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ABSTRACT 
The current design practice of plate-and-grid structures in buildings, such as waffle slabs and 
ribbed plates, is relied largely on code-specified approximate methods, and the deflection of 
the system is rarely evaluated owing to the complexity of calculations.  In this paper, an 
analogous stiffened plate is presented to model the plate-and-grid structures.  A semi-
analytical method is proposed based on the finite element method to obtain an accurate 
analysis of the stiffened plates.  The proposed method of analysis has more flexible geometry 
adaptability and higher efficiency in reducing the unknown variables as compared to the 
general finite element methods, as well as less computation time and cost.  The predictions of 
the proposed analyses for example structures agree very well with those of the finite element 
method and experiment. 
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INTRODUCTION 
Plate-and-grid structures, such as ribbed plates and waffle slabs, are widely used in building 
systems.  In current design practice, the analysis of plate-and-grid structures is relied largely 
on code-specified approximate methods, and the deflection of a plate-and-grid system is 
rarely evaluated in practice owing to the complexity of calculations (MacGregor 1997).  In 
general, the code-specified approximate methods of analysis are most appropriate for the 
uniform or quasi-uniform structures.  For the structures other than the regular ones, it is 
necessary to use a more sophisticated model to obtain a precise analysis. 

This paper presents a stiffened-plate model for the analysis of plate-and-grid structures.  
An effective semi-analytical method is proposed based on the finite element approach for the 
analysis of the stiffened plates.  The proposed method can be used to solve effectively the 
problem of the stiffened plates with arbitrary configuration, openings, material discontinuity 
and arbitrary orientated stiffeners by utilising the naturally existed intrinsic relationship 
among the nodes on the same nodal line with one analytical expression.  The higher 
efficiency of the proposed method has also been found on reducing the unknown variables as 
compared to the boundary element method.  By employing the analytical transformation 
instead of matrix inverse, the approach has shown significant saving in the computation time 
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as compared to the static condensation method.  The predictions of the proposed method 
agree very well the FEM and experimental results. 

METHOD OF ANALYSIS 
A general plate-and-grid structure consisting of slabs and beams is shown in Figure 1.  The 
structure can conveniently be considered as a stiffened plate with the combination of plate 
panels and grids (or stiffeners).  Since the skeleton of grids is considered as a naturally strip-
like structure, the stiffened plate is always divided into a number of strips by nodal lines, 
such as lines L and L’ shown in Figure 1.  The openings, material discontinuities and 
arbitrary orientated stiffeners can then be placed anywhere within the strips, which will later 
be discreted into triangular or quadratic plate elements. 
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Figure 1: Analogous Stiffened Plate for General Plate-and-Grid Structures 

NODAL LINE DISPLACEMENT 

Consider Line L in Figure 1.  The displacement along this line can be described by the 
following equations: 
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where ξι is the local coordinate of the ith node on the nodal line; N is the number of nodes; l 
is the length of the nodal line; and Xm(ξ) and Φn(ξ) are the displacement base functions of the 
nodal line.  They must satisfy the requirements of boundary constraint at the ends of the line.  
The parameters am and bn are used to describe directly the nodal line displacements, and 
rotations θo and θ1 corresponding to the starting and end points, respectively are defined as 
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BOUNDARY RESTRAINTS 

The displacement base functions, Xm(ξ) and Φn(ξ), are significantly influenced by the 
boundary restraints.  At the starting point of a nodal line ( 0=ξ ), the restraints for different 
boundary conditions are as follows. 

• When the point is clamped, 0=w , 0/ =∂∂ ξw , and 0/ =∂∂ ηw .  The displacement 
boundary conditions are 0)0( =mX , 0)0( =′mX , and 0)0( =Φn . 

• When the point is simply supported, 0=w , 0)/()/( 00 =∂∂+∂∂− lwmw ηξ .  The 
displacement boundary conditions are 0)0( =mX , and 0)0( =Φ n . 

• When the point is free, there is no any restraint to w , ξ∂∂ /w  and η∂∂ /w , thus 
having no boundary constraint to the base functions, )0(mX , )0(mX ′  and )0(nΦ . 

In the proposed method, it is assumed that the approximate deformed profiles of nodal lines 
are known.  Thus, the base functions )(ξmX  and )(ξnΦ  will govern the profiles of the 
deformation, while the parameters am and bn will be used to determine the exact deflected 
shapes.  The parameters am and bn are then become unknown variables instead of the node 
displacements.  Therefore, if the profile of the combination of base functions is closer to that 
of the nodal line displacement, the number of unknown variables can be reduced. 

Theoretically, various functions may be used as the displacement base functions, 
provided that they can portray the profile of the deformed nodal line and satisfy the boundary 
conditions.  In this paper, the shape functions of the beam in bending are selected as the base 
functions of the nodal line (Weaver 1990). 

TRANSFORMATION TECHNIQUE 
In order to obtain the displacement of each node in nodal lines, the unknown variables am and 
bn can firstly be determined by solving the simultaneous equations of am and bn.  In this 
paper, a new transformation technique is proposed for the development of such simultaneous 
equations.  In the proposed technique, two transformation steps are needed in the analysis.  
The transformation at the nodal line level should firstly be conducted; then the 
transformation at the element level is carried out with an assembly of the nodal 
transformations. 

TRANSFORMATION OF NODE DISPLACEMENT TO NODAL LINE DISPLACEMENT 

Consider a typical strip of a stiffened plate shown in Figure 2.  Theoretically, two nodal lines 
L and L’ are not necessary to parallel each other.  For the sake of brevity, the two nodal lines 
are assumed to be parallel to the x-axis.  The origin point of the local coordinate system is 
located at one of the ends of the nodal line L and the x-axis passes through this nodal line, as 
shown in Figure 2.  The base function Equation (1) can be rewritten as 
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Figure 2: A typical Strip 

The ith nodal displacement on the l th nodal line is [ ] { }iiii ywxww )/( ,)/( , ∂∂∂∂=δ , which 
can be expressed in a matrix form as 

 [ ] l
ii VT=δ  (5) 

where 
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and the generalised nodal line displacement vector Vl is expressed as 

 { }pr
l bbbaaa ,,,,,,, 2121 LL=V  (7) 

Equation (5) presents the relationship between the node displacement [ ]iδ  and the nodal line 
displacement vector Vl.  It is seen that the transformation at the element level should be 
performed by use of Equation (5), which is actually a process of the assembly of the 
transformations at the nodal line level. 

TRANSFORMATION OF NODE DISPLACEMENT TO STRIP DISPLACEMENT 

After deriving the relationship between the node displacement and the nodal line 
displacement vector, the stiffness matrix and force vector are then needed to transform 
accordantly.  In order to transform the stiffness matrix and force vector, the relationship 
between the displacements of nodes and strips is derived and expressed by 

 s
e

e VTδ =  (8) 

where δe is the element displacement vector for plates or beams, Te is the transformation 
matrix, and the strip displacement vector { }1,s l l+=V V V .  In the finite element analysis, the 
most commonly used elements in the plate discretisation are triangular and quadrilateral 
ones.  The typical triangular and quadrilateral elements are shown in Figure 3. 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3850



 

i

j′k′

l

l′

            

i j

k ′

l

l′

m′  

 (a) Triangular (b) Quadrilateral 

Figure 3: Common Elements in Plate Discretisation 

The element displacement vectors and the corresponding transformation matrices of the 
triangular and quadrilateral elements can be expressed, respectively, by 
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Figure 4: Two Arrangements of Beam Elements in a Strip 

It is seen from Figure 4 that beam elements can be located in different ways in a strip, either 
along one nodal line or across the two nodal lines.  In the two cases shown in Figure 4, the 
displacement vectors and the corresponding transformation matrices are, respectively 
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It is noted that Equation (8) is a key equation in the proposed analysis for the element level 
transformation.  By carrying out the standard procedure of the displacement discretelisation 
in FEM, the original simultaneous equations for nodes will be transformed into the 
simultaneous equations for the generalised strip displacement. 

GENERALISED STIFFNESS MATRIX AND FORCE VECTOR 
In the finite element method, the internal virtual work for a stiffened plate with the stiffening 
beams of three degrees of freedom is given (Zienkiewicz and Taylor 2000) by 
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From Equation (8), s
ew VNT= , where N  is the shape function; then, from Equation (11), 
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where eK  represents the element generalized stiffness matrix with parameters am and bn, and 
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e KKK ⊕= , in which e
pK  and e

bK  are the plate and beam stiffness matrices, 
respectively; and ⊕  represents the element assembly.  In general, the plate and beam 
stiffness matrices are given, respectively, by 
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Moreover, ef  in Equation (12) represents the element generalised force vector and is given 
by e

e
e fTf T= , where ( )∫ Γ+++∫ Ω= ΓΩ dd TTTT

nnssnn
e SMMq NNNNf . 

Equation (12) is one of key equations in the proposed analysis.  It is used for the element 
level transformation.  By carrying out the standard procedure of the displacement 
discretelisation in FEM, the original simultaneous equations for nodes will be transformed 
into the simultaneous equations for the generalised strip displacement. 

NUMERICAL STUDIES 
Based on the proposed method, a procedure of computation for the analysis of stiffened 
plates is given as follows: 

• Divide the plate into several strips by nodal lines; 
• Mesh each strip with triangular or quadrilateral elements and develop the element 

stiffness matrix and force vector; 
• Execute transformations; 
• Assemble simultaneous equations of the nodal line displacement; then solve the 

equations; 
• Calculate node displacements, then determine the element displacements for plates 

and beams; 
• Determine internal forces of the structure. 

In order to demonstrate the accuracy and effectiveness of the proposed method for analysing 
stiffened plates, three example stiffened plates are considered: (1) rectangular one-way 
ribbed plate (Song 1986), (2) square plates stiffened by two orthogonal beams (Shen et al. 
1987), and (3) square plates stiffened by four orthogonal beams (Shen 1992). 
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RECTANGULAR ONE-WAY RIBBED PLATE 
A rectangular one-way ribbed plate made of aluminium with four fixed edges is shown in 
Figure 5a, where the stiffening ribs are evenly distributed along the x-direction.  The plate is 
subjected to a uniform distributed load with the density of 5.88 N/cm2.  Young’s module E = 
6.958×106 kN/cm2 and Poission’s ratio μ = 0.315.  The thickness of the plate t = 0.2 cm, 
moment of inertia and torsion constant of the ribs are Ib = 3.746 cm2 and J = 5.236 cm4. 

Figure 5b shows the mid-span vertical displacements of the plate.  Comparison of results 
of vertical displacements is made and given in Table 1.  The results from the proposed 
method agree very well to those from the finite element analysis using a comprehensive FEM 
package SAP 2000 (Computer and Structures Inc. 1997) and finite difference method. 
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(a) Ribbed Plate with Fixed Edges (cm) (b) Vertical Displacement at Mid-Span 

Figure 5: Ribbed Plate with Fixed Edges and Its Vertical Displacement Profile 

Table 1: Comparison of Vertical Displacements at Mid-span (Unit: mm) 

Coordinate Proposed SAP 2000 Finite Diffrence 
(Song 1986) 

(150, 400) 0.3639 0.3639 0.3891 

(300, 400) 0.3851 0.3857 0.3891 

(450, 400) 0.3860 0.3861 0.3827 

(600, 400) 0.3863 0.3860 0.3818 

(750, 400) 0.3863 0.3860 0.3803 

SQUARE PLATE STIFFENED BY TWO AND FOUR ORTHOGONAL BEAMS 
Two fixed-edge square plates, which are stiffened by two and four orthogonal beams 
respectively, are shown in Figure 7.  Both plates are subjected to a uniform distributed load 
with the density of 4.8 N/cm2.  The side length and thickness of the plates a = 20.18 cm and t 
= 0.282 cm.  The moment of inertia for the beams in the plate stiffened by two orthogonal 
beams (Plate 1, Figure 7a) Ib = 5.96 × 10-3 cm4 and torsion constant J = 9.96 × 10-3 cm, and 
in the plate stiffened by four orthogonal beams (Plate 2, Figure 7b) Ib = 4.51 × 10-3 cm4 and 
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torsion constant J = 8.61 × 10-3 cm.  The plates and beams are made of the same material; 
Young’s module E = 20.737 × 106 N/cm2, and Poisson ratio μ = 0.3. 
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Figure 7: Square Stiffened Plates with Fixed edges (a = 20.18 cm). (a) Stiffened by Two 
Orthogonal Beams; (b) Stiffened by Four Orthogonal Beams 

The mid-span vertical displacements and bending moments of the plates and beams for the 
two stiffened plates are shown in Figures 8 and 9.  Comparisons of results, which include (1) 
vertical displacements and bending moments of plate and beam for Plate 1, and (2) vertical 
displacements and bending moment of Plate 2, by different methods are made and presented 
in Tables 2 to 4.  It is seen from these figures and tables that the results of the proposed 
method show very good agreement with those of the finite element analysis and experiment. 
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 (a) Plate vertical displacement (b) Plate bending moment (Mx-x) 
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(c) Beam Bending Moment 

Figure 8: Displacements and Bending Moments of Plate Stiffened by Two Orthogonal Beams 
along Symmetrical Axis y = a/2 
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 (a) Plate Vertical Displacement (b) Plate Bending Moment (Mx-x) 

Figure 9: Displacements and Bending Moments of Plate Stiffened by Four Orthogonal 
Beams along Symmetrical Axis y = a/2 

Table 2: Comparison of Vertical Displacements along Symmetrical Axis from for Plate 
Stiffened by Two Orthogonal Beams (Unit: mm) 

Coordinate 
(a = 201.8) 

Proposed SAP 2000 Experiment 
(Shen et al 1987) 

(0, a/2) 0.000 0.000 0.000 

(a/8, a/2) 0.041 0.042 0.049 

(a/4, a/2) 0.116 0.116 0.117 

(3a/8, a/2) 0.173 0.175 0.169 

(a/2, a/2) 0.194 0.195 0.185 

CONCLUSIONS 
In this paper, the stiffened plate analogy is presented to model the plate-and-grid structures.  
A semi-analytical method is proposed based on the finite element method to obtain an 
accurate analysis of the stiffened plates.  The proposed method is used effectively and 
conveniently to solve the problem of a stiffened plate with irregular shape and openings, 
multi-connective domain or discontinuous material property and arbitrary oriented stiffeners, 
but involving much less unknown variables as compared to the general finite element 
methods.  Moreover, it is shown that the proposed method can have more flexible geometry 
adaptability than the finite strip method, higher efficiency in reducing the unknown variables 
than the boundary element method, and much less computation time and cost can be 
achieved by employing analytical transformations instead of the traditional matrix inverse.  
Moreover, although the proposed approach is based on the finite element method, only a few 
modifications to the original FEM programming are needed when immigrating the FEM to 
proposed method. 

It has been shown in the numerical examples that proposed method provides an efficient, 
yet accurate, means of analysing general stiffened plates.  Results of the proposed analyses 
for the example structures show very good agreement with those of the FEM and experiment. 
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Table 3: Comparison of Bending Moments of Plate and Beam along Symmetrical Axis for 
Plate Stiffened by Two Orthogonal Beams (Experiment by Shen et al 1987) 

Plate (N-cm/cm) Beam (N-cm) Coordinate 
(a = 201.8 

mm) Proposed SAP 2000 Experiment Proposed SAP 2000 Experiment 

(0, a/2) -7.652 -7.370 -7.927 -21.828 -22.345 -23.080 

(a/8, a/2) -1.533 -1.479 - -5.263 -5.683 -4.919 

(a/4, a/2) 2.072 2.273 - 4.264 3.704 3.973 

(3a/8, a/2) 3.266 3.133 - 7.585 7.563 6.950 

(a/2, a/2) 4.090 4.699 3.379 8.596 8.537 7.568 

Table 4: Comparison of Vertical Displacement and Bending Moments of Plate along 
Symmetrical Axis for Plate Stiffened by Four Orthogonal Beams (Experiment by Shen 1992) 

Displacement (mm) Bending Moment (N-cm/cm) Coordinate 
(a = 201.8 

mm) Proposed SAP 2000 Experiment Proposed SAP 2000 Experiment 

(0, a/2) 0.000 0.000 0.000 -8.554 -8.669 -8.230 

(a/8, a/2) 0.042 0.042 0.044 -1.559 -1.570 - 

(a/4, a/2) 0.115 0.115 0.114 2.053 2.858 - 

(3a/8, a/2) 0.173 0.173 0.166 3.773 3.811 - 

(a/2, a/2) 0.194 0.194 0.184 4.513 4.564 3.491 
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