
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Applied Machine Learning Predictive Analytics to

SQL Injection Attack Detection and Prevention

Solomon Ogbomon Uwagbole

School of Computing

Edinburgh Napier University

Edinburgh, United Kingdom

05012238@live.napier.ac.uk

William J. Buchanan, Lu Fan

School of Computing

Edinburgh Napier University

Edinburgh, United Kingdom

b. buchanan; l.fan@napier.ac.uk

Abstract— The back-end database is pivotal to the storage of

the massive size of big data Internet exchanges stemming from

cloud-hosted web applications to Internet of Things (IoT) smart

devices. Structured Query Language (SQL) Injection Attack

(SQLIA) remains an intruder’s exploit of choice on vulnerable

web applications to pilfer confidential data from the database

with potentially damaging consequences. The existing solutions of

mostly signature approaches were all before the recent challenges

of big data mining and at such lacks the functionality and ability

to cope with new signatures concealed in web requests. An

alternative Machine Learning (ML) predictive analytics provides

a functional and scalable mining to big data in detection and

prevention of SQLIA. Unfortunately, lack of availability of

readymade robust corpus or data set with patterns and historical

data items to train a classifier are issues well known in SQLIA

research. In this paper, we explore the generation of data set

containing extraction from known attack patterns including SQL

tokens and symbols present at injection points. Also, as a test

case, we build a web application that expects dictionary word list

as vector variables to demonstrate massive quantities of learning

data. The data set is pre-processed, labelled and feature hashing

for supervised learning. The trained classifier to be deployed as a

web service that is consumed in a custom dot NET application

implementing a web proxy Application Programming Interface

(API) to intercept and accurately predict SQLIA in web requests

thereby preventing malicious web requests from reaching the

protected back-end database. This paper demonstrates a full

proof of concept implementation of an ML predictive analytics

and deployment of resultant web service that accurately predicts

and prevents SQLIA with empirical evaluations presented in

Confusion Matrix (CM) and Receiver Operating Curve (ROC).

Keywords— SQLIA; SQLIA analytics; SQL Injection; SQLIA

big data; SQLIA hashing

I. INTRODUCTION

Research over the years has mostly pinpointed developers’
lack of security awareness in web development to sanitised
input as the cause of SQLIA, and at such have gravitated
towards code based sanitation for their proposed solutions to
address SQLIA. Also, SQLIA vulnerability is a sequel to a
design fallout of the well-intentioned free text processing of the
SQL engine itself, and as a consequence both legacy and cloud
deployments lacking sanitation becomes vulnerable. A search
of SQL hall of shame [1] which reports the recent trends in
data pilfering by SQLIA shows the prevalence of this form of
attack and so the ability to secure back-end database from
SQLIA in an era of big data remains a topical issue.

The SQL language syntax closely resembles plain English
[2], and the SQLIA keywords are also in plain text. Therefore,
the SQLIA problem in a big data context is a plausible
candidate for predictive analytics of a supervised learning
model trained via both known historical attack signatures and
safe web requests patterns.

The attack signatures at injection points will contain
patterns of SQL tokens and symbols as SQLIA positive while
valid web requests would take the form of expected data from
the application. In this paper, we build a predictive analytics
web application with quantities of learning data to train a
classifier. The learning data are labelled vector matrix, or
features of both patterns of dictionary word list (SQLIA
negative) and SQL tokens (SQLIA positive).

The contributions this paper makes provide a representative
data set that undergo feature hashing to train a supervised
learning model implementing Support Vector Machine (SVM)
algorithm that accurately predicts SQLIA thereby preventing
malicious web requests from reaching the target back-end
database. It also offers a context of SQLIA detection and
prevention in big data internet.

Also, this paper presents a proof of concept of a working
prototype using ML algorithms of Two-Class Support Vector
Machine (TCSVM) implemented on Microsoft Azure Machine
Learning (MAML) [3] to predict SQLIA. This methodology
then forms the subject of the empirical evaluation in Receiver
Operating Curve (ROC).

This paper is laid out in six sections ending with a
conclusion and future work summary. Section II details related
articles and Section III focuses on background; with Sections
IV and V detailing predictive analytics experiment, evaluation
and results.

II. RELATED WORK

Though there are many previous proposals to detect and
prevent SQLIA, few mitigate SQLIA by applying SVM
machine learning. The few that do employ SVM are lacking in
data engineering (text pre-processing). Also, to date, none have
discussed applying ML to predicting SQLIA in a context of big
data focusing on patterns and text pre-processing on MAML.

We suggest patterns exist in any data input to a web
application to generate training data, and also by applying text
pre-processing to such training data improves the prediction

accuracy of the resultant trained model. The below discusses a
few related works not limited to ML and proxy filters that are
related to this paper, but including some popular approaches.

A. Support Vector Machine Learning:

Applying ML requires robust data set items with patterns to
train a classifier implementing SVM algorithm to predict
SQLIA accurately. Unfortunately, as there is no standardised
data set, researchers have presented various approaches for
extracting data sets with most proposals suffering from limited
data engineering. Bockermann et al. [4] propose using tree
kernels for analysing SQL statement in addition to exploring
feature vectorisation of data input to an SVM classifier but
found there to be drawbacks in the tree-kernels computational
overhead. Choi et al. [5] trains an SVM classifier using feature
vectorisation by N-Grams but would need various patterns to
improve the accuracy of the approach. Kar et al. [6] propose
using SQL queries graph of tokens and centrality of nodes to
train an SVM classifier but suffers from complexities. There
have been previous approaches of numerical encoding of
synthetic training data of SQLIA patterns for training a
classifier to simulate SQLIA prediction of any size [7], [8].

B. Proxy Filters:

This method intercepts web requests at a proxy for SQLIA
detection and prevention having the advantage of being able to
decrypt obfuscated internet traffic for thorough analysis.
Buehrer et al. [9] propose a SQL parsing tree which uses a
combination of proxy and SQL parser tree for SQL syntax
sequence alignment. The model proposed in this paper uses
proxy API to backhaul web requests for predictive analytics of
incoming web requests for SQLIA negatives and positives.

C. Others

White-box testing is a static code analysis penetration
testing to detect error and correctness. Gould et al.[10]
developed a tool named JDBC Checker for code analysis to
only detect some SQLIA types but not to prevent. Wassermann
and Su [11] extended white box testing to detect tautology.

Black-box testing is a runtime dynamic penetration testing
to detect error and correctness. Apelt [12] proposed a machine
learning tool to automate penetration testing of Web
Application Firewall (WAF) for vulnerabilities which look
plausible, but the tool relies heavily on synthetic attack features
lacking in reality of new attack signatures.

Hybrid of a static and dynamic approach employs pattern
matching between valid request against dynamic web requests
to detect and prevent SQLIA as applied in Halfond & Orso
[13] widely referenced AMNESIA tool to mitigate SQLIA.
However, these are approaches that scaled well in traditional
string matching at the time and are not functional in big data
scenarios that require predictive analytics techniques.

III. BACKGROUND THEORY

The approach presented in this paper intercepts web
requests of any intent at the proxy and applies ML predictive
analytics to the requests at injection point to predict SQLIA.

 A web proxy API is the most suitable to intercept requests
originating from any injection mechanisms. Injection
mechanisms can originate from any: Web page forms e.g. login
screen; second-order injection by concealing a Trojan horse for
the attack at a later date; exploiting web-enabled server
variables to gain access to the back-end database; and, through
cookies that have stored state information used to obtain
unauthorised access to the back-end database.

SQLIA types are techniques an intruder would employ at
injection points in any combination to carry out an attack that
includes: Tautology; Invalid/Logical Incorrect; Union; Piggy-
backed; Store procedure; Time-based; and, Alternate encoding
obfuscation. SQLIA types provide an extract for the SQLIA
positive in data set items during labelling. Further reading on
SQLIA types in the paper [14].

A. SQL Language Structure

The constituents of a SQL element are tokens pivotal to
SQLIA negative labelling in this article. SQL tokens comprise
of keywords, identifiers, operators, literals and punctuation
symbols. The SQL statement is subdivided into the following
primary language elements: Clauses (UPDATE, SET,
WHERE, etc.); predicates (e.g. loginName = ‘bob’); and,
expressions (as in ‘bob’ OR 1=1) shown in Fig. 1.

An intruder will normally exploit the expression part
(injection spot) of the predicate after the WHERE clause used
to control the results of data requested from the database
including updating the database. A tautological SQLIA type
(e.g., ‘a’=’a’ or 1=1) maliciously embedded in expression to
return all the data beyond the valid scope defined by the
developer, likewise a full SQL query inserted into the SQL
element’s expression spot. In applying predictive analytics, we
analysed the predicate and expression for SQLIA signatures.

SELECT loginName, password FROM tblUser

 WHERE loginName= 'bob' OR 1=1--
 WHERE
 clause

SQL
Statement

Predicate

Expression

http://localhost/bsid/DataPage.aspx?LoginName=bob'OR%201=1--

Query string

Fig. 1. Query string and SQL query element.

B. Injection Point

The WHERE clause determines the level of access to the
back-end database from the front-end web application. In
reality, this could be validating login credentials, filtering or
setting criteria of the data to return, or inserting a new/
updating an existing record. The injection point is the SQL
element predicate and expression after the WHERE clause in
SQL query.

The SQL element’s expression injection point is the
location for the predictive analytics for SQLIA detection and
prevention presented here. This spot has also been explored in
a Proxy-based Architecture towards Preventing SQL Injection
Attacks (SQLProb) by Liu et al. [15].

C. SQLIA Corpus and Labelling

We tested our approach on a web application expecting
dictionary word list as a valid input. The corpus comprises of
the derivation of dictionary word list (labelled SQLIA
negative), SQL tokens and symbols (labelled SQLIA positive if
present at injection points). The labelling procedure is detailed
in Fig. 2. When this approach is applied to any domain, data set
can be generated based on the pattern of data input expected.
Also, the existing studies on SQLIA types provide patterns to
generate malicious requests. Various approaches have existed
on extracting sample data set with most researchers resorting to
network tools to produce sample web requests [6], [12] which
often results in mere duplication of the same string but lack
patterns implementation (regular expression pattern matching
on the data) for improving the performance of ML models.

Fig. 2. Data set features labelling procedure.

IV. PREDICTIVE ANALYTICS EXPERIMENT AND DEPLOYMENT

Predictive analytics provides a scalable and functional

approach to big data mining in mitigating SQLIA

vulnerabilities.

A. Experimental steps

Below gives a high-level overview of the steps:

1) Data set extraction: This research uses a combination
of data set of extracted dictionary word list of 479,000, words
in addition to 862 unique SQL tokens extracted from Microsoft
SQL reserved keywords website [16]. The data set items are
labelled based on the exhibition of SQLIA types characteristics
which are: the presence of SQL tokens in injection point;
disjointed text; single quotes; semicolons; comments; hex; etc.
The data set items labelling are represented in binary values of
0 (SQL negative) or 1 (SQL negative) shown in Fig. 2 above.

2) Text pre-processing: This stage involves R Scripting
and regular expression pattern matching applying the
procedure described in Fig. 2 integrated to train a model for
ongoing detection and prevention. In a real domain
application, the data set items are expanded with patterns of
both valid requests and bad requests. There were 362,603-row

items after text pre-processing of parsing data set for: patterns,
duplicates, normalised to lower cases and the removal of the
missing words. The data set is sampled as to provide an even
distribution of row items (records). The imbalanced data set
(majority negatives over positives) were corrected with
Synthetic Minority Over-Sampling Technique (SMOTE) [17]
to have a data set items of 725206 split equally, 362,603-row
items of attack/respondent (positives) and 362,603-row items
of non-attack/non-respondent (negatives). These actions
improve both the trained model recall and precision.

3) Feature hashing: Machine learning takes in numerical
input as vectors. In this scheme, we set the hashing bits to 15
and N-grams to 1 (unigram) to analyse every single item
present at the injection point. The process of feature hashing
allows us to translate the data set text items into a binary
vector matrix of 215 (32,768) columns suitable for training a
model in ML. The hashing procedure creates a dimensional
input matrix or vectors that make a lookup of feature weights
faster by augmenting the string comparison with hash value
comparison. Applying hashing to text features improves
performance and scalability in big data predictive analytics
lacking in existing SQLIA signature based detection.

4) Filter-based feature selection for top relevant vectors:
Creating a dimension to accommodate the size of data by
selecting next hashing bits that fit the data set can sometimes
generate too much dimension and sparse data which are
reduced by filter based featured selection. In this experiment,
we used filtered based selection to have reduced computation
complexity without affecting the prediction accuracy in
classification. The Chi-squared scored function is used to rank
the top 5000 hashing features in descending order to return the
most appropriate labels to improve SQLIA prediction accuracy.

5) Split of vectors between training and testing data: We
divide the vectors of hashed features into different ratios of
which samples of 80% were used for the training while 20% as
test data for evaluations. The vector split at this ratio provided
an excellent CM in the assessment of the trained classifier.

6) Train prediction model: TCSVM classifier is used to

predict binary labelled outcomes whether SQLIA is negative or

positive in a web request. The SVM algorithm is provided with

data set items input of the labelled class of what is being

predicted to train the model to an excellent performance to

accurately predict SQLIA in a proxy intercepted web requests.

B. Publishing and consuming the prediction web service

The system requirements regarding RAM and the hard disk
is very low as the one-off workload of training the classifier
including retraining is handled in the cloud by the MAML
platform. The solution is scalable, and it is meant to detect and
prevent SQLIA in web requests as illustrated in Fig. 3.

The trained model exposed as a web service. The web
service is called in a custom built dot NET application for this
research named NETSQLIA for an ongoing SQLIA detection
and prevention. Critical to the deployment in every new
domain, the administrator or system expert need to feed the
data engineering or text pre-processing module with a new rule
that matches the patterns present in the new data set which

triggers the retraining of the classifier to adapt to a new
environment.

Fig. 3. A custom application is consuming the trained SVM web service for

ongoing SQLIA detection and prevention.

V. EVALUATION AND PERFORMANCE METRICS

Table 1 is an excellent CM (accuracy: 0.986, precision:
0.974, recall: 0.997 and F1 Score: 0.985) at a threshold of 0.5,
but this calculation is repeated across the score bins/ thresholds
between 0.0 and 1 for the ROC graph values in Fig. 4. The
ROC is plotted with a ratio of False Positives Rate (FPR) on
the x-axis (specificity) against recall or True Positive Rate
(TPR) on the y-axis (sensitivity). On the x-axis, a higher value
implies bad performance, while on the y- axis a higher value of
0.986 in Area Under Curve (AUC) achieved here at 0.5 score
bin indicates an excellent performance in SQLIA prediction.

Fig. 4. ROC plot of FPR (x-axis) against TPR(y-axis).

TABLE I. CONFUSION MATRIX AT THRESHOLD 0.5

Terminology Formula Values Performance metrics

True Positive (TP) - 72359 Accuracy(A)=

(TP+TN)/TE

Precision

(P)=TP/(PO)

Recall (R)=

TP/PE

F1Score=2*

 (R*P)/(R+P)

0.986

False Negative (TN) - 162

False Positive (FP) - 1923

True Negative (FN) - 70598 0.974

Positive events (PE) TP+FN 72521

Negative events (NE) FP+TN 72521

0.997 + observations (PO) TP+FP 74282

- observations (NO) FN+TN 70760

0.985 Total events (TE) PO+ NO 145042

VI. CONCLUSION AND FUTURE WORK

We demonstrated in this paper applied predictive analytics
to SQLIA detection and prevention in big data context with an

excellent result that is empirically evaluated in the confusion
matrix and the ROC graph presented above. In benchmarking
this paper against existing works, the methodology proposed
here is functional in a big data context which is lacking in
existing works before now on SQLIA to our knowledge. Future
work involves employing multi-class classifier to identify and
group the different SQLIA types as they are predicted.

REFERENCES

[1] CodeCurmudgeon,“SQLiHall-of-Shame,”The Code Curmudgeon,
2016. [Online]. Available: http://codecurmudgeon.com/wp/sql-
injection-hall-of-shame/. [Accessed: 12-Aug-2016].

[2] Microsoft, “Access SQL: basic concepts, vocabulary, and syntax -
Access,” MS Office, 2007. [Online]. Available: https://support
.office.com/en-gb/article/Access-SQL-basic-concepts-vocabulary-
and-syntax-444d0303-cde1-424e-9a74-e8dc3e460671.

[3] Microsoft Azure, “Two-Class Support Vector Machine,” MSDN
Library,2016.[Online]. Available: https://msdn.microsoft.com/
library/azure/12d8479b-74b4-4e67-b8de-d32867380e20/?f=255
&MSPPError=-2147217396. [Accessed: 22-Jan-2016].

[4] C. Bockermann, M. Apel, and M. Meier, “Learning SQL for
database intrusion detection using context-sensitive modelling
(extended abstract),” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2009, vol. 5587 LNCS, pp.
196–205.

[5] J. Choi, C. Choi, H. Kim, and P. Kim, “Efficient malicious code
detection using N-gram analysis and SVM,” in Proceedings -
2011 International Conference on Network-Based Information
Systems, NBiS 2011, 2011, pp. 618–621.

[6] D. Kar, S. Panigrahi, and S. Sundararajan, “SQLiGoT: Detecting
SQL Injection Attacks using Graph of Tokens and SVM,”
Comput. Secur., vol. 60, pp. 206–225, 2016.

[7] S. Uwagbole, W. Buchanan, and L. Fan, “Numerical Encoding to
Tame SQL Injection Attacks,” in IEEE/IFIP DISSECT, 2016.

[8] S. O. Uwagbole, W. Buchanan, and L. Fan, “Applied web traffic
analysis for numerical encoding of SQL injection attack features,”
in European Conference on Information Warfare and Security,
ECCWS, 2016, vol. 2016.

[9] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using Parse
Tree Validation to Prevent SQL Injection Attacks,” in
Proceedings of the 5th international workshop on Software
engineering and middleware SEM 05, 2005, no. September, p.
106.

[10] C. Gould, Z. Su, and P. Devanbu, “JDBC checker: a static
analysis tool for SQL/JDBC applications,” in Software
Engineering, 2004. ICSE 2004. Proceedings. 26th International
Conference on, 2004, pp. 697–698.

[11] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static
checking of dynamically generated queries in database
applications,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4,
p. 14, Sep. 2007.

[12] D. Appelt, “Automated Security Testing of Web-Based Systems
Against SQL Injection Attacks,” 2016.

[13] W. G. J. Halfond and A. Orso, “AMNESIA: Analysis and
Monitoring for NEutralizing SQL-injection Attacks,” Proc. 20th
IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 174–183, 2005.

[14] W. G. J. Halfond, A. Orso, D. A. Kindy, and A. S. K. Pathan,
“AMNESIA: Analysis and Monitoring for NEutralizing SQL-
injection Attacks,” Int. J. Commun. Networks Inf. Secur., vol. 5,
pp. 80–92, 2013.

[15] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “SQLProb : A
Proxy-based Architecture towards Preventing SQL Injection
Attacks,” System, pp. 2054–2061, 2009.

[16] Microsoft, “Reserved Keywords (Transact-SQL),” MSDN.
[Online]. Available: https://msdn.microsoft.com/en-
us/library/ms189822.aspx.

[17] Nitesh V. Chawla et. al, “SMOTE,” J. Artif. Intell. Res., vol. 16,
pp. 321–357, 2002.

