES. The HP
can produce 11 kW of heat with a COP of 3.9 in the heating mode and 7 kW of energy
produced in the cooling mode. The operational costs and emissions are reduced by 7%
and 17%, respectively. Simko et al. [186] demonstrated PV-powered HP operation, which
produces thermal energy stored in a TES for space heating and DHW. The energy system
consists of a 6.5 kW inverter powered by 20 PV panels of 325 W each, with a payback
period of 7 years. The air-to-water HPs can operate in the cooling or heating mode. The
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excess heating and cooling energy is stored in TES. A similar study was also carried out by
Velasco et al. [187] to meet the DHW and space heating demand using a water-to-water HP
with a TES. LabVIEW software is used for data acquisition. The results showed an increase
of 12.4% in the system’s global COP and a reduction of 16% in the compressor’s energy
consumption compared to other strategies.

Atienza-Marquez et al. [188] conducted a comparative study considering a hospital
producing and distributing hot water using electricity from a grid and an RES installed
locally. The authors considered a 440 kW gas-fired boiler that could boil the water to 90 ◦C
to limit the rise in harmful bacteria. The model was built using TRNSYS software, and
techno-economic analysis was carried out. The model reduced the thermal losses by up to
70% and the overall hot water production cost between 15 and 45%. In contrast, the cost-
optimised strategy increases the solar caption area by up to 45–50%. Jahanbin et al. [189]
demonstrated a practical study to assess the production of DHW and storage using TRNSYS
and MATLAB, followed by implementation. The annual energy cost was reduced by up to
5.2%, whereas the thermal losses occurring at different components were also enhanced
by up to 4%. Brka et al. [190] used an ANN for the power management of the consumer,
supplied by a PEM FC integrated with HSS. This system model was implemented practically
in a laboratory. The results of the experiments demonstrated that the implemented system
model prevents the loss of power supply during the transient start-up time.

3.5. Communication Infrastructure

The communication infrastructure installed for achieving intelligent operation within
a smart grid paradigm is powered by the IoT and ICT, which enables real-time monitoring,
control, and the reporting of energy interruption and abnormal events. Figure 7 shows
the role and importance of using a communication network in different smart grid sec-
tors to ensure that the energy is balanced via the bidirectional flow of power using red
arrows and communication flow using blue arrows. These components are connected by a
centralised/master controller capable of managing the operation schedule. The controller
functions include monitoring, logging, and executing the control strategy. The monitoring
phase is used to monitor the users’ demand and energy availability information, the logging
phase processes the data, and controlling deals with load operation management.

Figure 7. Role and importance of communication in the smart grid infrastructure.

The residential EMS works as a closed-loop system with the input signal (genera-
tion data) and output signal (demand data). Energy balancing in the residential EMS is
achieved by taking the users’ energy demand signals. IoT infrastructure has three layers,
which together make a network that can communicate and monitor the components of
MESs to facilitate an intelligent EMS. Communication infrastructure is categorised into the
following technologies.

There are multiple protocols and several ongoing developments in communication
and interoperability technologies. A multi-energy smart grid was constructed at the
University of Bari in Italy [172,191]. The pilot project uses the SCADA platform to carry out
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tasks related to power management and implementing control strategies. The hardware
is connected through a three-level control. The first level uses local controllers, which
can receive control signals and execute functions. The second layer ensures the optimal
operation of the microgrid, which uses fibre optics as the communication medium, with
two programmable logic controllers responsible for executing control functions. The
second layer’s communication is mainly carried out using Modbus/TCP IP protocols. The
communication and information flow received at the second layer from the first layer
uses Ethernet. The third layer is designed to connect with the MATLAB/Simulink to
design and evaluate hardware in the loop simulation. These protocols and standards are
adopted to ensure reliability and security in energy and power management within a
smart grid through interoperability, advanced cyber security mechanisms, and robust data
handling. Some of these standards and protocols are also adopted within a pilot developed
under the InteGridy project [192] to install smart metres to support DRPs (see more details
in Section 4.1.7). The smart metres are installed using several protocols, including the
following: IEC 61970 for standard information model and energy management, IEC 61850
for power utility automation, IEC 61968 for standard information model and distribution
management, IEC 62351 for ensuring security, and IEC 62056 for data exchange for metre
reading and tariff and load control.

3.5.1. Home Area Network (HAN)

The HAN typically involves a communication framework between smart metres, the
master controller, and appliances. This communication is usually done using standardised
protocols, such as Zigbee, Z-Wave, a wired network, and Wi-Fi. Zigbee, Z-wave, WiFi,
and 6LoWPAN are some of the wireless networks used to facilitate the communication
infrastructure for the HAN. Danbatta and Varol [193] compared the wireless technologies in
smart home energy management and operation. These technologies facilitate reductions in
costs and energy consumption and ease real-time information sharing among components.
A comparison of the different wireless technologies used in energy management within
the residential sector is shown in Table 6. Advanced metering infrastructure (AMI) along
with the HAN can optimise the operation of MESs. Pandraju et al. [194] utilised the HAN
and the AMI to ensure the monitoring and transferring of power between the energy
supplier and user. The smart metres enhance the performance of the AMI in monitoring the
low-voltage networks. Energy providers can control the energy loads to reduce the user’s
costs. The authors concluded that the system model can effectively reduce the network loss
rate by up to 0.155%.

HomePlug

HomePlug is a technology widely adopted in smart homes for high-speed wired
communication across appliances. It enables the transmission of Ethernet data through an
existing electrical system, allowing devices to communicate with each other and the Internet.
Sensors are usually installed to monitor and control the temperature for DHW and space
heating, lighting, door locks, and smart appliances. Jin and Kunz [195] utilised a HomePlug
and Zigbee based on IEEE 802.15.4 to receive and deliver information on appliance usage
patterns. Zigbee and HomePlug are spread out across an entire home through sensor
nodes to share information with the master controller. Rehman et al. [196] utilised the
wired HomePlug system for smart appliance management and communications with the
controller. Various electric appliance operation patterns are optimised using optimisation
algorithms. The optimised scheduling pattern is then communicated with the appliances
to achieve multiple objectives concerning costs, emissions, and the peak-to-average ratio.
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Ethernet

Ethernet is a common technology widely used in household appliances, including
laptops, servers, printers, audio-video (AV) equipment, and game consoles. Ethernet sup-
ports a range of data rates (10 Mbps–1 Gbps) via optical fibres up to 10 Gbps. Considering
the high costs of the equipment and installation, which make it a less suitable option for
communication technology for a smart home, Sisavath and Yu [197] presented a smart
home model to make smart homes easy to use, utilising IoT applications and technologies.
The authors used an ethernet service controller, LPC 1769, embedded in an ethernet module
for building communication infrastructure. This layer of communication was used for the
controller and appliances.

Insteon

Insteon is a wired technology that can transmit and receive data on appliance operations
without a master controller and can manage the scheduling of appliance operations. Insteon is
utilised by Khan et al. [198] for communication between appliances and components to build
infrastructure for a smart farmhouse. This communication technology is employed to monitor
and control the environment and appliances of the farmhouse remotely.

Table 6. Comparison of different wireless connection technologies for smart home energy management [199].

Indices Z-Wave Zigbee Bluetooth WiFi

Standard IEEE 802.15.4 IEEE 802.15.4 IEEE 802.15.1 IEEE 802.11

Power Consumption 1 mW 100 mW 10 mW High

Scalability >6000 6000 20 32

Cost High Low Very low Medium

Range (metres) 30 100 10 1000

Frequency band 868.4 MHz 2.4 GHz 2.4 GHz 2.4/5 GHz

Finally, in the context of smart buildings, emerging technologies for structural health
monitoring are becoming more critical in optimising the operations of MESs, both from
the source and load sides. They provide capabilities for real-time assessment, predictive
maintenance, and operational optimisation [200]. Recent advancements in digital twin
technology enable continuous synchronisation between an energy generation system and
its digital counterpart. This allows for proactive energy management and rapid response
to real-time load variations and generation variations. Sensor fusion in energy systems,
especially those using local DG systems and storage, involves integrating data from various
sensors to offer a more accurate, comprehensive, and actionable understanding of the
system’s performance and environmental conditions.

Additionally, AI-powered anomaly detection employs machine learning algorithms to
automatically identify patterns indicative of damage or degradation [201]. This method
often surpasses traditional threshold-based techniques in both sensitivity and specificity.
Including these technologies in smart building management systems improves safety and
resilience, enhances energy efficiency, and reduces lifecycle costs by enabling data-driven
decision-making and timely interventions.

3.5.2. Neighbourhood Area Network (NAN)

The neighbourhood area network (NAN) facilitates and communicates information
exchange between the wide area network (WAN) and various HANs installed and utilised
at the power generation site. The NAN connects the HAN with the generation site through
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AMI installed in smart meters and enables electricity monitoring and control of the loads
on the user side. The NAN can cover large areas and facilitate the transmission of data
from energy components to a data centre or substation. Various wired and wireless
technologies are used based on the coverage and application, including Ethernet, ZigBee,
Wi-Fi, and PLC [202]. The NAN is mainly utilised in the implementation of DRPs [203],
metre readings [204], energy price regulation [205], distribution automation [206], and the
outage and restoration management of power [207]. ZigBee is widely utilised along with
the HAN to facilitate networking and establish the remote controlling and monitoring of
smart appliances and other electronics and components [208]. However, it can also be
exposed to the distortion of different technologies working on the home premises, including
WiFi and Bluetooth, which operate in the same frequency band as the ZigBee network [209].
Various appliances, including smart water heaters [210] and electrical space heaters [211],
are deployed with WiFi connectivity to monitor their usage patterns, which will essentially
contribute towards implementing smart controlling strategies. Power Line Communication
(PLC) technology is utilised to transmit information using existing power transmission
lines and high-frequency signals (kHz to MHz). This technology can be broadly used
in almost all areas of implementing modern power systems, from smart homes [212] to
high-voltage grids [213].

3.5.3. Wide Area Network

The wide area network (WAN) is a communication network with multiple HANs that
covers a broader area. It is considered a fundamental communication infrastructure in en-
ergy systems and is usually installed for real-time communication, control, and monitoring.
Depending on the specific requirements, the WAN can be wired or wireless and transmit
data over longer distances. It establishes communication between substations, control
systems, protective equipment (e.g., SCADA, PMU, and RTU), and utility operators [214].
The WAN can provide data rates from 10 Mbps to 1 Gbps and coverage between 10 and
100 Km. The WAN requires other technologies such as PLC, optical fibre communication,
WiMAX, Ethernet, and satellite communication [215]. Optical fibres provide high band-
width and data, but the installation cost can be higher compared with other alternatives.
Communication between the substations and main utility [216] and modern district heating
systems [217] can be executed using optical fibres.

3.6. Microgrid Laboratories

Several universities and companies have developed laboratory-based microgrids to
evaluate the performance of novel architectures and control strategies on hardware. A
microgrid in KEPRI and Seoul National University was developed using IoT-based models
and energy architectures to assess and implement various energy management strategies.
The modules consist of PVs, ESS, WTs, and V2G as DG systems, with grid connection [218].

The PrInCE–Electrical Energy System Lab was developed at the Polytechnic University
of Bari, Italy. This microgrid has the capability of five different modes of operation. The
laboratory also has various RES-based generation systems and the ESS, CHPs, FC, and V2G
modes. This microgrid can also conduct multi-EMS lab experiments [206].

The Kythnos microgrid [219] developed in Greece is also utilised for electrical
engineering-related model testing. The microgrid was developed in 2001, and it is the first
microgrid laboratory facility in Europe. Later, the microgrid was updated by installing
various RES modules.

The University of Genoa, Italy, also developed a smart poly-generation microgrid
laboratory. This smart grid can operate in conjunction with the grid or be landed. Along
with electrical energy production components, thermal energy generation DG systems are
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also installed to facilitate the MES model’s validation, testing, and research developments
within the smart grid realm. The detailed structure and specification of the microgrid test
bed can be found in [220].

The Perfect Power System at Illinois Institute of Technology [221], The Brons Bergen
Holiday Park microgrid [222], the residential microgrid of Am Steinweg in Stutensee,
Germany [223], and the energy lab at Savona University campus [224], mainly used for
teaching are some of the key microgrid test facilities for MESs. Table 7 summarises the
laboratory studies evaluated/considered in the field hardware deployment of MESs.
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Table 7. Summary of studies that considered laboratory and hardware deployment.

Ref. Year Field On-Grid? Architecture Controller Network/Sensors Implementation Outcomes

[170] 2017 Residential Yes Grid/PV/FC/ESS Fuzzy logic HAN Yes
The results show that the maximum power is extracted from PVs.
The excess power is sold back to the grid, and an inverter-based

strategy is optimally utilised for switching purposes.

[183] 2021 Residential Yes Grid/PV/WT/EC/EB/ESS/CCHP/IEEE 33 Bus Computer-based HAN Yes Total of 2.47% increment in profit.

[184] 2016 Residential Yes Grid/MT/WT/PV/FC/Li-Ion ESS dSPACE 1104 HAN with Zigbee Yes Provides an economical solution for residential energy management.

[185] 2019 Residential Yes Grid/HP/HEs/TES dSPACE 1104 HAN with sensors Yes Operational costs were reduced by 7%, and emissions reduced by 17%.

[186] 2021 Residential Yes Grid/PV/HP/ESS/TES Computer-based HAN Yes Implemented to provide cooling, heating, and electricity to a house.

[187] 2022 Residential Yes Grid/HP/CSS/TES Computer-based HAN and NAN Yes

COP of the overall system increased by 12.4% and a reduction of 16%
in the compressor energy consumption compared to other strategies.
COP is increased by 59% and reduces the heating time by 40% whilst
increasing the evaporator inlet water temperature from 5 ◦C to 20 ◦C.

[188] 2022
Commercial
(Hospi-

tal)
Yes Grid/PVT/TES/HPs/GB Computer-based HAN Yes Reduced the thermal losses by up to 70% and overall hot water

production cost by 15–45%.

[189] 2023 Residential Yes Grid/PV/HP/TES/HEs/CSS HAN and NAN Yes Total annual electricity cost was reduced by 5.2% and enhanced
thermal losses by up to 4%.

[190] 2015 Residential No PV/WT/ESS/PEM FC/TES Computer-based
LabView and MATLAB HAN and NAN Yes

The implemented system model prevents the loss of the power
supply that occurs during the transient start-up time, and a delay of

3 s will lead to a total loss of the load and change conditions.

[194] 2022 Residential Yes Grid/PV/WT/ESS/DG Computer-based HAN, NAN, and WAN
based on LTE Yes The network loss rate is up to 0.155%, and the success rate is

increased by up to 90%.

[195] 2011 Residential Yes Grid only Smart home controller HAN based on
HomePlug and Zigbee Yes Increased security and reliability for a smart home user.

[196] 2021 Residential Yes Grid/PV/WT/ESS Computer-based HAN with HomePlug Yes Reduced costs and emissions and increased thermal comfort by
33.6%, 91%, and 54%, respectively.

[197] 2021 Residential Yes Grid only NPC’s LPC1769 and
NB-IoT module

HAN with Wi-Fi and
Zigbee Yes To make the smart home more convenient and easier to use.

[198] 2022 Residential Yes Grid only Gateway Interface HAN with Insteon,
ZigBee, and Z-wave Yes To enable remote monitoring and control of the farmhouse.

[206] 2023 Residential Yes Grid only Gateway Interface HAN, NAN, and WAN
with ZigBee and WiFi No Effectively utilised for cost and energy savings.

[207] 2023 Residential Yes Grid only OPNET Modeler 14.5 HAN and WAN with
PLC Yes Highly scalable and achieves full network bandwidth utilisation.

[225] 2023
Smart
Build-
ings

Yes Grid/PV/WT/EV/CHP/TES/ESS/AC/HE/FC Computer-based HAN, NAN, and WAN Yes Electricity and market clearing prices were reduced by 17.5% and
8.8%, respectively.

[226] 2019 Residential Yes Grid/PV/WT/ESS Computer-based NAN and HAN Yes Utilised the RESs efficiently, which leads to more than a 100%
reduced energy consumption of grid energy.

[227] 2019 Residential Yes Grid only STM32 as the central
processor

HAN with ZigBee and
Wi-Fi Yes ZigBee technology can make a remote-control system for the smart home.

[228] 2023 Residential Yes Grid/GB/CHP/HE/TES Computer-based SCADA Yes Successfully detects anomalies and anticipates SCADA alarms.
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4. Laboratory to Real World
4.1. Recent MES Projects in Europe

This section summarises some recent projects developed around residential MESs. Most
of these projects are funded research projects from the EU. Moreover, each project usually
consisted of multiple work packages spanning several years. Hence, this section will inevitably
be omitted. Interested readers should refer to the main web pages provided for each project to
see the complete list of documentation. The date mentioned in each sub-section is the end
date of the project. The country is the country of the coordinating organisation.

4.1.1. SMILE (UK 2021)

The SMILE project [229] aimed to validate various technological and non-technical
solutions within distribution grids for islands. These solutions facilitate DRPs, implement
smart grid functionalities, integrate energy storage, and promote multi-energy coupling.
Three project demonstrations were conducted in the Orkney Islands (UK), Samsø (Den-
mark), and Madeira (Portugal). The objectives were to (i) minimise the energy exchange
with the mainland for Orkney and Samsø; Madeira has an independent grid; and (ii) max-
imise the generation and utilisation of renewables. BES and TES are combined with AS-HP,
smart metres, and communication systems. One of the studied systems is shown in Figure 8
below. These configurations were established in various setups, including the operation of
this setup and the existing heating systems. The core aim is to reduce RES curtailment and
increase self-consumption. The Kaluza Platform from OVO Energy is a cloud-based control
aggregator responsible for the functionality and control of all equipment installed in the
consumer’s premises developed under the SMILE infrastructure. The remotely controlled
infrastructure provides the grid with intelligent control of the equipment installed at the
consumer’s premises, which is used to manage flexibility issues and reduce the curtailment
of RES. The infrastructure developed and installed in the consumer’s premises for MES
energy management, with details of the equipment installed, are listed in Table 8.

Figure 8. One of the system topologies installed under SMILE project for residential application [229].
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Table 8. Equipment details were installed at various properties under the SMILE project at Orkney Island.

Component Description Connectivity Installation Site

VSCON

To monitor and transmit
RES curtailment

information to the local
smart grid

Modbus-RTU for wind
turbine and Ethernet to

onsite router
Wind turbine site

LiBal
To remotely control the
battery’s charging and

discharging control

TCP internet link between
battery and internet router

Lithium Balance data
centre

Kaluza Platform

Cloud-based control
infrastructure for

controlling generation and
demand infrastructure

within SMILE project sites

TCP connection over
internet routers’ location at

generation site and
consumer’s premises

Kaluza data centre

Kaluza Gateway
To provide on-site control
and bidirectional flow of

communication

Ethernet from onsite router
to MODBUS-RTU Consumer’s premises

Hot water Boiler
3 kW of 100–300 L hot
water storage heated
directly from ASHP

Closed-loop water
connection with ASHP Consumer’s premises

ASHP Daikin Altherma 4–6 kW
input and 11–16 kW output

Gateway and Daikin
Controller Consumer’s premises

Daikin Controller

To control the ASHP and
respond to the Kaluza

Platform to control the hot
water flow

Modbus-RTU comms
connection between Daikin

Controller and Daikin
ASHP

Consumer’s premises

Local smart metre

A 100 A smart metre is also
installed to measure the
power consumption of
heating components.

MODBUS-RTU to the
Kaluza Gateway Consumer’s premises

Li-Balance Li-ion ESS 3.5 kW/7.5 kW is installed
to manage the mismatch

Connected to the
Li-Balance data centre
through the internet

Consumer’s premises

Indra smart+ Charger
A 7 kW charger using the

Kaluza Platform for
communication

Connected through a LAN
or WiFi

Business, tourist, and
domestic site

4.1.2. RES4BUILD (Germany 2023)

The RES4BUILD project [230,231] aimed at decarbonising heating and cooling in
buildings with a combination of PVT collectors, a multi-source HP, borehole thermal energy
storage, and a building energy management system. A pilot case was studied in Greece,
and the system configuration is shown in Figure 9. This system provided heating and
cooling to a single-floor building with a 103 m2 surface area. One of the main innovations is
the multi-source HP, which can select different sources and sinks through several three-way
valves. However, the borehole heat exchanger was emulated with a large tank kept at
18C, the underground temperature on site. The project outputs were implemented in
refurbishments of three different buildings in the Netherlands.
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Figure 9. The proposed system layout for heating and cooling [231].

4.1.3. TRI–HP Project (Switzerland 2023)

The TRI–HP project [232] is related to developing and demonstrating tri-generation
systems operated by RES-based HPs with cold storage (ice slurry), TES, and ESS. The HP
uses natural refrigerants (CO2 and propane). The aim is to provide heating, cooling, and
electricity to multi-family residential buildings with a RES share of 80% of the total energy
consumption. An overview of the system is shown in Figure 10 below.

 

Figure 10. HP tri-generation system topology, adopted from [232].

Intelligent and smart control strategies are implemented to manage electricity, heat,
and cold. The projects aimed to reduce energy consumption costs by 15% and carbon
emissions by up to 75% for residential buildings. The project will evaluate two architectures
of the energy model, one consisting of dual ground/air sources and another incorporating
PVs with an ice storage system. The project also produced a detailed economic analysis
of the main components and compared prices between Spain and Switzerland. Linear
equations were derived for the main components as a function of the nominal size.

4.1.4. SolBio-Rev (Greece 2024)

The SolBio-Rev project [233] aims to cater to the multi-energy demands of residential
buildings with a 70–85% RES share. The system topology consists of a reversible HP
combined with an Organic Rankine Cycle, a cascade chiller, PVT collectors paired with
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thermoelectric generators, and a low-emission biomass boiler that operates in the CHP
mode, as shown in Figure 11 below.

Figure 11. SolBio–Rev system topology adopted for a Mediterranean climate [234].

An advanced controller was designed and implemented using deep learning tech-
niques to minimise operational costs. A cost reduction of around 35% was achieved via
comparison with a rule-based controller.

4.1.5. SERENE Project (Denmark 2025)

The SERENE project [235] is related to implementing smart metres in the residential
sector, using communication infrastructure to enable users to participate in the electricity
market. This is achieved through implementing advanced EMS and smart control algorithms.
These systems enable the optimal balancing of local energy production and consumption,
dynamic pricing integration, and the maximisation of the self-consumption of RESs. The
participating consumers can reduce their annual energy-saving costs by 10–20% with a
payback time of 8–10 years. Demonstration projects and experiments are being conducted
in three European communities— Skanderborg (Denmark), Olst (The Netherlands), and
Przywidz (Poland)—where “energy islands” are being established to showcase the optimal
integration of multi-energy carriers, smart control, and local energy balancing.

4.1.6. FLEXMETER Project (Italy 2017)

The FLEXMETER project [236] focused on developing a flexible smart metering archi-
tecture for multiple energy vectors. A multi-utility, multi-service metering architecture was
designed and deployed in two demonstrations. The proposed architecture enables innovative
services for prosumers, operators, and the retail market, including demand-side management,
fault detection, network balancing, storage integration, and analysis of energy consumption.
As seen in Figure 12, Device Integration Adapters are used at the bottom layer to enable the
interoperability of heterogeneous measuring devices. The measurements are sent to a cloud
infrastructure. The project succeeded in developing an IoT-oriented smart metering infras-
tructure connected with smart metres—both commercial and prototypes—to provide new
services currently unavailable (detailed visualisation of consumption curves, aggregations,
breakdown into appliances, and grid management functionalities).
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Figure 12. FLEXMETER software architecture [236].

4.1.7. InteGRIDy (Spain 2021)

This project evaluated the performance of various DRPs and demand-side manage-
ment schemes [192]. Initially, 85 houses were considered for DRP installation. Furthermore,
five houses were selected to install them with ESS to completely utilise the DRPs and benefit
from the low energy price. The project also considered commercial buildings and selected
various offices to implement DRPs and direct load control with ESS. To implement DRPs,
several communication protocols and standards were adopted while installing smart meters
within the consumers’ premises. These protocols facilitate secure two-way communication
between utilities and consumers. The project also presented a framework for implementing
and installing smart metres to facilitate DRPs. The interoperability standards and functioning
of smart metres are also introduced within this project and are listed in Table 9.

Table 9. Main Communication protocols and technologies adopted within InteGRIDy to install smart
metres, adopted from [192].

Protocol/Technology Description

PLC IEC 61334 Used for low-speed PLC applications and suitable for command and control.

PLC Prime It stands for power line-related intelligent metering evolution and is also used for command and control.

PLC G3-PLC A digital multi-carrier modulation method carries data on several parallel data streams. This includes Echonet
Lite for Japan’s home energy management systems (HEMSs), metering and prepayment standards, etc.

PLC Metres and more It can support a bidirectional data flow, making it suitable for command and control applications.

Open Smart Grid Protocol Finland proposed it, and is currently deployed in various countries. It can support large-scale smart
metering projects.

PLC CX1 Austria proposed it and used a fast-frequency hopping spread spectrum technique with differential phase
shift keying.

Wi-SUN Provides a wireless field area network for AMI, EMS, and distribution automation. Can link smart metres
with the cloud.

Metre-Bus Based on European standards, a reduced OSI layer stack is often used for measured units, information about
tariffs, etc.

IEC 61850 An application layer often used for V2G covers DG systems, storage, communication among wind turbines, etc.

DLMS/COSEM It has also been developed for direct information access from smart meters and is widely used within smart grids.

CIM EPRI South America developed an open standard for representing power system components. It provides a
common control centre within power systems for energy management.
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4.1.8. RE-COGNITION (Italy 2022)

The RE-COGNITION project [237,238] aims to develop and deploy building-integrated
RES technologies. Five technologies have been developed up to the prototype scale: a
vertical axis wind turbine (VAWT), a building-integrated PV, a hybrid solar-cooling system,
a latent heat thermal storage unit, and a biogas-fuelled micro-CHP. These conversion units
were connected as shown in Figure 13. Furthermore, a gateway system and three dedicated
software types are developed to help with planning, data visualisation, and the operation
of the technologies. The combined cost savings and improved efficiency of each component
helped to reduce the system cost by around 50% from the baseline at the beginning of
the project.

Figure 13. RE-COGNITION project MES topology [239].

The new technologies were tested in UK, Italy, Romania, and Greece considering a
typical multi-family residential building of 15 dwellings. The developed optimisation
procedure configured different topologies for various sites to suit local conditions, resulting
in cost savings of between 11 and 42% from the reference scenario. This was achieved
despite higher investment costs, 47% to 124% compared to the reference case. The daily
operating costs were reduced by 15% and 48%.

4.1.9. Build Heat Project (Italy 2021)

The Build Heat project [240] aims to develop renovation frameworks for old buildings
involving RESs for cooling, heating, and electrical demands. The studied buildings are
multi-family houses across Europe. The project aims to control and manage DG systems
practically, resulting in reduced costs and losses and high energy conversion efficiency.
The energy architecture uses an HP, PVT collector, TES, and ESS. The configuration is
applied practically to various climatic zones and buildings. In total, 16 cases with various
locations and RES architectures were evaluated. The strategy can reduce the primary
energy consumption by 30 to 50% for a given thermal demand, and when coupled with the
RES, an additional reduction in the primary energy consumption of up to 27% is achieved.
Moreover, using RES-based PVT collectors and PVs also results in a 40–80% reduction
depending on the location and building type.
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4.2. Costs and Feasibility Measures

Cost and feasibility analysis are important in the MES’s architecture design. Various
factors should be considered to ensure the practicality of the architecture. These factors
include capital costs, operational and maintenance costs, lifecycle costs, payback time,
levelised costs of energy, and governmental subsidies. For instance, the UK government
provides up to GBP 7000 for installing low-carbon heating such as heat pumps. A case study
was carried out by Braunholtz-Speight et al. [241], where a range of UK residential and
community-scale MESs were evaluated, with a key focus on initial investments, operational
savings, and payback periods. The study considered technologies such as PVs, HPs,
and BESSs managed by a smart EMS controller. It was found that the integration of RES
resources along with BESSs can present significant economic outcomes and high cost-benefit
ratios. In the recent literature, along with operation management and optimisation, cost-
related objectives were evaluated to achieve certain economic and environmental objectives.
For instance, Ma et al. [242] analysed combined cooling, heating, and power provided by
solar-assisted architecture. They evaluated its performance based on energy levels, costs of
products, and environmental performance. Using the architecture saved 11.3% of natural
gas, with reduced emissions and payback time. The feasibility and cost-effectiveness of
these combinations depend on factors such as the availability and variability of loads
(electric, thermal, and cooling), the maturity and cost of storage technologies (batteries,
hydrogen, and thermal), and the degree of sector coupling enabled by the regulatory
and market frameworks. Governments worldwide offer incentives for various energy
components that are operated by RESs and have fewer emissions. The studies above
demonstrate that despite high initial investment, MESs can offer favourable cost-benefit
ratios over an operational lifetime. Ma et al. [243] compared MESs for residential heating
with coal-fired, electric, and air-source heat pump systems. The results demonstrated
that MESs had the lowest annual energy consumption costs and nearly zero emissions.
The payback period for the initial investment has been determined to be 9.73 years. This
system generated 62.35% of its heat from solar energy and 37.65% from backup sources.
This reduced payback is due to the utilisation of solar energy. In the European project
BuildHeat [240], a 17-storey residential building with 100 flats in Salford, UK was studied.
The project utilised HPs along with RES resources and efficient EMS infrastructure. The
installation of the project reduced the energy costs by up to 60–80% compared with the
newly built houses with comparable loads. Similarly, case studies from the residential
sector evaluated in the earlier sections further substantiate these findings. Implementing
and installing RES-based HPs in the residential sector has resulted in significant savings
annually. Obalanlege et al. [244] conducted a techno-economic analysis of the HP operated
by a hybrid RES for the DHW and space heating purposes. The strategy incentivised the
electricity and heat generation of 5 p/kWh and 21 p/kWh, respectively, with a payback
time of 14 years. A study by Elkadeem et al. [245] considered the CHP, along with PVs
and storage devices for residential buildings. It addressed the net present costs, energy
costs, annual bills, and emissions, which were reduced by up to 9%, 10%, 45%, and 16%,
respectively. However, CHP units’ maintenance and operating costs are important due to
the use of fossil fuels, which depends on energy market fluctuations. A brief description
of the cost analysis of the architecture can also be found in the study. The electrification
of thermal demand is considered an important way to decarbonise heat. In this regard,
Sorace et al. [55] also conducted a long-term economic analysis of the FC and HP-based
CHP for 2030. The authors considered various component parameters during the economic
analysis, which included the net present values of the components to be installed, including
boilers, FC, HPs, TES, and other costs taken from [246]. However, the installation costs of
HPs to produce thermal energy are one major reason for their slow progress and adoption.
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For instance, the costs of installing and setting up HPs to produce enough energy for
the DHW and space can cost between GBP 400/kWtherm and GBP 400/kWtherm [247],
when on the contrary, normal oil and gas boilers cost between GBP 70/kWtherm and GBP
90/kWtherm [248]. For residential consumers around the UK, adopting efficient air-source
HPs can be considered a low-carbon thermal energy generation system. In the context of the
electrification of heat demands, the installation of HPs can produce 3.1 kWhtherm of energy
when 1 kWh of electricity is utilised; with a boiler efficiency of 90%, HPs’ coefficient of
performance is kept at 3.1 or higher. In conclusion, the initial investment is often perceived
as a barrier to adopting MESs; however, the cost savings realised during the operational
period effectively offset the payback period.

4.3. Reliability and Operability Measures

The high complexity of MESs necessitates paying particular attention to reliability.
Ensuring the reliable operation of MESs starts at the design stage, during which the
optimisation of system components is carried out with some reliability measure, either as a
constraint or as an objective [112]. Energy management system design also plays a vital
role in operational reliability. During the operations of MESs, common reliability issues
mainly stem from the electrical side of the system. High power ramping rates of renewables
could lead to large voltage swings and potential instability. Keeping MESs running during
maintenance, system restoration in case of faults, and switching between grid-connected
and islanded modes are other challenges facing the designer and operator of MESs.

Potential solutions found in the literature include forecasting demand and supply,
regular maintenance of the system, and redundancy in the communication system. For
example, in the PrInCE Lab [171,172], a fully redundant communication system is con-
structed between the SCADA system and the PLCs controlling the equipment. Fibre optics
organised The field communication with three gateways redundantly connected to the
PLCs. This level of redundancy was needed due to the centralised nature of the microgrid
controller and because it is a research microgrid. In MESs that have the functionality of the
islanded mode of the electrical side, reliability issues arise during the switching between
the grid-connected and islanded modes, and in reverse, When the microgrid is in islanded
mode, the phase angle deviates from that of the grid-phase angle. Therefore, a robust
resynchronisation strategy should be implemented before reconnection back to the grid to
ensure a smooth transition without any transient current, which may trip the protection
relays [249].

Acuna et al. [250] analysed the hybrid RES-based energy system’s reliability using
probabilistic approaches based on stochastic and deterministic methods. Furthermore, the
authors also consider various economic and environmental indicators; however, multiple
uncertainties must be considered when designing the systems to achieve economic, reli-
ability, and environmental goals. These uncertainties are essential when developing an
energy system with a high penetration of RES-based energy generators. For instance, recent
studies evaluated the reliability of the designed energy systems using various indicators,
including the loss of load probability [251], loss of power supply probability [252], expected
energy not supplied, and level of autonomy [253]. Therefore, considering these indicators
and uncertainties in the design and sizing of the energy systems can make the system
more reliable, which can eventually make the system cope with increased energy demands.
The fluctuations and intermittent behaviour related to RES utilisation are addressed by
Qiu et al. [254] by carrying out a study to evaluate the performance of energy systems with
the high penetration of RES based on operational risk assessment. They identified risk
factors like component failure, extreme weather events, and cyber-attacks. Another risk
to system reliability arises when there is a power ramp from renewable generators, like
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wind and solar. This ramping is high in magnitude and fast, which could cause stability
issues, especially in systems with high renewable penetration. Roustaee and Kazemi [112]
used a voltage deviation function to quantify such large power injections into the system.
This function was used as a constraint in optimising the studied microgrid. Li et al. [255]
developed a secondary controller for a DC microgrid to reduce the communication burden
and monitor the trigger condition using a self-trigger mechanism to increase reliability.
The method could achieve proportional load sharing within the multi-bus DC MES. The
method’s efficiency was similar to the baseline, but the sampling rate was higher.

4.4. Commercial Prospects

Coupled multi-energy architectures possess an economical solution for the electri-
fication and decarbonisation of thermal energy demands. The recent rise in interest in
decarbonisation and the net zero goals set by developed countries for achieving net zero
emissions will increase the adoption of clean resources for the residential, commercial,
and industrial sectors’ energy demands. For instance, the UK government adopted cer-
tain policies to reduce emissions via various measures, including electrifying thermal
demands. Adopting this strategy will yield reduced carbon emissions, as most emissions
are associated with conventional boilers used for heating in the residential sector. The
UK government aimed to provide and install 0.6 million/yr to execute this strategy. HPs
by 2023 and 4 million houses’ thermal demands should be fulfilled by 2035. A recent
study conducted by Renaldi et al. [256] evaluated the performance of HPs and compared
them with conventional thermal energy generation systems to meet thermal demands
with TES. The authors found that installing TES with the HP reduces the operational
costs; however, the investment costs are still high. The UK government has implemented
many grants to widen the adoption of RESs and efficient heating systems. Furthermore,
deploying and realising various sophisticated control strategies for combined heat and
power can provide many benefits, from generation dispatch to energy savings, enhanced
efficiency and reliability, and reduced costs and emissions with balanced supply and de-
mand. Furthermore, if these control strategies are deployed with the implementation of
DRPs, having a high penetration of RESs can also lead to controlled energy demands on
the user side. Various architectures adopted in recent studies, including FC, HPs, PVs, and
WTs, are presented in the literature. These are technically feasible; however, the investment,
maintenance, and operational costs remain concerning. Effective multi-energy demand
management with sophisticated control strategies and forecasting of RES energies can
produce significant economic and environmental goals. A study by Hobley [257] compares
two scenarios of the decarbonisation of energy systems using nuclear RESs in scenario one
and natural gas with hydrogen and carbon capture storage systems for scenario two. The
author conducted techno-economic and feasibility evaluations of both scenarios for the UK
2050 target for emission control. As a result, the nuclear and RES-based scenarios were
found to be economical and environmentally friendly and have high energy production.
However, uncertainty in energy demand is not considered in the survey for either scenario.
Apostolou and Enevoldsen [258] also presented a comprehensive study evaluating vari-
ous energy conversion systems adopted for energy curtailment using hydrogen storage
systems. The authors concluded that the unpredictability of wind energy and its high
investment costs can affect the production price of hydrogen. Using energy storage with
the MES can enhance the flexibility in user demands. The energy stored can reduce energy
consumption during peak hours, benefiting both energy providers and users. To further
enhance flexibility, operators implement various DRPs to facilitate consumer and operator
interactions, which can reduce costs with peak demand. Several limitations still exist in the
wide adoption of these technologies: high investment costs, optimisation, sizing, the opera-
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tion scheduling of energy resources, and immature control architectures with a lesser focus
on user participation and reliability. Furthermore, the electrification of thermal demands
will influence electricity demands, affecting stability and reliability during peak hours.

Various combined heat, power, and cooling (CHPC) technologies and modelling
techniques have been extensively discussed in the literature. These include integrating
gas-based combined heat and power (CHP) units with renewable energy sources (RESs)
and using HPs. However, certain architectural configurations often encounter challenges in
fitting within existing buildings or at residential scales due to constraints such as high costs,
design limitations, and environmental factors. Consequently, the practical deployment
of such systems confronts numerous design hurdles spanning energy resource allocation,
conversion unit design, storage system implementation, demand management, and energy
flow optimisation. Integrating diverse energy resources, including solar, wind, fuel cells,
and grid connections, necessitates sophisticated technologies and management systems ca-
pable of optimising operations to achieve economic and environmental objectives. Despite
advancements, the practical deployment of such strategies via hardware-based designs
encounters various challenges. Pilou et al. [230] examined a RES-based HP system designed
to provide heating, cooling, and power to buildings throughout the seasons—the archi-
tectural design comprised HP, PVT panels, borehole energy storage, and water tanks for
DHW. The HP was strategically deployed to enhance the efficiency and self-consumption
of installed solar modules. The theoretical data was validated by comparing them with the
results obtained from a pilot study on a similar hardware-based architecture conducted in
Greece as part of the RES4BUILD project. The results found variations ranging from 5%
to 10% between experimental and simulation-based studies, mainly due to energy flow
losses within the thermal network and dust accumulation on solar panels. To improve
the accuracy and effectiveness of simulation models in replicating real-world behaviour,
it is essential to incorporate the hardware considerations into mathematical modelling.
Additionally, studies have explored the integration of PVT modules for combined heating
and electricity production alongside HPs. Such systems, designed and demonstrated using
hardware, offer simpler structures, higher efficiency, and increased self-consumption of
RES resources. Ji et al. [259] conducted an experimental study utilising a hardware-based
solar-assisted HP to supply electrical and thermal loads and DHW to small-scale users.
These straightforward architectures are widely adopted due to their simplicity, efficiency,
and enhanced self-consumption of RES resources.

5. Conclusions and Future Work
In this paper, we presented the latest developments in the design, optimisation, and

deployment of MESs in the residential sector. In Section 1, the topic and scope of the paper
were introduced, and relevant review papers were presented. Section 2 discussed the
different technologies that constitute MESs, from generation to conversion and storage.
Energy management studies and the different optimisation techniques used to achieve
optimal results were presented in detail in Section 2.2. Section 2.3 presented the different
demand response methods in the context of residential MESs. Sections 3 and 4 presented
some of the deployments of MESs in laboratory and pilot projects in Europe over the past
10 years.

Some of the insights gained from this survey are summarised below:

• There is no single system topology that emerged as having a clear advantage. The large
number of technologies deployed and the different contexts are largely the reasons for
this. However, the combination of solar energy (PV and/or thermal) with heat pumps
and storage seems to be quite an important combination. In cold locations, most of the
time, they are not enough in the winter. However, in more temperate climates with
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a need for heating and cooling, this combination works very well due to the match
between the high solar irradiance and cooling load.

• The role of energy management systems is becoming more important due to the
increased complexity of MESs. Several studies showed significant cost savings when
adopting advanced optimisation techniques for power dispatch.

• The role of energy storage is interesting: adding BESSs or TES will inevitably increase
the complexity of the controller and protection schemes. However, the larger the share
of RESs in the system, the more important it is. A trend in the literature is towards
maximising self-sufficiency and minimising the interaction with the grid. This is often
due to the unfavourable conditions for exporting energy back to the grid. This is also
particularly important in the context of islands, where abundant energy is produced
and transmitted to the mainland at a cheap price, such as the situation in the Orkney
islands of the UK.

• Several studies found that TES is better economically than BESSs in cases where there
is a large enough heating demand. However, BESSs provide more flexibility. Also,
most studies incorporated both, which could provide significant flexibility, especially
with accurate demand and supply forecasting. This balance is expected to tip in the
near future, as the advances in BESSs are rapidly outpacing the advances in TES.

• In terms of cost, several surveyed studies agreed that a high initial investment cost
is still an obstacle to the wider adoption of MESs. However, operational savings
could sometimes outweigh the higher capital and produce savings in the long run.
Furthermore, the complexity of the installation creates a wide range of costs depend-
ing on the specific project. Even within the EU, similar technologies were installed
simultaneously, and there was around a 20% difference between different countries.

• Surveying optimisation techniques was challenging due to the large number of studies
in this space and the difficulty of classifying the methods used. However, in general,
it was found that AI-based methods are suitable for optimising MESs. Heuristic and
evolutionary methods were also extensively used. They performed well, although
careful parameter tuning is needed to avoid them being trapped in the local optimum.

• Real-world MES projects tended to have a hierarchical control structure with local
controllers for each major component, then a top layer for supervision and dispatch.
Some systems even had three layers of control.

• Reaching zero emissions from MESs seems to be more challenging than initially
thought. Most real-world projects achieved significant CO2 reductions but did not
reach zero. Decarbonising heating and cooling is a particularly stubborn problem.

Finally, some of the key recommendations for future research are mentioned below:

1. As the penetration of RESs into the energy systems is being paid more attention, an
intelligent and advanced forecasting model is required to forecast multiple uncertain-
ties within the energy system, including user demand and DRPs. The existing models
focus only on generation prediction or user demand. Therefore, a unified forecast-
ing mechanism is required to efficiently analyse and predict multiple uncertainties
simultaneously in real time to address uncertainty related to wind and solar energies.

2. A unified framework for MESs is required to manage electrical and thermal energy
simultaneously, and flexible energy load schedules must be scheduled in accordance
with energy availability. Intelligent and optimal technology should be developed to
manage excess energy locally in case of high energy generation; it can either be used for
fuel cell operation, stored as hydrogen or thermal energy, or exported to the grid. Thus,
techno-economic evaluation is required with certain DRP implementations so that the
user can fully participate in various DRPs implemented by the energy operator.
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3. More efficient and comprehensive technological improvements should be made to
the existing technologies to reduce and manage the waste of heat energy via several
components in the architecture. Using excess energy can increase the overall system
efficiency with reduced costs.

4. Integrating several electrified thermal generation systems with a sophisticated control
strategy should be practically evaluated to enable the widespread deployment of
HPs and FC. There is a gap between these technologies’ theoretical and practical
implementation, which can become a new frontier in research and address the real-
world implementation of electrified multi-energy generation systems.
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Abbreviations

BIPV Building integrated photovoltaic IoT Internet of Things
BESS Battery energy storage system MES Multi-energy systems
BIPV Building integrated photovoltaic ML Machine learning
BESS Battery energy storage (electrical) MIP Mixed integer programming
CCHP Combined cooling, heat, and power MILP Mixed integer linear programming
CO2 Carbon dioxide MINLP Mixed integer nonlinear programming
COP Coefficient of performance mCHP Micro combined heat and power
CHP Combined heat and power MPC Model predictive controller
CAES Compressed air energy storage MINLP Mixed integer nonlinear programming
CSS Cold storage system MOPSO Multi objective particle swarm optimisation
CE Combustion engine NGB Natural gas boiler
DGs Distributed generation systems NSGA-II Non-dominated sorting genetic algorithm
DG Diesel generator NAN Neighbourhood area network
DRPs DRPs NG Natural gas
DHW Domestic hot water PV Photovoltaics (electrical)
ESS Energy storage system (multi storage) PVT Photovoltaics (thermal)
EMS Energy management system PID Proportional integral derivative controller
EB Electric boiler PSO Particle swarm optimisation
EC Electric chiller PCM Phase change materials
EU European Union PGU Power generation unit
EV Electric vehicle PI Proportional integral controller
FC Fuel cell RTP Real-time pricing
GT Gas turbine RES RES
GG Gas generator SOFC Solid oxide fuel cell
GWO Grey wolf optimisation SOC State of charge
GA Genetic algorithm TOU Time of use
GSHP Ground source heat pump TES Thermal energy storage (thermal)
GB Gas boiler WDO Wind-driven optimisation
HP Heat pump WT Wind turbine
HAN Home area network WAN Wide area network
HEMS Home energy management system HRES Hybrid renewable energy system
HE Heat exchanger
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