
Towards a Synthetic Data Generator for Matching Decision Trees

Taoxin Peng and Florian Hanke
School of Computing, Edinburgh Napier University

10 Colinton Road, Edinburgh, EH10 5DT, United Kingdom

{t.peng, f.hanke}@mapier.ac.uk

Keywords: Synthetic, Data Generator, Data Mining, Decision Trees, Classification, Pattern,

Abstract: It is popular to use real-world data to evaluate or teach data mining techniques. However, there are some

disadvantages to use real-world data for such purposes. Firstly, real-world data in most domains is difficult

to obtain for several reasons, such as budget, technical or ethical. Secondly, the use of many of the real-

world data is restricted or in the case of data mining, those data sets do either not contain specific patterns

that are easy to mine for teaching purposes or the data needs special preparation and the algorithm needs

very specific settings in order to find patterns in it. The solution to this could be the generation of synthetic,

“meaningful data” (data with intrinsic patterns). This paper presents a framework for such a data generator,

which is able to generate datasets with intrinsic patterns, such as decision trees. A preliminary run of the

prototype proves that the generation of such “meaningful data” is possible. Also the proposed approach

could be extended to a further development for generating synthetic data with other intrinsic patterns.

1 INTRODUCTION

In our modern society in the internet age, collections
of data and even more important making use of
existing available data gain more and more
importance. Especially in the domain of teaching
data mining or data mining research, investigators
often come across some main problems. Firstly, in
order to research or teach a certain problem, most of
the techniques and methods in this domain rely on
having relevant, big collections of data. It is very
common to use real-world data for such purposes.
However, real-world data in most domains is
difficult to obtain for several reasons, such as
budget, technical or ethical (Rachkovskij and
Kussul, 1998). Secondly, the use of many of the
real-world data is restricted or in the case of data
mining, those data sets do either not contain specific
patterns that are easy to mine for teaching purposes
or the data needs special preparation and the
algorithm needs very specific settings in order to
find patterns in it. For example, it is also very likely
that real data may contain sensible data (be it
personal or confidential) which makes it necessary
to hide or obscure those parts, resulting in a huge
effort to carry out this task because of the sheer size
of these data collections. The third problem is that in
case of teaching data mining techniques, learners
may encounter the same “standard datasets” (e.g. the

IRIS dataset or the Cleveland Heart Disease dataset)
multiple times during their studies and mining them
becomes “less exciting” . This can lower their
motivation and as a consequence their learning
success.

A solution to these problems could be using
synthetic generated data with intrinsic patterns.
There are a number of approaches and techniques
that have been developed for generating synthetic
data (Coyle et al, 2013, Frasch et al, 2011, van der
Walt and Bernard, 2007, Sanchez-Monedero et al,
2013, Jeske et al, 2005, Lin et al. 2006, and Pei and
Zaiane, 2006). However, since each of the previous
research was either focused on a particular category,
such as clustering, or using some special techniques,
there are still spaces for further research. There is
also a survey paper that provides current
development about general test data generation tools
(Galler and Aichernig, 2014).

This paper presents a novel approach to a
synthetic data generator for matching data mining
patterns, such as decision trees, by developing a
novel decision tree pattern generating algorithm. A
preliminary run of the prototype proves that the
generation of such big size of “meaningful data” is
possible. Also the proposed approach could be
extended to a further development for generating
synthetic data with other intrinsic patterns.

The rest of this paper is structured as follows.

Related works are described in next section. The

main contribution of this paper is presented in

section 3, which introduces the novel approach, the

architecture, the algorithm, the design and

implementation of the generator. The testing and

evaluation are discussed in section 4. Finally, this

paper is concluded and future work pointed out in

section 5.

2 RELATED WORK

Sanchez-Monedero et al (2013) proposed a
framework for synthetic data generation, by
adopting a n-spheres based approach. The method
allows variables such as position, width and
overlapping of data distributions in the n–
dimensional space can be controlled by considering
their n-spheres. However, this approach only focuses
on cases dealing with topics specially in the context
of ordinal classifications.

Coyle et al (2014) presented a method for
estimating data clusters at operating conditions
where data has been collected to estimate data at
other operating conditions, enabling classification.
This can be used in machine learning algorithms
when real data cannot be collected. This method
uses the earlier mean interpolation along with a
method of interpolating all of the matrices
comprising the singular value decomposition (SVD)
of the covariance matrix to perform data cluster
interpolation, based on a methodology termed as
Singular Value Decomposition Interpolation
(SVDI). It is claimed that the method can be used to
yield intuitive data cluster estimates with acceptable
distribution, orientation and location in the feature
space. However, as authors admitted the method
“assumes a uni-model distribution, which may or
may not true for classification and regression
problems”.

Motivated by research work on data
characteristics (van der Wlat and Bernard, 2007,
Wolpert snd Macready, 1997), Frasch et al (2011)
proposed a method for generating synthetic data
with controlled statistical data characteristics, like
means, covariance, intrinsic dimensionality and the
Bayes errors. It is claimed that synthetic data
generator which can control the statistic properties
are important tools for experimental inquiries
performed in context of machine learning and
pattern recognition. The proposed data generator is
suitable for modelling simple problems with fully
known statistical characteristics.

Pei and Zaiane (2006) developed a distribution-
based and transformation-based approach to
synthetic data generation for clustering and outlier
analysis. There are a set of parameters that are

considered as user’s requirements, such as the
number of points, the number of clusters, the size,
shapes and locations, and the density level of either
cluster data or noise/outliers in a dataset. The
generator can handle two-dimensional data.
However, it was claimed that based on the heuristic
devised, the system could be extended to handle
three or higher dimensional data.

Jeske et al. (2005) proposed an architecture for
an information discovery analysis system data and
scenario generator that generates synthetic datasets
on a to-be-decided semantic graph. Based on this
architecture, Lin et al. (2006) developed a prototype
of this system, which is capable of generating
synthetic data for a particular scenario, such as credit
card transactions.

The work probably most closely related to the
one proposed in this paper is the one by Eno and
Thompson (2008). The authors proposed an
approach toward determining whether patters found
by data mining models could be used and reverse
map them back into synthetic data sets of any size
that would exhibit the same patterns, by developing
an algorithm to map and reverse a decision tree.
Their approach was based on two technologies:
Predictive Model Markup Language (PMML) and
Synthetic Data Definition Language (SDDL). The
algorithm would scan a decision tree stored as
PMML to create an SDDL file that described the
data to be generated. It was claimed that their
method confirmed the viability of using data mining
models and inverse mapping to inject realistic
patterns into synthetic data sets. However, their
work is limited to the two techniques used.

3 THE APPROACH

This section describes the proposed framework,
including the architecture, the pattern generating
algorithm, the design and implementation of the
approach.

3.1 Architecture

Figure 1 illustrates the relationship of all modules in
the framework. These modules can be implemented
to run in separate threads or even on separate
systems to create a distributed system which would
optimise the performance of the whole application.
The architecture is a modified version of the one
proposed by Houkjær et al. (2006).

Figure 1: The Architecture.

Main components in this architecture are
described as below:
 GUI: This package contains all the classes

necessary for the graphical user interface. The

GUI classes enable the user

- to set parameters and inputs;

- to choose and set up the connection to the

database;

- to view the meta data connected to the

tables in the database;

- to choose from a list of available data

generation algorithms/methods;

- to set the desired output formats.

 Data generation module: This package

contains the classes needed to generate data,

e.g. different number generators (such as zero

bitmap number generators, shuffle number

generators or specialised number generators),

classes that can produce addresses or names

and so on;

 The core module: This package contains

three sub packages:

- Graph Builder: This sub package contains

all classes necessary to generate a directed

graph which represents the database/table

structures retrieved from the database

through the Metadata Interface;

- Graph: The graph sub package holds a

representation of the database in memory.

This is necessary in order to generate

consistent data that fulfils constraints as

well as intra- and inter-table relations;

- Interfaces: This sub package contains the

interfaces and their class implementations

which are used by the graph, graph builder

and data generation module classes and

provide the different ways of input

(different DBMS, e.g. MySQL, Oracle,

etc.; inputs for name/address generation),

output (e.g. into flat files) and the interfaces

used for the different data generation

algorithms or number distributions. One of

the most important interfaces in this design

is the pattern interface. This interface can

be used together with the new approach to

pattern generation in data to form a really

unique data generator.

3.2 A Decision Tree Algorithm: ID3

This new approach employs the idea of “Backwards
Engineering”: an existing well established
classification algorithm (in this case ID3) is used as
the basis to discover the patterns; then an algorithm
is developed that produces data in way such that this
basis algorithm is able to discover a structure in the
data.

In this framework, the well-known ID3
algorithm, originated by Quinlan (1979, 1986) was
used following the description of Berthold et al
(2010):

Figure 2: The ID3 algorithm as described by Berthold et

al. (Berthold et al., 2010, p. 211).

Figure 2 shows a general algorithm to build
decision trees. ID3 in particular uses a concept
called the Shannon Entropy H:

Here, D indicates the training data set, C the
target (class) attribute, i.e. the attribute towards
which the entropy is calculated, and A the set of
attributes. The entropy ranges from 0 to 1 and

reaches the maximal value of 1 for the case of two
classes and an even 50:50 distribution of patterns of
those classes. On the other hand, an entropy value of
0 would tell us that only one of these classes would
exist in the given subset of data. The entropy H
therefor provides us with a measure of the diversity
of a given data set.

The ID3 algorithm tries to reach the leaves of a
decision tree (i.e. nodes that only hold a single class
of attributes) as fast as possible, meaning that the
entropy of each subset of data after the split of the
values should have the least possible entropy.
Therefore, another measurement is needed, called
the “Information Gain”:

where

and DA=a indicates the subset of D for which attribute

A has value a. HD(C, A) denotes the entropy that is

left in the subsets of the original data after they have

been split according to their values of A.

This Information Gain makes it possible to split

the classes in D into subsets with each having the

least possible remaining entropy within. Using this

Information Gain as measurement in the split

condition for the Class attribute of the algorithm

outlined in figure 2, the ID3 algorithm is complete.

3.3 The Algorithm

With the ID3 algorithm and its underlying concepts

defined, the pattern generating algorithm can be

described.

The requirements for this algorithm are a

classification decision tree with a table in a database

having at least columns for each of the attributes that

are present in the nodes of the tree and the Class

attribute. In contrast to the ID3 algorithm that will

later be used to find the same tree again, the

proposed pattern generating algorithm does not start

from the root of the tree, working its way

“downwards” over nodes with the highest

Information Gain to the leave nodes, but it starts

from the leave nodes in an “upward” way.

The basic idea of the algorithm can be described

as follows. The leave nodes L have to be the nodes

with the least Information Gain of the whole data

set. This can be ensured by maximally distributing

the values of the Class attribute C on this level (this

will of course result in a very inaccurate

classification tree; in the implementation different

distribution levels can be used to make it more

accurate). To do this, a minimum number of entries

in the database table has to be specified; according

to this number, the table is then populated with

maximal distribution in C (which means all possible

value c in C appears with the same frequency),

leaving all other columns blank with the exception

of the values in L (noted as l in future). These are

then chosen such that each combination of l and c

appears equally.

Now, when c is maximally distributed among l,

the entropy of L in respect to C is 1 and since the

Information Gain can never be negative and the

range of entropy is between 0 and 1, the Information

Gain for L is 0 and ID3 will use L as the leave nodes

when the other attributes have a higher Information

Gain.

For the next level of nodes N1 in the given

classification tree, all that has to be done is to make

sure the entropy for this level is a little lower than

the previous one, the easiest way to ensure this is to

add one more combination of a specific value of c

and a specific value n1 of N1; the rest of the

combinations should stay maximally distributed

(again, in the implementation this “step width” can

be set to different values). To achieve this, a number

of rows depending on the number of different values

of c rows have to be added. Only the distribution

among the combinations of n1 and c must be altered,

not the distribution of combinations of l and c. This

will result in an entropy value slightly lower than 1

for the attribute N1 in respect to C thus this attribute

N1 will be used in the node level just above the

leaves.

For the next node level N2 (again having the

different values n2) in the classification tree, not only

one specific combination of n2 and c has to be added

but two, therefore two times the number of values c

of rows have to be added to keep the combinations

of c and l maximally distributed and the

combinations of c and n1 slightly less distributed.

This means again the entropy H(N2|C) <

H(N1|C) < H(L|C) and in that way, L will be found

as leaves by ID3, N1 as the node level above the

leaves, N2 as the node level above N1 and if this

procedure is repeated until the root of the

classification tree. The database table will grow with

each step. But the entropy of each attribute higher to

the top of the input classification tree will be lower

than the entropy to the attributes closer to the leave

nodes, which means their Information Gain is

higher. Thus ID3 will place them into the right

position.

3.4 Implementation

This section describes the implementation of the
algorithm outlined above.

3.4.1 Overview of the Implementation

Figure 3 shows the complete class diagram of the

prototype. The implementation of the pattern

generating algorithm is split among three main

classes:

 the “Tree” class provides the framework for

the classification tree data structure required

for the algorithm;

 the “Node” class provides all the methods and

functions necessary to traverse the tree, get

certain nodes and update the entropy values

accordingly;

 the “TestMain” class makes the use of this

data structure, sets the entropy values of the

different Node levels and finally also deals

with the data generation;

In addition to the three main classes, there are two

helper classes, “BSGTree” and “BSGTreeBean”:

 “BSGTree” class defines and builds the tree

data structure utilising the “Tree” and “Node”

classes;

 the “BSGTreeBean” class is a simple Java

Bean with private members and Getters and

Setters for them. It is used by the “TestMain”

class in order to generate the data.

Figure 3: Class diagram.

3.4.2 The Implementation

The prototype only includes the implementation of

the pattern generating algorithm, which can be

described as the following steps:

 first of all, conclusion lists containing the

values of the class attribute are generated with

different entropy values;

 then, each of these lists is used to set the

conclusion lists of the nodes in one level.

Hence, these lists define the starting entropy

for level 0 and the “step width” as described in

the “description of the algorithm” section;

 the next step is the generation of the

predefined tree data structure followed by

getting node lists for the different types and

levels. With these node lists, each level can be

populated with conclusion lists with

increasing entropy values;

 further, after the above are all done, each row

of data has to be generated. As stated before,

each entry in the conclusion lists of the leaf

nodes represents a complete data set to be

generated. Consequently in order to generate

the data rows, all of the leaf nodes can be

retrieved by the tree and then their conclusion

lists can be looped through; the parent nodes

of the leaf nodes recursively contain the

values of other attributes. Of course, some

attributes might be missing in the chain from a

leaf node to the root node. These missing

values are replaced by a placeholder value and

handled later. All of these row data is

collected in a list of beans of the

corresponding tree.

 finally, the placeholder values have to be

replaced with real attribute values. It is of high

importance that the entropy values for the

different attributes are not altered in this step.

This could happen easily if the placeholder

vales are not replaced carefully.

The generated data then can be exported after

optionally shuffling the resulting rows.

4 TESTING AND EVALUATION

4.1 Testing

The proposed pattern generator was tested by
arbitrarily generating three datasets with three
different types of classification trees constructed in,
and then finding the patterns in each of the dataset
by the J48 classification algorithm of WEKA.

Testing results are shown in figures 4, 5 and 6.

Figure 4: Left: Test tree 1. Right: Tree found by WEKA

J48.

Figure 5: Left: Test tree 2. Right: Tree found by WEKA

J48.

Figure 6: Left: Test tree 3. Right: Tree found by WEKA

J48.

Figure 4 shows a simple tree with only 6 notes

constructed in a generated dataset at the left hand

side and the tree found by the J48 algorithm in Weka

at the right hand side. Figure 5 and 6 shows the

similar practice with a little bit more complicated

tree structures in generated datasets. In all of the

testing cases, the designed tree structures were found

successfully in the generated datasets, respectively.

4.2 Evaluation

The test cases show that it is definitely possible to
generate data that matches a data mining pattern. In
some cases, the entropy step width had to be altered
or additional “hidden nodes” had to be introduced to
the tree in order to make some splits. But this is
most likely due to the fact that the pattern generator
algorithm’s implementation is not technically mature
yet and can be improved in further versions.
Furthermore, a module should be developed that
reads trees as XML files (or similar) and generates
the tree structure necessary to generate the data
automatically. This would greatly increase the
versatility of the synthetic data generator.

In summary, the testing results prove that the
proposed synthetic data generator is able to generate
datasets with intrinsic patterns, such as decision
trees. Additionally, the performance of the data
generator was surprisingly good. It was possible to
create almost a million rows in a few seconds with a
laptop with basic specifications.

5 CONCLUSIONS AND FUTURE

WORK

In this paper, a novel approach for developing a
synthetic data generator for matching decision trees
has been proposed. A prototype of such a generator
has been implemented. The results of the test run
prove that a large dataset with patterns like decision
trees can be generated automatically within seconds.

While the prototype meets all requirements set
out within the aims of the project, the work
introduces a number of further investigations,
including: a) to add more classification algorithms
into the generator; b) to add more algorithms into the
generator, which allow patterns of association rules,
clustering and repression to be created; c) to develop
a comprehensive, user-friendly interface, which
allows users to select algorithms from different
categories, define the number of attributes, and other
parameters. The successful outcome of such future
work would result in a comprehensive synthetic data
generator, which is able to generate big datasets with
patterns for data mining research and training.

REFERENCES

Berthold, M., Borgelt, C., Höppner, F., & Klawonn, F.

2010. Guide to intelligent data analysis: How to

intelligently make sense of real data. Springer-Verlag

London.

Coyle, E., Roberts, R., Collins, E., and Barbu, A. 2014.

Synthetic Data Generation for Classification via Uni-

Modal Cluster Interpolation. Auto Robot 37:27 - 45.

Eno, J. and Thompson, C., 2008. Generating Synthetic

Data to Match Data Mining Patterns. IEEE Intenet

Computing, Vol. 12, No. 3 pp. 78 – 82.

Frasch, J.V., Lodwich, A., Shafait, F. and M. Breuel,

T.M., 2011. A Bayes-true data generator for

evaluation of supervised and unsupervised learning

Methods. Pattern Recognition Letters 32.11, pp.

1523–1531.

Galler, S. J. and Aichernig, B. K. 2014. An Evalaution of

White- and Grey-box Testing Tools for C#, C++,

Eiffel, and Java, Int J Softw Tools Technol Transfer

16: pp. 727 -751.

Houkjær, K., Torp, K., and Wind, R. 2006. Simple

and Realistic Data Generation. Proceedings of

the 32
nd

 international conference on very large

data bases (VLDB ’06), pp. 1243-1246

Jeske, D.R., Samadi, B., Lin, P.J., Ye, L., Cox, S., Xiao,

R., Younglove, T., Ly, M., Holt, D., and Rich, R.,

2005. Generation of Synthetic Data Sets for

Evaluating the Accuracy of Knowledge Discovery

Systems. In Proceedings of the Eleventh ACM

SIGKDD International Conference on Knowledge

Discovery in Data Mining. ACM, New York, NY,

USA. pp. 756 – 762.

Lin, P., Samadi, B., Cipolone, A., Jeske, D., Cox, S.,

Rendon, C., Holt, D. and Xiao, R., 2006. Development

of a Synthetic Data Set Generator for Building and

Testing Information Discovery Systems. In

Proceedings of the Third International Conference on

Information Technology: New Generations. IEEE, pp.

707 - 712

Pei, Y. and Zaiane, O., 2006. A Synthetic Data Generator

for Clustering and Outlier Analysis. Technical Report,

University of Alberta, Canada.

Quinlan, J.R. 1979. Discovering Rules by Induction from

Large Collections of Examples. In D. Michie (Ed.),

Expert Systems in the Micro Electronic Age.

Edinburgh University Press.

Quinlan, J.R. 1986. Induction of Decision Trees, Machine

Learning 1: 81-106.

Rachkovskij, D.A. and Kussul, E.M., 1998. Datagen: A

Generator of Datasets for Evaluation of Classification

Algorithms. Pattern Recognition Letters 19 (7), 537-

544.

Sánchez-Monedero, J., Gutiérrez, P. A., Pérez-Ortiz, M.

and Hervás- Martínez, C. 2013. An n-Spheres Based

Synthetic Data Generator for Supervised

Classification. Advances in Computational

Intelligence. Ed. by Rojas, I., Joya, G. and Gabestany,

J. Lecture Notes in Computer Science 7902. Springer

Berlin Heidelberg, pp. 613–621.

van der Walt, C. and Barnard, E. 2007. Data

Characteristics That Determine Classifier

Performance. SAIEE Africa Research Journal, Vol

98(3), pp 87-93.

