

Strategic Integrated Research in Timber

Thinking beyond the usual strength grades

Dan Ridley-Ellis Steven Adams Stefan Lehneke

Centre for Wood Science & Technology Edinburgh Napier University (UK)

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

Variation of properties

- From species to species
- Within species / species group
 - Between countries
 - Within countries
 - Within a forest
 - Within a stand
 - Between trees in a stand
 - Between boards from a tree

For a fuller description of grading in Europe see: Ridley-Ellis, D., Stapel, P., and Baño, V.: Strength grading of sawn timber in Europe: an explanation for engineers and researchers. *European Journal of Wood and Wood Products*, 74(3): 291-306, 2016.

THE QUEEN'S

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

2

blogs.napier.ac.uk/cwst

22nd August 2016

 ∴ Use grading to get characteristic properties for design & ensure safety

Strength grades (or classes)

e.g. EN 338:2016	EN 338:2016 'Softwood' based on edgewise bending											
	Class	C14	C16	C18	C20	C22	C24	C27				
Strength properties in N/mm ²												
Bending	f _{m,,k}	14	16	18	20	22	24	27				
Tension parallel	ft,0,k	7,2	8,5	10	11,5	13	14,5	16,5				
Tension perpendicular	ft,90,k	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,			
Compression parallel	fc,0,k	16	17	18	19	20	21	22	2 4			
Compression perpendicular	fc,90,k	2,0	2,2	2,2	2,3	2,4	2,5	2,5	2,7			
Shear	f _{v,k}	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0			
Stiffness properties in kN/mm ²			_									
Mean modulus of elasticity parallel bending	Em,0,mean	7,0	8,0	9,0	9,5	10,0	11,0	11,5	1			
5 percentile modulus of elasticity parallel bending	E _{m,0,k}	4,7	5,4	6,0	6,4	6,7	7,4	7,7				
Mean modulus of elasticity perpendicular	Em,90,mean	0,23	0,27	0,30	0,32	0,33	0,37	0,38				
Mean shear modulus	G _{mean}	0,44	0,50	0,56	0,59	0,63	0,69	0,72				
Density in kg/m ³												
5 percentile density	ρ _k	290	310	320	330	340	350	36				
Mean density	ρ _{mean}	350	370	380	400	410	420	4.				

blogs.napier.ac.uk/cwst

22nd August 2016

Grade-determining properties

(definition of a strength class: EN 384 for EN 14081)

- Strength
 - Usually major axis bending strength
 - Characteristic is the 5th percentile
- Stiffness
 - Usually major axis bending stiffness
 - Characteristic is the mean
- Density
 - Used for indirect measure of strength / fire resistance (this is not density for dead weight)

22nd August 2016

– Characteristic is the 5th percentile

Grading aims that GDP requirements are met (subject to various adjustments)

Softwood bending strength classes (as in EN 384:2016) Based on bending strength

Secondary properties

- Tension strength parallel to grain
- Compression strength parallel to grain
- Shear strength (up to C24, thereafter fixed)
- Based on bending stiffness \bullet
 - 5th percentile stiffness parallel to grain
 - Stiffness perpendicular to grain
 - Shear modulus
- Based on density
 - Compression strength perpendicular to grain
 - Mean density
- Fixed value (applies to all strength classes)
 - Tension strength perpendicular to grain

Must work for all species \therefore conservative values (esp. for hardwoods)

By the way...

The definition of strength classes can (and does) change

EN338:2016 compared to 2009 version												
	Softwood											
	C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50
Strength												
Bending	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Tension parallel	-10%	-15%	-9%	-4%	0%	4%	3%	6%	7%	8%	11%	12%
Tension perpendicular	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Compression parallel	0%	0%	0%	0%	0%	0%	0%	4%	0%	4%	7%	3%
Compression perpendicular	0%	0%	0%	0%	0%	0%	-4%	0%	-4%	-3%	-6%	-6%
Shear	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Stiffness												
Mean MoE parallel	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
5% MoE parallel	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%
Mean MoE perpendicular	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Mean G	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Density												
5% density	0%	0%	0%	0%	0%	0%	-3%	0%	-3%	-5%	-7%	-7%
Mean density	0%	0%	0%	3%	0%	0%	-4%	0%	-2%	-4%	-6%	-5%

Not just secondary properties – grade determining property requirements can also change

blogs.napier.ac.uk/cwst

22nd August 2016

Example data for this paper

blogs.napier.ac.uk/cwst

22nd August 2016

THE QUEEN'S ANNIVERSARY PRIZES

FOR HIGHER AND FURTHER EDUCATION 2015

Example machines (Brookhuis)

2015

Measurements	In line (with <i>k_v</i> factor*)	(r	Portable no k_v factor)
Acoustic velocity	mtgBATCH 922/926		MTG 920
Acoustic velocity & density	mtgBATCH 962/966		MTG 960

* EN 384: Reduces characteristic strength target for classes ≤ C30 by 11%

[dynamic MOE]=[density]×[spee	d of sound] ²		
where			*
[speed of sound]= 2×[length]×[1	st frequency]		vidtor
blogs.napier.ac.uk/cwst	22 nd August 2016	8	THE QUEEN'S Anniversary Prizes Foo Higher and Future Education

Note: this does not include the 22×47 dimension as they are unusually small

blogs.napier.ac.uk/cwst

22nd August 2016

The Queen's

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

11

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER FORCATIO 2015

Note: this does not include the 22×47 dimension as they are unusually small

blogs.napier.ac.uk/cwst

22nd August 2016

THE QUEEN'S

ANNIVERSARY PRIZES For Higher and Further Education 2015

Models for density

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

Models for bending strength

The k_h factor in EN 384 has not been applied

blogs.napier.ac.uk/cwst

22nd August 2016

×

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

Grading – IP boundaries

THE QUEEN'S

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

blogs.napier.ac.uk/cwst

Grading – IP boundaries

blogs.napier.ac.uk/cwst

22nd August 2016

THE QUEEN S ANNIVERSARY PRIZES For Higher and Further Education 2015

Means that...

- Grading not about properties of individual pieces
- Often only one of the GDPs is limiting
- Sometimes none of them are
- So quite usual for some properties to exceed what is stated for the strength class
- Especially true of the secondary properties
- Having the same strength class does not make pieces equal! (or even sets of pieces)

17

UK larch with mtgBATCH 962

(EN14081-2:2010+A1:2012)

	9	% of required											
	Bending strength	Bending stiffness	Density										
Class	%	%	%										
C16	143% 🗸	105% 🗸	129% ✓										
C27	100% 🗸	103% 🗸	122% ✓										

Strength

Note there is still a large variation within the grades – the difference is we now have characteristic values

18

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

UK larch with mtgBATCH 962

(EN14081-2:2010+A1:2012)

Stiffness

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Forther Education 2015

UK larch with mtgBATCH 962

(EN14081-2:2010+A1:2012)

	%	% of required											
	Bending strength	Bending stiffness	Density										
Class	%	%	%										
C16	143% 🗸	105% 🗸	129% 🗸										
C27	100% 🗸	103% 🗸	122% ✓										

Density

Using E_{dyn} as IP for density because it's not critical. Simpler this way – no point using density from weight (which has $R^2 = 0.85$)

THE QUEEN'S

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

Discarding performance UK larch with mtgBATCH 962

blogs.napier.ac.uk/cwst

22nd August 2016

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

Discarding performance UK larch with mtgBATCH 962

Might actually choose to discard even more!

C27 is not a common grade in the UK...so a producer may decide to mark the C27 as C24

(because the C16 with C24 combination doesn't work in this case)

THE QUEEN'S

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

blogs.napier.ac.uk/cwst

Advantage of usual grades

- When placing timber on the general market
- Familiar
- Design can be done before timber obtained
- Easier for more general visual grading assignments and machine settings
- Don't need to know specific end use when grading
- But...this is at the expense of properties (although this often doesn't matter much in practice)

But strength classes not the only way - they are just a convenience

blogs.napier.ac.uk/cwst

Compared to target values Spruce (for the previously listed grading machines and datasets)

Note: this includes k_h and k_v factors

Note – this is the range seen even in a single dataset, using similar machines

22nd August 2016

Edinburgh Napier

UNIVERSITY

Compared to target values Edinbut Larch (for the previously listed grading machines and datasets)

Note: this includes k_h and k_v factors

blogs.napier.ac.uk/cwst

Situations for different thinking ^{Eq}

- Grading of in-situ timber
 - Think about predicting the properties of actual pieces
 - Even if describing collective properties of several timbers, there is little reason to limit the description to EN 338 strength classes
- Grading timber for a specific building
 - (When the timber is known before the design)
 - Not placing on general market (so why discard properties?)
 - Can even think about sorting pieces for the different components (end use is not unknown)

Situations for different thinking

- Grading timber by a fabricator
 - E.g. timber framer, glulam manufacturer
 - Not placing on general market (so why discard properties?)
 - Can fit to resource
 - Can fit to application
 - Can fit design more closely to actual properties
- Grading by a sawmill for certain market
 - Market may accept a different strength class
- Grading by a sawmill for general market
 - Still some things that can be done

Things you can do

- Don't use EN 14081 (if you don't have to)
- Don't use an EN 338 strength class
 - Direct declaration of properties (easier for visual grading)
 - Define your own strength class that works better
 - Use a different standard strength class (e.g. TR26)
- Use an EN 338 strength class
 - Directly declare secondary properties (based on tests)
 - Note that hardwoods can now be graded to C-classes

Simple e.g. British spruce

- ∴ Grading C16/reject
- Typical market is studs
 - where bending stiffness is not as important as the strength

Edinburgh Napier

UNIVERSITY

But grading to C16 means discarding strength and density because of relatively low stiffness!

29

"C16+"

C16+ is a user defined UK grade for studs. Its primary characteristic values are:

$$f_{m,k} = 18.5 \text{ N/mm}^2$$

$$E_{0,mean} = 8000 \text{ N/mm}^2$$

$$\rho_k = 330 \text{ kg/m}^3$$

Would be fine if treated as C16

Other characteristic values can be calculated from the equations given in EN 384.

(Strength > C18, and density of C20)

Summary

- Although convenient, the standard strength classes are not the only way
- Sometimes the cost in 'lost' properties is considerable
- Sometimes it may be better to do things differently – especially:
 - When grading in-situ timbers, or for a specific building
 - When grading within a fabrication process
- And remember strength classes are not good descriptions of *actual* wood properties (it's just a statistical lower bound)

blogs.napier.ac.uk/cwst

Acknowledgements

The authors are grateful to the various funders and collaborators for the underlying research including:

Forestry Commission Scotland, The European Regional Development Fund (ERDF), Scottish Enterprise, Wales Forest Business Partnership, Confor, BSW Timber, James Jones & Sons Ltd, Adam Wilson & Sons Ltd (Glennon Brothers), the Scottish Forestry Trust, Wood for Good, Adam Wilson & Sons, Euroforest, James Callander & Sons Ltd, John Gordon & Son Ltd; Scottish Woodlands Ltd, UPM-Tilhill, John Gordon & Son Ltd, Murray Timber Group Ltd, Brookhuis and MiCROTEC. Additional practical assistance was provided by Forest Research, Buccleuch, Living Solutions and NUI Galway.

THE QUEEN'S

ANNIVERSARY PRIZES

By the way...

The definition of strength classes can (and does) change

EN338:2016 compare	ed to 2	2009 v	versio	n										
	Hardwo	od												
	D18	D24	D27	D30	D35	D40	D45	D50	D55	D60	D65	D70	D75	D80
Strength														
Bending	0%	0%		0%	0%	0%		0%		0%		0%		
Tension parallel	0%	0%		0%	0%	0%		0%		0%		0%		
Tension perpendicular	0%	0%		0%	0%	0%		0%		0%		0%		
Compression parallel	0%	0%		4%	0%	4%		3%		3%		6%		
Compression perpendicular	-36%	-37%		-34%	-33%	-34%		-33%		0%		-11%		
Shear	3%	-8%		-3%	2%	5%		13%		7%		0%		
Stiffness														
Mean MoE parallel	0%	0%		0%	0%	0%		0%		0%		0%		
5% MoE parallel	0%	-1%		0%	0%	0%		0%		0%		0%		
Mean MoE perpendicular	0%	0%		0%	0%	1%		0%		0%		0%		
Mean G	0%	2%		0%	0%	0%		0%		0%		0%		
Density														
5% density	0%	0%		0%	0%	0%		0%		0%		-11%		
Mean density	0%	0%		0%	0%	0%		-1%		0%		-11%		

blogs.napier.ac.uk/cwst

22nd August 2016