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Abstract— The back-end database is pivotal to the storage of 

the massive size of big data Internet exchanges stemming from 

cloud-hosted web applications to Internet of Things (IoT) smart 

devices. Structured Query Language (SQL) Injection Attack 

(SQLIA) remains an intruder’s exploit of choice on vulnerable 

web applications to pilfer confidential data from the database 

with potentially damaging consequences. The existing solutions of 

mostly signature approaches were all before the recent challenges 

of big data mining and at such lacks the functionality and ability 

to cope with new signatures concealed in web requests. An 

alternative Machine Learning (ML) predictive analytics provides 

a functional and scalable mining to big data in detection and 

prevention of SQLIA. Unfortunately, lack of availability of 

readymade robust corpus or data set with patterns and historical 

data items to train a classifier are issues well known in SQLIA 

research. In this paper, we explore the generation of data set 

containing extraction from known attack patterns including SQL 

tokens and symbols present at injection points. Also, as a test 

case, we build a web application that expects dictionary word list 

as vector variables to demonstrate massive quantities of learning 

data. The data set is pre-processed, labelled and feature hashing 

for supervised learning. The trained classifier to be deployed as a 

web service that is consumed in a custom dot NET application 

implementing a web proxy Application Programming Interface 

(API) to intercept and accurately predict SQLIA in web requests 

thereby preventing malicious web requests from reaching the 

protected back-end database. This paper demonstrates a full 

proof of concept implementation of an ML predictive analytics 

and deployment of resultant web service that accurately predicts 

and prevents SQLIA with empirical evaluations presented in 

Confusion Matrix (CM) and Receiver Operating Curve (ROC). 
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I.  INTRODUCTION  

Research over the years has mostly pinpointed developers’ 
lack of security awareness in web development to sanitised 
input as the cause of SQLIA, and at such have gravitated 
towards code based sanitation for their proposed solutions to 
address SQLIA. Also, SQLIA vulnerability is a sequel to a 
design fallout of the well-intentioned free text processing of the 
SQL engine itself, and as a consequence both legacy and cloud 
deployments lacking sanitation becomes vulnerable. A search 
of SQL hall of shame [1] which reports the recent trends in 
data pilfering by SQLIA shows the prevalence of this form of 
attack and so the ability to secure back-end database from 
SQLIA in an era of big data remains a topical issue. 

The SQL language syntax closely resembles plain English 
[2], and the SQLIA keywords are also in plain text. Therefore, 
the SQLIA problem in a big data context is a plausible 
candidate for predictive analytics of a supervised learning 
model trained via both known historical attack signatures and 
safe web requests patterns. 

The attack signatures at injection points will contain 
patterns of SQL tokens and symbols as SQLIA positive while 
valid web requests would take the form of expected data from 
the application. In this paper, we build a predictive analytics 
web application with quantities of learning data to train a 
classifier. The learning data are labelled vector matrix, or 
features of both patterns of dictionary word list (SQLIA 
negative) and SQL tokens (SQLIA positive). 

The contributions this paper makes provide a representative 
data set that undergo feature hashing to train a supervised 
learning model implementing Support Vector Machine (SVM) 
algorithm that accurately predicts SQLIA thereby preventing 
malicious web requests from reaching the target back-end 
database. It also offers a context of SQLIA detection and 
prevention in big data internet. 

Also, this paper presents a proof of concept of a working 
prototype using ML algorithms of Two-Class Support Vector 
Machine (TCSVM) implemented on Microsoft Azure Machine 
Learning (MAML) [3] to predict SQLIA. This methodology 
then forms the subject of the empirical evaluation in Receiver 
Operating Curve (ROC). 

This paper is laid out in six sections ending with a 
conclusion and future work summary. Section II details related 
articles and Section III focuses on background; with Sections 
IV and V detailing predictive analytics experiment, evaluation 
and results. 

II. RELATED WORK 

Though there are many previous proposals to detect and 
prevent SQLIA, few mitigate SQLIA by applying SVM 
machine learning. The few that do employ SVM are lacking in 
data engineering (text pre-processing). Also, to date, none have 
discussed applying ML to predicting SQLIA in a context of big 
data focusing on patterns and text pre-processing on MAML. 

We suggest patterns exist in any data input to a web 
application to generate training data, and also by applying text 
pre-processing to such training data improves the prediction 



 

accuracy of the resultant trained model. The below discusses a 
few related works not limited to ML and proxy filters that are 
related to this paper, but including some popular approaches. 

A. Support Vector Machine Learning:  

Applying ML requires robust data set items with patterns to 
train a classifier implementing SVM algorithm to predict 
SQLIA accurately. Unfortunately, as there is no standardised 
data set, researchers have presented various approaches for 
extracting data sets with most proposals suffering from limited 
data engineering. Bockermann et al. [4] propose using tree 
kernels for analysing SQL statement in addition to exploring 
feature vectorisation of data input to an SVM classifier but 
found there to be drawbacks in the tree-kernels computational 
overhead. Choi et al. [5] trains an SVM classifier using feature 
vectorisation by N-Grams but would need various patterns to 
improve the accuracy of the approach. Kar et al. [6] propose 
using SQL queries graph of tokens and centrality of nodes to 
train an SVM classifier but suffers from complexities. There 
have been previous approaches of numerical encoding of 
synthetic training data of SQLIA patterns for training a 
classifier to simulate SQLIA prediction of any size [7], [8]. 

B. Proxy Filters:  

This method intercepts web requests at a proxy for SQLIA 
detection and prevention having the advantage of being able to 
decrypt obfuscated internet traffic for thorough analysis. 
Buehrer et al. [9] propose a SQL parsing tree which uses a 
combination of proxy and SQL parser tree for SQL syntax 
sequence alignment. The model proposed in this paper uses 
proxy API to backhaul web requests for predictive analytics of 
incoming web requests for SQLIA negatives and positives. 

C. Others 

White-box testing is a static code analysis penetration 
testing to detect error and correctness. Gould et al.[10] 
developed a tool named JDBC Checker for code analysis to 
only detect some SQLIA types but not to prevent. Wassermann 
and Su [11] extended white box testing to detect tautology.  

Black-box testing is a runtime dynamic penetration testing 
to detect error and correctness. Apelt [12] proposed a machine 
learning tool to automate penetration testing of Web 
Application Firewall (WAF) for vulnerabilities which look 
plausible, but the tool relies heavily on synthetic attack features 
lacking in reality of new attack signatures. 

Hybrid of a static and dynamic approach employs pattern 
matching between valid request against dynamic web requests 
to detect and prevent SQLIA as applied in Halfond & Orso 
[13] widely referenced AMNESIA tool to mitigate SQLIA. 
However, these are approaches that scaled well in traditional 
string matching at the time and are not functional in big data 
scenarios that require predictive analytics techniques. 

III. BACKGROUND THEORY 

The approach presented in this paper intercepts web 
requests of any intent at the proxy and applies ML predictive 
analytics to the requests at injection point to predict SQLIA. 

 A web proxy API is the most suitable to intercept requests 
originating from any injection mechanisms. Injection 
mechanisms can originate from any: Web page forms e.g. login 
screen; second-order injection by concealing a Trojan horse for 
the attack at a later date; exploiting web-enabled server 
variables to gain access to the back-end database; and, through 
cookies that have stored state information used to obtain 
unauthorised access to the back-end database. 

SQLIA types are techniques an intruder would employ at 
injection points in any combination to carry out an attack that 
includes: Tautology; Invalid/Logical Incorrect; Union; Piggy-
backed; Store procedure; Time-based; and, Alternate encoding 
obfuscation. SQLIA types provide an extract for the SQLIA 
positive in data set items during labelling. Further reading on 
SQLIA types in the paper [14]. 

A. SQL Language Structure 

The constituents of a SQL element are tokens pivotal to 
SQLIA negative labelling in this article. SQL tokens comprise 
of keywords, identifiers, operators, literals and punctuation 
symbols. The SQL statement is subdivided into the following 
primary language elements: Clauses (UPDATE, SET, 
WHERE, etc.); predicates (e.g. loginName = ‘bob’); and, 
expressions (as in ‘bob’ OR 1=1) shown in Fig. 1.  

An intruder will normally exploit the expression part 
(injection spot) of the predicate after the WHERE clause used 
to control the results of data requested from the database 
including updating the database. A tautological SQLIA type 
(e.g., ‘a’=’a’ or 1=1) maliciously embedded in expression to 
return all the data beyond the valid scope defined by the 
developer, likewise a full SQL query inserted into the SQL 
element’s expression spot. In applying predictive analytics, we 
analysed the predicate and expression for SQLIA signatures. 

 

SELECT loginName, password FROM tblUser

 WHERE loginName= 'bob' OR 1=1--
           WHERE
            clause

SQL 
Statement

Predicate

Expression

http://localhost/bsid/DataPage.aspx?LoginName=bob'OR%201=1--

Query string

 

Fig. 1. Query string and SQL query element. 

B. Injection Point 

The WHERE clause determines the level of access to the 
back-end database from the front-end web application. In 
reality, this could be validating login credentials, filtering or 
setting criteria of the data to return, or inserting a new/ 
updating an existing record. The injection point is the SQL 
element predicate and expression after the WHERE clause in 
SQL query. 



 

The SQL element’s expression injection point is the 
location for the predictive analytics for SQLIA detection and 
prevention presented here. This spot has also been explored in 
a Proxy-based Architecture towards Preventing SQL Injection 
Attacks (SQLProb) by Liu et al. [15].   

C. SQLIA Corpus and Labelling 

We tested our approach on a web application expecting 
dictionary word list as a valid input. The corpus comprises of 
the derivation of dictionary word list (labelled SQLIA 
negative), SQL tokens and symbols (labelled SQLIA positive if 
present at injection points). The labelling procedure is detailed 
in Fig. 2. When this approach is applied to any domain, data set 
can be generated based on the pattern of data input expected. 
Also, the existing studies on SQLIA types provide patterns to 
generate malicious requests. Various approaches have existed 
on extracting sample data set with most researchers resorting to 
network tools to produce sample web requests [6], [12] which 
often results in mere duplication of the same string but lack 
patterns implementation (regular expression pattern matching 
on the data) for improving the performance of ML models. 

 
Fig. 2. Data set features labelling procedure. 

IV. PREDICTIVE ANALYTICS EXPERIMENT AND DEPLOYMENT 

Predictive analytics provides a scalable and functional 

approach to big data mining in mitigating SQLIA 

vulnerabilities. 

A. Experimental steps 

Below gives a high-level overview of the steps: 

1) Data set extraction: This research uses a combination 
of data set of extracted dictionary word list of 479,000, words 
in addition to 862 unique SQL tokens extracted from Microsoft 
SQL reserved keywords website [16]. The data set items are 
labelled based on the exhibition of SQLIA types characteristics 
which are: the presence of SQL tokens in injection point; 
disjointed text; single quotes; semicolons; comments; hex; etc. 
The data set items labelling are represented in binary values of 
0 (SQL negative) or 1 (SQL negative) shown in Fig. 2 above. 

2) Text pre-processing: This stage involves R Scripting 
and regular expression pattern matching applying the 
procedure described in Fig. 2 integrated to train a model for 
ongoing detection and prevention. In a real domain 
application, the data set items are expanded with patterns of 
both valid requests and bad requests. There were 362,603-row 

items after text pre-processing of parsing data set for: patterns, 
duplicates, normalised to lower cases and the removal of the 
missing words. The data set is sampled as to provide an even 
distribution of row items (records). The imbalanced data set 
(majority negatives over positives) were corrected with 
Synthetic Minority Over-Sampling Technique (SMOTE) [17] 
to have a data set items of 725206 split equally, 362,603-row 
items of attack/respondent (positives) and 362,603-row items 
of non-attack/non-respondent (negatives). These actions 
improve both the trained model recall and precision. 

3) Feature hashing: Machine learning takes in numerical 
input as vectors. In this scheme, we set the hashing bits to 15 
and N-grams to 1 (unigram) to analyse every single item 
present at the injection point. The process of feature hashing 
allows us to translate the data set text items into a binary 
vector matrix of 215 (32,768) columns suitable for training a 
model in ML. The hashing procedure creates a dimensional 
input matrix or vectors that make a lookup of feature weights 
faster by augmenting the string comparison with hash value 
comparison. Applying hashing to text features improves 
performance and scalability in big data predictive analytics 
lacking in existing SQLIA signature based detection.  

4) Filter-based feature selection for top relevant vectors: 
Creating a dimension to accommodate the size of data by 
selecting next hashing bits that fit the data set can sometimes 
generate too much dimension and sparse data which are 
reduced by filter based featured selection. In this experiment, 
we used filtered based selection to have reduced computation 
complexity without affecting the prediction accuracy in 
classification. The Chi-squared scored function is used to rank 
the top 5000 hashing features in descending order to return the 
most appropriate labels to improve SQLIA prediction accuracy. 

5) Split of vectors between training and testing data: We 
divide the vectors of hashed features into different ratios of 
which samples of 80% were used for the training while 20% as 
test data for evaluations. The vector split at this ratio provided 
an excellent CM in the assessment of the trained classifier. 

6) Train prediction model: TCSVM classifier is used to 

predict binary labelled outcomes whether SQLIA is negative or 

positive in a web request. The SVM algorithm is provided with 

data set items input of the labelled class of what is being 

predicted to train the model to an excellent performance to 

accurately predict SQLIA in a proxy intercepted web requests.  

B. Publishing and consuming the prediction web service 

The system requirements regarding RAM and the hard disk 
is very low as the one-off workload of training the classifier 
including retraining is handled in the cloud by the MAML 
platform. The solution is scalable, and it is meant to detect and 
prevent SQLIA in web requests as illustrated in Fig. 3.  

The trained model exposed as a web service. The web 
service is called in a custom built dot NET application for this 
research named NETSQLIA for an ongoing SQLIA detection 
and prevention. Critical to the deployment in every new 
domain, the administrator or system expert need to feed the 
data engineering or text pre-processing module with a new rule 
that matches the patterns present in the new data set which 



 

triggers the retraining of the classifier to adapt to a new 
environment. 

 
Fig. 3. A custom application is consuming the trained SVM web service for 

ongoing SQLIA detection and prevention. 

V. EVALUATION AND PERFORMANCE METRICS 

Table 1 is an excellent CM (accuracy: 0.986, precision: 
0.974, recall: 0.997 and F1 Score: 0.985) at a threshold of 0.5, 
but this calculation is repeated across the score bins/ thresholds 
between 0.0 and 1 for the ROC graph values in Fig. 4. The 
ROC is plotted with a ratio of False Positives Rate (FPR) on 
the x-axis (specificity) against recall or True Positive Rate 
(TPR) on the y-axis (sensitivity). On the x-axis, a higher value 
implies bad performance, while on the y- axis a higher value of 
0.986 in Area Under Curve (AUC) achieved here at 0.5 score 
bin indicates an excellent performance in SQLIA prediction.  

 

Fig. 4. ROC plot of FPR (x-axis) against TPR( y-axis). 

TABLE I.  CONFUSION MATRIX AT THRESHOLD 0.5 

Terminology Formula Values Performance metrics 

True Positive (TP) - 72359 Accuracy(A)= 

(TP+TN)/TE 

 

Precision 

(P)=TP/(PO) 

 

Recall (R)= 

TP/PE 

 

F1Score=2* 

 (R*P)/(R+P) 

0.986 

False Negative (TN) - 162 

False Positive (FP) - 1923 

True Negative (FN) - 70598 0.974 

Positive events (PE) TP+FN 72521 

Negative events (NE) FP+TN 72521  

0.997 + observations (PO) TP+FP 74282 

- observations (NO) FN+TN 70760  

0.985 Total events (TE) PO+ NO 145042 

VI. CONCLUSION AND FUTURE WORK 

We demonstrated in this paper applied predictive analytics 
to SQLIA detection and prevention in big data context with an 

excellent result that is empirically evaluated in the confusion 
matrix and the ROC graph presented above. In benchmarking 
this paper against existing works, the methodology proposed 
here is functional in a big data context which is lacking in 
existing works before now on SQLIA to our knowledge. Future 
work involves employing multi-class classifier to identify and 
group the different SQLIA types as they are predicted. 

REFERENCES 

[1] CodeCurmudgeon,“SQLiHall-of-Shame,”The Code Curmudgeon, 
2016. [Online]. Available: http://codecurmudgeon.com/wp/sql-
injection-hall-of-shame/. [Accessed: 12-Aug-2016]. 

[2] Microsoft, “Access SQL: basic concepts, vocabulary, and syntax - 
Access,” MS Office, 2007. [Online]. Available: https://support 
.office.com/en-gb/article/Access-SQL-basic-concepts-vocabulary-
and-syntax-444d0303-cde1-424e-9a74-e8dc3e460671. 

[3] Microsoft Azure, “Two-Class Support Vector Machine,” MSDN 
Library,2016.[Online]. Available: https://msdn.microsoft.com/ 
library/azure/12d8479b-74b4-4e67-b8de-d32867380e20/?f=255 
&MSPPError=-2147217396. [Accessed: 22-Jan-2016]. 

[4] C. Bockermann, M. Apel, and M. Meier, “Learning SQL for 
database intrusion detection using context-sensitive modelling 
(extended abstract),” in Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), 2009, vol. 5587 LNCS, pp. 
196–205. 

[5] J. Choi, C. Choi, H. Kim, and P. Kim, “Efficient malicious code 
detection using N-gram analysis and SVM,” in Proceedings - 
2011 International Conference on Network-Based Information 
Systems, NBiS 2011, 2011, pp. 618–621. 

[6] D. Kar, S. Panigrahi, and S. Sundararajan, “SQLiGoT: Detecting 
SQL Injection Attacks using Graph of Tokens and SVM,” 
Comput. Secur., vol. 60, pp. 206–225, 2016. 

[7] S. Uwagbole, W. Buchanan, and L. Fan, “Numerical Encoding to 
Tame SQL Injection Attacks,” in IEEE/IFIP DISSECT, 2016. 

[8] S. O. Uwagbole, W. Buchanan, and L. Fan, “Applied web traffic 
analysis for numerical encoding of SQL injection attack features,” 
in European Conference on Information Warfare and Security, 
ECCWS, 2016, vol. 2016. 

[9] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using Parse 
Tree Validation to Prevent SQL Injection Attacks,” in 
Proceedings of the 5th international workshop on Software 
engineering and middleware SEM 05, 2005, no. September, p. 
106. 

[10] C. Gould, Z. Su, and P. Devanbu, “JDBC checker: a static 
analysis tool for SQL/JDBC applications,” in Software 
Engineering, 2004. ICSE 2004. Proceedings. 26th International 
Conference on, 2004, pp. 697–698. 

[11] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static 
checking of dynamically generated queries in database 
applications,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4, 
p. 14, Sep. 2007. 

[12] D. Appelt, “Automated Security Testing of Web-Based Systems 
Against SQL Injection Attacks,” 2016. 

[13] W. G. J. Halfond and A. Orso, “AMNESIA: Analysis and 
Monitoring for NEutralizing SQL-injection Attacks,” Proc. 20th 
IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 174–183, 2005. 

[14] W. G. J. Halfond, A. Orso, D. A. Kindy, and A. S. K. Pathan, 
“AMNESIA: Analysis and Monitoring for NEutralizing SQL-
injection Attacks,” Int. J. Commun. Networks Inf. Secur., vol. 5, 
pp. 80–92, 2013. 

[15] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “SQLProb : A 
Proxy-based Architecture towards Preventing SQL Injection 
Attacks,” System, pp. 2054–2061, 2009. 

[16] Microsoft, “Reserved Keywords (Transact-SQL),” MSDN. 
[Online]. Available: https://msdn.microsoft.com/en-
us/library/ms189822.aspx. 

[17] Nitesh V. Chawla et. al, “SMOTE,” J. Artif. Intell. Res., vol. 16, 
pp. 321–357, 2002. 

 


