
(19) United States
US 2017.0005797A1

(2) Patent Application Publication (10) Pub. No.: US 2017/0005797 A1
LANC et al. (43) Pub. Date: Jan. 5, 2017

(54) RESILIENT SECRET SHARING CLOUD
BASED ARCHITECTURE FOR DATA VAULT

(71) Applicant: PAYFONT LIMITED, Edingburgh
(GB)

(72) Inventors: David LANC, Edinburgh (GB); Lu
FAN, Edinburgh (GB); Lachlan
MACKINNON, Edinburgh (GB); Bill
BUCHANAN, Edinburgh (GB)

(21)

(22)

Appl. No.: 15/216,176

Filed: Jul. 21, 2016

Related U.S. Application Data
(63) Continuation of application No. PCT/GB2016/

052009, filed on Jul. 1, 2016.
Provisional application No. 62/188,058, filed on Jul.
2, 2015.

(60)

Publication Classification

Int. Cl.
H04L 9/08
H04L 29/06
H04L 9/14

(51)
(2006.01)
(2006.01)
(2006.01)

336

218- Meta-data

3 14-i- Secretshatag
: nºisie C

Hi? 2 Policy engine is - f

(52) U.S. CI.
CPC H04L 9/0894 (2013.01); H04L 9/14

(2013.01), H04L 63/20 (2013.01); H04L
2209/08 (2013.01)

(57) ABSTRACT

A method of securely storing data including: providing,
within a secure data storage system, a plurality of secret
sharing methods for selection and identifying a striping
policy for storage of the data, in accordance with input
preferences. The data can be split into N secret shares
according to a secret sharing method, the selection being
determined by the striping policy, wherein a threshold
number, T. of such shares is sufficient to recover the data,
where T is less than N, generating metadata associated with
the data, the metadata identifying the selected secret sharing
method and storing the metadata within the secure data
storage system and writing the secret shares to storage that
includes storage outside the secure data storage system, such
that, when at least T shares are retrieved, the metadata can
be recalled to identify the selected secret sharing method for
recovery of the data.

3:33

333 |
373 #

| ????---- | Degradation detectiºn 3.
#3 ~3. & recºvery tºdafe ;

222-i- schedule 33; ; $ §
i ?º 343 2%$ 5

202-- a º †:
* - - - - - - - -- ~~~~ :== -- ~ * -- - - - -----> < * ~~~~~~~~ --- ~~~ ..;

323; 225 # L-2so
33; £äguó #3 serviçºs

243

- #e: 23:#######
; ;

244– . : Sticky policy 35;
| enforcementmodule |

- w }

23.4° x 3 !
- - ------. --- - - - --- - - - -256

3 sº 2s2
- `J clouddaia.

Patent Application Publication Jan. 5, 2017. Sheet 1 of 8 US 2017/0005797 A1

* - - - - - f{}2

Secret sharing module of
application platform

..? Gö Meta-data module of server

sº.-ft--...-...} > H->304 Scheduler moduše of main
ni?-c?o?? Serger with rotite;

Patent Application Publication Jan. 5, 2017. Sheet 2 of 8 US 2017/0005797 A1

§
.#3
*

214 - Secret sharing 3
| module º
; §

2 #8. #eta-data -

module - - §

i 223- | Degradation detection L_ #
*—t- & recºvery modate §

222-i-H Schedule? . §
: fºgd?g : 3

232* > * §§ - &
- - - - - - i.-- _º

323 ;
35 . 235 ?š?d #3 services

243-4

Tiet 2 middieware
; - 256

244-k T sicky pº??ey –-254 t § ior He- - ty gºcy
Cloud proxies enforcemegt modu?e |

x .”Yº. w . t

t * * *.N.' ;

*— . - |

352

C?oad daia
|

states
s

US 2017/0005797 A1 Jan. 5, 2017. Sheet 3 of 8

{}{}{}

Patent Application Publication

Åxoidasiana,

Jan. 5, 2017. Sheet 4 of 8 US 2017/0005797 A1 Patent Application Publication

?????? T?R?T
È ELEË DD-DD-DDT CID-IDDID DIIDID IDI d?yopeupor

oze

Jan. 5, 2017. Sheet 5 of 8 US 2017/0005797 A1 Patent Application Publication

Patent Application Publication

r - -- ~~~

Jan. 5, 2017. Sheet 6 of 8

~602
Create persistence

Process “Pat” message

Get cºödiets

instruct a cióüéet
tontroñé?

: ~6??

Prºcess states

Retry attempts

Reportsharecloudet F-8% ºf
Süccessita;

wie compete share ?º -$48 ;

datatoblob?tom { --

t

Tºs-620
| Remove tacking data |

US 2017/0005797 A1

US 2017/0005797 A1

019-HOL—,

Patent Application Publication

Jan. 5, 2017. Sheet 8 of 8 US 2017/0005797 A1 Patent Application Publication

US 2017/0005797 A1

RESILIENT SECRET SHARING CLOUD
BASED ARCHITECTURE FOR DATA VAULT

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of International
Application No. PCT/GB2016/052009, filed Jul. 1, 2016,
which claims the benefit of U.S. Provisional Application No.
62/188,058, filed Jul. 2, 2015, the entire contents of which
are fully incorporated herein by reference.

FIELD OF THE INVENTION

[0002] This invention relates to the secure storage of data.

BACKGROUND

[0003] Computing has witnessed a change from on-prem
ises infrastructure to convenient, on-demand network access
to a shared pool of configurable computing resources that
can be rapidly provisioned and released with minimal man
agement effort or service provider interaction, also known as
Cloud Computing.
[0004] Cloud computing provides enterprises with ben
efits such as saving on capital and operational costs, improv
ing scalability and flexibility and reducing the carbon foot
print. However, Cloud computing also presents a number of
disadvantages such as data security and reliability issues.
[0005] In Cloud computing, on-premises architectures
within organisations have simply been scaled-out into the
Cloud, with the addition of encryption. This methodology
has been shown to be weak from many aspects, especially
related to: trusted administrator access; lack of proper access
control; Advanced Persistent Threat (APT); and in the loss
of private keys. Many systems are often protected with
symmetric key encryption methods, where the key is pro
tected by a password or encrypted using public key encryp
tion. Along with this, anyone with System Administrator
access can gain access to the encrypted content. The current
encryption methods in the Cloud often suffer where the loss
of a single encryption key can result in large-scale data loss.
[0006] Many organisations use the same methods of
robustness and failover as they do within their internal
systems. With the Cloud, there is a risk of a major outage in
parts of the Cloud resulting in denial of service. More
severely, outage can cause business shut down as there is no
alternative means of accessing data. Beyond this, the user’s
privacy is usually jeopardised as Cloud service providers
cache, copy and archive users’ data, which can easily be
retrieved, used and misused by miscreants, competitors or
court of law even when the owner seems to have deleted
them.

[0007] U.S. Pat. No. 8,423,466 describes a transaction
system that sits between a bank or payment provider and a
user and acts as a secure, trusted system for arranging
payment once a transaction has been fulfilled and only once
the identities of both users have been authenticated and
appropriate checks have been completed. The system allows
a user to transact with merchants over numerous different
channels, using a single authentication means to interact
with the system, thereby to be authenticated and arrange a
payment, without having to reveal financial details to the
merchant. The system provides multi-channel, consistent
anti-fraud measures and validation services to users to

Jan. 5, 2017

ensure that the other users involved in the transaction are
who they claim and are transacting within allowed limits.
[0008] Since many systems have been breached by a
compromise involving the loss of a private key, one method
to overcome this problem is to use keyless encryption. In
one example, keyless encryption involves breaking the data
into secret shares which can be distributed amongst those
who have the rights to the data. If any data elements are
accessed, it will not be possible to recover the original data
until the other relevant shares are available.

[0009] Secret sharing schemes have been proposed for
data splitting and reconstruction, thereby providing data
security in a keyless manner. Such algorithms include Adi
Shamir’s Perfect Secret Sharing Scheme (PSS), Hugo Kraw
czyk's Secret Sharing made short or Computational Secret
Sharing scheme (CSS) and Rabin’s Information Dispersal
Algorithm (IDA), among others. These algorithms break a
secret into chunks called (T-out-of-N) threshold where N is
the total number of shares and T is the number required to
recover the secret. Fewer than the threshold number (T) of
shares cannot recover the secret. The performance overhead
of the different secret sharing schemes, at increasing thresh
olds and increasing data sizes shows varied behaviours, and
has restricted the advancement of secret sharing schemes in
|USe

[0010] Another consideration taken into account when
using a Cloud based storage system is ensuring that it is
survivable. That is to say, the Cloud based storage system is
able to securely store critical information and ensure that it
persists, is continuously accessible, cannot be destroyed and
is kept confidential. Survivable Cloud storage systems
entrust data to a set of Clouds. Relying on a single Cloud
Storage Provider (CSP) is subject to confidentiality and
availability risks. As such, the data should be fragmented
and then distributed among multiple CSPs.

SUMMARY OF THE INVENTION

[0011] According to a first aspect of the invention, a
method of securely storing data is provided. The method
comprises: providing, within a secure data storage system, a
plurality of secret sharing methods for selection; identifying,
a striping policy for storage of the data, in accordance with
input preferences; split the data into a plurality, N, of secret
shares according to a selected one of the plurality of secret
sharing methods, the selection being determined by the
striping policy, wherein a threshold number, T, of such
shares is sufficient to recover the data, where T is less than
N; generate metadata associated with the data, the metadata
identifying the selected secret sharing method; store the
metadata within the secure data storage system; and write
the secret shares to storage. The storage preferably includes
storage outside the secure data storage system. When at least
T shares are retrieved, the metadata can be recalled to
identify the selected secret sharing method for recovery of
the data.

[0012] The secret sharing methods preferably include
methods with relatively high security but relatively low
resilience and methods with relatively high resilience but
relatively low security and wherein the selection of the
striping policy is based on preferences that are translated
into security and resilience preferences.
[0013] The secret sharing methods may include methods
or algorithms with relatively high T?N and relatively low

US 2017/0005797 A1

T/N. An interface is provided to enable a user or adminis
trator to input preferences that are translated into selection of
a striping policy.
[0014] The secret sharing methods preferably include dif
ferent secret sharing algorithms selected from the group that
includes: perfect secret sharing scheme (PSS); computa
tional secret sharing (CSS): information dispersal algorithm;
and Reed-Solomon encoding combined with encryption.
[0015] The policy preferably translates a user preference
for security, resilience and/or performance into a selection of
method/algorithm.
[0016] Each share is preferably written to an independent
store, at least some of which are outside the secure storage
system, such as: a public cloud; a private cloud; a non-SQL
data store; and a file server.
[0017] In accordance with a second aspect of the inven
tion. A system for securely storing data is provided. The
system comprises: a secret sharing module adapted to pro
vide a plurality of secret sharing methods for selection, each
method arranged to split the data into a plurality, N, of secret
shares wherein a threshold number, T. of such shares is
sufficient to recover the data, where T is less than N, a policy
module adapted to determine a policy for storage of the data,
in accordance with input preferences, wherein the method
selected by the secret sharing module for splitting the data
is determined by the policy module; a metadata module for
generating and storing metadata associated with the data, the
metadata identifying the selected secret sharing method; and
a memory and storage interface for writing the secret shares
to storage such that, when at least T shares are retrieved from
storage, the metadata can be recalled to identify the selected
secret sharing method for recovery of the data.
[0018) Also provided is a computer program product
comprising program code which, when executed by a com
puter, causes the computer to perform the above method.
[0019. In accordance with a further aspect of the inven
tion, a method of securely storing data is provided that
comprises: fragmenting (otherwise referred to as striping)
the data into a plurality, N, of secret shares, typically of
equal size, according to a secret sharing algorithm, wherein
a threshold number, T. of such shares is sufficient to recover
the data, where T is less than N, splitting each share into data
particles of equal size; writing the particles to storage such
that the particles of each share are written to independent
storage means corresponding to that share, each particle
being identified only by an identifier unique within its
respective storage means. In this manner, loss of an inde
pendent storage means or loss of a particle within that
independent storage means preferably results in loss of at
most one share.
[0020) The method may comprising pre-storing particles
of dummy data within each storage means and/or may
comprise performing a clean-up process for each storage
means, whereby particles that exist in the storage means are
identified as having expired. Particles of data and particles
of dummy or expired data preferably co-exist in the storage
IIlêallS.

[0021] The method may further comprise identifying a
persistence policy for storage of the data in accordance with
input preferences, whereby a set of storage means is selected
for storage of the data in accordance with the persistence
policy and/or in accordance with a sensitivity attribute
associated with the data. Some polices may include restric
tions on attributes of the storage means that are to be

Jan. 5, 2017

selected to make up the set of storage means. Some polices
may be defined for user selection that include different
attributes for each of the storage means that are to be
selected to make up the set of storage means. Such attributes
may include identifiers of storage providers and geographi
cal locations of the storage means. Polices may include user
latency preference and/or may include duplication of one or
more shares across plural independent storage means and/or
may include trustworthiness of the storage means. “Trust
worthiness” is not merely an abstract concept in the mind of
the user—it may be defined in technical features such as by
electronically signed certification, and/or may include chal
lenge and response with a certification server.
[0022] The method preferably included monitoring the
performance of each storage means for improvement of
selection of storage means according to persistence policy,
(e.g. adjusting the selection of storage means based on
performance in response to the monitoring).
[0023] In accordance with a further aspect of the inven
tion, a secure storage system is provided comprising: an
input interface for receiving data for storage; a secret sharing
module for fragmenting the data into a plurality, N, of secret
shares of equal size according to a secret sharing algorithm,
wherein a threshold number, T. of such shares is sufficient to
recover the data, where T is less than N, and a persistence
module for splitting each share into data particles of equal
size and for writing the particles to storage such that the
particles of each share are written to independent storage
means corresponding to that share, each particle being
identified only by an identifier unique within its respective
storage means.
[0024] Also provided is a computer program product
comprising program code which, when executed by a com
puter, causes the computer to: receive data for storage;
fragment the data into a plurality, N, of secret shares of equal
size according to a secret sharing algorithm, wherein a
threshold number, T. of such shares is sufficient to recover
the data, where T is less than N, split each share into data
particles of equal size; and write the particles to storage such
that the particles of each share are written to independent
storage means corresponding to that share, each particle
being identified only by an identifier unique within its
respective storage means.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1 is a high level diagram illustrating, generi
cally, elements of a storage system in accordance with
embodiments of the invention.

[0026] FIG. 2 is a more detailed diagram of a storage
system, referred to as a survivable cloud storage system
(SCSS) architecture.
[0027] FIG. 3 illustrates tiered software components of a
further embodiment.

[0028] FIG. 4 illustrates operation of the system of FIG. 3.
[0029] FIG. 5 further illustrates, in hardware and software
elements, certain aspects of the system of FIG. 3.
[0030] FIG. 6 is a process flow diagram illustrating opera
tion of the system of FIG. 5.
[0031] FIG. 7 further illustrates, in hardware and software
elements, certain aspects of the system of FIG. 3.
[0032) FIG. 8 illustrates certain elements of an embodi
ment described in an appendix.

US 2017/0005797 A1

DETAILED DESCRIPTION

[0033] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.
[0034] FIG. 1 shows an architecture which supports a
secret sharing scheme in a multi-cloud environment 100 can
be viewed as having an application platform 102 (having a
secret sharing module that will be described), a main multi
cloud proxy server (with router) 104 and a metadata server
106. The metadata server 106 is illustrated as being con
nected between the application platform 102 and the main
multi-cloud proxy server 104 illustrating that metadata can
be associated with data passing between the application
platform 102 and the main multi-cloud proxy server 104 in
each direction.

[0035] The function of the application platform 102 is to:
determine access structure; encode secrets; send secrets to
the main multi-cloud proxy server 104 for distribution to
multi-cloud service providers, and reconstruct the secret
shares when recovered. The main multi-cloud proxy server
(with router) 104 splits and distributes encoded shares to the
multi-cloud based on a pre-determined access structure and
manages the fail-over protection of shares. The metadata
server 106 includes the functionality of user management;
server management; session management; policy manage
ment; and file metadata management.
[0036] The architecture may also have a multi-cloud proxy
server for gathering shares and reconstructing secrets as well
managing break-glass data recovery. There may be sub
Routers to create a path between a cloud service provider
(CSP) (considered here as front-end) with other cloud ser
vice providers (considered here as the back-ends), thereby
creating a quick and alternative recovery path for all the
shares.
[0037] At the application platform 102, the data owner
determines N and T values and, using both, calls up the
application to be used and selects an algorithm of choice
based on an evaluation after a successful sign-in to the
system (e.g. as described in U.S. Pat. No. 8,423,466), and an
access level is determined. The values for N and T are not
directly selected by the user, but such values are prescribed
for attributes selected by the user (e.g. “very secure,” “very
resilient” etc.) Translation of selected attributes into a
selected algorithm (with or without selected encryption) and
parameters for that algorithm is automated.
[0038] In addition to selection of algorithm and param
eters based on user selected attributes (security, resilience,
overhead cost), the choice of algorithm and encryption can
further be based on data size and performance and indeed
performance for a given data size).
[0039] The selected algorithm may have a 3-out-of-5
access structure or a 4-out-of-10 or a 2-out-of-5. The
encoded data is sent to the local main multi-cloud proxy
server with router 104 for onward dissemination to the
CSPs. The proxy splits the encoded data according to a
secret-sharing scheme determined access structure, and dis
tributes each share over the Internet to different CSPs (or
distributes some to CSPs and others to local/in-house stor
age).

Jan. 5, 2017

[0040] The retrieval process is similar to the storage
process as the metadata server (106) helps to keep track of
the siblings of the shares. The proxy retrieves enough
corresponding shares from the cloud service providers. This
retrieval involves authentication to the cloud providers. The
retrieved shares are sent back to the application platform
(102), which decodes them and verifies their authenticity
before reconstructing the data. The system is capable of a
break-glass data recovery through the local multi-cloud
proxy server in case of emergency after which a clean-up
should be performed at the end of the activities for record
purposes.
[0041] The design incorporates unique features in a multi
cloud environment as it uses secret sharing schemes to
implement keyless encryption. This is done by breaking the
secret into chunks in such a manner that less than T shares
cannot recover the secret, thus using it for data distribution
in object storage system. This is also used to implement
safety destruct with equal divided shares. The incorporation
of a self-destructive system solves the problem of cloud
users’ privacy, as there is no way a user’s data can be
accessed, copied, cached or used without the data owner’s
consent within a pre-determined time-frame, because all
data and their copies are destroyed or become unreadable
after a user-specified time, without any user intervention.
[0042] The self-destructive system defines two modules; a
self-destruct method object; and survival time parameter for
each secret key part. In this case, a secret sharing algorithm
is used to implement share distribution in object storage
system so as to ensure safe destruct with equally divided
shares. Based on active storage framework, object-based
storage interface will be used to store and manage the equal
divided shares.
[0043] The use and implementation of threshold systems
in cloud services are deliberate acts towards implementing a
failover protection in the model. In normal circumstances,
all the service providers are used in share storage as well as
secret reconstruction, but in an extreme desperate situation,
2-out-of-5 can be made redundant. That is to say if 2-out
of-5 CSPs fail, data/secret storage and reconstruction are
still possible.
[0044] The use of a second local multi-cloud proxy server
and sub-routers are for the implementation of a break-glass
data recovery. With the sub-routers and the second multi
cloud server, a route is established to and from all the CSPs.
Having decided on a 3-out-of-5 access structure, only 3-out
of-5 CSPs are required to store and reconstruct the secret in
an emergency situation. By this feature, the concept of total
business shut down or denial of service may not exist in
using this model, though the number of CSPs required is
dependent on the secret sharing algorithm of choice in times
of secret reconstruction.
[0045] A break-glass data recovery system can be imple
mented using one of the proxy servers. An access to the
multi-Cloud proxy server entails access to particular CSPs
that provide access to all other CSPs (e.g. CSPs I, 3 and 5
provide a link to CSPs 2 and 4). In this example, these are
different independent CSPs of the same or different storage
architectures. The relationships are linked for redundancy
but are mutually exclusive in terms of storage architectures.
[0046] Access to particular CSPs ensures a quick recovery
of shares in order to reconstruct the secret as it is a quick link
to all other CSPs. Moreover, following the access structure,
such access ensures the possibility of reconstructing the

US 2017/0005797 A1

secret in an emergency situation. This is a useful feature, as
there could be a period of cloud outage, and in such
situation, data recovery could be done from 3-out-of-5
Cloud service providers being used for data storage. That is
to say, if 2 out of the 5 cloud service providers fail, data
recovery is still possible in such an extreme condition.
[0047] The proposed architecture can provide the follow
ing:
[0048] 1 fast and efficient data/key distribution to multi
cloud service providers;
[0049] 2 keyless encryption and therefore increased data
security;
[0050) 3. data owner’s privacy by implementing a self
destructing data system (Sel)aS), as it meets all the privacy
preserving goals;
[0051] 4. support, through Sebas, for securely erasing
files and random storage in drives (Cloud, FIDD or SSD)
respectively;
[0052] 5. backup operational mode in which the function
of 5 CSPs can be assumed by 3 CSPs when 2-out-of-the-5
CSPs become unavailable either through failure or sched
uled down time; and
[0053] 6. break-glass data recovery.
[0054] FIG. 2 shows a Survivable Cloud Storage system
(SCSS) architecture 200. It is shown as having three parts—
tier 3 middleware 202, tier 2 middleware 204 and cloud data
stores 206.

[0055] The tier 3 middleware 202 comprises a secret
sharing module 214, a meta data module 218, a scheduler
module 222, connected across interfaces 216 and 220 and
connected to a source of data 208 via interface 212 and to
cloud I/O services 226 via interface 224. It has a policy
engine 242 coupled to each of elements 214, 218 and 222 via
software interfaces (APIs) 236, 238 and 240 and has a
degradation detection and recovery (DDR) module 234
coupled to metadata module 218 via software interface 241.
[0056] The tier 2 middleware comprises a cloud proxies
module 244 and a sticky policy enforcement module 254
connected across interface 256. The cloud proxies module
244 is connected to the cloud I/O services 226 via interface
243.

[0057] Sticky policies are described in general terms in
Sticky Policies for Data Control in the Cloud by Slim
Trabelsi and Jakub Sendor, 2012 Tenth Annual International
Conference on Privacy, Security and Trust, where it is
explained that sticky policies are security and privacy con
straints that are permanently “attached” to data. It is
described that when sensitive information is sent to the
cloud, it is stored with the sticky policy attached to it (for
storage of the sticky policy in the cloud). It is also described
that an entity that wants to decrypt data needs to comply
with the sticky policy in order to receive a decryption token
from a certification authority.
[0058] In the preferred embodiment of the present inven
tion, all that is sent to the cloud attached to the data is
sufficient information (e.g. an ID) to permit the system to
identify the sticky policy that has been applied and from
which the data can be reconstructed when sufficient shares
have been retrieved. I.e. the details of the sticky policy
remain as metadata in the metadata module 218 while
forever remaining associated with the data. This fragmen
tation provides greater security of the overall secure storage
system and obfuscates the details of the sticky policy,

Jan. 5, 2017

encryption method and other attributes related to any data
fragment stored in the cloud by the present invention
[0059] Cloud data stores 206 comprise public clouds 258
connected to the cloud proxies 244 via interface 246; private
clouds 260 connected to the cloud proxies 244 via interface
248; NoSQL data stores 262 connected to the cloud proxies
244 via interface 250 and/or traditional file servers 264
connected to the cloud proxies 244 via interface 252. Dif
ferent ones of these different types of store may be available
and used in different circumstances, as will be described. It
is particularly useful, as will be explained, to arrange that
more than one type of data store is used for a particular set
of shares of a shared secret.
[0060] The policy engine 242 is connected to configura
tion services 228 via interface 235. The configuration ser
vices are connected to system administrators 232 via inter
face 268. The DDR module 234 is connected to a
maintenance module 230 via interface 266. The mainte
nance module 230 is connected to system administrators 232
via interface 270.
[0061] The design and implementation of an access con
trol sub-system can be quite flexible, and largely depend on
specific requirements from an application domain. Access
control issues are assumed to be addressed on a higher level
(e.g. as described in U.S. Pat. No. 8,423,466), rather than
being an integral part of the SCSS architecture. In other
words, the underlying data I/O services behave as a relying
party of the access control sub-system, and expect data
producers and consumers to present valid security tokens as
proof of authorised data operations.
[0062] The tier 3 middleware 202 will now be described.
[0063) Data I/O Services 210 provide fundamental create,
read, update and delete (CRUD) operations 208 to data
producers and consumers. Service-Oriented Architecture
(SOA) is adopted to provide good interoperability that
allows a wide range of clients developed on different soft
ware and hardware platforms to store and retrieve any data
files conveniently.
[0064] Data producers and consumers may access the data
I/O services 210 in slightly different ways. A data producer
is regarded as the owner of the data files that it has
previously stored in the SCSS architecture, and thus its
CRUD operations on these files should be permitted right
away. In this circumstance, the data I/O services 210 only
need to authenticate a data producer’s identity using a
security token issued by the access-control sub-system.
However, a data consumer must access the data I/O services
210 via a policy enforcement point (PEP), which guarantees
that the data consumer has been authorised by the data
owner to carry out a CRUD operation over a certain file.
[0065] When the data I/O services 210 receive a new data
file from a client, it assigns a unique ID to the file, registers
the ownership, and splits the file into multiple secret shares
using the secret sharing module 214 (as shown by line 212).
Then, a variety of meta-data will be generated by the
meta-data module 218, such as time-stamps, unique share
IDs, and mappings from the share IDs to further tracking and
management information (as shown by line 216). It is
noticeable that some of the meta-data is maintained by the
meta-data module 218 internally, while some others will be
attached to the shares themselves, i.e., the sticky policies
that will be handled by the tier-2 middleware 204 later on for
share life-cycle management purposes. Next, the shares are
passed on to the scheduler module 222 (as shown by line

US 2017/0005797 A1

220), which dynamically distributes the shares to Cloud data
stores 206 through lower level Cloud I/O Services 226 (as
shown by line 224). The sticky policy attached to the
share/fragment may only relate to the unique ID for that
share/fragment. The unique ID can then be used to locate the
share/fragment and access the rest of the metadata main
tained in the meta-module 218. This ensures that the com
plete metadata cannot be accessed by only having access to
the share/fragment in the cloud data stores 206.
[0066] When the data I/O services 210 receive a reading
request for a data file 208, it firstly resolves the file ID into
corresponding share IDs using the meta-data module 218
and looks up the tracking information for each of the shares;
secondly, it asks the scheduler module 222 to recover these
shares from the cloud data stores 206—this operation will
terminate when a sufficient number of shares have been
collected; and last, it reconstructs the original data file using
the secret sharing module 214 and returns the file to the
client.

[0067] The selection by the secret sharing module 214 of
the correct shared secret algorithm is described below. The
secret sharing module may alternatively be referred to as a
“crypto-fragmentation” module.
[0068] The processing of an updating request is similar to
writing a new file 208, while it is possible either to delete the
old file, or to keep it for versioning or auditing purposes. To
process a delete request 208, the data I/O services 210
resolve the file ID into corresponding share IDs, and then
ask the scheduler module 222 to delete all or enough of the
shares to obfuscate recreation from the cloud data stores 206
and recalibrate indices related to dummy data.
[0069] Referring now to configuration services 228, the
front end of the configuration services provides a graphical
user interface for system administrators 232 to set up various
runtime policies that control the behaviours of the tier 3
software modules 202, as shown by lines 235 to 240. The
back end of the services is a policy engine 242, which
interprets and enforces the policies in real-time. It is pre
ferred that the configuration and maintenance services are
segregated between the different middleware tiers, for
increased segregation of duties and security.
[0070] The configuration policies dictate the following
aspects of the SCSS architecture 200. For the secret sharing
module 214, the policy defines the secret sharing schemes
that are supported by the system, the hashing and encryption
functions to be used by each individual scheme, the thresh
old T, and the total number of shares N. A policy may
configure the secret sharing module 214 to apply a single
scheme with static parameters to all the data files, or to apply
a number of schemes with dynamic parameters flexibly so as
to meet different application requirements on security, reli
ability and performance.
[0071] For the meta-data module 218, the policy defines
the types and levels of meta-data that the system should
generate and maintain. For example, a configuration policy
may demand of a comprehensive audit trail about all the
changes made to a certain file. As a result, the meta-data
module 218 would override the updating and deleting opera
tions so as to keep all historical versions of the targeted file
throughout its life-cycle. For the scheduler module 222, the
policy defines the scheduling strategies that are supported by
the system. For example, whether the system should apply
round-robin scheduling to optimise load-balancing, or apply

Jan. 5, 2017

Byzantine fault-tolerance scheduling to optimise depend
ability, or apply social trust scheduling to optimise perfor
IIläI1Cé.

[0072] Referring now to maintenance services 230, these
facilitate system administrators to configure the degradation
detection & recovery (DDR) module 234, as shown by line
266. The DDR Module 234 is concerned with the integrity
and retrievability of the secret shares that were distributed to
the Cloud data stores 206. It obtains share IDs and corre
sponding tracking information from the Meta-Data Module
218 (as shown by line 241), and periodically challenges the
Cloud data stores 206 using a proof-of-retrievability (PoE)
protocol (as shown by line 225). In the case that a share was
identified to be corrupted or lost, the DDR module 234 will
inform the meta-data module 218, which in turn generates a
substitute share using the secret sharing module 214 and
uploads the share using the scheduler module 222. A main
tenance policy should specify technical details about the
PoR protocol, as well as the interval for the DDR module
234 to carry out the checks.
[0073]
[0074] The tier 2 middleware 204 implements CSP spe
cific cloud proxies which provide lower level share-oriented
CRUD operations and query functions through consistent
cloud I/O services interface, as shown by line 243.
[0075] Cloud proxies 244 provide both horizontal and
vertical abstractions over a wide range of cloud data stores
206, as shown by lines 246 to 252. Horizontal abstraction
refers to the compatibility with diversified CSPs under
different management and/or control (e.g. Microsoft"M,
Amazon.TM, GooglerM, RackspaceTM, etc). A cloud proxy
244 instance serves as a client of a CSP’s proprietary API,
and handles the input and output of secret shares efficiently.
Vertical abstraction refers to the capability of a cloud proxy
244 instance to utilise a CSP’s storage services on different
levels appropriately. For example, the cloud proxy for
Windows AzureTM may store secret shares using the blob
service, yet store associated meta-data, such as sticky poli
cies, using the table service. This is because the blob service
is more cost-effective, and the table service provides better
performance on queries. Similarly, the cloud proxy for AWS
may store secret shares in S3, yet store meta-data in Dyna
mo?)BTM, and so on. Such optimisations should be carried
out by a cloud proxy 244 automatically, and be completely
transparent to tier 3 middleware 202. The sticky policies are
preferably stored with their associations to secret shares
within the SCSS 200, where performance, cost and latency
benefits result.

[0076] Another component of tier 2 middleware 204 is the
sticky policy enforcement (SPE) module 254, which is an
independent software process that constantly scans sticky
policies of the secret shares and fulfils the security con
straints, as shown by line 256. For example, the SPE module
254 deletes a secret share when it is expired according to the
sticky policy.
[0077| Referring now to cloud data stores 206, the SCSS
architecture 200 shall support as many types of cloud data
stores as possible in order to provide high flexibility, scal
ability, reliability and cost-effectiveness. Public clouds 258
and private clouds 260 can be used in combination, and if
necessary, the system can expand to include NoSQL data
stores 262 (e.g. Cassandra TM and DruidTM), or even tradi

Tier 2 middleware 204 will now be described.

US 2017/0005797 A1

tional file servers 264. A dedicated cloud proxy needs to be
implemented to bridge a particular data store and the unified
cloud I/O service interface.
[0078] FIG. 3 shows a resilient secret sharing cloud-based
architecture for a data vault 300. The architecture provides
a system that allows data to be stored securely in a plurality
of storage means 302. The system comprises a secret sharing
module 304 (which may be regarded as an Anonymous and
Distributed encryption Cloud Architecture—ADeCATM?
engine); a persistence engine 306 (which may be referred to
as ATLASTM); the plurality of storage means 302; a logging
unit 308; a transaction data unit 310; an authentication
framework unit 312 with middleware apps 313; a web
application unit 314 and a website unit 316. Each of these
units is a module of software with or without its own
independent hardware and they interface as shown in FIG.
3 across interfaces (which may be APIs).
[0079] The secret sharing module 304 is coupled to a
secret sharing policy engine 318 and a policy rules database
320. (318 and 320 could alternatively be a single module).
The persistence engine 306 is coupled to a persistence policy
monitor 322 and a persistence data store 324. The authen
tication framework unit 312 and the web application unit
314 can be as described in US patent U.S. Pat. No. 8,423,466
which is hereby incorporated in its entirety by reference. The
website unit 316 comprises a firewall 326, a reverse proxy
328 and a load balancer 330.
[0080] In operation (after authentication), data 332 is sent
from the middleware apps 313 to the secret sharing module
304 for splitting into secret shares and storing. The secret
sharing module 304 receives control signals from secret
sharing control 334 and also receives a secret sharing policy
for the data from the secret sharing policy engine 318
according to the policy rules database 320. The secret
sharing module 304 then splits the data into secret shares
336 which are forwarded to the persistence engine 306.
[0081] The persistence engine 306 receives the secret
shares from the secret sharing module and distributes the
secret shares, according to the persistence policy engine 322
and the persistence data store 324, via a firewall 338, to the
plurality of storage means (e.g. cloud stores) 302.
[0082] FIG. 4 shows a more detailed implementation of
the secret sharing module 304. It is a secure data storage
system that provides a plurality of secret sharing algorithms
for selection. The secret sharing module 304 is coupled to a
plurality of storage means 302 and to a secret sharing policy
engine 318 (not separately shown in FIG. 4) and policy rules
database 320. The secret sharing policy engine 318 and the
policy rules database 320 can provide an interface for the
Data I/O Services 210 and the Configuration Services 228 of
FIG. 2.

[0083] The secret sharing algorithms allow data 332 to be
split into a plurality, N, of secret shares N 402a-402n
according to a selected secret sharing algorithm, such that a
threshold number of shares, T, is sufficient to recover the
data, where T is less than N. Some examples of secret
sharing algorithms include the Perfect Secret Sharing
Scheme (PSS); Computation Secret Sharing (CSS): Infor
mation dispersal algorithm (IDA) and Reed–Solomon
encoding with combined encryption. This list is not exhaus
tive, and any secret sharing scheme may be used alone or in
combination. The selection of N and T is determined by the
striping policy. The secret sharing policy engine 318 and the
policy rules database 320 allow the administrator to set, and

Jan. 5, 2017

the user or administrator to select, preferences which in turn
select which secret sharing algorithm is to be used for the
particular user or particular data or other circumstances.
[0084] The secret sharing module 304 is able to identify a
striping policy according to input preferences. The input
preferences may be provided to the policy rules database
320 by users or administrators through configuration ser
vices 232 (FIG. 2).
[0085] The secret sharing policy engine 318 and the policy
rules database 320 allow a user or administrator to select a
relatively high T/N ratio or a relatively low T/N ratio. A
relatively high T?N ratio creates a relatively high security but
relatively low resilience secret sharing algorithm. A rela
tively low T/N creates a relatively low security but relatively
high resilience secret sharing algorithm, the selection of T/N
is translated into the selection of striping policy.
[0086] The secret sharing policy engine 318 and the policy
rules database 320 optionally allow the user or administrator
to select or configure an encryption method such as
Advanced Encryption Standards (AES) or Blowfish"M. The
encryption method can be used on the data or the plurality
of secret shares. The encryption method is stored in the
secret sharing module 304.
[0087] The secret sharing module 304 uses preferences
provided by the secret sharing policy engine 318 and the
policy rules database 320 to split the data into a plurality of
secret shares 402a-402n. Where no specific selection or
preference of policy or rules is chosen for data, the secret
sharing module, 304 will automatically apply a secret shar
ing and persistence method from a default set of one or more
of a plurality of secret sharing algorithms and encryption,
based on parameters such as data type, size, policy feedback
from the persistence engine and other operating parameters
related to the current efficiency of the architecture 314. This
particular method provides a further application of a “zero
knowledge” user approach to an SCSS (i.e. a system in
which those who work on one part of the system have no
knowledge of what is happening in another part)
[0088] The secret sharing module 304 generates metadata
associated with the data 332 and the plurality of secret shares
402a-402n. In particular, the metadata comprises informa
tion according to the selected secret sharing algorithm
and/or parameters that was/were used to create the plurality
of secret shares 402a-402n. By “algorithm” is meant the
method of splitting the data (e.g. file) into a plurality of
secret shares (e.g. PSS, CSS, IDA, Reed–Solomon coding
with encryption, etc.) and by “parameters” are meant at least
the values N and T. The term “method” will be used
generically to encompass different algorithms and different
implementations of an algorithm with different parameters.
[0089] The metadata generated in the secret sharing mod
ule 304 attaches to the shares. Metadata stored in the
middleware apps 313 and policy engine 318 may also
include policy rules for access control purposes such as
which shareholders are regarded as the owners of which
shares and in what circumstances they are allowed to
retrieve the shares. Additionally, the ADeCATM engine gen
erates an identifier and attaches the identifier to the plurality
of secret shares.
[0090] The encryption method, the metadata and the iden
tifier are collectively known as sticky policies.
[0091] The secret sharing module 304 writes the plurality
of secret shares 402a-402n to the plurality of storage means
302. The plurality of storage means 302 are outside of the

US 2017/0005797 A1

secure storage system of the secret sharing module 304. The
plurality of storage 302 means may include a public cloud
258, a private could 260, a non-SQL data store 262 and a file
server 264. The plurality of storage means may be referred
to as the Multi-Cloud. The cloud storage means 302 may
alternatively be referred to as the cloud service providers
(CSPs).
[0092] It is preferred that each of the plurality of storage
means is an independent storage means, each having a
different address (e.g. URL or URI). They may also have a
separate set of virtual machines that are managed to different
interfaces. They may be independently addressable, may not
have the same published endpoints, may be provided by
different cloud service providers, may have different under
lying technology and/or may be in a different geographic
location.

[0093] In a preferred embodiment, the secret sharing mod
ule 304 writes a single secret share of the plurality of secret
shares 402a-402n to a single storage means of the plurality
of storage means 302. In an alternative embodiment, the
ADeCATM engine writes more than one but less than T secret
shares of the plurality of secret shares 402a-402n to a single
storage means of the plurality of storage means 302.
[0094] The secret sharing module 304 is synonymously
referred to as the ADeCATM data vault and may encompass
the application platform 102, the main multi-cloud proxy
server with router 104 and the meta-data module 106.

[0095] To retrieve the data after it has been stored, the
secret sharing module 304 uses the identifier to retrieve the
at least T shares of the plurality of secret shares 402a-402n
from the plurality of storage means 302. Then the secret
sharing module 304 uses the stored metadata to recreate the
data from the retrieved secret shares.
[0096] Appendix 1 shows a detailed implementation of the
secret sharing module using Java"M.
[0097] Operation of the persistence engine 306 and the
persistence policy engine 322 of FIG. 5 is now described.
[0098] Data 332 is fragmented into a plurality, N, of secret
shares 402a-402n of equal size according to a secret sharing
algorithm, wherein a threshold number, T, of such shares is
sufficient to recover the data. T is less than N.
[0099] The persistence engine splits each of the plurality
of secret shares 402a-402n into p data particles 404aa
404mp. The data particles are preferably of equal size to
ensure that each data particle is anonymous relative to each
other. The size of the data particles 404aa-404mp is deter
mined by the administrator preferences. Alternatively, the
size of the data particles is determined by computational
limitations, such as available storage and bandwidth. In a
further alternative embodiment, the size of the data particles
is determined by a combination on input preferences and
computational limitations.
[0100] The user or administrator preferences and compu
tational limitations are identified by the persistence policy
engine 322.
[0101] The persistence engine 306 adds an identifier to
each of the data particles 404aa-404mp. The identifier
enables the persistence engine 306 to keep a track of where
each of the data particles 404aa-404mp is located. The
identifier is stored in a secure storage system only accessible
by the persistence engine 306. In a further embodiment, this
secure storage system could be stored recursively by another
SCSS.

Jan. 5, 2017

[0102] The persistence engine 306 writes the data particles
to a plurality of storage means 302. Preferably, all data
particle 404xa-404xp of a share x are written to an indepen
dent storage means corresponding to that share, and data
particles of different shares are written to different indepen
dent storage means. In this way, if an independent storage
means is lost or a data particle within that independent
storage means is lost, the result would mean a loss of one
share at the most. In doing this, the persistence engine 306
ensures that data processed through the architecture 300 is
not vulnerable to loss or compromise of any single CSP or
independent storage means.
[0103] Each storage means is “independent” in that it is
specific to a group of particles comprising a share.
[0104] Since the data particles 404aa-404mp are anony
mous relative to each other, a hacker entering the indepen
dent storage means 302 would not be able to identify one
particle from another. Much less, the hacker would not be
able to determine which data particles within the store have
sensitive information, or which form a set 404xa-404xp that
may together have sensitive information.
[0105] The independent storage means may pre-store par
ticles of dummy data whereby the data particles 404xa
404xp in a store co-exist with particles of dummy data. By
so doing, the data particles are further obfuscated in the
independent storage means 302.
[0106] The persistence engine 306 may perform a clean
up process for each of the plurality of storage means 302.
The data particles are given a set timer and once the timer
has finished the data particles are expired. The expired data
particles then become particles of dummy data and co-exist
with the data particles 404a-404n. This obfuscates the data
particles 404a-404n without the need to generate further
particles of dummy data.
[0107] The persistence policy engine 322 may identify a
persistence policy in accordance with input preferences. A
set of the plurality of storage means is then selected in
accordance with the persistence policy.
[0108] In an embodiment, the persistence policy is iden
tified in accordance with the sensitivity of data. This ensures
that highly sensitive data is stored in the most secure storage
IIlêallS.

[0109] The persistence policies are defined by user or
administrator preferences. For example, the user or admin
istrator preferences may include a set of storage means that
are not to be used. Alternatively, the user or administrator
preference may include a set of storage means that are
preferred. The user or administrator preferences may be
based on attributes relating to the plurality of storage means
302. The attributes may include identifiers of storage pro
viders and geographical locations.
[0110] The persistence policy may include a latency pref
erence. The persistence policy may also include duplication
of the plurality of shares across the plurality of storage
IIlêallS.

[0111] The performance of the plurality of storage means
302 is monitored according to the persistence policies. The
set of storage means 302 used to store data particles 404aa
404mp is then adjusted based on the performance of the
plurality of storage means 302.
[0112] The selection of persistence policy includes a mea
sure of the trustworthiness of the plurality of storage means
302.

US 2017/0005797 A1

[0113] FIG. 5 shows a more detailed implementation of
the persistence engine 306. It comprises the persistence
engine 306, the persistence policy engine 322 (this is also
referred to as persistence control), the plurality of storage
means 302, and persistence storage means information data
bases 502. The latter comprises a persistence information
database related to shares, cloudlet locations and policy
rules 506 and a share set data database 508. A share tracking
database 504 is provided that has information for tracking
shares across a plurality of different storage architectures.
[0114] In operation, the persistence engine 306 receives a
plurality of secret shares 402a-402n and splits them into data
particles 404aa-404mp that are anonymous relative to each
other. The persistence engine 306 also receives the user or
administrator preferences and computational limitations
from the persistence policy engine 322. The persistence
policy engine 306 then adds an identifier to each of the data
particles 404aa-404mp. The identifier enables the persistence
engine 306 to keep a track of where each of the data particles
404aa-404mp is located. The identifier is stored in the
persistence storage means information database 502. The
persistence engine 306 then stores the data particles 404aa
404mp in the plurality of storage means 302.
[0115] The plurality of storage means 302 is determined
by the user or administrator’s preferences. In an embodi
ment, the identifier is stored with the corresponding data
particle.
[0116] FIG. 6 is a process flow diagram showing operation
of the persistence engine 306 of FIG. 5.
[0117] At step 602, the persistence engine 306 creates a
persistence ID. The persistence ID includes information
provided by the persistence policy engine 322, such as the
user or administrator preferences. At step 604, the persis
tence engine 306 receives a “put’ message, which tells the
persistence engine to store data in to the plurality of storage
means 302. At step 606, the persistence engine 306 retrieves
information from database 506 on the plurality of storage
means 302 to be used. This allows suitable cloudlets to be
selected and thus ensures that the data to be stored in the
storage means 302 is stored correctly, in accordance with
preferred policy.
[0118] At step 608, the persistence engine 306 sends a
cloudlet controller 510a-510n information on how to store
the secret shares 336. At step 610, the secret shares 336 are
sent to the cloudlets 302. The cloudlet controllers 510a–510m
write the shares to the plurality of storage means 302
according to information provided at step 608.
[0119) If necessary, at step 612, the cloudlet controllers
510a-510n retry storing any secret shares 336 that failed to
store at a first attempt. This involves returning to step 606,
whereupon the persistence engine 306 re-tries to write the
secret shares 402a-402n to the same storage means 302 or
the persistence engine 306 may attempt to write the secret
shares 402a-402n to an alternative storage means 302. A
retry attempt can be at the particle level if storage of only
certain particles failed. This process is repeated until all the
data particles 404aa-404mp are written to the data storage
means 302.

[0120) At step 614, the cloudlet controllers 510a-510m
send feedback messages 514 to the persistence engine 306.
Each storage means 302 sends a success message if the
shares 336 were written to the storage means 302 and sends
a fail message if the shares 336 were not written to the
storage means 302.

Jan. 5, 2017

[0121] At step 616, the shares 336 are deleted in the
persistence engine 306.
[0122) Steps 618 and 620 are optional steps that relate to
logging module 308 (of FIG. 3). In step 618, data relating to
the complete share is written to blob from tracking. In step
620 tracking data for the share is removed.
[0123] FIG. 7 shows a detailed implementation of the
persistence engine 700 that allows the cloudlets and storage
means 302 to feedback performance level to the persistence
engine.
[012.4] The system shows persistence orchestrator 702
coupled to persistence policy engine 322. The persistence
orchestrator is further connected to the cloudlet controller
510, a retry requests module 704, the share set data database
508, the share tracking data database 504 and optionally a
feedback module 516. The system further comprises a
persistence listener 706, which is coupled to the retry
requests module 704, the cloudlet data database 506 and the
share set database 508, the share tracking data database 504
and the cloudlet feedback module 514.
[0125] The cloudlet controller 510 is connected to cloudlet
workers 512a-n, the secret shares module 336 and a share
data database 710. The cloudlet workers are connected to the
storage means 302. A cloudlet policy monitor 708 connects
the storage means 302 with the cloudlet feedback module
514. Cloudlet workers and cloudlets are asynchronous. One
cloudlet worker is spawned per share to store that share and,
during retrieve, a cloudlet worker retrieves one share per
cloudlet. The cloudlet controller 510 operates on a set of
shares. It waits for T shares for a particular identifier to
arrive back from the cloudlet workers.
[0126] The shared secret policy engine 242 (FIG. 2)/318
(FIG. 3) and the persistence policy engine 322 have inter
dependent common attributes. This may be extended to
include the shared secret policy engine 318 and shared secret
policy rules 320, and persistence policy engine 322, indi
cating the interdependency of administrator and end user
policy interaction. I.e. administrator policies and end user
policies can be implemented in either the shared secret
policy engine 318/shared secret policy rules 320, or the
persistence policy engine 322 or both and these may be
interdependent.
[0127] For example, a user/administrator may seek to
achieve a certain level in a 3-dimensional space of (a)
resilience, (b) security and (c) performance (each on a scale
of minimum to maximum or 1 to 10 or 0 to 100). Such a
level is converted into a policy for the shared secret policy
engine 318/shared secret policy rules 320 and a policy for
the persistence policy engine 322, but if the latter (for
example) is unable to achieve the desired level of perfor
mance, this may lead to adjustment of the persistence policy
or may lead to adjustment of the shared secret policy engine
(e.g. if performance takes priority in the overall policy) and
lead to compromise in one of the other dimensions (resil
ience and security). Alternatively, if one of the other dimen
sions (e.g. security) takes priority, this may lead to compro
mise in performance in the shared secret engine and/or the
persistence engine.
[0128] Note that a policy may include obligations (man
datory requirements) and preferences. A preference at a
maximum level (10 or 100) may be construed as “manda
tory” while a lower preference is non-mandatory.
[0129] For example, a healthcare application may require
high security and medium performance, but may involve file

US 2017/0005797 A1

sizes of 100s of Mbytes. It may typically be possible to
handle such a large file in the shared secret module to the
satisfaction of the shared secret policy, but when passed to
the persistence module, the large file size may create per
formance issues for the persistence engine at that level of
security and, in such a case, the persistence policy engine
may instruct the shared secret policy engine to adjust its
policy and (for example) increase the number N. Alterna
tively, the persistence policy engine may seek to store the
data on a certain type of storage in order to achieve a certain
level of security but may have to modify that policy because
the preferred storage will not meet the performance goals (or
compromise on performance in order to meet the security
goals.
[0130] Thus, policies may include prioritization of secu
rity versus resilience versus performance in a three-dimen
sional model.

[0131] The shared secret (ADeCATM) engine and the
persistence engine (ATLASTM) can be used together to boost
the security of data. In an embodiment, the ADeCA engine
uses a secret sharing scheme that allows the data to be split
into a maximum of 50 shares. If the data is very sensitive
then the policy will then fragment each of the 50 shares into
up to 250 anonymous and equal data particles before storing
the data particles into up to 20 independent storage means
with relatively high security. The benefit of this embodiment
is that the data is secure. In an alternative scenario, the data
is deemed to be not very sensitive but must be able to be
retrieved quickly. In this case, the shared secret engine may
split the data into 20 shares and the persistence engine may
fragment the 20 shares into 100 fragments and then store the
fragments in 20 independent storage means with relatively
low security.
[0132) Certain policies can be implemented only by the
persistence engine (e.g. geographical, ownership or other
restrictions on which cloudlets may be selected for a par
ticular application/usage case). Meeting such policies by the
persistence engine may require adjustment of other policies
by the persistence policy engine and/or the shared secret
policy engine to achieve other aspects of resilience/perfor
IIläIlCë.

[0133] Secret sharing schemes have been proposed for
data splitting and reconstruction, thereby providing data
security in a keyless manner. This section outlines three of
the main contenders for secret sharing schemes in cloud
based systems. They are Adi Shamir’s Perfect Secret Shar
ing Scheme (PSS), Hugo Krawczyk's Secret Sharing made
short or Computational Secret Sharing scheme (CSS) and
Rabin’s Information Dispersal Algorithm (IDA). The per
formance overhead of the three secret sharing schemes, at
increasing thresholds and increasing data sizes shows varied
behaviours. The varied behaviours depict the secret sharing
schemes strengths and weaknesses at different application
scenarios.

[0134] It is useful to know the implication variance in data
size has on the performance of each secret sharing scheme
(SSS) algorithm in terms of share creation and share recre
ation in case one wants to apply any in cloud-based designs.
[0135) Data sizes from 1024 KB to 16,384 KB were
evaluated. The data generated are arbitrary due to the fact
that the evaluations are not catered for in relation to one
specific area where SSS algorithms may be applied in. The

Jan. 5, 2017

test machine is a D-Series 3 specification Microsoft Azure"M
virtual machine which consists of 4 vCores, 14 GB of RAM
and a 200 GB SSD.
[0136] Two primary sets of results were presented which
use the parameters of N=5, T-2 and N=10; T-4. The
variable N relates to the number of shares to create while the
variable T relates to the number of shares required for
recreation of the original arbitrary data (using each SSS
algorithm). It is found that IDA is the fastest algorithm
regardless of data size. CSS comes second in terms of time
taken for share creation and recreation, while PSS comes
last. One significant observation in the results is that PSS
demonstrates greater issues in regards to scalability as the
data size increases in comparison with the other two algo
rithms. Additionally, as we increase the parameters from
N=5, T-2 to N=10; T-4, it can be demonstrated that only
share creation will produce significant increase in perfor
mance time.
[0137] Although IDA has demonstrated the fastest time in
test results, in this context it would be naive to simply use
this algorithm from these results alone. Depending on the
context and application, there may be a need to strike a
balance between ensuring strong security and acceptable
level of performance. Thus, ultimately, the decision on
which SSS algorithm to use will be most dependent on the
use-case scenario at hand.

1. A method of securely storing data comprising:
providing, within a secure data storage system, a plurality

of secret sharing methods for selection;
identifying a striping policy for storage of the data, in

accordance with input preferences;
splitting the data into a plurality, N, of secret shares

according to a selected one of the plurality of secret
sharing methods, the selection being determined by the
striping policy, wherein a threshold number, T, of such
shares is sufficient to recover the data, where T is less
than N.

generating metadata associated with the data, the meta
data identifying the selected secret sharing method and
storing the metadata within the secure data storage
system;

writing the secret shares to storage that includes storage
outside the secure data storage system, such that, when
at least T shares are retrieved, the metadata can be
recalled to identify the selected secret sharing method
for recovery of the data.

2. The method of claim 1, wherein the secret sharing
methods include methods with relatively high security but
relatively low resilience and methods with relatively high
resilience but relatively low security and wherein the selec
tion of the striping policy is based on preferences that are
translated into security and resilience preferences.

3. The method of claim 1, wherein the secret sharing
methods include methods with relatively high T/N and
relatively low T?N and wherein an interface is provided to
enable a user or administrator to input preferences that are
translated into selection of a striping policy.

4. The method of claim 1, wherein the secret sharing
methods include different secret sharing algorithms selected
from the group that includes:

perfect secret sharing scheme (PSS);
computational secret sharing (CSS):
information dispersal algorithm; and
Reed–Solomon encoding combined with encryption.

US 2017/0005797 A1

5. The method of claim 1, wherein the policy translates a
user preference for security, resilience and/or performance
into a selection of method.

6. The method of claim 1, wherein each share is written
to an independent store, at least some of which are outside
the secure storage system.

7. The method of claim 1, wherein the independent stores
comprise a plurality of stores selected from the group that
includes:

a public cloud;
a private cloud;
a relational data store;
a non-SQL data store; and
a file server.
8. A system for securely storing data comprising:
a secret sharing module adapted to provide a plurality of

secret sharing methods for selection, each method
arranged to split the data into a plurality, N, of secret
shares wherein a threshold number, T. of such shares is
sufficient to recover the data, where T is less than N:

a policy module adapted to determine a policy for storage
of the data, in accordance with input preferences,
wherein the method selected by the secret sharing
module for splitting the data is determined by the
policy module;

a metadata module for generating and storing metadata
associated with the data, the metadata identifying the
selected secret sharing method; and

a memory interface for writing the secret shares to storage
such that, when at least T shares are retrieved from
storage, the metadata can be recalled to identify the
selected secret sharing method for recovery of the data.

9. A computer program product or products comprising
program code which, when executed by a computer or a
plurality of interconnected computers, causes the computer
(s) to:

receive data for secure storage;
identify a striping policy for storage of the data, in

accordance with input preferences;
split the data into a plurality, N, of secret shares according

to a selected one of the plurality of secret sharing
methods, the selection being determined by the striping
policy, wherein a threshold number, T, of such shares is
sufficient to recover the data, where T is less than N:

generate and store metadata associated with the data, the
metadata identifying the selected secret sharing
method:

write the secret shares to storage;
retrieve at least T shares;
recall the metadata;
identify the selected secret sharing method from the

metadata; and
recover the data.

Jan. 5, 2017

10. A method of securely storing data comprising:
fragmenting the data into a plurality, N, of secret shares of

equal size according to a secret sharing algorithm,
wherein a threshold number, T. of such shares is
sufficient to recover the data, where T is less than N,

splitting each share into data particles of equal size;
writing the particles to storage such that the particles of

each share are written to independent storage means
corresponding to that share, each particle being iden
tified only by an identifier unique within its respective
storage means.

11. The method of claim 10 further comprising pre-storing
particles of dummy data within each storage means,
whereby the particles of data and particles of dummy data
co-exist in the storage means.

12. The method of claim 10, further comprising perform
ing a clean-up process for each storage means, whereby
particles that exist in the storage means are identified as
having expired, whereby particles of data and particles of
expired data co-exist in the storage means.

13. The method of claim 10, further comprising identi
fying a persistence policy for storage of the data in accor
dance with input preferences, whereby a set of storage
means is selected for storage of the data in accordance with
the persistence policy.

14. The method of claim 10, further comprising identi
fying a persistence policy for storage of the data in accor
dance with a sensitivity attribute associated with the data.

15. The method of claim 13, wherein polices are defined
for user selection that include restrictions on attributes of the
storage means that are to be selected to make up the set of
storage means.

16. The method of claim 13, wherein polices are defined
for user selection that include different attributes for each of
the storage means that are to be selected to make up the set
of storage means.

17. The method of claim 16 wherein the attributes include
identifiers of storage providers and geographical locations of
the storage means.

18. The method of claim 13, wherein polices are defined
for user selection that include user latency preference.

19. The method of claim 13, wherein polices are defined
for user selection that include duplication of one or more
shares across plural independent storage means.

20. The method of claim 13, wherein polices are defined
for user selection that include trustworthiness of the storage
IIlêallS.

21. The method of claim 10, further comprising monitor
ing the performance of each storage means for improvement
of selection of storage means according to persistence
policy.

