
Performance Evaluation of a Fragmented Secret Share System

Elochukwu Ukwandu, Prof William J Buchanan

The Cyber Academy, Edinburgh Napier University, Edinburgh. UK

e.ukwandu@napier.ac.uk, w.buchanan@napier.ac.uk

Dr Gordon Russell
The Cyber Academy, Edinburgh Napier University, Edinburgh. UK

g.russell@napier.ac.uk

Abstract: There are many risks in moving data into public

storage environments, along with an increasing threat around

large-scale data leakage. Secret sharing scheme has been

proposed as a keyless and resilient mechanism to mitigate this,

but scaling through large scale data infrastructure has

remained the bane of using secret sharing scheme in big data

storage and retrievals. This work applies secret sharing

methods as used in cryptography to create robust and secure

data storage and retrievals in conjunction with data

fragmentation. It outlines two different methods of distributing

data equally to storage locations as well as recovering them in

such a manner that ensures consistent data availability

irrespective of file size and type. Our experiments consist of

two different methods – data and key shares. Using our

experimental results, we were able to validate previous works

on the effects of threshold on file recovery. Results obtained

also revealed the varying effects of share writing to and

retrieval from storage locations other than computer memory.

The implication is that increase in fragment size at varying file

and threshold sizes rather than add overheads to file recovery,

do so on creation instead, underscoring the importance of

choosing a varying fragment size as file size increases.

Keywords—data, key, secret shares, disaster contention, thresholds

scheme.

I. INTRODUCTION

With the introduction of cloud services for disaster

management on a scalable rate, there appears to be the needed

succour by small business owners to get a cheaper and

scalable disaster recovery mechanism so as to provide

business continuity and remain competitive with other large

businesses. But that is not to be so, as cloud outages became a

nightmare. Recent statistics by Bill [1] on Cost of Data Centre

Outages, shows an increasing rate of 38% from $505,502 in

2010 to $740,357 as at January 2016. Using activity-based

costing, they were able to capture direct and indirect cost to:

Damage to mission-critical data; Impact of downtime on

organisational productivity; Damages to equipment and other

assets and so on, and was derived from 63 data centres based

in the USA.

These events may have encouraged the adoption of multi-

cloud services so as to divert customers traffic in the event of

cloud outage. Some fine-grained proposed solutions on these

are focused on redundancy and backup such as: local backup

[2]; geographical redundancy and backup [3]; inter-private

cloud storage [4]; resource management for data recovery in

storage clouds [5], and so on. But in all these, cloud service

providers see disaster recovery as a way of getting the system

back online and making data available after a service

disruption, and not on contending disaster by providing

robustness that is capable of mitigating shocks and losses

resulting from these disasters.

The current practice of using public key infrastructure in

protecting data being moved to the public cloud has some

inherent challenges of possible loss, leakage or theft of

encryption keys. The case of the carbanak cybergang attacks

on banks resulting to loss of over $1bn from 100 financial

institutions around the world [6] shows the weakness of

protecting data using public key infrastructure. Using secret

sharing scheme to provide a resilient and keyless mechanism

has been proposed but using such scheme for large scale data

infrastructure has remained a daunting task as the scheme is

based on finite field arithmetic and so limited in scope.

In the face of these current realities, this paper outlines a

Secured Threshold Storage system using Fragmented Secret

Sharing system. It applies secret sharing methods as used in

cryptography to create robust and secure Cloud-based data

storage. Our experiments consist of two different methods –

data and key shares. Data share implies using secret sharing

scheme to break data into shares and using a certain number of

the share (threshold) recreate the data and any number less

than the threshold cannot.

While key share involves breaking data into chunks using a

pre-defined chunk size, encrypting the chunk each with an

AES-256-bit key and then create shares out of the encryption

key based on a share policy. The shares, as well as the chunks,

are stored in different storage locations and when the file is

required, the key shares are recovered using the same key

share policy. The recovered key is therefore used to decrypt

each chunk and with the chunks, the original file is

recombined.

The key contribution of the paper is in the evaluation of the

performance overhead in processing and recovering files using

secret shares. It outlines two different methods of distributing

data equally to hosts as well as recovering them in such a

manner that ensures consistent data availability irrespective of

file size and type. It also shows that using fragmented secret

share system is the most scalable in terms of big data

infrastructure compare to using only threshold secret sharing

scheme.

The rest of the paper is organized as follows: Section II is a

review of related literature, while Section III took an overview

of RESCUE with details of design and implementations. IV is

about the results and their evaluations, while we concluded in

V as well as detailed our area of future works.

II. LITERATURE REVIEW

Loruenser et al [7] presented an architecture for secure cloud-

based data sharing known as ARCHISTAR based on secret

sharing scheme. The focus of the system is on providing

adequate confidentiality to data; make it available against any

active attacks as well as robust even in the face of failures.

Ermakova and Fabian [8] defined a secret sharing for health

data in multi-provider clouds. Their work was based on the

need to provide a scheme that will make data readily available,

provide confidentiality and integrity to medical records stored

in clouds. They used a secret sharing scheme to distribute data

as fragments to several cloud in order to provide the needs as

stated above. In all these, secret sharing was seen as limited in

scope and therefore cannot scale large data infrastructure.

There are other research solutions based on different variants

of secret sharing schemes and multi-cloud architecture that

give credence to its resilience in the face of failures, data

security in keyless manner, such as:

 Ukwandu et al, [9] - RESCUE: Resilient Secret Sharing

Cloud-based Architecture.

 Alsolami & Boult, [10] - CloudStash: Using Secret-

Sharing Scheme to Secure Data, Not Keys, in Multi-

Clouds.

 Fabian et al, [11] - on collaborative and secure sharing of

healthcare data in multi-clouds.

While RESCUE provides an architecture for a resilient cloud-

based storage with keyless data security capabilities using

secret sharing scheme for data splitting, storage and recovery,

CloudStash also relied on the above strengths to prove security

of data using secret sharing schemes in a multi-cloud

environment and Fabian et al proved resilience and robust

sharing in the use of secret sharing scheme in a multi-cloud

environment for data sharing.

III. OVERVIEW OF RESCUE

RESCUE is a secured threshold Cloud-based storage

infrastructure using the Fragmented Secret Sharing System

design philosophy, and is based on multi-cloud architecture

for data storage. Replication for backup and restore of data

from a primary site to other sites separated geographically

which according to [2, 3, 4, 5] shows little-known potential in

eliminating system downtime because of the:

 Effects of latency on performance: the effect of latency

on performance is a source of performance lag in using

replication for backup and restore of data or virtualised

infrastructure from a primary site to backup sites. Using

synchronized replication in a multi-cloud storage system

has an increasingly large overhead, and, on the other

hand, asynchronous replication reduces the integrity of

the replicated data.

 Data integrity on recovery: quality assurance of

recovered data is an issue not readily discussed in data

storage and retrieval, but a very strong necessity. So

checking the integrity of data after recovery is necessary

to eliminate possible data corruption.

 Consistent data availability: data availability is key to

the knowledge economy and therefore needful to mitigate

factors that add large overheads to systems and thus using

a robust, and all-encompassing, system is a necessity.

RESCUE is designed to handle: the latency effect on

performance by defining the usage of key share mechanism

rather than data sharing, when the file size is large.

It also addresses the issue of data integrity on recovery, as it is

highly minimal or non-existent depending on the combination

used in terms of file size, fragment size and key share policy.

With regards to key share method; files are broken into chunks

and the chunks in turn encrypted with AES and safely

decrypted using recovered key before decrypting the chunks

and combining file. In terms of shared data, data is treated as a

sequence of bytes so data encoding does not matter and

recovered file are cross-checked with the original file using

SHA-512 hash function for data checksum. Additionally,

using secret sharing scheme to split data and recover it assures

data security in a keyless manner devoid of corruption as

appropriate measure is put in place in the algorithm to detect

wrong shares during data recovery.

A. Architecture

The architecture of RESCUE involves data/key splitting,

storage, and retrievals. The two different methods involve data

splitting or key splitting with data encryption and decryption

using recovered key. The method implemented starts by

defining the policy, which is the number of shares to be

generated from each file, (N) and the least required number of

shares (M) needed to come together to recover the file. The

Policy of M-out-of-N, here the policy is 2-out-of-5, 3-out-of-5

and 4-out-of-5 shares, implying that for example 2 shares out-

of-5 generated shares from a file are needed to recreate the

file. The unique identifier is similar a magic number, unique to

each session that is appended to the share when created.

B. File share

Files are scanned as in Figure 1 from a designated folder and

encoded to byte streams. Using a pre-defined share policy, the

encoded data is broken into shares. The shares generated are

stored in separate containers and from where they are read-in

and files recovered during file recovery on request.

C. Key share

Files are scanned as in Figure 1 from a designated folder as

above, then using a predefined chunk size say 1024 Bytes,

files are broken into the defined chunk size, encrypted and the

encryption key shared as above. When the files are required,

the shares generated from the key are brought together and the

key recovered from where encrypted chunks are decrypted and

the chunks brought together and the files are recreated.

D. Share generation

Using the equation below we generate shares:

iM

i
XiASUMGFAXf][_),(

1

0

To create N shares from a secret, with a threshold of M, we

will take a look on how each octet of the secret is generated.

An array A of M octets is created at first in which the array

element A[0] contains a portion of the secret, while A[1],

A[2],..., A[M-1] are selected independently and uniformly at

random. Each share is generated by computing the value of

f(X,A), where X is the share index and the resulting octet is

appended to the share. A, B, C,... are arrays of M octets and

each zero element of the array contains a portion of the share.

A[0], B[0], C[0], are equal to first, second and third octets

of the secret and so on. The power of X is the coefficient and

M-1 is the threshold. GF_SUM is Galois field summation,

which takes place over GF(256), different from integer

addition as each addition uses the exclusive-or operation.

E. Secret Recovery

Just as in Shamir [12] authorised participants following earlier

stated rules are able to recover the secret using Lagrangian

interpolation once the conditions:

1. All zero elements of the array of M octets are

retrieved.

2. Number of retrieved elements greater or equal to the

threshold.

3. All contributed shares from participants are certified

as genuine and satisfies 2 above.

File
container

Scans & retrieves file
RESCUE
Engine

Retrieves file metadata
Date and Time
Owner s ID
UUID
File name
File size

 Key Gen

Encryption
Algorithm

Encrypted
File

container

Share Creation
Algorithm

Share
Store 1

Share
store 2

Share
store 3

Share
store 4

Share
store 5

File
Metadata
Database

File
container

Scans & retrieves file
RESCUE
Engine

Retrieves file metadata
Date and Time
Owner s ID
UUID
File name
File size

 Key Gen

Encryption
Algorithm

Encrypted
File

container

Share Creation
Algorithm

Share
Store 1

Share
store 2

Share
store 3

Share
store 4

Share
store 5

File
Metadata
Database

Figure 1: Key/File share creation

F. Recovery: Files

When files are to be recovered as in Figure 2, the user types in

the destination folder for recovered files; the program picks up

each filename, the associated values that identify the owner of

the files – the UUID all in the metadata database and used the

values gathered to confirm ownership and thereafter scans

and retrieves all shares associated with the filename. With

these file recovery is made using the Recovery algorithm.

G. Recovery: Key

Following the initial method use above in ownership

identification, the system retrieves the encrypted file, recover

key and use the key so recovered to decrypt the file. See

Figure 3 for details.

The number of shares recovered can be less than N, but equals

or greater than M (Threshold). The shares must be of equal

length, else they are inconsistent. In file recovering, the output

string is initialised to zero and the initial octet (share indexes

are grouped in octets) of the share is stripped from each share

and none of these octets are same else error will be reported,

which halts the process. For each of these shares an array V of

M octets is created, in which an array element V[i] contains

the octet from ith share. These stripped octets are appended to

the octets array U, formed by setting U[i] equals to the first

octet of the ith share. The value of I(U, V) is computed, and

appended to the output string, which is returned as the secret.

This contains one fewer octet than the shares.

Retrieves owner s ID
RESCUE
Engine

Retrieves file metadata
Date and Time
Owner s ID
UUID
File name
File size

File
Metadata
Database

Owner

Share
Store 1

Share
store 2

Share
store 3

Share
store 4

Share
store 5

Date & Time
Share marker
Share

Recovery
Algorithm

File Store

Retrieves owner s ID
RESCUE
Engine

Retrieves file metadata
Date and Time
Owner s ID
UUID
File name
File size

File
Metadata
Database

Owner

Share
Store 1

Share
store 2

Share
store 3

Share
store 4

Share
store 5

Date & Time
Share marker
Share

Recovery
Algorithm

File Store

Figure 2: File recovery

Share
Store 1

Share
Store 2

Share
Store 3

Share
Store 4

Share
Store 5

Date & Time
Share marker
Share

Recovery Algorithm
Key recovered

File StoreDecrypting
Algorithm

Date and Time
Owner s ID
UUID
File name
File size

Retrieves owner s ID
RESCUE
Engine

Retrieves file metadata File
Metadata
Database

Owner

 Key Gen

Share Creation
Algorithm

Encrypted
file

Encryption
Algorithm

Share
Store 1

Share
Store 2

Share
Store 3

Share
Store 4

Share
Store 5

Date & Time
Share marker
Share

Recovery Algorithm
Key recovered

File StoreDecrypting
Algorithm

Date and Time
Owner s ID
UUID
File name
File size

Retrieves owner s ID
RESCUE
Engine

Retrieves file metadata File
Metadata
Database

Owner

 Key Gen

Share Creation
Algorithm

Encrypted
file

Encryption
Algorithm

Figure 3: Key recovery and File decryption

IV. RESULTS AND EVALUATIONS

Two different sets of experiments were performed: file/data

share; and key share methods. In file share, files of different

sizes are created into share and stored in folders. When the

files are needed, the several shares are recovered from the

folders and the file recreated. Each file involved in the process

is created into shares using M-out-of-N threshold secret

sharing scheme and the shares stored in folders, while in key

share, files of different sizes are broken into chunks; each

chunk is encrypted using AES of 256-bits key length then

stored in folder, the encryption key is thereafter shared, stored

in folders as well.

When the files are needed, the shares are recovered from the

folders for each key based on policy and the key recreated,

using each key to decrypt a chunk as retrieved from the folder

and the file recombined. The secret sharing scheme used is

modified Social Secret sharing scheme. The issue of

confidentiality and integrity in the use of secret sharing

scheme has been validated by many works in secret sharing

schemes such as Abdallah and Salleh [13], Buchanan et al.

[14]. Since RESCUE is concentrated on Data Availability at

Zero Downtime [15], the essence of the experiment is to

understand all performance overheads that will impact

negatively on the objective of the system so as to eliminate

them or validating already known facts.

Evaluation of the results: Secret sharing schemes have been

used successfully in data splitting and reconstruction, thereby

providing data security in a keyless manner. This section

outlines an experiment involving two main methods of secret

sharing application – data sharing and key sharing. In

Experiment One, figures 4 and 7 show normal curve with an

increasing size of Threshold (M) and file size but figure 5 and

6 showed otherwise, a varying curve indicating the effects of

Share Writing and Recovery from folders on systems

performance. In Experiment Two, figures 8, 9 and 10 showed

the validation of [13, 14] on the effect of increasing Threshold

and file size on the system performance as in figure 8, the

threshold is 2, so the overhead is with the Process not on

Recovery as in figures 9 and 10. But a look at figures 11, 12

and 13 indicate entirely different results from the previous

ones thus giving an understanding that there are resultant

effects of file size, fragment size on share policy. The

fragment size was varied in all as well as share policy using

file sizes from 1KB to 1GB. In all the results shown, it is

evident that using fragmented secret share system is the best

option while dealing with big data infrastructure than using

threshold secret sharing scheme alone, which has proved

impossible to be used to scale large data infrastructure due to

inherent characteristics of finite field arithmetic.

The evaluator, in this case, is the performance overhead at an

increasing thresholds and data sizes. The experiments showed

that Share Writing and Recovery adds more performance

overhead in Experiments One, while in Experiment Two, the

performance overheads of File and Fragment Sizes on Share

Policy were obvious. These depict their strengths and

weaknesses at different application scenarios.

The aim of the experiment is to discover all factors capable of

adding performance overhead thereby derailing total system

performance both in File and Key Sharing methods. Because

we aim to apply the methods further in both network and

cloud scenarios, we will work in eliminating the discovered

factors that add to performance overhead to the system as this

method has proved scalable with big data infrastructure. The

test machine is a Duo Core Intel Pentium N3530 2.16GHz,

2.16 GHz, 64bit x64-based processor, Windows 8 operating

system on 4GB of RAM.

Two primary sets of results are presented which use the

parameters of M=2, N=5; M=3, N=5 and M=4, N=5. The

variable N relates to the number of shares to create while the

variable M relates to the number of shares required for

recreation of the original arbitrary data (using each SSS

algorithm). Results are presented in seconds for Time, while in

KB, MB and GBs for variables file sizes. From the figures and

tables presented, it can be clearly demonstrated that key share

is the fastest method regardless of file sizes as well the method

capable of scaling over large volumes of varying file sizes.

The key share experiment involves more stages than the

previous and we therefore use the terms, Process and

Recover. Process time involves time taken to split the file into

chunks using a pre-defined chunk size, fragment encryption

time, key share creation and writing times while Recover time

involves time taken to recover key shares from folders, key

recreation time, fragment decryption and file recombination

times.

V. CONCLUSIONS

Experiments performed using secret sharing scheme has

proved resilience in the face of failures as not all hosts are

required to reconstruct data after splitting, but a major

drawback remains the effect of latency on performance. This

is worsened as data size increase as well as the distance

between each of the hosts thus giving rise to our work.

Lessons learnt are that using Key Share rather than Data Share

method in combination with an appropriate fragment and

share policy is the only way to scale large data infrastructure

and with this lessons and validations we intend to eliminate all

factors revealed as capable of adding large overhead to the

system. This will provide a platform capable of achieving data

availability at zero downtime.

Tables and Figures

Table 1: Share creation against policy

 Policy: 2 from 5 3 from 5 4 from 5

S/N

File Size

(KB)

Creation

Time

(Sec)

Creation

Time (Sec)

Creation

Time (Sec)

1 1 0.106119 0.10933 0.143713

2 10 0.913352 1.075088 1.427096

3 100 1.833184 2.115918 2.461108

Fig. 4: Time taken to Create share against Policy

Ti
m

e
 (

Se
c)

Data Sizes (KB)

Time taken to Create shares of
data against Share Policy

2 from 5

3 from 5

4 from 5

Table 2: Share Writing to folders against Policy

Policy: 2 from 5 3 from 5 4 from 5

S/N

File Size

(KB)

Writing

Shares (Sec)

Writing

Shares(Sec)

Writing

Shares(Sec)

1 1 0.020532 0.03125 0.164257

2 10 0.066987 0.100468 0.03355

3 100 0.090945 0.085788 0.068099

Fig. 5: Share Writing to folders against Policy

Table 3: Share Recovery against Policy

Policy: 2 from 5 3 from 5 4 from 5

S/N

File Size

(KB)

Share

Recovery

(Sec)

Share

Recovery

(Sec)

Share Recovery

(Sec)

1 1 0.008113 0.004693 0.015012

2 10 0.083933 0.009362 0.005608

3 100 0.025136 0.010948 0.008912

Fig. 6: Share Recovery from folders against Policy

Table 4: File Recreation against Policy

Policy: 2 from 5 3 from 5 4 from 5

S/N

File Size

(KB)

File

Recreation

File

Recreation

File

Recreation

1 1 0.03405 0.054628 0.10265

2 10 0.434176 0.558682 0.92636

3 100 0.674842 1.091936 1.704002

Fig. 7: File Recreation against Policy

Fig. 8: Process and Recover of file using 10KB fragment

size on 2 from 5 Policy.

Fig. 9: Process and Recover of file using 10KB fragment

size on 3 from 5 Policy.

Ti
m

e
 (

Se
c)

Data Sizes (KB)

Time taken to Write shares of data
against Share Policy

2 from 5

3 from 5

4 from 5

Ti
m

e
 (

Se
c)

Data Sizes (KB)

Time taken to Recover shares of data
against Share Policy

2 from 5

3 from 5

4 from 5

Ti
m

e
 (

Se
c)

Data Sizes (KB)

Time taken to Recreate File against
Share Policy

2 from 5

3 from 5

4 from 5

Ti
m

e
 (

Se
c)

File Sizes on 10KB fragment size

Time taken to process and recover file of
different sizes on 2 from 5 key share policy.

Process

Recovery
Ti

m
e

 (
Se

c)

File Sizes on 10KB fragment size

Time taken to process and recover file of different
sizes on 3 from 5 key share policy.

Process

Recovery

Ti
m

e
 (

Se
c)

File Sizes on 10KB fragment size

Time taken to process and recover file of different
sizes on 4 from 5 key share policy

Process

Recovery

Fig. 10: Process and Recover of file using 10KB fragment

size on 4 from 5 Policy.

Fig. 11: Process and Recover of file using 100MB fragment

size on 2 from 5 Policy.

Fig. 12: Process and Recover of a file using 100MB

fragment size on 3 from 5 Policy.

Fig. 13: Process and Recover of a file using 100MB

fragment size on 4 from 5 Policy.

VI. REFERENCES

 [1] K. Bill, New Study: Cost of Data Center Outages –

2016. 2016.

[2] M. Pokharel, S. Lee, and J. S. Park, “Disaster recovery

for system architecture using cloud computing,” in

Applications and the Internet (SAINT), 2010 10th

IEEE/IPSJ International Symposium on, 2010, pp.

304–307.

[3] J. I. Khan and O. Y. Tahboub, “Peer-to-Peer

Enterprise Data Backup over a Ren Cloud,” in

Information Technology: New Generations (ITNG),

2011 Eighth International Conference on, 2011, pp.

959–964.

[4] Z. Jian-Hua and Z. Nan, “Cloud computing-based data

storage and disaster recovery,” in Future Computer

Science and Education (ICFCSE), 2011 International

Conference on, 2011, pp. 629–632.

[5] S. R. Patil, R. M. Shiraguppi, B. P. Jain, and S. Eda,

“Methodology for Usage of Emerging Disk to

Ameliorate Hybrid Storage Clouds,” in IEEE

International Conference on Cloud Computing in

Emerging Markets (CCEM), 2012, pp. 1–5.

[6] “The Great Bank Robbery: Carbanak cybergang steals

$1bn from 100 financial institutions worldwide |

Kaspersky Lab.” .

[7] T. Loruenser, A. Happe, and D. Slamanig,

“ARCHISTAR: towards secure and robust cloud

based data sharing,” in Cloud Computing Technology

and Science (CloudCom), 2015 IEEE 7th

International Conference on, 2015, pp. 371–378.

[8] T. Ermakova and B. Fabian, “Secret sharing for health

data in multi-provider clouds,” in Business Informatics

(CBI), 2013 IEEE 15th Conference on, 2013, pp. 93–

100.

[9] E. Ukwandu, W. J. Buchanan, L. Fan, G. Russell, and

O. Lo, “RESCUE: Resilient secret sharing cloud-

based architecture,” in Proceedings - 14th IEEE

International Conference on Trust, Security and

Privacy in Computing and Communications,

TrustCom 2015, 2015, vol. 1, pp. 872–879.

[10] F. Alsolami and T. E. Boult, “CloudStash: using

secret-sharing scheme to secure data, not keys, in

multi-clouds,” in Information Technology: New

Generations (ITNG), 2014 11th International

Conference on, 2014, pp. 315–320.

[11] B. Fabian, T. Ermakova, and P. Junghanns,

“Collaborative and secure sharing of healthcare data in

multi-clouds,” Inf. Syst., vol. 48, pp. 132–150, 2015.

[12] A. Shamir, “How To Share a Secret,” Commun. ACM,

vol. 22, no. 1, pp. 612–613, 1979.

[13] A. Abdallah and M. Salleh, “Analysis and comparison

the security and performance of secret sharing

schemes,” Asian J. Inf. Technol., vol. 14, no. 2, pp.

74–83, 2015.

[14] W. Buchanan, D. Lanc, E. Ukwandu, L. Fan, and G.

and, “The Future Internet: A World of Secret Shares,”

Futur. Internet, vol. 7, no. 4, pp. 445–464, 2015.

[15] E. Ukwandu, W. J. Buchanan, and G. Russell,

“TCloud: Availability at Zero Downtime.” Retrieved

from http://thecyberacademy.org/wp-

content/uploads/2016/05/PGCS-

symposium_2016_paper_4.pdf, 2016.

Ti
m

e
 (

Se
c)

File Sizes on 100MB fragment size

Time taken to process and recover file of different
sizes on 2 from 5 key share policy.

Process

Recovery

Ti
m

e
 (

Se
c)

File Sizes on 100MB fragment size

Time taken to process and recover file of different
sizes on 3 from 5 key share policy.

Process

Recovery

Ti
m

e
 (

Se
c)

File Sizes on 100MB fragment size

Time taken to process and recover file of different
sizes on 4 from 5 key share policy.

Process

Recovery

