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Abstract

Generalized few-mode-fiber (FMF) transmission uses N coherent receivers for

mode detection, where N scales with the number of fiber modes. Multiple co-

herent receivers increase the cost of optical network units (ONUs) in access

networks, specifically for intra- and inter data center applications. We have

experimentally evaluated a cost effective low-complexity receiver architecture

based on mode-division multiplexing (MDM) to mode frequency-division mul-

tiplexing (MFDM) conversion for data center connectivity. A single coherent

receiver is used to efficiently detect 10 Gbit/s QPSK Nyquist signals over 2.8 km

4-LP mode graded index fiber reducing the ONUs complexity to N/4. All the

transmitted modes are successfully detected below the forward-error-correction

(FEC) limit, i.e. 1×10−3 BER.
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1. Introduction

Since the capacity of optical fiber communication systems based on single

mode fiber (SMF) is approaching the non-linear Shannon limit, researchers are

paying attention to explore new paradigms including advanced coherent mod-

ulation formats, multiplexing techniques and specialized fibers [1]. While the

use of classical SMF is economical but on the other hand intra-, inter-channel

fiber non-linearities (optical Kerr effects) and their inter-play with differential

mode group delay (DMDG) still remain the vital performance degrader in high

speed conventional coherent systems. Digital signal processing (DSP) based

non-linear equalization has been proposed as potential candidate to overcome

the physical limitations imposed by the fiber channel. But the computational

efforts, in terms of number of complex multipliers and required number of sam-

ples to encompass the optical channel memory, need to be simplified. As far as,

the required DSP resources are concerned, real-time hardware demonstration of

these non-linear equalizers is not yet foreseen in the near future due to the high

complexity logic.

[Figure 1 about here.]

Spatial Division Multiplexing (SDM) [2] has been investigated as an alter-

native approach that has recently being advanced by the research community,

albeit being proposed many years ago in the form of multi-mode fiber trans-

mission [3]. The use of multi-core fibers (MCFs) and few-mode fibers (FMFs)

can substantially increase the transmission capacity per optical fiber beyond

the non-linear Shannon limit of SMF systems by offering parallel paths for data

communication [4, 5, 6]. The transmission through MCF is considered as a

smooth transition from SMF due to the fact that off-the-shelf transceivers and

devices can be used for its implementation [7]. Whereas, FMF based trans-

mission not only needs specialized multiplexers and demultiplexers [8] but also

phase plates or spatial light modulators (SLMs) for generating the respective

modes. These spatial modes generally exhibit DMGD and differential modal
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loss/gain. To mitigate these linear impairments, equalization by multiple-input

multiple-output (MIMO) DSP is required at receiver. Furthermore, the number

of coherent receivers required for efficiently detect the linearly polarized (LP)

modes are directly proportional to the number of modes transmitted in the fiber,

as shown in Fig. 1(a). In addition to the increase in receiver system complexity,

the conventional coherent scheme requires tight skew adjustments among all the

received modes after fiber propagation to effectively equalize the received signals

by adaptive MIMO DSP algorithms [9, 10]. Moreover, the DSP complexity of

the classical coherent processing is high, i.e. for LP01, LP11a,b
, LP21a,b

and LP02

modes we have to implement 2×2, 4×4, 4×4, and 2×2 MIMO blocks, respec-

tively. Collectively, the receiver architecture including DSP is power hungry.

This characteristic of FMF based network made it effectively expensive that is

impractical for access and data center applications. Most recently, all-optical

fiber based mode selective photonic lanterns have been demonstrated for reduc-

ing the complexity of MIMO processing [11]. The limitation of this device is

that they are not flexible in terms of scalability and adaptability. Furthermore,

the performance of photonic lantern is immensely dependent on the fabrication

process [12]. On the other hand, DSP based mode selective receivers have been

successfully demonstrated [13, 14] but the studies are only limited to back-to-

back system configurations. Most recently, advancements have been made to

remove the capacity crunch at the access networking level [15] via coherent re-

ceiver implementaion [16, 17] and in data networking architectures [18] through

space division multiplexing. However, the complexity of receiver architecture

especially for the FMF transmission is still unreasonable for cost-effective im-

plementation of high bandwidth services.

In this paper, for the first time to the best of our knowledge, we have exper-

imentally validated the transmission of 4-LP modes in 2.8 km of graded index

fiber at the data rate of 10 Gbit/s by modulating QPSK Nyquist signals and

mode selective receiver, as shown in Fig. 1(b). All the LP modes are success-

fully received via one coherent receiver based on cost effective low-complexity

architecture, i.e. MDM to MFDM conversion. The single polarization diversity
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heterodyne receiver with 4×4 MIMO equalization is employed. The transmis-

sion performance is further validated in-terms of bit-error-rate (BER) at diverse

wavelengths to emulate the bi-directional traffic, i.e. uplink and downlink. Fur-

thermore, the system performance w.r.t the transmission distance is analytically

investigated under practical operating conditions. These results are helpful for

the future implementation of SDM-FMF at intra- and inter data center net-

working level where cost vs. performance in an important parameter.

[Figure 2 about here.]

2. Experimental Setup

Fig. 2 depicts the experimental setup of 4-LP mode transmission based

on single polarization Nyquist QPSK modulation. A pseudo-random binary se-

quence (PRBS) of length 231-1 is encoded and four delay-decorrelated copies are

generated. For laser source, we have used a commercially available multi-channel

optical system (ILX Lightwave FOM-7900X) with 1 MHz linewidth. As a re-

sult, four 2.5 Gbit/s (aggregate 10 Gbit/s) QPSK Nyquist signals are generated

having same wavelength λ of 1552.50 nm (corresponding frequency, f=192.1

THz), i.e. λ1, λ2, λ3 and λ4 have the same wavelength as λsig. Moreover, the

resultant pre-amplified, decorrelated and filtered optical signals are incident on

a liquid-crystal on silicon spatial light modulator (Hamamatsu LCOS-SLM X-

13138 series) with light utilization efficiency of ∼80%, generating the respective

LP01, LP11a, LP11b and LP21 modes. These signals are multiplexed together

and launched in the 4-LP mode graded index fiber. Due to the limitations of

resources in the laboratory we have only incorporated 2.8 km of fiber in the

experiment with cladding diameter of 125±0.7 µm. The dispersion parameters

for LP01, LP11 and LP21 modes are 18.4 ps/(nm.km), 18.7 ps/(nm.km) and 18.0

ps/(nm.km), respectively. The differential group delay (DGD) between all the

modes is ±0.4 ps/m. In this experiment, the local oscillator (LO) module com-

prises of multi-channel laser source and LCOS-SLM. The central frequency of
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the four LOs are: 2.5 GHz, 4.75 GHz, 7 GHz and 9.25 GHz higher than the fre-

quency for transmitted LP01, LP11a, LP11b and LP21 modes repetitively. Each

individual pre-amplified and filtered LO signals are then converted into LP01,

LP11a, LP11b and LP21 modes using LCOS-SLM. These signals are connected

to the coherent receiver front end with the help of a fiber coupler supporting

4-LP modes. The 20 GHz photo-diodes are used for coherent detection, fur-

ther assisted by digital storage oscilloscope with sampling rate of 100 GS/s

and analog bandwidth of 50 GHz. After converting the MDM signal to the

MFDM signal using mode-selective coherent detection technique, analogue-to-

digital converters (ADCs) digitize the received signal for MIMO processing. The

power spectral density of the received signal after transmission is depicted in

Fig. 2. The detailed receiver and signal processing architecture is explained in

Appendix A. To get the efficient transmission performance, the T
2 spaced finite

impulse response (FIR) filters for adaptive MIMO equalization are optimized to

be 31-taps. The realistic analytical model for emulating the longer transmission

distances is also discussed in the next section.

[Figure 3 about here.]

3. Results and Discussion

We first optimize the insertion losses to improve the power budget of the

transmission link to get the efficient performance of MDM to MFDM conversion.

We have evaluated 4-LP mode 10 Gbit/s Nyquist QPSK signals at 1552.50 nm.

All the received data tributaries are quantified w.r.t received power and BER.

The results of 4-LP mode transmission over 2.8 km of FMF are depicted as in

Fig. 3. The back-to-back receiver sensitivity at BER of 10−3 is -24.6 dBm.

After detecting the signals via MDM to MFDM based coherent receiver the

power penalties are measured as: 1.2 dB, 2.02 dB, 2.35 dB and 3.25 dB for

LP01, LP11a, LP11b and LP21 modes, respectively. The variance in the power

penalty among different modes are mainly due to the scattering and coupling

losses between LCOS-SLM and FMF. For this experiment, we have considered
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back-to-back measurements without optical distribution network (ODN) that

includes fiber and LCOS-SLM. The measured power penalties can be reduced

by opting efficient coupling schemes between the above mentioned interfaces.

In order to emulate the bi-directional traffic scenario in the context of intra-,

inter data center networking or next-generation passive optical networks (NG-

PONs), we experimentally evaluated the receiver scheme at various wavelengths

mainly in the C-band. While, the same methodology is adopted to assign the LO

wavelengths as described previously. The results, at BER of 10−3, are plotted

in Fig. 4. It can be seen that all the LP-modes can be successfully detected at

different wavelengths. The maximum power penalty is recorded as 3.5 dB for

LP21 mode w.r.t back-to-back transmission.

[Figure 4 about here.]

Furthermore, to evaluate the feasibility of MDM to MFDM based receiver

over access networking distances, using analytical techniques, we simulated the

transmission set-up under practical operating conditions. The simulated results

for LP01 mode are depicted in Fig. 5(a). We kept the transmission parame-

ters constant, including laser linewidth, input power, wavelength assignment,

in-order to have a relative comparison with the experiment. It can be seen

that the performance of the system with the MDM to MFDM based receiver

is efficient for distances up-to 33 km transmission length. This limitation is

mainly due to OSNR degradation and filter-taps. While, the performance can

further be enhanced by opting 20% overhead for FEC processing. The receiver

bandwidth required to transmit n-LP modes (where n=1,2,3, .... , 15) is also

analysed. The results are as shown in Fig. 5 (b). It is clear from the results that

high bandwidth receivers (> 60 GHz) can be used for detecting n-LP modes for

single polarization transmission that will give an aggregate data rate of 37.5

Gbit/s/λ (15-LP modes × 2.5 Gbit/s). Whereas adding another coherent re-

ceiver will allow the user to detect dual-polarization signals that will increase

the transmission capacity of the network by a factor of ×2. By considering these

results, we would like to mention that the use of such kind of receiver architec-
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ture is ideal for low baud-rate signals and number of modes, so that they can

be accommodated with the fixed bandwidth of the receiver. Despite of the fact

that high bandwidth commercial coherent receivers are available but either they

are expensive or they need complex ADCs to process the data. Hence making

them inappropriate to be used in access networks and data center applications

where cost/economy is the primary concern. These feasibility results are helpful

for the implementation of high-spectrally efficient few-mode fiber networks as

well as for dual-polarization transmissions.

[Figure 5 about here.]

4. Conclusion

We propose and experimentally demonstrate a low-complexity receiver ar-

chitecture for transmitting 4-LP modes for short range fiber links and data

center applications. We have successfully transmitted single-polarization 4-LP

modes over 2.8 km of graded index fiber at the data rate of 10 Gbit/s by modu-

lating QPSK Nyquist signals and detecting them with single coherent receiver.

Furthermore, the receiver architecture is evaluated at different wavelengths to

emulate the bi-directional traffic. While extended simulation studies have been

performed to quantify the receiver performance over longer distances and re-

ceiver bandwidth w.r.t transmittable LP modes. To conclude, SDM based low-

cost spectrally efficient coherent architectures can be deployed to remove the

capacity crunch at access or date center networking level and to provide next-

generation services to the subscribers.

Appendix A: Mode-Selective Coherent Detection Technique

The proposed receiver is based on the conversion of mode division multi-

plexed (MDM) signal into mode frequency division multiplexed (MFDM) signal

via local oscillator (LO) that comprises of a laser bank. The MDM signal, Esig

and MFDM LO, ELO, can mathematically be expressed as follows in Eq. 1 and

Eq. 2:
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Esig ≈
M∑
m=1

AmEm ej2πfsigm t (1)

ELO ≈
N∑
n=1

An e
j2πfLOn t (2)

Where, Em is the complex field amplitude of the mth modulated signal and

j is the imaginary part of the complex envelope. Furthermore, Am and An,

respectively, are mth and nth propagation modes of MDM and MFDM’s LO.

In out experimental demonstrations, M and N are equal to 4. The received

electrical signal, I, output from the photo-detectors in the coherent receiver,

as given by the received MDM signal and MFDM LO, can mathematically

expressed as in Eq. 3.

I ≈
M∑
m≥1

N∑
n≥1

AmAnEm ej2π(fsigm−fLOn )t (3)

The MDM signal comprising the LP modes has orthogonality property as

per Eq. 4.

AmAn = δmn = { 1 , (m = n)0, (m 6= n) (4)

Where, δmn is the Kronecker delta that narrates piecewise function of the

discrete modes having variables M and N. By considering Eq. 3 and Eq. 4, co-

herent beat signals are selectively detected among the same propagation modes

of the MDM signal and the MFDM LO as shown in Fig. 1. Therefore, the

MDM signal can be converted into an FDM signal in the coherent detection

scheme that can be expressed as in Eq. 5.

I ≈
N∑
m≥1

Em ej2π(fsigm−fLOm )t (5)

After converting the MDM signal to the MFDM signal in the coherent re-

ceiver using the proposed mode-selective coherent detection technique, ADCs

digitise the input signal. Then, the respective DSP module down-converts the
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frequency-shifted signals, i.e. 4 signals corresponding to each individual LP

mode, to baseband signals. Each baseband signal is input to a low-pass filter

(LPF) to remove out-of-band FDM signals. The DSP also applies chromatic dis-

persion compensation with frequency domain equalisation [9], adaptive MIMO

equalisation with a finite impulse response (FIR) filter and carrier phase recov-

ery [10].
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Figure 1: Schematic and complexity comparison of: (a) conventional mode division multi-
plexed coherent transmission and (b) mode division multiplexed transmission based on fre-
quency division multiplexed receiver.
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Figure 2: Experimental setup for 2.5 Gbit/s/mode (aggregate 10 Gbit/s) transmission over 2.8
km 4-LP mode graded index fiber with mode frequency division multiplexed based coherent
detection scheme.
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Figure 3: Performance comparison of 2.5 Gbit/s/mode (aggregate 10 Gbit/s) Nyquist QPSK
transmission over 2.8 km 4-LP mode graded index fiber with frequency division multiplexed
based coherent detection scheme.
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Figure 4: Receiver sensitivity at FEC threshold w.r.t different source wavelengths (λ) for 4-LP
modes.
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Figure 5: Simulated system performance (a) at various transmission distances of 4-LP mode
graded index fiber and (b) number of LP-modes w.r.t the receiver bandwidth.
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