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Abstract: It is popular to use real-world data to evaluate or teach data mining techniques. However, there are some 

disadvantages to use real-world data for such purposes. Firstly, real-world data in most domains is difficult 

to obtain for several reasons, such as budget, technical or ethical. Secondly, the use of many of the real-

world data is restricted or in the case of data mining, those data sets do either not contain specific patterns 

that are easy to mine for teaching purposes or the data needs special preparation and the algorithm needs 

very specific settings in order to find patterns in it. The solution to this could be the generation of synthetic, 

“meaningful data” (data with intrinsic patterns). This paper presents a framework for such a data generator, 

which is able to generate datasets with intrinsic patterns, such as decision trees. A preliminary run of the 

prototype proves that the generation of such “meaningful data” is possible. Also the proposed approach 

could be extended to a further development for generating synthetic data with other intrinsic patterns. 

1 INTRODUCTION 

In our modern society in the internet age, collections 
of data and even more important making use of 
existing available data gain more and more 
importance. Especially in the domain of teaching 
data mining or data mining research, investigators 
often come across some main problems. Firstly, in 
order to research or teach a certain problem, most of 
the techniques and methods in this domain rely on 
having relevant, big collections of data. It is very 
common to use real-world data for such purposes. 
However, real-world data in most domains is 
difficult to obtain for several reasons, such as 
budget, technical or ethical (Rachkovskij and 
Kussul, 1998). Secondly, the use of many of the 
real-world data is restricted or in the case of data 
mining, those data sets do either not contain specific 
patterns that are easy to mine for teaching purposes 
or the data needs special preparation and the 
algorithm needs very specific settings in order to 
find patterns in it. For example, it is also very likely 
that real data may contain sensible data (be it 
personal or confidential) which makes it necessary 
to hide or obscure those parts, resulting in a huge 
effort to carry out this task because of the sheer size 
of these data collections. The third problem is that in 
case of teaching data mining techniques, learners 
may encounter the same “standard datasets” (e.g. the 

IRIS dataset or the Cleveland Heart Disease dataset) 
multiple times during their studies and mining them 
becomes “less exciting” . This can lower their 
motivation and as a consequence their learning 
success.  

A solution to these problems could be using 
synthetic generated data with intrinsic patterns. 
There are a number of approaches and techniques 
that have been developed for generating synthetic 
data (Coyle et al, 2013, Frasch et al, 2011, van der 
Walt and Bernard, 2007, Sanchez-Monedero et al, 
2013, Jeske et al, 2005, Lin et al. 2006, and Pei and 
Zaiane, 2006). However, since each of the previous 
research was either focused on a particular category, 
such as clustering, or using some special techniques, 
there are still spaces for further research. There is 
also a survey paper that provides current 
development about general test data generation tools 
(Galler and Aichernig, 2014). 

This paper presents a novel approach to a 
synthetic data generator for matching data mining 
patterns, such as decision trees, by developing a 
novel decision tree pattern generating algorithm. A 
preliminary run of the prototype proves that the 
generation of such big size of “meaningful data” is 
possible. Also the proposed approach could be 
extended to a further development for generating 
synthetic data with other intrinsic patterns.   

The rest of this paper is structured as follows. 

Related works are described in next section. The 



 

main contribution of this paper is presented in 

section 3, which introduces the novel approach, the 

architecture, the algorithm, the design and 

implementation of the generator. The testing and 

evaluation are discussed in section 4. Finally, this 

paper is concluded and future work pointed out in 

section 5. 

2 RELATED WORK 

Sanchez-Monedero et al (2013) proposed a 
framework for synthetic data generation, by 
adopting a n-spheres based approach. The method 
allows variables such as position, width and 
overlapping of data distributions in the n–
dimensional space can be controlled by considering 
their n-spheres. However, this approach only focuses 
on cases dealing with topics  specially in the context 
of ordinal classifications.   

Coyle et al (2014) presented a method for 
estimating data clusters at operating conditions 
where data has been collected to estimate data at 
other operating conditions, enabling classification. 
This can be used in machine learning algorithms 
when real data cannot be collected. This method 
uses the earlier mean interpolation along with a 
method of interpolating all of the matrices 
comprising the singular value decomposition (SVD) 
of the covariance matrix to perform data cluster 
interpolation, based on a methodology termed as 
Singular Value Decomposition Interpolation 
(SVDI). It is claimed that the method can be used to 
yield intuitive data cluster estimates with acceptable 
distribution, orientation and location in the feature 
space. However, as authors admitted the method 
“assumes a uni-model distribution, which may or 
may not true for classification and regression 
problems”.  

Motivated by research work on data 
characteristics (van der Wlat and Bernard, 2007, 
Wolpert snd Macready, 1997), Frasch et al (2011) 
proposed a method for generating synthetic data 
with controlled statistical data characteristics, like 
means, covariance, intrinsic dimensionality and the 
Bayes errors. It is claimed that synthetic data 
generator which can control the statistic properties 
are important tools for experimental inquiries 
performed in context of machine learning and 
pattern recognition. The proposed data generator is 
suitable for modelling simple problems with fully 
known statistical characteristics. 

Pei and Zaiane (2006) developed a distribution-
based and transformation-based approach to 
synthetic data generation for clustering and outlier 
analysis. There are a set of parameters that are 

considered as user’s requirements, such as the 
number of points, the number of clusters, the size, 
shapes and locations, and the density level of either 
cluster data or noise/outliers in a dataset. The 
generator can handle two-dimensional data. 
However, it was claimed that based on the heuristic 
devised, the system could be extended to handle 
three or higher dimensional data. 

Jeske et al. (2005) proposed an architecture for 
an information discovery analysis system data and 
scenario generator that generates synthetic datasets 
on a to-be-decided semantic graph. Based on this 
architecture, Lin et al. (2006) developed a prototype 
of this system, which is capable of generating 
synthetic data for a particular scenario, such as credit 
card transactions.  

The work probably most closely related to the 
one proposed in this paper is the one by Eno and 
Thompson (2008). The authors proposed an 
approach toward determining whether patters found 
by data mining models could be used and reverse 
map them back into synthetic data sets of any size 
that would exhibit the same patterns, by developing 
an algorithm to map and reverse a decision tree. 
Their approach was based on two technologies: 
Predictive Model Markup Language (PMML) and 
Synthetic Data Definition Language (SDDL). The 
algorithm would scan a decision tree stored as 
PMML to create an SDDL file that described the 
data to be generated. It was claimed that their 
method confirmed the viability of using data mining 
models and inverse mapping to inject realistic 
patterns into synthetic data sets. However, their 
work is limited to the two techniques used.  

3 THE APPROACH 

This section describes the proposed framework, 
including the architecture, the pattern generating 
algorithm, the design and implementation of the 
approach.  

3.1 Architecture  

Figure 1 illustrates the relationship of all modules in 
the framework. These modules can be implemented 
to run in separate threads or even on separate 
systems to create a distributed system which would 
optimise the performance of the whole application. 
The architecture is a modified version of the one 
proposed by Houkjær et al. (2006). 

 

 

 

 



 

 

Figure 1: The Architecture. 

Main components in this architecture are 
described as below: 
 GUI: This package contains all the classes 

necessary for the graphical user interface. The 

GUI classes enable the user 

- to set parameters and inputs; 

- to choose and set up the connection to the 

database; 

- to view the meta data connected to the 

tables in the database; 

- to choose from a list of available data 

generation algorithms/methods; 

- to set the desired output formats. 

 Data generation module: This package 

contains the classes needed to generate data, 

e.g. different number generators (such as zero 

bitmap number generators, shuffle number 

generators or specialised number generators), 

classes that can produce addresses or names 

and so on; 

 The core module: This package contains 

three sub packages:  

- Graph Builder: This sub package contains 

all classes necessary to generate a directed 

graph which represents the database/table 

structures retrieved from the database 

through the Metadata Interface; 

- Graph: The graph sub package holds a 

representation of the database in memory. 

This is necessary in order to generate 

consistent data that fulfils constraints as 

well as intra- and inter-table relations; 

- Interfaces: This sub package contains the 

interfaces and their class implementations 

which are used by the graph, graph builder 

and data generation module classes and 

provide the different ways of input 

(different DBMS, e.g. MySQL, Oracle, 

etc.; inputs for name/address generation), 

output (e.g. into flat files) and the interfaces 

used for the different data generation 

algorithms or number distributions. One of 

the most important interfaces in this design 

is the pattern interface. This interface can 

be used together with the new approach to 

pattern generation in data to form a really 

unique data generator. 
 

3.2 A Decision Tree Algorithm: ID3 

This new approach employs the idea of “Backwards 
Engineering”: an existing well established 
classification algorithm (in this case ID3) is used as 
the basis to discover the patterns; then an algorithm 
is developed that produces data in way such that this 
basis algorithm is able to discover a structure in the 
data. 

In this framework, the well-known ID3 
algorithm, originated by Quinlan (1979, 1986) was 
used following the description of Berthold et al 
(2010): 

 

 

Figure 2: The ID3 algorithm as described by Berthold et 

al. (Berthold et al., 2010, p. 211). 

Figure 2 shows a general algorithm to build 
decision trees. ID3 in particular uses a concept 
called the Shannon Entropy H: 

 

Here, D indicates the training data set, C the 
target (class) attribute, i.e. the attribute towards 
which the entropy is calculated, and A the set of 
attributes. The entropy ranges from 0 to 1 and 



 

reaches the maximal value of 1 for the case of two 
classes and an even 50:50 distribution of patterns of 
those classes. On the other hand, an entropy value of 
0 would tell us that only one of these classes would 
exist in the given subset of data. The entropy H 
therefor provides us with a measure of the diversity 
of a given data set. 

The ID3 algorithm tries to reach the leaves of a 
decision tree (i.e. nodes that only hold a single class 
of attributes) as fast as possible, meaning that the 
entropy of each subset of data after the split of the 
values should have the least possible entropy. 
Therefore, another measurement is needed, called 
the “Information Gain”: 

 

 

where 

 

and DA=a indicates the subset of D for which attribute 

A has value a. HD(C, A) denotes the entropy that is 

left in the subsets of the original data after they have 

been split according to their values of A. 

This Information Gain makes it possible to split 

the classes in D into subsets with each having the 

least possible remaining entropy within. Using this 

Information Gain as measurement in the split 

condition for the Class attribute of the algorithm 

outlined in figure 2, the ID3 algorithm is complete. 

3.3 The Algorithm 

With the ID3 algorithm and its underlying concepts 

defined, the pattern generating algorithm can be 

described. 

The requirements for this algorithm are a 

classification decision tree with a table in a database 

having at least columns for each of the attributes that 

are present in the nodes of the tree and the Class 

attribute. In contrast to the ID3 algorithm that will 

later be used to find the same tree again, the 

proposed pattern generating algorithm does not start 

from the root of the tree, working its way 

“downwards” over nodes with the highest 

Information Gain to the leave nodes, but it starts 

from the leave nodes in an “upward” way. 

The basic idea of the algorithm can be described 

as follows. The leave nodes L have to be the nodes 

with the least Information Gain of the whole data 

set. This can be ensured by maximally distributing 

the values of the Class attribute C on this level (this 

will of course result in a very inaccurate 

classification tree; in the implementation different 

distribution levels can be used to make it more 

accurate). To do this, a minimum number of entries 

in the database table has to be specified; according 

to this number, the table is then populated with 

maximal distribution in C (which means all possible 

value c in C appears with the same frequency), 

leaving all other columns blank with the exception 

of the values in L (noted as l in future). These are 

then chosen such that each combination of l and c 

appears equally. 

Now, when c is maximally distributed among l, 

the entropy of L in respect to C is 1 and since the 

Information Gain can never be negative and the 

range of entropy is between 0 and 1, the Information 

Gain for L is 0 and ID3 will use L as the leave nodes 

when the other attributes have a higher Information 

Gain. 

For the next level of nodes N1 in the given 

classification tree, all that has to be done is to make 

sure the entropy for this level is a little lower than 

the previous one, the easiest way to ensure this is to 

add one more combination of a specific value of c 

and a specific value n1 of N1; the rest of the 

combinations should stay maximally distributed 

(again, in the implementation this “step width” can 

be set to different values). To achieve this, a number 

of rows depending on the number of different values 

of c rows have to be added. Only the distribution 

among the combinations of n1 and c must be altered, 

not the distribution of combinations of l and c. This 

will result in an entropy value slightly lower than 1 

for the attribute N1 in respect to C thus this attribute 

N1 will be used in the node level just above the 

leaves. 

For the next node level N2 (again having the 

different values n2) in the classification tree, not only 

one specific combination of n2 and c has to be added 

but two, therefore two times the number of values c 

of rows have to be added to keep the combinations 

of c and l maximally distributed and the 

combinations of c and n1 slightly less distributed. 

This means again the entropy H(N2|C) < 

H(N1|C) < H(L|C) and in that way, L will be found 

as leaves by ID3, N1 as the node level above the 

leaves, N2 as the node level above N1 and if this 

procedure is repeated until the root of the 

classification tree. The database table will grow with 

each step. But the entropy of each attribute higher to 

the top of the input classification tree will be lower 

than the entropy to the attributes closer to the leave 

nodes, which means their Information Gain is 

higher. Thus ID3 will place them into the right 

position. 



 

 

3.4 Implementation 

This section describes the implementation of the 
algorithm outlined above.   

3.4.1 Overview of the Implementation 

Figure 3 shows the complete class diagram of the 

prototype. The implementation of the pattern 

generating algorithm is split among three main 

classes:  

 the “Tree” class provides the framework for 

the classification tree data structure required 

for the algorithm; 

 the “Node” class provides all the methods and 

functions necessary to traverse the tree, get 

certain nodes and update the entropy values 

accordingly; 

 the “TestMain” class makes the use of this 

data structure, sets the entropy values of the 

different Node levels and finally also deals 

with the data generation; 

 

In addition to the three main classes, there are two 

helper classes, “BSGTree” and “BSGTreeBean”:  

 “BSGTree” class defines and builds the tree 

data structure utilising the “Tree” and “Node” 

classes; 

 the “BSGTreeBean” class is a simple Java 

Bean with private members and Getters and 

Setters for them. It is used by the “TestMain” 

class in order to generate the data. 

 
 

 

Figure 3: Class diagram. 

3.4.2 The Implementation 

The prototype only includes the implementation of 

the pattern generating algorithm, which can be 

described as the following steps: 

 first of all, conclusion lists containing the 

values of the class attribute are generated with 

different entropy values; 

 then, each of these lists is used to set the 

conclusion lists of the nodes in one level. 

Hence, these lists define the starting entropy 

for level 0 and the “step width” as described in 

the “description of the algorithm” section; 

 the next step is the generation of the 

predefined tree data structure followed by 

getting node lists for the different types and 

levels. With these node lists, each level can be 

populated with conclusion lists with 

increasing entropy values; 

 further, after the above are all done, each row 

of data has to be generated. As stated before, 

each entry in the conclusion lists of the leaf 

nodes represents a complete data set to be 

generated. Consequently in order to generate 

the data rows, all of the leaf nodes can be 

retrieved by the tree and then their conclusion 

lists can be looped through; the parent nodes 

of the leaf nodes recursively contain the 

values of other attributes. Of course, some 

attributes might be missing in the chain from a 

leaf node to the root node. These missing 

values are replaced by a placeholder value and 

handled later. All of these row data is 



 

collected in a list of beans of the 

corresponding tree. 

 finally, the placeholder values have to be 

replaced with real attribute values. It is of high 

importance that the entropy values for the 

different attributes are not altered in this step. 

This could happen easily if the placeholder 

vales are not replaced carefully. 

 

The generated data then can be exported after 

optionally shuffling the resulting rows. 

4 TESTING AND EVALUATION 

4.1 Testing  

The proposed pattern generator was tested by 
arbitrarily generating three datasets with three 
different types of classification trees constructed in, 
and then finding the patterns in each of the dataset 
by the J48 classification algorithm of WEKA.  

Testing results are shown in figures 4, 5 and 6. 

 

 

Figure 4: Left: Test tree 1. Right: Tree found by WEKA 

J48. 

 

Figure 5: Left: Test tree 2. Right: Tree found by WEKA 

J48. 

 

Figure 6: Left: Test tree 3. Right: Tree found by WEKA 

J48. 

Figure 4 shows a simple tree with only 6 notes 

constructed in a generated dataset at the left hand 

side and the tree found by the J48 algorithm in Weka 

at the right hand side. Figure 5 and 6 shows the 

similar practice with a little bit more complicated 

tree structures in generated datasets. In all of the 

testing cases, the designed tree structures were found 

successfully in the generated datasets, respectively. 

4.2 Evaluation 

The test cases show that it is definitely possible to 
generate data that matches a data mining pattern. In 
some cases, the entropy step width had to be altered 
or additional “hidden nodes” had to be introduced to 
the tree in order to make some splits. But this is 
most likely due to the fact that the pattern generator 
algorithm’s implementation is not technically mature 
yet and can be improved in further versions. 
Furthermore, a module should be developed that 
reads trees as XML files (or similar) and generates 
the tree structure necessary to generate the data 
automatically. This would greatly increase the 
versatility of the synthetic data generator. 

In summary, the testing results prove that the 
proposed synthetic data generator is able to generate 
datasets with intrinsic patterns, such as decision 
trees. Additionally, the performance of the data 
generator was surprisingly good. It was possible to 
create almost a million rows in a few seconds with a 
laptop with basic specifications. 

5 CONCLUSIONS AND FUTURE 

WORK 

In this paper, a novel approach for developing a 
synthetic data generator for matching decision trees 
has been proposed. A prototype of such a generator 
has been implemented. The results of the test run 
prove that a large dataset with patterns like decision 
trees can be generated automatically within seconds.  

While the prototype meets all requirements set 
out within the aims of the project, the work 
introduces a number of further investigations, 
including: a) to add more classification algorithms 
into the generator; b) to add more algorithms into the 
generator, which allow patterns of association rules, 
clustering and repression to be created; c) to develop 
a comprehensive, user-friendly interface, which 
allows users to select algorithms from different 
categories, define the number of attributes, and other 
parameters.  The successful outcome of such future 
work would result in a comprehensive synthetic data 
generator, which is able to generate big datasets with 
patterns for data mining research and training.  
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