

Mango: A Model-driven Approach to

Engineering Green Mobile Cloud Applications

Samuel Jaachimma Chinenyeze

A thesis submitted in partial fulfilment of the requirements of

Edinburgh Napier University, for the award of

Doctor of Philosophy

April 2017

I

Abstract

With the resource constrained nature of mobile devices and the resource

abundant offerings of the cloud, several promising optimisation techniques

have been proposed by the green computing research community. Prominent

techniques and unique methods have been developed to offload

resource/computation intensive tasks from mobile devices to the cloud. Most

of the existing offloading techniques can only be applied to legacy mobile

applications as they are motivated by existing systems. Consequently, they

are realised with custom runtimes which incur overhead on the application.

Moreover, existing approaches which can be applied to the software

development phase, are difficult to implement (based on manual process) and

also fall short of overall (mobile to cloud) efficiency in software quality

attributes or awareness of full-tier (mobile to cloud) implications.

To address the above issues, the thesis proposes a model-driven architecture

for integration of software quality with green optimisation in Mobile Cloud

Applications (MCAs), abbreviated as Mango architecture. The core aim of the

architecture is to present an approach which easily integrates software quality

attributes (SQAs) with the green optimisation objective of Mobile Cloud

Computing (MCC). Also, as MCA is an application domain which spans

through the mobile and cloud tiers; the Mango architecture, therefore, takes

into account the specification of SQAs across the mobile and cloud tiers, for

overall efficiency. Furthermore, as a model-driven architecture, models can be

built for computation intensive tasks and their SQAs, which in turn drives the

development – for development efficiency. Thus, a modelling framework

(called Mosaic) and a full-tier test framework (called Beftigre) were proposed

to automate the architecture derivation and demonstrate the efficiency of

Mango approach. By use of real world scenarios/applications, Mango has

been demonstrated to enhance the MCA development process while

achieving overall efficiency in terms of SQAs (including mobile performance

and energy usage compared to existing counterparts).

II

Acknowledgments

I would like to thank my Director of Studies, Dr Xiaodong Liu; second

supervisor, Prof Ahmed Al-Dubai; and panel chair, Prof Emma Hart; for their

invaluable supervisory contributions throughout the period of my PhD study. I

would also like to thank Dr Sally Smith for every contributed moral support,

and all staff in the School of Computing and Library Department at Edinburgh

Napier University (ENU), for their efforts to ensure sufficient supply of

materials used for this research. Many thanks go especially to the members

of the Centre for Algorithms, Visualisation and Evolving Systems (CAVES)

group in ENU, for providing me with feedback and suggestions pertinent to my

PhD study.

I am most grateful to my loving parents: Dr Anthony and Mrs Catherine Madu,

for their dedicated investment and faith in me. Much gratitude goes to my

siblings and family: Peace, Grace-Joy, Kenneth and Hadassah, for their

endless encouragement, prayers and support during the period of my PhD

study. My appreciation goes to Engr Raphael Akala and family, Bro Samba

Bindia and Bro Henry Adomako for every love and support – I really am

blessed. Many thanks to friends and families at Charismatic Renewal

Ministries, Edinburgh Elim, ANCF Edinburgh and Salvation (Chinese) Church

London for their encouragement and spiritual support. I am proud of them and

appreciate what they contribute to my life. Finally, to those who always believe

in and expect the best from me, this achievement is my way to say thanks and

ubuntu1, keep believing.

Samuel Chinenyeze PhD

Nisi sapientia frustra.

1 Ubuntu is an African way to say 'I am what I am because of who we all are'.

III

Dedicated to my wonderful friend and mentor, El-Rohi.

IV

Publications from the PhD Work

Conference Papers

[1] Chinenyeze, S., Liu, X., Al-Dubai, A., (2014), “An Aspect Oriented Model

for Software Energy Efficiency in Decentralised Servers”. In: 2nd International

Conference on ICT for Sustainability (ICT4S 2014). Stockholm, Sweden:

Atlantis Press. doi:10.2991/ict4s-14.2014.14.

[2] Jamshidi, P., Pahl, C., Chinenyeze, S., Liu, X., (2014). Cloud Migration

Patterns: A Multi-Cloud Architectural Perspective. In: 10th International

Workshop on Engineering Service-Oriented Applications (10th ed.). Paris,

France. doi:10.1007/978-3-319-22885-3_2.

[3] Chinenyeze, S., Liu, X., Al-Dubai, A., (2016), “DEEPC: Dynamic Energy

Profiling of Components”. In: the 10th IEEE International Workshop on

Quality-oriented Reuse of Software (QUORS’16) in conjunction with the 40th

IEEE International Conference on Computers, Software & Applications

(COMPSAC 2016). Georgia, USA. doi:10.1109/COMPSAC.2016.90.

Journal Articles

[4] Chinenyeze, S., Liu, X., Al-Dubai, A., (2017), “BEFTIGRE: Behaviour-

driven Full-tier Green Evaluation of Mobile Cloud Applications”. Journal of

Software Evolution and Processes, Special Issue on Software Engineering for

Sustainability (JSEP SE4S). doi:10.1002/smr.1848.

V

Table of Contents

Abstract ... I

Acknowledgments ... II

Publications from the PhD Work .. IV

Table of Contents .. V

List of Figures ... X

List of Tables ... XII

List of Algorithms .. XIII

Chapter 1. Introduction ... 1

1.1 Introduction ... 1

1.2 Problem Statement ... 1

1.3 Aim and Objectives of the Research ... 3

1.4 Contribution to Knowledge .. 6

1.5 Research Method ... 8

1.6 The Structure of the Thesis ... 9

Chapter 2. Literature Review .. 11

2.1 Introduction ... 11

2.2 Green Software ... 11

2.2.1 Definition ... 11

2.2.2 Green Optimisation Objectives ... 12

2.2.3 Artefacts and Approaches ... 13

2.2.4 Green Software Application Domains ... 16

2.3 Mobile Cloud Applications ... 19

2.3.1 MCA Offloading Schemes ... 19

2.3.2 Environmental Factors affecting MCA Decision Making 24

2.3.3 MCA Associated Green Metrics .. 28

2.3.4 Application Taxonomy ... 31

VI

2.3.5 MCA Evaluation Approach .. 33

2.4 Aspect Oriented Programming .. 36

2.4.1 Definition and Terms ... 36

2.4.2 AOP by Example ... 37

2.5 Model-Driven Engineering .. 39

2.5.1 Definition and Terms ... 39

2.5.2 MDE Technologies for Mobile ... 40

2.6 Summary .. 43

2.6.1 Green Software Engineering and MCA ... 43

2.6.2 Opportunities for AOP in MCA .. 44

2.6.3 Opportunities for MDE in MCA .. 45

Chapter 3. Problem Statement and Methodology 48

3.1 Introduction ... 48

3.2 MCA Optimisation Approach ... 48

3.2.1 Gaps in existing approaches ... 48

3.2.2 Methodology and Research hypotheses ... 53

3.3 MCA Evaluation Approach .. 55

3.3.1 Gaps in existing approach ... 55

3.3.2 Methodology for a solution .. 58

3.4 Summary .. 62

Chapter 4. Mango Architectural Approach .. 64

4.1 Introduction ... 64

4.2 Overview of the Approach ... 66

4.2.1 Concepts and Components ... 66

4.2.2 Benefits of the Approach ... 67

4.3 Designing the Model ... 70

4.3.1 Phase 1: Requirement Listing ... 71

4.3.2 Phase 2: Component Classification .. 72

4.3.3 Phase 3: Caller-Callee Modelling .. 73

VII

4.4 A Pattern Oriented Architecture for Context-aware Optimisation 75

4.4.1 Aspect: Dynamic Crosscutting Component .. 76

4.4.2 Context: Representation of User and Environmental Contexts 77

4.4.3 Task: Context-aware optimisation component. ... 79

4.4.4 Service (and Shared Context) ... 81

4.5 Quality Verification .. 84

4.6 Behaviour-driven Full-tier Green Evaluation 85

4.7 Summary .. 86

Chapter 5. Mosaic Modelling Approach .. 89

5.1 Introduction ... 89

5.2 Selective Analyser .. 91

5.2.1 Inclusion Rules .. 92

5.2.2 Exclusion Rules ... 92

5.2.3 Default Rules ... 93

5.3 Caller-Callee Modeller .. 94

5.3.1 Model Creation .. 96

5.3.2 Model Transformation ... 99

5.4 Quality Verifier .. 104

5.4.1 Measuring Local Execution of Callee .. 105

5.4.2 Measuring Mango Execution of Callee ... 106

5.4.3 Comparing Execution Scenarios ... 106

5.5 Mosaic Library Usage ... 107

5.5.1 Library Dependencies ... 108

5.5.2 Library Arguments ... 109

5.5.3 Code Refactoring .. 110

5.6 Performance Evaluation.. 111

5.7 Summary .. 114

Chapter 6. Beftigre Evaluation Approach .. 117

6.1 Introduction ... 117

VIII

6.2 The Beftigre Approach .. 118

6.3 Design Details ... 122

6.3.1 Behaviour-driven Comparison ... 122

6.3.2 Platform Monitoring and Control ... 123

6.3.3 Metrics Collection .. 125

6.3.4 Full-tier Analysis and Control .. 127

6.4 Performance Evaluation.. 130

6.5 Summary .. 131

Chapter 7. Case Studies ... 133

7.1 Introduction ... 133

7.2 Experimental Settings ... 134

7.2.1 Experimental Variables ... 134

7.2.2 Metrics, Tools & Platform .. 136

7.2.3 Experimental Process ... 138

7.3 Test Classes ... 138

7.4 Legacy Adaptation .. 140

7.4.1 Mosaic automated refactoring ... 141

7.4.2 Exposing and Referencing an Activity .. 143

7.4.3 Serialising Objects... 144

7.4.4 Implementing the Cloud tier .. 145

7.5 Critical Analysis of Mosaic Approach .. 146

7.6 Critical Analysis of Mango Architecture... 148

7.6.1 Suboptimal awareness .. 148

7.6.2 Variability awareness .. 151

7.6.3 Full-tier awareness .. 152

7.7 Critical Analysis of Beftigre Approach ... 153

7.7.1 Inconsistency challenge to Non-BDD ... 156

7.7.2 Beftigre Full-tier Effectiveness .. 159

7.7.3 Robustness of Beftigre Assertion .. 160

IX

7.7.4 Reproducibility Effectiveness of Beftigre ... 161

7.8 Summary .. 162

Chapter 8. Conclusions .. 164

8.1 Introduction ... 164

8.2 Conclusions and Contributions ... 165

8.2.1 Contribution I: Mango Approach ... 166

8.2.2 Contribution II: Context-aware Green Architecture 166

8.2.3 Contribution III: Mosaic Approach ... 167

8.2.4 Contribution IV: Beftigre Evaluation Approach .. 167

8.3 Future Work .. 168

References.. 169

Appendix A Abbreviations and Acronyms 177

Appendix B Selection Criteria for Case Studies 178

Appendix C Mosaic Modeller .. 181

Appendix D Mosaic Templates for ACTS .. 183

Appendix E Beftigre BAND API Screenshots 187

Appendix F Beftigre BEFOR Tool Screenshots 189

Appendix G Beftigre BEFOR API Commands 198

Appendix H Beftigre Logs and Data Files 205

Appendix I Case Studies Test Classes ... 208

Appendix J Case Studies ACTS Snippets 214

X

List of Figures

Figure 2.1 Cloud Service Models [48], [49] ... 17

Figure 2.2 Types of Transformation in MCA (derived from [4]–[7]) 21

Figure 2.3 Types of Offloading Mechanism in MCA (derived from [4]–[7]) 24

Figure 2.4 MCA architecture with mobile-centric architecture scenarios ... 34

Figure 2.5 Dynamic crosscutting in AOP (showing pointcut and advices) . 37

Figure 2.6 Static crosscutting in AOP (showing declare and inter-type) 38

Figure 2.7 Summary of Review and Scope of the Thesis 43

Figure 3.1 MCA architecture based on custom runtime (in the literature) . 48

Figure 4.1 Mango and Derived Frameworks ... 64

Figure 4.2 Mango Approach .. 65

Figure 4.3 CRAC Process ... 71

Figure 4.4 Caller-Callee Model .. 73

Figure 4.5 ACTS Pattern (Class Diagram) .. 76

Figure 4.6 Quality Verification ... 84

Figure 4.7 Behaviour-driven Full-tier Green Evaluation 85

Figure 4.8 Class Responsibility of ACTS ... 86

Figure 5.1 MOSAIC Framework ... 89

Figure 5.2 Selective Analysis Approach .. 90

Figure 5.3 Rules Repository illustrating Inclusion and Exclusion rules 91

Figure 5.4 Modeller process .. 95

Figure 5.5 A valid Caller-Callee model diagram from Modeller 96

Figure 5.6 Aspect Template .. 100

Figure 5.7 Mobile tier tags at Task Template .. 102

Figure 5.8 Cloud tier tags at Service Template 103

Figure 5.9 Profiler Aspect for Architecture Verification 105

Figure 5.10 Project Build Gradle for Mosaic ... 107

Figure 5.11 App Build Gradle for Mosaic ... 107

Figure 5.12 Android Permission for Mango .. 108

Figure 5.13 Mosaic vs. Default Build Time ... 112

XI

Figure 6.1 Beftigre system architecture ... 119

Figure 6.2 BAND Template ... 122

Figure 6.3 Logical functions of Server Monitor and Metrics Collector 124

Figure 6.4 BAND API Performance Evaluation 131

Figure 7.1 Experimental Process .. 137

Figure 7.2 Task Class for Linpack ... 142

Figure 7.3 Aspect Class for Linpack .. 142

Figure 7.4 Launcher Activity of Linpack ... 143

Figure 7.5 Context Class for Linpack .. 144

Figure 7.6 Mosaic (Profiler Aspect) evaluation of offload candidates 146

Figure 7.7 Performance and Energy Results of the Mobile tier 149

Figure 7.8 Cloud tier Results for Resource Efficiency and Availability 150

Figure 7.9 Bandwidth and Latency .. 155

Figure 7.10 Cloud CPU and Memory availability 156

Figure 7.11 Mobile CPU and Memory availability 156

Figure 8.1 Conclusions of the Thesis .. 164

Figure 6.2 auto Script File .. 202

XII

List of Tables

Table 2.1 Comparison of offload models (derived from [4]–[7], [59]) 20

Table 2.2 Decision making factors in MCAs. ... 25

Table 2.3 Application Taxonomy ... 31

Table 2.4 Architecture Scenarios for MCA Evaluation 35

Table 3.1 Comparison of offload models (derived from [4]–[7], [59]) 49

Table 3.2 MCA evaluation and comparison by architecture scenarios 56

Table 3.3 Simplified MCA Evaluation by Use of Environmental Factors . 59

Table 4.1 Non-functional (N) Requirement Listing 71

Table 4.2 Functional (F) Requirement Listing ... 72

Table 4.3 Component Classification .. 72

Table 4.4 Summary of Mango Architecture ... 86

Table 5.1 Call properties used in selective static analysis 92

Table 5.2 Template targets ... 100

Table 5.3 Mosaic file extensions ... 112

Table 5.4 Offloading Candidates ... 114

Table 5.5 Mosaic file extensions ... 115

Table 6.1 Summary of Beftigre components (of Band and Befor APIs) 132

Table 7.1 Characteristics of the case studies .. 133

Table 7.2 Experimental Variables ... 134

Table 7.3 Selection of Independent Variables 135

Table 7.4 Metrics, Tools & Platforms for Case Studies 136

Table 7.5 Legacy Adaptation ... 140

Table 7.6 Mosaic Call-graph (mcg) ... 141

Table 7.7 Cloud tier Callee dependencies... 145

Table 7.8 Non-BDD Evaluation and Comparison 157

Table 7.9 Beftigre Evaluation and Comparison/Assertion 158

Table 7.10 Replication capability of Beftigre Evaluation 161

XIII

List of Algorithms

Algorithm 4.1 Adaptive Context-based Decision Maker ………………...…78

Algorithm 4.2 Shared Context for Cloud tier, Service ………………………82

Algorithm 4.3 Shared Context for Mobile tier, Task ……………………..…82

Algorithm 5.1 Selective Analysis within Mosaic …………………………….91

Algorithm 5.2 Model validation algorithm ……………………………………97

Algorithm 5.3 Profiler Aspect ……………………………………………..... 104

Algorithm 6.1 Evaluate function, to produce actual values of Then ……..127

Algorithm 6.2 Assert function, to produce assertion of comparison …….128

1

Chapter 1. Introduction

1.1 Introduction

The purpose of this chapter is to introduce the work carried out in this thesis.

The chapter first introduces the research areas of interest and associated

gaps in the form of a problem statement; and further presents the aims and

objectives targeted towards fulfilling the gaps. Consequently, the body of

knowledge contributed by this thesis to the research area is presented. Also

presented is the research method adopted by the thesis which highlights the

criteria for success. The chapter is concluded with a thesis structure.

1.2 Problem Statement

Mobile devices are increasingly gaining popularity due to their convenience of

usage and portability for end-users. In current times it is possible to perform

all or most daily computing requirements on mobile devices, given that there

are a vast amount of mobile applications that ensure this possibility. Portability

in mobile devices is realised by lightweight components such as microchips,

batteries etc. which makes mobile devices resource constrained in nature

compared to counterpart computing environments (such as laptops, desktops

and servers). Although there is a continuous advancement in the mobile

hardware industry, the applications which run on these environments offer a

higher range of rich features most of which consume mobile resource (battery

inclusive) and consequently energy inefficient. Furthermore, with mobile

computing dependent on battery life which is highly constrained [1], many

research works have investigated techniques for prolonging the battery life

and reducing the extensive use of other mobile resources. Since software

bloat are the key contributors to the energy consumption in computing devices

[2], [3], a vast amount of research investigate ways to improve the applications

running on the mobile device to use fewer resources which amount to

energy/battery savings.

2

Energy efficiency and performance are important qualities for mobile

applications because of the resource constrained nature of mobile devices. In

other words, mobile devices do not possess very high computing power as

other computing platforms (such as laptops and desktops), and moreover,

they also possess a more constrained power supply, thereby making energy-

efficiency and performance crucial mobile software qualities.

A major contributor to the energy efficiency of mobile applications is the use

of the cloud (a resource-rich environment) to complement the mobile end (a

resource-constrained environment), thus the goal of mobile cloud applications

(MCA).

Due to the dynamic characteristics of MCAs, that is constant changing

resource state and workload in MCA environments, mobile energy

optimisation is now dependent on varying runtime environmental factors (such

as network bandwidth and latency, data size and server conditions to mention

but a few). Various approaches (details presented in the literature review)

have been proposed in the literature for mobile cloud offloading, which

achieve energy or performance savings in some given scenarios, however,

available approaches still have their known issues and drawbacks. The gaps

on MCA have been categorised into optimisation overhead, development

inefficiency, overall inefficiency, and inadequate testing;

 Optimisation Overhead

Some approaches are inefficient to use as a result of the unaccounted

overhead cost of the optimisation process. For instance, for an application

where an optimisation approach always overshadows the offloading benefits

during runtime, such application or task may not require MCA optimisation.

Moreover, existing techniques in an attempt to automate the development

process implement heavy-weight (custom) runtimes which contribute their

own performance cost to the optimisation process.

3

 Development Inefficiency

Following from the first point, existing MCA optimisation approaches are

based on custom runtimes which incur an overhead, moreover, these

runtimes are required to be setup at the mobile and cloud tier prior to

execution. Although these automate the MCA process, the identification of

offloadable components in most approaches [4]–[6] are achieved manually

(which is difficult to predict without execution). The few [7], [8] which automate

the identification process targets already packaged legacy systems (with the

aim of not modifying the code base).

 Overall Inefficiency in Qualities

Some approaches [5], [6] (which may handle optimisation overhead) may be

overly constrained to mobile optimisation (i.e. with a focus on mobile energy

and performance) to the extent of ignoring the efficiency of the cloud surrogate

(which, in cloud computing research, is popularly investigated in terms of

qualities such as cloud resource efficiency and service availability) – thereby

compromising overall efficiency. Moreover, other cloud-aware offloading

schemes [7], [8] do not reflect this awareness in their evaluation process.

 Inadequate Testing

As mentioned in point three, offloading schemes which are both aware of

mobile and cloud tiers in their offloading decision making do not reflect the

awareness in their evaluation. This is due to the lack of an appropriate MCA

testing framework. The existing testing approach is focused on evaluating

mobile performance and energy usage alone – i.e. mobile tier only.

1.3 Aim and Objectives of the Research

Driven by the above motivations and gaps, the vision of the research is to

provide effective approaches for development and evaluation of MCAs – in

other words improving the development life cycle of MCAs. To a wider extent,

this would consequently enhance development efficiency, fine-grained

optimisation, overall efficiency in terms of full-tier qualities and reliable testing.

4

Accordingly, the aim of the thesis is to convey the critical features required for

the optimisation of MCA in a unified architecture.

Scope: The full-tier quality attributes investigated by the thesis include the

popularly investigated mobile performance and energy usage metrics as

mobile tier qualities. And for the cloud tier qualities, resource efficiency and

availability, which are prevalent qualities in cloud computing research, are

explored. In this thesis, the architecture is defined as a model-driven

architecture which drives the development process based on meta-models

and achieves automation via a design pattern implementing the optimisation

logic for MCA offloading. The model-driven approach, at the current state of

the thesis, targets the Android mobile devices and Amazon cloud. From the

architecture, the frameworks for development and evaluation (which also

fulfils the full-tier objective of the architecture) are derived. Thus, the thesis is

classified under the sub-field of model-driven MCA optimisation. More

specifically the objectives of the research are as follows:

 To Develop an Approach for Full-tier Software Qualities and Green

Optimisation in MCAs

In order to mitigate the current gap in monolithically tiered optimisation –

where mostly investigated metrics are associated with the mobile tier, and also

to improve overall efficiency; the first objective will focus on a model-driven

architectural approach to MCA development. Model-driven engineering

(MDE) is a paradigm which exploits domain models to effectively solve a

recurring problem. Therefore, the proposed model-driven architecture will

allow for the specification of software qualities alongside green attributes for

both mobile and cloud tiers. As a model-driven architecture, these qualities

can be modelled at an earlier stage of development independent of any

platform specific requirement.

5

 To Develop an Approach to the Automation of MCA Development

Process without Custom Runtime

As mentioned earlier, custom runtimes in existing MCA offloading approaches

incur optimisation overhead. To mitigate this overhead, custom runtimes have

to be avoided in the development process. Model-driven engineering (MDE)

simplifies the development process using models of design patterns

(alongside tools) to increase productivity by automating processes.

Consequently, the second objective will explore a model-driven engineering

option in form of a framework for automating the development process of

MCA. The framework will encompass the intricacies of the MCA development;

possibly from analysis (involving identification of offloadable tasks) to design

(involving platform independent conceptualisation) to implementation

(involving the platform specific optimisation). Consequently, this ought to drive

efficiency and productivity in MCA development, mitigating optimisation

overhead and development inefficiency.

 To Develop an Approach to the Evaluation and Comparison of

MCAs

Currently, there is no test framework that has been proposed for evaluating

MCAs. Consequently leading to inconsistencies in the way testing is

performed within the domain, thus; making it difficult to compare between

MCA optimisation approaches. Moreover, evaluation in existing literature

focuses on mobile-tier metrics; thus it is difficult to ascertain the overall

efficiency of a given approach. The third objective is to develop a framework

based on the Behaviour-driven Development (BDD) concept which can be

applied to MCAs and useful for measuring its overall efficiency by taking the

full-tier metrics (i.e. mobile and cloud impacts) into consideration.

Behaviour-driven (from BDD) is a concept that uses different parameters with

simple clauses (given, where, then) to construct a scenario that defines an

application. These scenarios can then be expected or compared.

6

Full-tier refers to test coverage with finer-granularity - i.e. including all

participating tiers of an architecture. For MCAs, the concept of full-tier would

involve both the mobile tier and the cloud tier.

 To Conduct Case Studies and Evaluation

For proof-of-concept, validation and evaluation, the final objective is to apply

a series of real-life case studies and experiments to critically examine the

proposed approaches and framework implementations. Furthermore, to

establish a comparison with existing work the case studies are used to

establish the efficacy of the proposed approach in terms of mobile tier qualities

(performance and energy efficiency) and cloud tier qualities (resource

efficiency and software availability).

1.4 Contribution to Knowledge

As shown above, the aim of the thesis to convey the critical features required

for the optimisation of MCA in a unified architecture is achieved in four specific

objectives. The first three objectives are focused on developing an approach

towards the central aim – these are a direct connecting thread to the

contributions of the thesis which are as follows;

 Model-driven Approach for Integration of Software Quality with

Green Optimisation in MCAs (Mango)

The thesis proposes a novel model-driven architectural approach for MCA

development. The approach specifies a structure of processes/phases for

integrating software qualities and green optimisation objectives in the mobile

tier (performance and energy efficiency) and cloud tier (availability and

resource efficiency). As a model-driven architecture, this underlying structure

is based on meta-models and design pattern. Meta-models are used by

Mango to encapsulate and integrate the mobile tier logic and the cloud tier

logic at a platform independent level; which includes the modelling of identified

offloading tasks. Context-driven Requirements Analysis for Caller-Callee

model (CRAC) is a proposed process for achieving the aforementioned meta-

7

modelling. Furthermore, for platform specific implementation of the

optimisation logic and realisation of MCA offloading scheme; Aspect Context

Task Service design pattern (ACTS) is proposed by Mango. Consequently; by

adopting a model-driven architectural approach to MCA optimisation; overall

efficiency in qualities is achieved as optimisation logic can be both modelled

in full-tier both independent of and specific for the platform. Moreover; the

architecture, then makes it possible to implement frameworks to transform

meta-models to specific application code, as presented in the next point.

 Context-aware Architecture for Green Optimisation

The core of the proposed Mango approach is the optimisation architecture.

Mango architecture has been proposed in the thesis for achieving efficiency

at runtime while taking the full-tier quality attributes into consideration. The

context adopted by the approach are user and environmental contexts. The

objective is that by context-awareness both from the user and environmental

perspectives (rather than only environmental), an improved efficiency in target

qualities can be achieved.

 Model-based Selective Approach to Identification of Computation

intensive tasks (Mosaic)

In order to enhance development efficiency and mitigate the optimisation

overhead due to custom runtimes; a model-driven framework/tool called

Mosaic is proposed to realise the Mango approach in MCA development.

Mosaic provides a set of features that realises the MDE triad; editor, language

and generator [9] while taking into account the intricacies of MCA – i.e.

surrounding identification and verification of offloading tasks. Mosaic provides

a graph-based editor for meta-modelling which is based on XMI. Mosaic uses

templates to specify domain specific language/structure which implements the

design pattern proposed in Mango. And Mosaic provides a framework feature

for generating application code using meta-models and templates. The

transformation feature is used to verify that an optimisation process will most

certainly yield benefits – consequently mitigating the optimisation overhead

8

concern. Furthermore, development efficiency is achieved through high

decoupling and automation fulfilled by the transformation process.

 Behaviour-driven Full-tier Green Evaluation (Beftigre)

In the absence of an appropriate MCA testing framework which considers full-

tier implications of an optimisation scheme (i.e. implications on both the mobile

and cloud tiers), this thesis proposes Beftigre. The novelty of Beftigre is its

ability to define a structured approach to MCA evaluation based on the

concept of Behaviour driven development – using annotations to evaluate and

compare between systems by asserting expectations. The other key novelty

of Beftigre is its interfacing structure from which is utilised; which is as an API

(called BAND) that integrates with the Android mobile test framework, and an

API and tool (called BEFOR) that integrates with the cloud tier. By providing a

full-tier testing framework; Beftigre makes it possible to evaluate the overall

efficiency of a MCA or its optimisation scheme. It also drives development

efficiency given that all reporting and analysis from mobile and cloud are

automated.

1.5 Research Method

The thesis adopts a combination of research methods including literature

review and tool-based case studies.

Initially, comprehensive review of the current state of the art is undertaken

with regard to green software, MCA offloading schemes, MCA evaluation

approaches, and techniques found useful for mobile development – AOP and

MDE. Through in-depth review and analysis of the latest literature, several

issues and limitations are found on existing MCA optimisation approaches and

evaluation approaches. These lead to the design and development of the

series of novel approaches proposed subsequently.

To justify and evaluate the proposed MCA optimisation approach and

evaluation approach, two prototype frameworks/tools are implemented (one

for the proposed optimisation approach and another for the proposed

9

evaluation approach) and a series of case studies are conducted. Utilising a

number of distinct real-world applications adopted in existing works,

experiments are conducted to evaluate the functionality, effectiveness/

efficiency and any other key target objectives of proposed approaches; as a

way to practically re-iterate the benefits of the approach compared to existing

works – this is a key criterion for success.

Papers have been published based on research outcome at each milestone.

This enables valuable assessments of the work from other researchers in

terms of contribution and justification within the field, and also leveraged as a

crucial activity to assert the success/relevance of the research.

1.6 The Structure of the Thesis

The thesis is organised as follows:

Chapter 1 gives the introduction of the research including; the problem

statement, the aim and objectives of the research and the contributions to

knowledge.

Chapter 2 broadly reviews the relevant literature; including the background of

green software, mobile cloud applications (MCA); and concepts in offloading

schemes, and techniques found useful for mobile application development

such as; aspect-oriented programming and model-driven engineering.

Chapter 3 is the problem definition and methodology chapter. The problems

pertaining to the two main research areas; MCA optimisation approaches and

MCA evaluation approaches, are presented and used to motivate this

research. The methodology adopted by the thesis to address the identified

gaps are also presented in this section, as a way to introduce the contributions

of the thesis.

Chapter 4 presents a formal description of the MCA optimisation approach

proposed by this research – called Mango; which is a model-driven

architecture for integration of software quality with green optimisation in

MCAs.

10

Chapter 5 presents a model-driven framework called Mosaic; which is used to

transform models into application code based on the proposed Mango

architecture.

Chapter 6 presents a MCA evaluation approach and framework called

Beftigre; which is useful for seamless MCA testing (seamless through

annotating mobile test class) with mobile and cloud metrics taken into account

– thus full-tier.

In Chapter 7, using popularly adopted real-world applications, a series of case

studies and experiments are conducted to illustrate and evaluate the efficacy

of the proposed approach in terms of mobile tier qualities (performance and

energy efficiency) and cloud tier qualities (resource efficiency and software

availability). Also, the efficacy of the frameworks is demonstrated using the

case studies.

Finally, Chapter 8 summarises the thesis by presenting the conclusions and

the future work.

11

Chapter 2. Literature Review

2.1 Introduction

This chapter presents a background to green software and conducts a broad

survey of many techniques that have been found useful for engineering mobile

applications. Key techniques used are such as Task Offloading (based on

Mobile Cloud Computing) – focused on green objectives, Model Driven

Engineering and Aspect Oriented Programming are presented. These

techniques are the foundation of the development of the proposed approach.

2.2 Green Software

2.2.1 Definition

The concept of green software [10]–[13]; sometimes used interchangeably

with sustainable software [10]–[12], is derived from green IT or computing –

which deals with the study and process of manufacturing, using, and disposing

of computing hardware products with minimal impact on the environment. As

a result of the success of green IT – hardware research, green software

research began an investigation into applying ‘green’ principles from hardware

products into software products and their processes. And also, similar to the

direct environmental impact of IT hardware, regarding IT software; application

inefficiencies like inefficient algorithms and resource usage e.g. high Central

Processing Unit (CPU) usage, are sources of high energy consumption [11],

[14]. As the total electrical energy consumption by computer equipment

increases, there is a consequent increase in greenhouse gas emissions. Each

client/personal computer in use generates about a tonne of CO2 every year

[15]. Therefore, software has indirect environmental implications.

The term ‘Green software’ is therefore used to refer to software applications

that efficiently monitors, manages and utilises underlying resource(s) with

minimised or controlled impact on the environment [10]–[13]. Green Software

Engineering is a newly coined name and a branch of software engineering

increasingly gaining interest, and which aims at improving existing software

12

design and implementation approaches to achieve energy or resource

efficient software. Green IT presents two key roles software plays in

sustainability; [3], [11], [16] 1) as a tool to monitor and optimize the energy

efficiency of any system production or operation process – also referred to as

greening by Software (or IT), and 2) as a target of energy efficiency initiatives

– also referred to as greening in Software (or IT). Green software engineering

focuses on IT as a target of energy efficiency – i.e. greening in software. In

the rest of the report, green software engineering will be used interchangeably

with green optimisation, for brevity.

2.2.2 Green Optimisation Objectives

Various works such as [17], show that efficient resource usage by software

leads to improved energy usage, and in several other works energy or power

awareness of applications is achieved by control of system resources such as

the CPU and memory. Furthermore, software does not have a direct

environmental impact, but indirect impact through resources [13], [17], thus,

the result of optimising applications by managing control on system resources

is improved energy usage of the application. Therefore, (as presented in

section 2.2.1);

 A key objective of green software is efficient resource usage and

efficient energy usage [18], [19]. And energy efficiency and resource

efficiency are often considered as congruent in the research.

The focus of green software on energy and resource efficiency was motivated

by the success of green computing research for datacentres domain [20]–[22]

– which largely targeted optimisation of datacentres for low energy and

optimum hardware resource requirements.

Furthermore, software systems are often presented in terms of functional and

non-functional requirements [23]. While functional requirements deal with the

functionalities, capabilities, services or behaviours of the system, non-

functional requirements (also known as quality attributes) deals with

requirements that support the delivery of system functionalities. Examples of

13

quality attributes are performance, accessibility, security and development

efficiency to mention but a few [23].

So far energy efficiency and resource efficiency (popular targets of green

optimisation) are often considered in context and conjunction with other

software quality attributes. Hence the varying themes of green software

research; Performance (response or execution time) and energy efficiency

[24]–[26], optimal accessibility and resource efficiency [26], energy efficient

secure systems [27], development efficiency and energy efficiency [3] etc. The

practice of implementing green metrics as a quality attribute in the context of

some other quality attribute(s) – such as performance, accessibility, security,

etc. is often imbibed by current research as a means to explore trade-offs and

possible consequences of green optimisation, for software quality assurance.

This trade-off capability of the software product to meet the current needs of

a set (required) functionality – say resource usage, without compromising the

ability to meet future needs – say changing workload/performance, is often

referred to as Sustainability of Software [10] – this is a core green software

objective. Thus;

 Another key objective of green software is to achieve greenness as a

quality attribute which finely integrates with other software qualities

such as performance and availability. By finely integrates – meaning

achieving green metrics with little or no performance (other qualities)

compromise.

2.2.3 Artefacts and Approaches

2.2.3.1 Process and Product Artefact

Green software optimisation targets two main artefacts: the process and the

product (code) [10], [13]. In this review, artefact is used to describe what is

being optimised. The artefacts are sometimes referred to as assets. It is to be

noted that green IT targets a more generic level of assets (which is due to the

objective of using software as a means for environmental sustainability, rather

14

than a target), such as product, processes, people, project infrastructure, and

institutional context [10].

In the case of greening in software, the process artefact refers to the software

development life cycle (SDLC) rather than general business processes. For

example, optimising processes in green IT domain involves; managing how

hardware products are used, operational decisions such as the promotion of

electronic systems for business automation – ‘going paperless’, promoting

teleconferencing to reduce carbon footprints etc.; which all drift from the

SDLC.

The SDLC sometimes referred to as software development process (SDP) or

simply software process is a process for planning, creating, testing, and

deploying software applications. There exist many different software

processes, but all must specify four key phases or activities that are

fundamental to software engineering [23], [28];

1. Software specification – which refers to the functionality of the software

and constraints on its operations.

2. Software design and implementation – which refers to the production

of the software to meet specifications.

3. Software validation – which refers to the evaluation or testing of the

software to ensure it does what the customer wants.

4. Software evolution – which refers to the evolvability of the software to

meet changing customer needs.

2.2.3.2 Conceptual and Algorithmic Approach

Conceptual techniques such as architectures or models present a

comprehensive plan required for achieving green software [29], and they

could span through multiple phases of the software development life cycle. An

example is the GREENSOFT model which adopts a layered approach to

software sustainability; to structure concepts, strategies or guidelines,

activities and processes for i) green software and ii) it's engineering [13]. With

the GREENSOFT model, the aspect of the model which focuses on the

15

engineering of green software (i.e. ii, as marked in the statement above),

adopts a lifecycle approach to investigate optimisation concepts for various

phases of SDLC. In practice, however, existing green software conceptual

models do not integrate well with SDLC or software implementation in specific

application domains, and thereby not utilised for specific application domains.

Consequently, varying literature propose green software solutions which

target a specific application domain by focusing on optimisation of the

software product (as an artefact). In such cases, optimisation is achieved

through implementation of efficient algorithms [30] – i.e. algorithmic approach

to green software engineering.

Algorithmic approaches are techniques that directly apply to or make

changes to the software code. These include i) refactoring for efficient

resource usage, ii) use of energy aware custom runtimes which manipulate

the programs execution or code base, or iii) green compilers or IDEs.

Refactoring techniques aim to make changes to the structural composition of

the system in such a way that the new code base or optimised component

uses less resource to accomplish the same or even more tasks. In green

software, optimising the code base can warrant structural change which leads

to a more optimised architecture. For example, the research in [31], through

comparison of two commonly used distributed architectural patterns shows

that the choice of architecture adopted in a software program affects its energy

consumption. Custom runtimes are additional codebase – often independent

of the functional features of the system – implemented in a software

application to aid its efficient use of resource or energy. E.g. [32], [33]. Custom

Runtimes are often used for executing custom optimisation logic which is

otherwise foreign to the base runtime of a program. The runtimes may

comprise monitors (power monitor; for energy awareness or resource monitor;

for resource awareness) which monitor different environmental state in order

to make an optimisation decision at runtime. Green compilers are used for

generation of optimised codebase for efficient use of resources or energy [30],

[34], [35]. Green compilers are targeted towards specific resources such as

16

CPU optimisation or GPU optimisation and therefore are often vendor specific

as well as resource-type specific.

2.2.4 Green Software Application Domains

Green software has been explored in a number of domains, this have been

broadly classified into three; desktop environments, cloud computing

environments, and mobile environments. The focus of the classification is

green software (not green IT hardware, which may include other domains

such as embedded systems).

2.2.4.1 Desktop environments (End-user applications)

Different utility programs or applications of the same software category (i.e.

fulfilling the same functions, e.g. browsers) have been shown to have varying

energy or resource consumption [36]–[38]. Moreover, consumption or bloat in

large applications is mostly due to deeply layered frameworks around which

they are built – especially in scenarios where only a few of the features of such

frameworks are utilised by the application [2]. To address such runtime bloat

leading to energy inefficiencies in end-user applications, refactoring approach

is proposed to use only components within a framework, that are being utilised

by the application[2]. Furthermore, a number of end-user resource or energy

monitoring applications have been proposed in the literature [36], [39]–[41] to

keep track of resource or energy usage of applications. With the aid of such

monitors, users can control applications that consume excess resource, a few

of the monitors can also be set to automatically turn-off programs which are

not being utilised at any point in time.

2.2.4.2 Cloud computing environments

Green software engineering has been applied in the context of cloud

computing – which spans through public (datacentres), private and hybrid

clouds. Due to high energy demands in data centres caused by increasing

demand for cloud computing services, several approaches (e.g. [30], [42]–[44]

etc.) have been proposed as a solution towards efficient management of cloud

17

resources, of which a popular software-based approach is the load balancing

approach [30], [45]–[47]. Load balancing deals with even distribution of

workload across interconnected servers to mitigate overutilization (high

consumption/runtime bloat) or underutilisation (runtime waste) of resources

[45]–[47].

Cloud computing, also referred to as ‘the cloud’, provides three main service

models – Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS) [48], [49] as presented in Figure 2.1. As the key

objective of cloud computing (from the cloud provider perspective) is

outsourcing services based on pay-per-use – much similar to the

telecommunication ‘Pay as you Go’ mobile cost-effective model, the

consequence has frequently led to increasing cloud resource consumption in

usual (non-optimised) scenario or day-to-day operations [30], [45], [46]. Most

cloud providers (especially, of IaaS) adopt green ICT models which focus on

hardware sustainability – such as datacentre cooling mechanisms, re-design

of datacentres for energy management by sensors. However, hardware

sustainability techniques do not directly handle the resource misuse of

consumers. As a consequence, administrative software systems (which

include power-aware algorithms such as shown in [30]) are being adopted and

are built in a way to monitor, and efficiently allocate tasks to servers – an

application of green software to the cloud, however, focus is on using software

Figure 2.1 Cloud Service Models [48], [49]

Software as a Service

Gov-Apps, Communication (email), Collaboration,
Productivity tools (office), ERP

Platform as a Service

Application Development, Security Services, Database
Management

Infrastructure as a Service

Servers, Network, Storage, Management, Reporting

Sa
aS

Pa
aS

Ia
aS

18

as a means to attain resource efficiency (i.e. greening by software). Recent

advances in green software (which focuses on optimised software; greening

in software), has also had a positive impact on the cloud (SaaS and PaaS). In

which case, software services provisioned by the cloud are not only

orchestrated externally (to minimise excess resource usage by high demand

on a resource) but are also optimised based on the awareness of the internal

software features (which minimises resource usage based on user context-

awareness) [46]. For example; Chinenyeze et al. [47] presents an aspect-

oriented model for energy efficiency (AMEE) in decentralised servers. AMEE

is focused on the use of Aspect component for resource optimisation through

load-balancing based on awareness of application context – i.e. finer-grained

application control.

2.2.4.3 Mobile environments

In mobile environments – such as smartphones and tablets – software

applications are used to monitor resource utilisation and control the execution

of mobile applications, in such a way as to extend battery life. A typical

scenario is the use of such applications (e.g. [50]) to monitor and shutdown

services which are not being used – these are examples of greening by

software. Moreover, advances in green software have investigated techniques

for improving the greenness of mobile application at finer granularity [51], [52]

such as simple algorithmic/rule-based optimisation, computation offloading,

context-aware resource management within applications etc. With the ever

increasing demand on the mobile device and its resource constrained nature,

the research on green mobile optimisation is experiencing continuous

attention and interest by academic research and the industry. With advances

in cloud computing, the popular green software optimisation approach for

mobile devices is towards the use of cloud as a surrogate to enhance

execution of mobile tasks – this phenomena is commonly known as Mobile

Cloud Computing (MCC). This thesis focuses on the mobile cloud applications

aspect of mobile domain.

19

2.3 Mobile Cloud Applications

Mobile Cloud Applications (MCAs) are mobile applications optimised by the

use of cloud computing as a surrogate for execution of resource-intensive

tasks. Thus, MCAs are a product of the MCC paradigm.

The mobile tier of the MCA is composed of the mobile device, whereas the

cloud tier is popularly implemented as clouds or fogs (cloudlets). Fogs or

cloudlets are installations of small datacentres at designated locations and

connected to larger cloud servers via the internet. Fogs are much closer to the

end-user device than the cloud; with the aim of providing mobility at the cloud

tier [53].

A number of MCC research also proposes the use of mobile services at the

cloud tier – which is similar to cloud services but provisioned by a collection

of mobile devices. In other words, mobile devices are considered as providers

of cloud, making up a peer-to-peer network as in [54]–[56]. This is also a form

of fog computing, however, the focus is on the use of mobile devices for cloud

provisioning, rather than cloudlets.

From a greening in software perspective, MCAs are realised through a

technique known as Offloading [1], [53]. Consequently, various research

proposes offloading schemes around the optimisation of mobile performance

and energy usage, focused on the use of high computation resources as a

surrogate – whether as clouds or as collaborating mobile resources, i.e. fogs,

[4]–[7], [52].

2.3.1 MCA Offloading Schemes

Task offloading is an algorithmic mobile optimisation technique that involves

the transfer of computation or resource intensive tasks of a mobile application

to a remote system (cloud or fog) with higher processing capability for

execution [52], [57]. Existing offloading schemes employ both code refactoring

techniques (i.e. transformations) and the use of custom runtimes; thus an

algorithmic approach (as presented in section 2.2.3). Custom runtimes can

20

execute as background processes which encapsulate the MCA offload model

for a mobile platform. Android is the most popularly investigated mobile

platform for MCA as shown in the literature, e.g. [4]–[7], [52], [58] to cite but a

few.

MCA offload models or schemes typically consists of three key components

which are; identification mechanism, decision maker and offloading

mechanism. These components can be defined by a number of properties (as

shown in Table 2.1).

2.3.1.1 Identification of Offloadable Task

The identification mechanism as shown in Table 2.1 is defined by two

properties: the type of transformation and the level of granularity.

 The type of transformation refers to the technique used to analyse and

mark tasks as offloadable. This can be either manual or automated.

 The level of granularity is defined by how many of the three MCA

components an offloading model takes into account during the process

of identification of offloadable tasks.

Table 2.1 Comparison of offload models (derived from [4]–[7], [59])

System Identification Mechanism Decision Maker Offloading Mechanism

Type of

Transformation

Level of

Granularity

Type of

Threshold

Used

Parameters

Offloading

Type

Automation

System

Kwon et

al. [4]

Manual

(Annotation)

Low Static Resource Cloning Custom

Runtime

MAUI [5] Manual

(Annotation)

Low Dynamic Resource Cloning Custom

Runtime

Hassan et

al. [7], [8]

Automated High Dynamic Resource

(full)

Partitioning Partial

Runtime

Native

Offloader

[59]

Automated High Dynamic Resource Partitioning Partial

Runtime

N.B. This table is not an exhaustive list of the models, but a list of distinct representative models –
consisting unique characteristics.

21

To transform a mobile application into an MCA, identification of offloadable

tasks is a sine qua non activity. This can be achieved either manually or

automatically.

Schemes classified by manual transformation require source code

modification for identification of offloadable task. As illustrated by Figure 2.2,

in manual transformations, annotations are used by the developer to identify

methods of the code that are resource intensive [4], [5]. The challenge with

the manual identification of offloadable components is that it is difficult to

ascertain which components are actually resource-intensive prior to

execution/runtime. Moreover, a manually identified task may be tightly

coupled to a resource constrained code (even if the identified task is actually

resource-intensive). Also, since manual transformation does not follow any

systemic approach (such as static or dynamic analysis) to identify offloadable

task, it therefore cannot account for the general impact of other MCA

components. Thus, manual transformation possess low level of granularity in

identification of offloadable tasks (e.g. [4] and [5]).

Schemes classified by automated transformation do not require source code

modification in the identification of offloadable tasks. The automated

transformation approach makes use of static and dynamic analysis of the

application to identify the offloadable tasks [7], [8]. The purpose of the static

analysis is to filter out methods that are resource-constrained or tightly

Figure 2.2 Types of Transformation in MCA (derived from [4]–[7])

22

coupled to other resource-constrained methods. Static analysis is achieved

by performing a call-graph analysis on the bytecode of the application

(whether packaged or not). The purpose of the dynamic analysis is to estimate

that a statically identified offloadable task yields benefit when executed

remotely in the cloud. This estimation is achieved by comparing the local

execution time of the offloadable task against its remote execution time. While

the static analysis does not require execution of the program, dynamic

analysis requires execution of the program, and also requires that the

offloadable task is setup in the cloud prior to the analysis.

Since current automated transformation do not require source code

modification (i.e. no need for annotations), the custom runtime stores the

method signatures of offloadable tasks and intercepts any methods at runtime,

which have their signature stored in the repository of the custom runtime [6],

[7]. Automated transformations are explored for legacy systems – where

source code may not be available for refactoring, while manual approaches

are explored mostly in application development or scenarios where source

code is accessible.

As shown by Table 2.1, automated transformations are marked as possessing

high (implying, better) level of granularity in the identification of offloadable

components as it includes runtime (dynamic) analysis.

2.3.1.2 Decision Making

The decision maker as shown in Table 2.1 is defined by two properties: the

type of thresholding and used parameters.

 The type of thresholding refers to the adaptive capability of the

offloading model – which can be either static (where thresholds are

fixed) or dynamic (where thresholds adapt to environmental state,

based on machine learning algorithms).

 Used parameters refers to the type and number of parameters (or

environmental factors) used for implementing the thresholds. Some of

23

the factors include mobile CPU availability, network bandwidth, latency,

etc. Details are presented in section 2.3.2.

Decision making is a feature in offloading schemes and used to decide when

to offload or when not to offload. Decision making can be based on simple

algorithms such as static thresholds [4] or can be as complex as machine

learning algorithms including the use of multi-layer perceptron [7]. In either

case, these algorithms employ varying environmental factors in offload

decision making. Hassan et al. [7] suggests that the more the environmental

factors are considered in the decision-making process, the greater the depth

of accuracy of the decision maker. However, accuracy is traded-off for an

element of overhead due to much monitoring as shown in [7]. An important

objective of this thesis is to minimise overhead by using a time-based context-

aware approach (a key feature of the later presented Mango approach). The

intention is that by using time as a singular parameter for thresholding, the

overhead resulting from extensive monitoring of many resources can be

reduced.

2.3.1.3 Remote Execution of Offloadable Task

The offloading mechanism as shown in Table 2.1 is defined by two properties:

the offloading type and the automation system.

 The offloading type refers to the mechanism by which the identified

offloadable task is offloaded to the cloud.

 The automation system refers to how automation of all MCA

components/process are achieved.

The characterisation by remote execution of offloadable tasks is also referred

to as the offloading mechanism of the MCA offloading scheme by some

literatures [4], [7]. This feature describes the structural composition of the

cloud-tier after the MCA refactoring process. To execute the offloadable tasks

remotely, the cloud tier can either be setup as a clone of the mobile device

(i.e. cloning) or as independent components executed remotely (i.e.

partitioning).

24

Figure 2.3 Types of Offloading Mechanism in MCA (derived from [4]–[7])

Cloning [4]–[6] involves the setup of a virtual mobile device in the cloud (as

illustrated by Figure 2.3). The full mobile application is also installed on the

virtual device and executes remotely at the same time as the local application.

The cloning approach works by state synchronisation/checkpointing. In other

words, when a check pointed state (i.e. thread) is reached, a snapshot is

created for fault-tolerance and the state of execution is offloaded to the cloud

which continues execution on the virtual device (on the cloud), after which the

final state (of remote execution) is synchronised with the local state.

Partitioning [7], [52] involves the setup of identified offloadable task as

independent components in the cloud. In partitioning, virtual device is not

required. Partitioning works by using sockets to transmit execution parameters

to the cloud. The component in the cloud listens for socket connections and

processes the mobile request using the parameters sent. Response is in turn

sent to the mobile tier after execution using socket API.

2.3.2 Environmental Factors affecting MCA Decision Making

Varying offloading schemes proposed by existing literature makes decisions

based on (monitoring) a collection of varying environmental factors of MCA

(such as, data size as in [4], network bandwidth and latency as in [5], etc.) The

awareness or monitoring of environmental factors is also referred to as context

awareness [60]–[62]. As shown in Table 2.2 , these factors are proposed by

existing literature as impacting MCAs and used for offload decision making.

25

Table 2.2 Decision making factors in MCAs.

System Used Parameters (Resources monitored for thresholds)

Mobile

CPU

availability

Mobile

memory

availability

Cloud

CPU

availability

Cloud

memory

availability

Network

bandwidth

Network

latency

Data

size

Kwon et

al. [4]

MAUI [5]

Hassan

et al. [7],

[8]

Native

Offloader

[59]

 Mobile CPU availability

Mobile CPU availability is measured in percent and is of particular importance

for computation intensive tasks. In other words the lower the percentage CPU

availability, the greater the chance of mobile energy consumption or

performance compromise for a computation intensive task. Thus; the objective

is to execute a (computation intensive) task on the mobile device when the

percentage CPU availability is higher or at least above a set threshold. Mobile

CPU availability is obtained programmatically by examining the /proc/stat files

in Android to compute the percentage CPU available.

 Mobile Memory availability

Mobile memory availability is measured in percent and is particularly of

importance for data intensive task. In other words the lower the percentage

memory availability, the greater the chance of mobile energy consumption or

performance compromise for a data intensive task. Thus; the objective is to

execute a (data intensive) task on the mobile device when the percentage

memory availability is higher or at least above a set threshold. A higher bound

mobile CPU and memory availability are useful for determining when to

execute a task on a mobile device. Mobile memory availability is obtained

26

programmatically by examining the /proc/meminfo files in Android to compute

the percentage memory available.

 Cloud CPU availability

Cloud CPU availability is measured in percent and is particularly of importance

for computation intensive task. In other words the lower the percentage CPU

availability, the greater the chance of mobile energy consumption or

performance compromise for a computation intensive task. Thus; the objective

is to execute a (computation intensive) task on the cloud when its percentage

CPU availability is higher or at least above a set threshold. The notion is that

avoiding offload to the cloud when the cloud CPU is overworked can curtail

mobile performance compromise. Cloud CPU availability is obtained

programmatically by examining the /proc/stat files in a Linux-based server to

compute the percentage CPU available.

 Cloud Memory availability

Cloud memory availability is measured in percent and is particularly of

importance for data intensive task. In other words the lower the percentage

memory availability, the greater the chance of mobile energy consumption or

performance compromise for a data intensive task. Thus; the objective is to

execute a (data intensive) task on the cloud when its percentage memory

availability is higher or at least above a set threshold. The notion is that

avoiding offload to the cloud when the cloud memory is overworked can curtail

mobile performance compromise. A higher bound cloud CPU and memory

availability are useful for determining when to offload a task to the cloud. Cloud

memory availability is obtained programmatically by examining the

/proc/meminfo files in a Linux-based server to compute the percentage

memory available.

 Network Bandwidth

Network bandwidth is the average rate of a successful data transfer through

a network communication path. It is measured in bits per second and achieved

27

programmatically by sending packets to and from the server to measure the

bandwidth. The objective of monitoring the bandwidth is to offload a task when

the bandwidth is higher than a set threshold. The notion is that the higher the

bandwidth the greater the tendency for mobile energy or performance savings.

 Network Latency

Network latency is the time interval or delay between request and response

over a network communication path. It is measured in milliseconds and similar

to bandwidth, it is achieved programmatically by sending packets to and from

the server to measure the latency. The objective of monitoring the latency is

to offload a task when the latency is lower than a set threshold. The notion is

that the lesser the latency the greater the tendency for mobile energy or

performance savings.

 Data size

Data size is the size of the data transmitted over the communication network.

It is measured in series of bytes (i.e. B, KB, and MB) and can be achieved

programmatically by checking the byte size of the request packet prior to client

socket transmission. The objective of monitoring the data size is to offload a

task when the data size is lower than a set threshold. The notion is that

transmitting larger data packets over the network could result in increased

energy usage or performance compromise.

As mentioned earlier in section 2.3.1.2, the challenge of making offload

decisions by monitoring the environmental factors is that it contributes

performance overhead in MCAs at runtime. An important objective of this

thesis is to minimise this overhead by using execution time as the key factor

for making offload decisions. Further details behind the concept are presented

in Chapter 3.

The popularly investigated metrics in the literature for MCA offloading

schemes are performance and energy efficiency. These are also observed in

the objective of the monitored environmental factors presented above. The

28

Green metrics of MCA investigated by this research are presented in the

following section. Note that the environmental factors are different from the

MCA green metrics, as the environmental factors (presented in this section)

are used for deciding when to perform an offload, whereas the MCA

associated green metrics (presented in the following section) are used to

evaluate the efficiency (or useful savings achieved) within the MCA.

2.3.3 MCA Associated Green Metrics

Following the green software objective (section 2.2.2), the green metrics have

been identified as energy and resource efficiency [18]. However, the core

investigated green metrics for MCA is mobile energy efficiency, as the focus

of MCA offloading schemes is optimisation of the mobile application.

Moreover, the MCA also involves the cloud-tier thus this research also

presents cloud resource efficiency as a relevant green metric for MCA.

Furthermore; green software objectives also investigate trade-off based on

other software qualities. And the popularly investigated software quality in the

literature for MCA offloading schemes is mobile performance, in this research

software availability is also investigated (at both mobile and cloud tiers) as a

relevant software quality for MCAs.

2.3.3.1 Mobile Performance

According to Bass et al. [23], performance is defined to be how long it takes

an application to respond to an event. The key drive to the advancement in

mobile computing is the portability of mobile devices – which is defined by

fluidity and ease of operation [57], [63], [64]. From a user perspective, the

ease of operation or usability of a mobile application is critically dependent on

its performance. Thus performance is a crucial metric in MCA (as considered

in the MCA literature e.g. [4]–[7], [52] to cite but a few), moreover mobile

performance is popularly explored in the context of MCAs as a trade-off

software quality to mobile energy efficiency.

In MCA, mobile performance is often measured by computing the difference

between the time of call (or request) to an offloadable task and the time of

29

result (or response) after execution of the offloadable task. While call and

result refer to a scenario where the offloadable task is executed on mobile,

request and response refer to when offloaded to the cloud. Time (mentioned

above) is a representative of timestamp – which is often computed

programmatically using the Java timestamp utility as in [31], and is measured

in ms.

2.3.3.2 Mobile Energy

According to Johann et al. [34], energy efficiency is the ratio of useful work

done to used energy. In other words, it is the amount of energy incurred for

executing a task.

Energy efficiency is derived from three quantities; power, time and work done

[3], [34] – in this way, energy efficiency is used in the comparison of two or

more entities where their useful work done is likely to vary, as the case of [31],

[34]. However, in a situation of comparison between entities of similar work

done or singular evaluation, energy efficiency is congruent to energy usage

(i.e. using two quantities; power and time). Consequently, the term energy

efficiency and energy usage (or energy used), is used interchangeable in MCA

research. Power Tutor [65] is a popularly adopted model or tool used by the

literature [4]–[7], [52] for mobile power monitoring.

2.3.3.3 Cloud Resource

Achieving cloud resource efficiency in a mobile cloud environment requires

care so as to not compromise mobile performance. (As highlighted by the

objectives of the cloud-based environmental factors – section 2.3.2).

Resource efficiency in servers (the cloud) is often achieved through load

balancing [47] (see section 2.2.4.2).

Although cloud resource efficiency is not often explored in the research on

MCAs, investigating resource efficiency/usage for cloud can be achieved

using the core impacted resource of the cloud – i.e. CPU and memory

resource. Moreover, these relate to the key aspects of application taxonomy

30

in MCA (i.e. computation and data intensive taxonomies, see section 2.3.4).

Thus for cloud resource usage of MCAs; percentage CPU utilisation and

memory utilisation are the key metrics. Percentage CPU utilisation and

memory utilisation can be measured by examining the /proc/stat and

/proc/meminfo files respectively in a Linux-based server.

2.3.3.4 Software Availability

According to Bass et al. [23], availability is the probability that a system will be

operational when it is needed. In other words, availability is concerned with

avoiding system failure. Most research does not take software availability into

consideration in the implementation of MCA schemes (this category of

schemes use only network exception catch, e.g. [5], [6], [52]). Moreover, a few

studies which consider availability investigates only at the mobile tier, e.g. [4].

Availability is achieved at the mobile tier by implementing a time limit to how

long the mobile device can wait on the cloud to complete the execution of a

request. When the time limit is elapsed the execution is made on the mobile

tier. Availability can also be implemented in a similar manner for the cloud tier

– this is presented by Mango in this research. While the time limit for mobile

tier targets the total elapsed time – which includes the network to-and-fro

communication time and the cloud execution time, the time limit for the cloud

tier targets only the cloud execution time. Thus for a finer granularity, the time

limit used at the mobile tier is more than that of the cloud tier.

Availability is an execution quality [66], and thus realised by several time

associated measures such as mean time to failure (MTTF), mean time to

repair (MTTR) and failure rate [67], [68]. MTTF and MTTR are measurable in

ms. Furthermore, since performance – an execution quality – is popularly used

in the mobile tier, in this research we explore availability for the cloud tier – as

shown later in the case studies in Chapter 7. Availability in the cloud tier is

measured using MTTR – which is achieved by measuring the time (in ms) it

takes for the cloud tier to execute a task (or optimally react) in an adverse

condition.

31

2.3.4 Application Taxonomy

Application taxonomy defines the classification for applications in which MCAs

have been explored in the literature. Application taxonomy for MCAs has been

derived by exploring the case studies used in the evaluation of offloading

schemes in the literature; as shown in Table 2.3. Furthermore; the offloading

schemes used to generate the taxonomy vary across the sampled schemes

in 1, and are based on Android applications. POMAC2 [7], [8] characterised

under automated transformation schemes. EFDM3 characterised under

manual transformation schemes and cloning schemes. DPartner is

characterised under partitioning.

MAUI [5] demonstrates a resource-intensive application (with fast battery

consumption) by implementing features within a synthetic application to

perform a large bulk-data transfer over the Wi-Fi interface, consume the entire

CPU, and keep the display backlight on. Such resource-intensive applications

motivate the MCA research. As shown in Table 2.3, these applications can be

classified in three taxonomies according to their resource consumption, they

are: Computation-intensive, Data-intensive and Hybrid applications.

2 POMAC: Properly Offloading Mobile Applications to Clouds
3 EFDM: Energy-Efficient and Fault-Tolerant Distributed Mobile Execution

Table 2.3 Application Taxonomy

System Taxonomy (based on case studies used in the literature)

Computation-intensive Data-intensive Hybrid

Kwon et al. [4] NQueen [69],

Mezzofanti [70]

Picaso [71], MatCalc [72],

MathDroid [73], ZXing [74]

Droidslator [75]

Hassan et al.

[7], [8]

Mezzofanti [70],

JJIL [76], OsmAnd [77]

ZXing [74] Droidslator [75]

Dpartner [52] Linpack [78] - Andgoid [52],

XRace [79]

Note that the references appended to the Apps links to the source code or google play app.

32

2.3.4.1 Computation-intensive Applications

Computation-intensive applications are a class of mobile applications that are

highly (or significantly) dependent on the computing power (i.e. CPU resource)

of the mobile device. An application or process is categorised as being highly

dependent on the CPU usually based on the high frequency of the use of the

CPU resource within a given time, for example:

 Tasks that iteratively compute a mathematical function, in categories of

benchmark applications and complex algorithmic applications e.g.

Linpack, NQueen.

 Tasks that frequently acquire and compute sensor data within the

mobile device, in categories of GPS applications and games e.g.

OsmAnd, Mezzofanti.

The core benefits of offloading schemes are realised with computation-

intensive applications; as this class of applications consumes the most battery

(or energy) from the mobile device. Most computation intensive applications

fall into the category of gaming applications and media processing

applications (i.e. image/video processing applications such as face

recognition apps, optical character recognition apps etc.) as shown in the

literature, for example, [5], [7], [8], [80].

2.3.4.2 Data-intensive Applications

Data-intensive applications are a class of mobile applications that devote most

of their processing time to I/O and manipulation of data. Due to the focus on

manipulation of data, these applications make more use of memory and

network than the processing power. In other words,

 tasks that hold and frequently read in-memory data for computation, in

categories of arithmetic computations, e.g. MatCalc.

 tasks that offload large dataset across the network, in categories of

barcode decoders and face recognition applications, e.g. ZXing and

Picaso.

33

In most scenarios data-intensive applications do not consume significant

mobile energy, unless in situations of poor communication network or

situations where they also require extensive computation – i.e. hybrid

applications. Studies [4], [8] have emphatically shown that offloading

applications that do not consume significant mobile energy (such as data

intensive applications), can result in mobile performance compromise or even

a slight increase in energy usage.

2.3.4.3 Hybrid Applications

Hybrid applications are applications where the identified offloadable task is

both computation intensive and data intensive. A typical example of hybrid

applications is video streaming, e.g. Droidslator, and online gaming

applications. This category of applications consumes both network resource

intensely while performing CPU demanding tasks.

As mentioned earlier, offloading such tasks is likely to save energy only if they

consume significant mobile energy.

2.3.5 MCA Evaluation Approach

The MCA architecture generally comprises three sets of components [4], [5],

[7], [52], these are, the mobile offloadable components (MCs), the server

components (SCs) and the components of the Offloading scheme/model.

Mobile offloadable components are first identified4. These components are

subsequently replicated on the server (as server components) to improve

mobile resource usage. The third set comprises the offloading scheme

components – which handle decision making based on monitoring data of the

current environmental state to predict when offload process is beneficial. The

scheme can be launched in both tiers – mobile and cloud tier (as shown at the

top middle section of Figure 2.4, i.e. (b)). The evaluation section of Figure 2.4

(i.e. (c)) illustrates the mobile-centric architecture scenarios method of

4 The analysis for offloadable classes is necessary due to the inadequacy of the cloud to perform some
mobile specific functions such as those tied to sensors, cameras, GPS etc.; and also to identify the
application features that are resource-intensive.

34

evaluation adopted by current literature, which is based on two features: the

focus on mobile-tier and the use of architecture scenarios.

2.3.5.1 Focus on Mobile-tier

To evaluate the efficiency of such systems (MCA with offloading schemes)

two abstract phases are taken into account, they are mobile device test and

server test; however, most research focus is on the mobile end [4], [5], [7],

[52]. For example, various works [4], [7], [52] achieve rigorous tests by

randomization of environment conditions such as network (bandwidth and

latency) and server/cloud resource (CPU and memory), using throttling and

load generation respectively, in order to evaluate mobile power usage and

performance. Consequently, the results of the evaluation do not highlight the

scheme’s implications on the cloud tier (the focus of evaluation is depicted by

the solid block around each scenarios in section c of Figure 2.4). Although the

implementation of the MCA offloading schemes takes into full account the

architectural change, the evaluation of the schemes does not clearly account

for the impact of the scheme on the full system tiers. This and further

challenges pertaining to the current MCA Evaluation approach are presented

in section 3.3.

Figure 2.4 MCA architecture with mobile-centric architecture scenarios

...

35

2.3.5.2 Use of Architecture scenarios

The literature uses architecture scenarios to evaluate MCA offloading

schemes. These scenarios currently vary between literatures. For example [7]

defines four scenarios (OnDevice, OnServer, Optimal and POMAC) to

evaluate POMAC. While [4] defines five scenarios (Smartphone only,

Offloading w/All objects, Offloading w/Necessary objects, Offloading

w/Necessary objects - delta, and Offloading w/Threshold check) to evaluate

its proposed static thresholding scheme. Although the variability of

architecture scenarios in current literature poses a challenge to comparing

existing schemes (see section 3.3.1), these can be summarised based on

similarities between scenarios as shown in Table 2.4 and illustrated by Figure

2.4.

Local is the execution of the application without any offloading. Server is a

scenario where all offloadable objects are always executed on the server.

Optimal is a scenario where only assessed objects are offloaded. Assessed

objects are the objects identified as computation or data-intensive. The

Scheme is based on extending the previous optimal scenario with decision-

making5 mechanisms for offload. It refers to the proposed offloading schemes

in the literatures.

5 Decision making is the check on the environment conditions of the communications which influence
the offloading. Decision making mechanisms can be based on single (static) thresholds [4] or predictive
learning [7].

Table 2.4 Architecture Scenarios for MCA Evaluation

Summary of Scenarios ST [4] Specific Scenarios POMAC [7]

Specific Scenarios

Local Smartphone only OnDevice

Server Offloading w/All objects OnServer

Optimal Offloading w/Necessary objects (delta) Optimal

The Scheme Offloading w/Threshold check POMAC

N.B. The summary column is used to match the scenarios from the literature [4] and [7].

36

2.4 Aspect Oriented Programming

2.4.1 Definition and Terms

Aspect-oriented programming (AOP) provides a component-based approach

to the implementation of crosscutting concerns6 [81]. The concept of code

injection at points of execution is one of the core features of AOP. A number

of libraries implement the AOP concept, such as AspectJ for Java and

PostSharp for .NET. AOP provides two types of crosscutting;

 Dynamic crosscutting – which modifies the behaviour of the program.

Dynamic crosscutting is fulfilled by join points (via pointcuts and

advices) which makes it possible to define dynamic structure of

crosscutting concerns [81]. in AspectJ and,

 Static crosscutting – which modifies the static structure of the types

(classes, interfaces, and other aspects) and their weave-time

behaviour [81]. Static crosscutting is fulfilled by forms known as

introductions or inter-type member declarations.

AOP is often used for safety checks, logging and other concerns that can exist

across class or method definitions – hence crosscutting concerns. The

crosscutting concerns in which the AOP technique is explored is largely based

on the modification of software behaviour; thus dynamic crosscutting

dominates the use of AOP [81]. In AOP a weaver is used to apply aspects (or

weave crosscutting concerns) into a target object to create a new, proxied

object. The two types of weaving are as follows;

 Static weaving – performs the weaving before compilation. It is efficient

in producing highly optimised woven code whose speed is comparable

to that of the code written in traditional methodologies (without AOP

techniques) [82].

6 A crosscutting concern refers to a requirement or program which (although in most cases is not a
functional requirement of the system) is or has potential to be recurrent in various parts of the program.

37

 Dynamic weaving – also known as load-time-weaving (LTW), dynamic

weaving is performed after compilation; in load-time or runtime.

Dynamic weaving is useful for reloading objects during execution [83]

and as shown by Chinenyeze et al. [84] it is also particularly efficient in

energy evaluation of components of similar structures.

From a Java programming context, AspectJ is the canonical open-source

Java library which finely implements AOP concepts. It adds to Java a few new

constructs: pointcuts, advice, inter-type declarations and aspects.

Aspect. An aspect is an encapsulation of these new (aforementioned)

constructs and acts as the unit of modularity for crosscutting concerns, –

analogical to Java classes, in behaviour. As seen from the examples in the

following section, crosscutting code is implemented once as aspects

(LogInterceptor of Figure 2.5 and Runner of Figure 2.6).

For clarification of some other AOP associated terms, some definitions have

been given by exemplification in the following section.

2.4.2 AOP by Example

2.4.2.1 Dynamic Crosscutting

The Logger example presented in Figure 2.5, demonstrates how AOP can be

used (in a dynamic crosscutting manner – using pointcuts) to alter the dynamic

behaviour of a system (without directly modifying the original source code).

Figure 2.5 Dynamic crosscutting in AOP (showing pointcut and advices)

1: public aspect LogInterceptor
2: {
3: pointcut method() : call(public * MyBanking.*(..));
4:
5: before() : method()
6: {
7: Logger.doLoggingBefore();
8: }
9:
10: after() : method()
11: {
12: Logger.doLoggingAfter();
13: }
14:}

 public void save (Object arg)
 {
 //business logic goes here
 }
}

public class MyBanking
{
 public void pay (String bar)
 {
 //business logic goes here
 }

...

before

before

after

after

38

The example presented in Figure 2.5 is based on the traditional AspectJ

syntax. Some AspectJ extensions also provide annotation based syntax for

AOP as shown in [81].

Pointcut. A pointcut is a program construct that selects join points and

collects join point context or data. In object-oriented programs join points

consists of operations such as method calls, method executions, object

instantiations, constructor executions, field references and handler executions

[81], [85]. Pointcuts and advice dynamically affect program flow [85] and will

be adopted for our model implementation. And within the aspect, the point of

execution where the code is to be woven is specified – as a pointcut, (Line 3

of LogInterceptor).

Advice. In AOP behaviours are added using Advice. An Advice is the actual

snippet of code that can be executed before, after or around the pointcut. In

other words, an advice defines the code to execute upon reaching selected

point(s) of execution. For example, the specifier keywords before and after

in lines 5 and 10 respectively are used to specify when the logging advice in

lines 7 and 12 are to be executed within pointcuts.

2.4.2.2 Static Crosscutting

The Runner example presented in Figure 2.6 illustrates how AOP can be used

in a static crosscutting manner to change the structure of a class. As

mentioned earlier, while dynamic crosscutting changes the way that a

program executes – using join points, static crosscutting affects the static

structure of the program – using an introduction.

Introduction. An introduction is a member of Aspect that defines or modifies

a member of another type such as a class. The declare keyword used in line

Figure 2.6 Static crosscutting in AOP (showing declare and inter-type)

1: public aspect Runner
2: {
3: declare parents: Sample implements Runnable;
4: public void Sample.run() { ... }
5: }

public class Sample
{
 public void method ()
 {...}
}

39

3 of Figure 2.6 is an example of an introduction. While join points are used for

dynamic crosscuts, introductions are used for static crosscuts.

In the example above (in Figure 2.6) the Runner aspect makes the Sample

class runnable by first; declaring that the Sample class fulfils the Runnable

interface, using the declare keyword on line 3. And second; defining the

appropriate inter-type void run() method as public on line 4.

2.5 Model-Driven Engineering

As mentioned earlier (in section 2.3.1), existing offloading schemes employ

the use of custom runtimes; with the aim of automating the optimisation

process of MCA. These custom runtimes, however, contribute overhead

during MCA execution (as presented later in Related Work; Chapter 3). In

traditional software development, there are many approaches to accelerate

design and development. Among these approaches, Model-driven

Engineering (MDE) has received attention because it provides abstraction

through high-level models (e.g. UML), consequently facilitating the

implementation of (complex) software [86]. MDE and Model-driven

development (MDD) are often used interchangeably, the same is applicable

to this section.

2.5.1 Definition and Terms

Model-driven engineering (MDE) focuses on exploiting domain models to

effectively solve a recurring problem. Consequently, MDE simplifies the

development process using models of design patterns (alongside tools) to

increase productivity [9], [87]–[89]. Popular objectives of MDE are the

realisation of generic models, i.e. platform independent models (PIM) and

specific models; i.e. platform-specific models (PSM) and the transformation

between the two. PIM is the most abstracted form of a model, and are the

blueprints from which PSM are derived. At PSM, software artefacts can be

realised using tools. The popular features that make the triad of

platform/domain-specific modelling (PSM) are: editor, language and generator

[9].

40

An editor allows users to modify the template of the model or program the

language for the model. The domain specific language (DSL) ensures that the

program is correct by defining a language or template structure. While the

generator is used to generate executable implementations of the model – a

process also known as transformation. It is also useful for generating

additional software artefacts that are synchronised with the model.

Furthermore, they synthesise artefacts from models to ensure consistency

between application implementation and information related to functional and

quality requirements captured by the models [9], [87].

In other words; MDE is applicable to various SDLC phases, thus; it can be

used to specify a sequence of models from requirements to features, and from

both of these to architecture (which includes modelling qualities) [87], [89].

The transformation process is based on respective meta-models. A meta-

model is a model of model. Meta-modelling is the process of generating meta-

models. It involves the development of rules and structures used for modelling

a set domain problems. In other words, meta-models explicitly describe how

domain-specific models are built.

2.5.2 MDE Technologies for Mobile

The MDE technologies for mobile are grouped in two headings – i) those that

have been explored in Java mobile applications (J2ME), which are generally

often applicable to all traditional java applications which run on JVMs, and ii)

those that are applicable to mobile platforms with different VMs from JVM;

such as Android running on Dalvik Virtual Machine (DVM). Based on up to

date knowledge none of the explored MDE technologies have investigated the

MCA domain towards mobile optimisation.

2.5.2.1 Technologies for Java Mobile

Carton et al. [90] investigates the use of AOP techniques and MDD for

modelling context; targeted towards J2ME applications. The modelling in [90]

is achieved through Eclipse Modelling Framework (EMF). EMF provides a

Java/XML-based modelling and code generation framework. Transformation

41

in EMF (i.e. the generator) is based on Java Emitter Templates (JET) to

transform PSM to code. The templates are validated based on plain Java

classes, moreover, the JET learning curve for the construction of templates

can be quite steep, as the full structure of the class has to be constructed

using a templating language. Thus, EMF is compatible with Java applications,

and this includes J2ME applications – i.e. Java Mobile Edition group of

applications, as shown in [90]. EMF, however, is not compatible with the

popular current day mobile platform – i.e. Android. Although Android

applications are developed in Java language they do not run on the traditional

JVM (they run on DVM), moreover, new concepts such as Activity, Service

and other Android specific APIs are introduced; some of which are due to the

presence of varying mobile sensors [91], [92]. Consequently, EMF was not

used in this research.

2.5.2.2 Technologies for Cross Mobile

As mentioned earlier, due to the uniqueness of the Android platform, EMF

which was adopted for J2ME mobile applications in [90] could not be

seamlessly applied in Android; consequently varying generators e.g. [93]–[96]

are proposed to target transformation in regards to Android mobile

applications. These are categorised based on how they perform

modelling/transformation;

 UML-based Transformers

UML-based transformers are a class of transformers that achieve model

transformation based on UML models. Usman et al. [93] propose a generator

called MAG (Mobile App Generator) for the transformation of multiple mobile

platforms – Android and Windows phone. MAG is based on UML modelling.

MAG performs the transformation using a state pattern which takes as input;

template classes and state machine with UML profile, in order to produce as

output; specific mobile application classes for Windows or Android phone.

Parada et al. [94] extends the GenCode tool (which is naturally targeted

towards Java code like EMFs) [97] to generate Android code based on class

42

and sequence diagrams. Thus [94] like [93]; are based on UML modelling.

The structure for the application (java files/classes) are generated from the

class diagrams. The extended GenCode in [94] also allows for generation of

Android API components such as Activity and Services (a limitation of EMF

used in [90]). The behaviour of the application is generated from the sequence

diagrams; such as method invocations and loops; however, some operations

such as mathematical operations and variable assignment are not generated.

 Graph-based Transformers

Graph-based transformers are a class of transformers that achieves model

transformation based on graph models. Lamhaddab et al. [95] uses MDE in

graph models (MDEG) as a practical solution for reverse engineering across

different mobile platforms (i.e. cross-platform development). MDEG

represents complex systems as models (usually XMI: XML Metadata

Interchange) in graph format. This provides more flexibility in transformation

as shown by [95] – which demonstrates MDEG’s flexibility in cross-platform

transformation. For cross-platform transformation, a specific application in a

platform is considered an instance of a meta-model. Instances of meta-models

are annotated with tags or annotations for platform specific transformation.

 DSL-only Transformers

DSL-only transformers are a class of transformers that achieves model

transformation only based on a custom domain specific language. They also

target a similar aim of cross-platform mobile development through modelling,

however, modelling is based on a language, not UMLs or graphs. Example of

such tools/frameworks are applause [98], Automobile [99], AXIOM [96], [100],

MD2 [101] and Mobl [102]. These approaches are aimed at generating native

code for different platforms through DSL, with the exception of Mobl which is

based on the Web (i.e. transformed application is based on HTML5, CSS and

Javascript) which is native feeling (though not native) application [102], [103].

43

2.6 Summary

This chapter presented the background on green software engineering,

mobile cloud applications, aspect-oriented programming and model-driven

engineering as shown in Figure 2.7. Green software was introduced as

applications that efficiently utilises resources during runtime. The

consequence of which would be efficient resource usage and efficient energy

usage – thus meeting an objective of green software. Also, a second identified

objective or concern of green software is its integration with software quality

attributes such as performance.

2.6.1 Green Software Engineering and MCA

Energy and resource efficiency have been considered a software quality

attribute (since the advent of green software engineering), alongside other

quality attributes like performance and security. In MCA, however, the metrics

combination popularly explored are mobile performance and energy efficiency

(performance representing a software quality, and energy-efficiency

Figure 2.7 Summary of Review and Scope of the Thesis

Green Software

Objectives:
Energy and Resource Efficiency
SQA Trade-off

Artefacts and Approaches:
Conceptual Approaches targets
Process artefact
Algorithmic Approaches targets
Code artefact

Application Domains:
Desktop environments: green
compilers and monitors
Cloud computing environments:
load balancing
Mobile environments: MCA
offloading (MCC)

Mobile Cloud Applications

MCA Offloading Schemes:
Dynamic: no code change
(Runtime interceptors)
Static: code access required
(Annotations)
Custom runtimes; replaced by
MDE

MCA Associated Green Metrics:
Mobile Performance
Mobile Energy usage
Cloud Resource usage

Environmental factors:
Network Bandwidth and Latency
Data size
Mobile CPU and Memory
availability
Server CPU and Memory
availability

Application Taxonomy:
Computation-intensive
Data-intensive
Hybrid applications

AOP

Definition:
Based on weaving crosscutting
concerns

Weaving:
Dynamic: weaves at runtime
Static: weaves at compile-time

Crosscutting:
Dynamic: modifies behaviour
Static: modifies structure

MDE

Process:
Solves problems in a domain by
models.
Specific features: editor,
language and generator.

Technologies:
UML-based (e.g. class diagrams)
Graph-based (XMI)
DSL-based (custom languages)

44

representing a green metric). Moreover, MCA is not a monolithically tiered

domain as it is composed of the mobile and cloud tiers which are both faced

with unique challenges – i.e. resource constrained challenge for the mobile

domain, and the challenge of efficient provisioning anchored to the cloud

domain. Consequently, in MCA, the aforementioned challenges have to be

fully taken into consideration when investigating MCA metrics:

 To observe the efficiency of a MCA offloading scheme on resource-

constrained mobile device – performance and energy usage is

considered as metrics for the mobile tier.

 To observe the efficacy of a MCA offloading scheme for cloud

provisioning – resource usage and software availability are considered

as metrics for the cloud tier.

Thus, this thesis investigates full-tier qualities for MCA. Furthermore, to

achieve and monitor the aforementioned qualities, this research explores the

following:

 An architecture for efficient MCA offloading based on the full-tier

qualities. The aim of the architecture is both for development-efficiency

and high decoupling (Achieved through MDE and AOP techniques).

 An evaluation approach for MCA based on the full-tier qualities (the

details on the motivation is presented in Chapter 3).

2.6.2 Opportunities for AOP in MCA

AOP has been explored in mobile computing for implementing crosscutting

concerns or weaving application-ready (off-the-shelf) features into an

application as in [104]. AOP however until now, has not been explored in the

context of MCAs (in achieving green software for mobile applications).

AOP is popularly used in dynamic crosscutting, and the Logger example in

Figure 2.5 is one of many applications of AOP concepts in software

engineering. Success has been achieved in the use of AOP to address

security checks, performance, transaction management etc. [81] as

45

crosscutting concerns, some of which are concerned with software quality

attributes such as security and performance. In a similar way with regards to

MCAs; offloadable tasks are concerns associated with mobile energy

efficiency. Thus AOP aspects could be employed in the implementation of

offloadable tasks as cross cutting concerns – this can offer two key benefits

to MCAs;

 Source decoupling

Aspects can help decouple MCA optimisation logic from the code base of

legacy systems. This means that no major modification is required to be made

on the source code of existing systems (especially the offloadable

components) since pointcuts are used to identify join points of offloadable

components.

 Reusability

Following from the source decoupling, only aspects will be subject to code

refactoring or changes pertaining to offloadable tasks. This means that

aspects can be reused for different MCAs as they are independent of the

application code base. In other words, for any MCA an aspect component will

remain the same structurally, with changes only made to the pointcut which

refers to the offloadable task(s) of specific MCA. Furthermore, this reusability

support allows for the development of tools to engineer/customise aspects for

specific MCAs – in a way where aspects can be designed as templates given

that it is structurally reusable. This can be accomplished by Model-driven

Engineering.

Aspects are applied in the design pattern (later referred to as ACTS) which is

used to realise the proposed architecture of this research.

2.6.3 Opportunities for MDE in MCA

Various technologies, e.g. [93]–[96] have been presented in the literature on

MDE for mobile development; existing works, however, do not cater for

software qualities and thus are not focused or applicable to MCA domain.

46

Thus a gap still exists for the application of MDE in MCA development for its

automation so as to mitigate the need for custom runtimes and yet achieve an

automated and flexible development process. Furthermore, as current

contributions in the literature have demonstrated that the use of MDE can

enhance abstraction and automation in generic mobile development [93]–[96],

insights are consequently drawn to use MDE for MCA, in its automation of

development (i.e. Development efficiency) as follows (in fulfilling the triad of

PSM – discussed in section 2.5.1);

 By Editable MCA Meta-Models (Editor)

As presented in section 2.3.1, the identification of offloadable tasks is a sine

qua non condition for MCA development. Thus a MCA meta-model can be

used to incorporate offloadable tasks into a model. Furthermore, the quality

objective of MCA in terms of optimisation aims (which are mobile performance

and energy efficiency, cloud resource efficiency and availability) can be

integrated into the model. For greater flexibility, a graph-based model can be

used with MCAs, as graph-based models are based on XMI as shown by [95].

Consequently, an MDE editor for MCA is proposed by this research based on

a graph model. As identification of offloadable tasks is a core activity in MCAs

(see section 2.3.1) – this is also achieved in modelling in this study. The

modelling framework comprises of two meta-models; the call-graph (which

specifies the offloadable tasks and its properties) and the graph-based model

(later referred to as Caller-Callee Model, which integrates the optimisation

aims/attributes into the model).

 By Reusable MCA Templates (Language)

As presented in section 2.5.1, DSL is used to specify structure in a program

through templates. Moreover, MDE models are driven with design patterns

using tools; to increase productivity [9], [87]–[89]. MCA is a domain centred

on offloadable tasks; a structure can thus be specified for MCA (for the

purpose of MDE) by the use of a design pattern which encapsulates

offloadable tasks and quality attributes as logic. This encapsulation can

47

consequently be presented in the form of templates for reusability. This

research proposes a design pattern – later referred to as ACTS (for the

aforementioned Caller-Callee model) which is realised as templates. In order

to accomplish reusability, the templates are implemented with placeholders

and tags which are representative of the properties of the meta-model.

 By Automated MCA Code Generation (Generator)

The core MCA meta-model (i.e. the Caller-Callee model) and the MCA

template (i.e. based on ACTS pattern) are used to generate application code

for the MCA. As a MCA generator, the generator has to be aware of the

optimisation objective in order to determine scenarios where the MCA will

yield actual benefits. In this research, the generator is packaged as an

API/framework, and the automated code generation which performs an

evaluation (on the model) for asserting that MCA will yield actual benefits is

later referred to as Quality Verifier. Thus the transformation is achieved in two

phases; at the design (i.e. modelling) phase and at the verification phase.

The MDE architecture in the research is presented in later sections as Mango

and the framework as Mosaic framework. And the MCA evaluation (different

from model evaluation) is fulfilled by Beftigre framework (a test framework).

The following chapter presents the methods adopted for the contributions of

this research.

48

Chapter 3. Problem Statement and Methodology

3.1 Introduction

Having presented in the previous chapter, a background for the study based

on a wide body of literature, this section focuses on formalising the main

problem or gaps of the study. Consequently, the methodology adopted by this

thesis to address the problems are presented. Also the chapter presents the

objectives while introducing the contributions of the thesis.

The first set of gaps and methodology is associated with the approaches used

for designing MCAs – i.e. offloading schemes. The second set is associated

with the evaluation approach adopted in the research on MCAs.

3.2 MCA Optimisation Approach

3.2.1 Gaps in existing approaches

This section presents the gaps relating to MCA offloading models/techniques

for improving the performance (in the context of execution time) and energy

usage of mobile device applications. The existing challenges in the literature

are presented, in this section, in terms of overheads in the components that

make up the generic MCA architecture (illustrated in Figure 3.1).

Figure 3.1 MCA architecture based on custom runtime (in the literature)

Decision
Maker

Offloading
Mechanism

Offloadable
Task

Offloadable
Task

Mobile App Cloud

Custom Runtime Custom Runtime

49

3.2.1.1 Challenges of Identification Technique

A task is identified for offload if it possesses chances of performance or energy

improvement when executed remotely – i.e. its remote execution time is lesser

than local. A key constraint impacting the performance gain of an offloadable

task is dependence on mobile-only resources – such as sensor or camera,

etc.

Zhang et al. [105] adopts a shortest path algorithm to identify an optimal cut

which minimises offloading overhead. However, this does not take into

consideration, the aforementioned constraint when identifying an offloadable

task. Elicit [8] uses the shortest path approach for identifying offloadable tasks,

and by taking into account the constraint, provides a better performance gain.

In the literature offloadable tasks can either be identified manually using

annotations or automatically through static/dynamic analysis as shown in

Table 3.1. The latter is more development efficient and accurate [8], [59].

Furthermore, not all offloaded tasks prove to be performance or energy

efficient, particularly the data- intensive applications, as shown in the literature

[7], [8], [52]. Thus raising a question to the effectiveness of the approach used

Table 3.1 Comparison of offload models (derived from [4]–[7], [59])

System Identification Mechanism Decision Maker Offloading Mechanism

Type of

Transformation

Level of

Granularity

Type of

Threshold

Used

Parameters

Offloading

Type

Automation

System

Kwon et

al. [4]

Manual

(Annotation)

Low Static Resource:

data size

Cloning Custom

Runtime

MAUI [5] Manual

(Annotation)

Low Dynamic Resource:

bandwidth

and latency

Cloning Custom

Runtime

Hassan et

al. [7], [8]

Automated High Dynamic Resource:

(full)

Partitioning Partial

Runtime

Native

Offloader

[59]

Automated High Dynamic Resource:

Mobile

memory &

bandwidth

Partitioning Partial

Runtime

N.B. This table is not an exhaustive list of the models, but a list of distinct representative models –
consisting unique characteristics.

50

in the identification of offloadable task. Two notions can be deduced; either

the task in concern was wrongly identified as offloadable or there was an

overhead during run-time which was unaccounted for during the identification

process. The second notion is likely a more valid point, because if the decision

making and offloading components add an overhead during runtime, which

was not considered during identification, then a particular offloading task may

never yield performance or energy-efficiency benefits – in a scenario where

the runtime overhead overshadows the offloading gain. Existing work [4], [7],

[8], [52], [80] to the best of knowledge does not take into account all MCA

components during the identification of offloadable tasks. It can be argued that

the decision maker would effectively allow such scenarios to execute locally.

The fact, however, is that the decision-making process is a required

precondition; thus overhead would have already been made. Also, although

the automated transformation schemes provide a higher level of granularity in

identification of offloadable tasks (as shown in Table 3.1) it is still prone to

overhead as it does not consider all the MCA components. Thus an effective

identification technique must take into account all the MCA components of

Figure 3.1.

 Problem I: The techniques for identification of offloadable tasks do not

evaluate the overhead of the overall offloading model, and therefore

are prone to overhead during runtime.

3.2.1.2 Challenges of Decision Maker

A good way to understand the decision-making component is, as a kind of

monitor and comparator, rather than just a set of if else conditions.

As a monitor: conditions are executed by checking (i.e. monitoring) the actual

environmental state. In MCA a given environmental state is defined by

different factors/parameters which are; mobile device CPU and memory

availability, network bandwidth and latency, cloud CPU and memory

availability, and transmitted data size; as used in the literature [7], [8], [52].

Notice that the parameters employed by existing work are resource based (i.e.

51

CPU, memory, and network) as shown in Table 3.1. For accuracy in the

decision-making process, it is critical that these factors be captured by the

decision maker.

Some research such as [7] takes into account all the aforementioned factors

for decision making, thus providing more decision accuracy with respect to the

awareness of the environmental state. Most works, however, only consider a

single or couple of the factors for decision making, for example data size alone

[4], or a combination of bandwidth and latency [5]. Whichever combination of

factors are used, an overhead is added to the application performance. For

example monitoring for network bandwidth and latency, requires sending

packets to and fro the communicating endpoints (e.g. [7], [8]); which

contributes its own overhead. Thus the more factors that are considered the

more overhead but the greater the accuracy in decision making.

As a Comparator: the actual environmental state obtained by measuring the

aforementioned environmental factors are compared against a (set of)

predetermined value(s). Hassan et al. [7] uses a machine learning algorithm

– specifically multi-layer perceptron, as a comparator due to the use of

multiple factors in the approach. Expected environmental factors are obtained

as training data, collected for offload condition – i.e. when remote execution

time is less than local, and non-offload condition. Kwon et al. [4] uses a single

thresholding approach on data size for the offloading condition. This is,

however, ineffective given the varying factors affecting MCA, and the

unpredictable nature of the environment. Cuervo et al. [5] uses a linear

regression model on bandwidth and latency – which also fails to compare

other factors.

As mentioned earlier, the decision-maker component decides when to offload,

with the offload condition satisfying a scenario where remote execution time

is lesser than the local execution time. Consequently, the core factor is the

elapsed execution time, however as this factor cannot be determined explicitly

before runtime, the environmental factors with the support of learning models

(or dynamic thresholds) [5], [7] or static thresholds [4] are adopted in the

52

literature. Thus an effective decision-making process must effectively predict

time with minimal overheads.

 Problem II: The accuracy of the decision maker is improved by

monitoring a series of resources, and performing a threshold

comparison dynamically (i.e. at runtime). However, dynamically

monitoring many resources contributes runtime overhead, especially

as this decision needs to be performed whenever an offloadable task

is to be executed – whether it is finally offloaded or not.

In Mango, the elapsed time (from real-time prediction) as the decision

parameter is used, so as to eliminate the overhead of resource monitoring for

multiple resource parameters. Furthermore, the time parameter is dynamically

set by Context (for decider) and Profiler Aspect (for threshold) as shown later

in Chapter 3.

3.2.1.3 Challenges of Offloading Mechanism

Many offloading models implement their offloading mechanisms as runtime

engines. There are however two key categories to the offloading mechanisms

used in the literature, they are; cloning and partitioning. See Table 3.1.

Cloning as the name implies involves execution of a virtual device on the

cloud. It is based on checkpointing – i.e. adding fault tolerance by saving

snapshots, and thus creates more overhead in offloading due to state

synchronisation (requiring as much as approximately 100MB data transfer

[6]).

Partitioning makes use of remote procedure calls. Unlike the cloning approach

which requires the virtual device running on the cloud, the partitioning

approach only requires the offloadable component executing on the cloud;

thus more efficient (saving energy and time) compared to cloning.

Offloading by partitioning has been adopted by both dynamic and static

optimisation processes in the research. Dynamic optimisation [8] – i.e.

optimising at bytecode level or runtime is most useful for optimising

53

legacy/existing systems, making it difficult to utilise from an earlier design

phase of the development process. Moreover, these approaches implement

complex decision makers. Static optimisation models – optimising at the

source level, can be adopted in the development process. However, their key

challenge is the dependence on custom runtime engine, e.g. [4], [58]. As such

deeply layered frameworks contribute to runtime bloat [2], [3], [106], an

appropriate mechanism, would need to be simplified – preferably without

dependencies on custom runtimes to minimise overheads. Thus; Mango

adopts a model driven approach; eliminating the need for a custom runtime.

 Problem III: partition based approaches (which is considered more

efficient of the two offload categories) are currently not applicable to

the development process as they are built for runtime and solely

focused on refactoring. This also makes it challenging to adopt existing

models in real-world application development.

3.2.2 Methodology and Research hypotheses

3.2.2.1 Methodology to Solving the Challenge in Identification Technique

Following the challenges presented relating to the technique for identification

of offloadable tasks; it is critical that the process for identifying offloadable

tasks be composed of both the decision making and offloading components.

In other words, a task is identified for offload if and only if the combined

overhead of the decision-making component, offloading mechanism and

remote execution is lesser than local. Thus the expectation is that;

H1: Offloading any task which compromises the aforementioned

condition will always compromise performance, even if the remote

execution time is less than that of local.

Consequently, a tool called Mosaic (abbreviation for – model-based selective

approach for identification of Callees) is proposed to effectively identify

offloadable tasks during development, by taking into account the

aforementioned constraint. The methodology behind Mosaic is the use of

54

MDE concept in identifying offloadable tasks. Offloadable tasks can be

presented as meta-models (later discussed as Caller-Callee Model), and other

MCA components (such as decision making and offloading components) are

applied to the meta-model as templates (later discussed as Aspect-Context-

Task-Service design pattern). Consequently, the model can be evaluated with

all components taken into account.

3.2.2.2 Methodology to Solving the Challenge in Decision Maker

As mentioned earlier the core purpose of the decision maker is the ability to

predict the elapsed time prior to offload, so as to know if there will be gain or

loss given the current environmental state. This prediction is currently

obtained from different factors, and using learning models (contributing

overheads) or inaccurate thresholds. As a way to curtail the complexities and

overhead of learning models and inaccuracies of thresholding based on

environmental factors, the thesis proposes a time-based context-aware

decision making approach. The two key concepts behind the approach to

solving the decision maker problem is;

 Time-based concept: execution time is the only factor being monitored

and thus eliminates the overhead of monitoring other MCA

environmental factors.

 Context-aware concept: context-aware feature is used to ensure

accuracy of the time threshold which compares against the execution

time. Further details on the contexts employed for the decision making

is presented in section 4.4.

As the proposed approach makes use of elapsed execution time as the factor

for decision making (at the mobile and cloud tier), the expectation is that;

H2: By use of a time-based decision-making process at both mobile

and cloud tier, software qualities can be achieved at both mobile and

cloud tiers.

55

3.2.2.3 Methodology to Solving the Challenge in Offloading Mechanism

To address the challenge of overhead caused by the custom runtime, this

thesis proposes the use of sockets as the offloading mechanism and

demonstrate that sockets finely integrate with the research objective of

achieving software qualities (i.e. in support of the second hypothesis – H2).

Furthermore, existing custom runtime engines help integrate/automate the

implementation of decision making and offloading processes into the MCA.

Similarly, the proposed Mosaic framework automate the development

process, however, to eliminate the overhead of custom runtimes, Mosaic

model-driven tool is designed to integrate with the mobile integrated

development environment (IDE) as a library.

H3: By use of an MDE tool integral to the IDE, the overhead of

complex runtime can be mitigated and also MCA components can be

generated on-demand during development.

3.3 MCA Evaluation Approach

3.3.1 Gaps in existing approach

In this section, examples are used from the research to highlight the problems

of the currently used MCA evaluation approach (i.e. the architecture scenario

approach) in the evaluation and comparison of offloading schemes. Thus,

deriving the goals and novelty of the proposed solution – later presented in

Chapter 6.

A Motivating Example:

Consider a situation in the development of mobile cloud application, the choice

of an offloading scheme would be a critical decision, as it is the core

functionality which transforms a mobile app to a MCA [4], [5], [7], [52].

Assuming the development team chooses to use an existing scheme, they will

need to evaluate and compare between existing offloading schemes. Two

offloading schemes have been selected, one based on single thresholding [4]

– ST for brevity, and another based on multi-layer perceptron (MLP) [7] –

56

known as POMAC. Also selected is an optical character recognition (OCR)

Android app; Mezzofanti – used in the source literature [4], [7], to validate the

schemes. From the source literature [4], [7], the computation intensive

offloadable component is the OCR functionality. The data presented in Table

3.2 is obtained from the source literature using WebPlotDigitizer [107].

To achieve the evaluation of individual schemes and comparison between the

schemes (ST vs. POMAC), mobile-centric architecture scenarios provided by

the source literature are used. Mobile-centric; meaning that the approach

provides green metrics results for only mobile tier (i.e. performance and

energy usage). Using mobile-centric architecture scenarios which are

prevalent in the research [4], [5], [7], [52] however possess challenges which

make it difficult to come to a satisfactory conclusion for both schemes, in terms

of evaluation and comparison.

The problems identified for mobile-centric architecture scenario are grouped

under three headings (the problem numbering continues from previous

section as they are all relating to MCA):

 Problem IV: Variability of architecture scenarios.

 Problem V: Inconsistency in evaluation results of scenarios for an

offloading scheme.

 Problem VI: Coarse-granularity of evaluation.

Table 3.2 MCA evaluation and comparison by architecture scenarios

Arch.

Scenarios

ST [4] POMAC [7]

Elapsed Time (ms) Used Energy

(J)

Elapsed Time (ms) Used Energy

(mJ)

Local 49331.55 86.59 3930.33 4854.24

Server 27673.79 63.86 34873.15 19839.42

Optimal 17486.63 44.73 3986.21 4845.10

The Scheme 10347.59 41.33 4242.32 5085.80

Local % diff. 130.65 70.76 -7.64 -4.66

Server % diff. 91.14 42.84 156.62 118.38

Optimal % diff. 51.30 7.90 -6.23 -4.85

Note: Local % diff., Server % diff. and Optimal % diff. is the % difference of the scheme in comparison to
Local, Server, and Optimal scenarios respectively. A negative value is used to signify loss in energy or
performance. Note that the metrics presented; i.e. elapsed time and used energy; are for the mobile tier.

57

3.3.1.1 Variability of architecture scenarios (making it difficult to compare

between offloading schemes)

The literature use varying scenarios to evaluate proposed schemes, e.g. [7]

defines four7 scenarios to evaluate POMAC, while [4] defines five8 scenarios

to evaluate ST. Therefore, to establish a basis for comparison, scenarios will

have to be matched (as presented earlier in section 2.3.5.2). This process

introduces complexity in comparing schemes especially since scenarios

which may be congruent (by inference) may have slightly different definitions

from each other (based on the actual literature implementation). This

introduces difficulty in communicating varying scenarios between the

development teams, and also a challenge to the comparison.

3.3.1.2 Inconsistency in evaluation results of scenarios for an offloading

scheme

To evaluate POMAC, [7] defines four scenarios. The efficiency of POMAC is

evaluated by comparing the POMAC scheme against other defined

architecture scenarios, using % difference. Deducing from Table 3.2, for

energy usage it can be concluded that POMAC is approximately 5% inefficient

compared to both local and optimal scenarios and 118% efficient compared

to server scenario. Although the local and optimal % differences seem to

arrive at the same conclusions, there is no clear relationship between the

scenarios. This is shown by ST which has approximately 71%, 43% and 8%

energy improvement based on local, server and optimal respectively. This

challenge makes it difficult to weight a scheme based on easily verifiable

values or conclusions.

7 Four scenarios are defined by [7] for evaluating POMAC, they are OnDevice, OnServer, Optimal and
POMAC.
8 Five scenarios are defined by [4] for evaluating ST, they are Smartphone only, Offloading w/All objects,
Offloading w/Necessary objects, Offloading w/Necessary objects (delta), and Offloading w/Threshold
check.

58

3.3.1.3 Coarse-granularity of evaluation

Different literatures use different levels of experimental rigour. For example;

[7] performed a more rigorous experiment for POMAC evaluation (as the

scheme is based on MLP), compared to [4]’s experiment for ST which is not

as rigorous. Comparing ST energy with POMAC (using optimal scenario as

reference) gives approximately 8% gain in ST and 5% loss in POMAC. The

case may be that in adverse environmental conditions ST scheme fails to save

mobile energy (which is true from later experiment conducted – in Chapter 7).

Also since the analysis is mobile-centric, it fails to provide the overall

implications of a scheme’s decision to or not to offload. This challenge poses

difficulty when deciding schemes with overall efficiency (i.e. mobile as well as

cloud resource aware). The Case Studies (in Section 7.6) later shows that

with full-tier evaluation one can better understand if a scheme just keeps

offloading to server, or if it checks server availability (i.e. robustness).

3.3.2 Methodology for a solution

To propose a solution for the identified gaps in the existing MCA evaluation

approach (i.e. the mobile-centric architecture scenarios approach), this thesis

adopts concepts from Behaviour Driven Development and Fine-Grained

Testing.

3.3.2.1 Behaviour Driven Development (BDD)

A key difficulty in evaluation of MCA identified above is the variability of

architecture scenarios – which also makes it difficult to compare between

offloading techniques. Which shows that, since there is no standard as to the

scenarios to use for justifying efficiency of an offloading technique, different

literatures/techniques use different scenarios. As a solution to the

aforementioned difficulty in varying scenarios, this thesis presents an

approach for MCA evaluation and comparison based on the factors

surrounding typical MCA scenarios.

59

For example; for a typical scenario, whether server, optimal or scheme, the

factors surrounding the efficiency of the application are mobile CPU and

memory availability, server CPU and memory availability, network bandwidth

and latency [7], [8]. Rather than evaluate schemes by comparing against

different scenarios which are all affected by the aforementioned factors, this

research proposes evaluating and comparing schemes on the bases of the

factors themselves which affect the schemes.

Furthermore, the implication of the proposed idea of the research is that to

evaluate an offloading scheme S1, a result can be presented thus:

 the performance and energy usage of S1 is x and y respectively, given

the aforementioned factors. This is a more simplified and easy to

interpret approach as shown in Table 3.3.

Rather than:

 the performance and energy usage of S1 is x1 and y1 respectively,

compared to a scenario (A, which however is affected by its own

uncontrolled factors), and x2 and y2 compared to another scenario (B,

which is also affected by its own uncontrolled factors), and x3 and y3

compared to another scenario (C, which is also affected by its own

unique factors). Using varying scenarios for evaluation introduces

unnecessary complexities as shown in Table 3.3.

Table 3.3 Simplified MCA Evaluation by Use of Environmental Factors

Evaluation by Architecture Scenarios Approach Evaluation by environmental factors

Scenarios S1 Time (ms) S1 Energy (J) Elapsed Time (ms) Used Energy (mJ)

A % diff. x1 y1

xx yy
B % diff. x2 y2

C % diff. x3 y3

Assuming A, B and C to be representative of
scenarios, such as Local, Server and Optimal.

60

And then to compare a second offloading scheme of interest say S2 to the

previous, S1, the process would be performed as follows:

 given that the factors of S1 and S2 are closely related compare S1 to

S2.

Assuming that S1 is more efficient, then the result can be presented as

thus;

 S1 is x% and y% more performance and energy efficient than S2 given

the factors.

Rather than:

 Compare S1 to A and S2 to A; then S1 to B and S2 to B; then S1 to C

and S2 to C.

Assuming that S1 is more efficient, then the result can be presented as

thus;

 S1 is x% and y% more performance and energy efficient than S2 in A,

and/or

S1 is x% and y% more performance and energy efficient than S2 in B,

and/or

S1 is x% and y% more performance and energy efficient than S2 in C.

‘and/or’ meaning that in most cases S1 might not be more efficient in all the

compared scenarios, thus it is difficult to establish a concrete result for

comparison using varying scenarios.

Notice that for the proposed approach; the syntax is ‘given factors then assert

results’. The above syntax is the core of behaviour driven development (BDD).

Thus, the behaviour-driven technique is used to address the first two identified

challenges (i.e. the problem of variability of scenarios and inconsistency of

results). Consequently, the thesis proposes Beftigre (explored in Chapter 6)

which adopts the BDD concept and simple clause approach, to simplify the

comparison and evaluation of offloading schemes, and thus simplifying

software design decisions.

61

Behaviour-driven development (BDD) is a design approach to aid

collaboration between non-technical contributors (such as business analysts,

or users) and software engineers. Consequently, BDD gears towards more

verifiable and collaborative test process by being able to compare expected

behaviours with actual results, following standard simplified scenarios –

constructed by simple language clauses, GIVEN, WHEN and THEN [108].

3.3.2.2 Full-tier as the new Fine-grained testing for MCA

Also presented as a key challenge to current multi-scenario approach to

evaluation of MCA, is the mobile-centric nature of the evaluation process.

Thus, only the impact of an offloading scheme on the mobile device is

estimated. However, MCA is composed of mobile and cloud tiers. Therefore,

to address the coarse-granularity of current approach, an effective solution

must take into consideration the mobile as well as the cloud resource impact

of an offloading scheme. [34], shows that a fine-grained approach to energy

measurement (using counters) can reveal specific energy usage in relation to

specific points of execution. Similarly, to identify specific implications of an

offloading scheme on an MCA, this research proposes Beftigre (presented in

details in Chapter 6) which adopts fine-grained measuring across the mobile

tier (using Markers, to measure energy usage and performance) and cloud

tier (using Metrics Collector, to measure CPU and memory usage). The

approach adopts concept of fine-grained software testing to present the

implications of an offloading scheme on the mobile tier as well as on the cloud

tier. By evaluating the system as a whole the Beftigre approach can detect

whether an offloading scheme is aware of both mobile and cloud resource

consumption. The full-tier objective of the approach is also assisted by the

BDD concept.

62

3.4 Summary

This chapter presented the current state of the art in mobile cloud applications

development. And consequently highlighted the key issues with the domain –

in terms of optimisation approach and evaluation approach.

The chapter presented six challenges (as enlisted below) faced by the

research on MCA which are addressed in this thesis. The first three problems

are associated with existing optimisation approaches (summarised in Table

3.1), and the latter three are associated with the evaluation approach used for

MCAs.

I. Inability to evaluate the overhead of overall offloading model, which in

turn results in performance overhead.

II. Multiple parameter based decision-making (with intension of accuracy

in environmental prediction) which leads to runtime/performance

overhead.

III. The optimisation algorithms are highly dependent on runtime, and thus

difficult to apply to development process.

IV. Inconsistency in evaluation results of scenarios for an offloading

scheme.

V. Variability of architecture scenarios (making it difficult to compare

between offloading schemes).

VI. Coarse-granularity of evaluation – focused on mobile implications of an

MCA or its offloading scheme.

To address the identified gaps in existing optimisation approaches this

research proposed a model driven architecture – Mango, which;

 Ensure that identified offloadable tasks will most certainly yield

benefits, during optimisation, prior to final deployment.

 Is based on execution times as opposed to multiple environmental

factors as parameters. And employs the use of sockets to implement

optimum execution. Thus the approach does not seek (or monitor) best

path of execution (requiring extensive resource monitoring, thus

63

causing overhead), but adopts a good-fit path with respect to execution

time. That is to say that; decision to offload is made based on time, and

control of remote execution is achieved based on time (as threshold) –

this is further explained in Chapters 4 and 5.

 Is based on model-driven engineering. And thus mitigates the overhead

caused by custom runtimes. The proposed Mango approach is

composed of a model and design pattern, which supports the

architecture for development as well as legacy optimisation.

Consequently, as an MDE approach, an MDE framework, Mosaic, is

also proposed to expedite development/optimisation.

To address the identified gaps in the scenario-based evaluation approach the

research proposed a behaviour-driven full-tier approach – Beftigre, which;

 adopts the BDD concept and simple clause approach, to simplify the

comparison and evaluation of offloading schemes and, thus, simplify

software design decisions. This is based on the use of the actual

environmental factors as parameters for evaluation rather than varying

scenarios. Notice that; the environmental factors are applied now in the

evaluation process (for finer granularity) rather than into the

optimisation process (which can cause performance overhead every

time offload decisions are made);

 adopts the concept of fine-grained software testing to present the

implications of an offloading scheme on the mobile tier as well as on

the cloud tier.

Conclusively, the research investigates solutions for i) an optimisation

technique for MCA and ii) evaluation technique for MCAs. The aforementioned

solutions (both architecture and evaluation) are presented in the following

chapter – in a unified approach (called Mango).

64

Chapter 4. Mango Architectural Approach

A Model-driven Context-aware Architecture for MCA

4.1 Introduction

This chapter presents Mango: model-driven approach for integration of

software quality with green optimisation in MCAs. Mango is the core

contribution of this research. The major aim of the approach is to provide an

architecture9 which seamlessly integrates software quality attributes (SQAs)

with the green optimisation objective of MCC, at both the mobile and cloud

tiers (i.e. full-tier). Also, as MCA is an application domain which spans through

mobile and cloud tier; Mango architecture therefore takes into account the

specification of SQAs across the mobile and cloud tiers. Most importantly, in

the architecture, these attributes are integrated into the system as a way to

improve efficiency by applying them in a contextual manner – thus, context-

aware. Mango is also a model-driven architecture, thus resource intensive

tasks and their SQAs necessary for optimisation, can be modelled and

transformed into code base by MDE tool. As shown in Figure 4.1, two

frameworks are derived from Mango approach, they are Mosaic and Beftigre.

Chapter 5, presents the MDE approach and framework, called Mosaic, useful

for the modelling and transformation of Mango architecture.

Figure 4.1 Mango and Derived Frameworks

9 In the thesis, both the overall approach and the architecture are referred to as Mango. The first is
called Mango approach which yields the latter, called Mango architecture.

65

As mentioned earlier, the Mango approach targets quality attributes spanning

through the mobile and cloud tiers. As much as achieving the full-tier quality

objective within the architecture, the test/evaluation process also has to take

into consideration the full-tier software quality objective of the architecture.

Figure 4.2 Mango Approach

66

Chapter 6 details the full-tier evaluation approach and framework for mobile

cloud applications, called Beftigre. Although the full-tier evaluation concept of

Beftigre is derived from the Mango approach, it is also suitable for testing

existing offloading schemes due to the full-tier nature of MCAs (i.e. involving

mobile and cloud tiers) – and consequently addressing the mobile-centric

challenge of current MCA evaluation approach.

4.2 Overview of the Approach

4.2.1 Concepts and Components

The Mango approach (Figure 4.2) splits the development of MCA into four

phases: design, architecture, verification and evaluation. The design phase

introduces a model-driven design to the development process. It is composed

of the Caller-Callee model. The architecture phase introduces the concept of

context-aware optimisation. The Mango architecture is pattern oriented and

introduces the use of Aspect Context Task Service (ACTS) pattern in the

development. The verification phase is used for quality verification – to verify

the suitability of the architecture for the application being developed. The

design, architecture and verification phase are realised by Mosaic framework

(see Chapter 5). The evaluation phase introduces full-tier and behaviour-

driven concepts for MCA evaluation. Full-tier evaluation makes it possible to

evaluate the MCA at a finer granularity which takes into consideration metrics

from both mobile and cloud tiers. Behaviour-driven evaluation makes it

possible to provide a consistent and reliable comparison between other

approaches or counterpart techniques.

As shown in Figure 4.2, Mango Approach groups the design components and

architecture components into two key features, which are the Caller-Callee

Model and the ACTS design Pattern respectively. Model-Driven Engineering

(MDE) focuses on exploiting domain models to effectively solve a recurring

problem. Consequently, MDE simplifies the development process using

models of design patterns (alongside tools) to increase productivity [88]. With

the aim of proposing a simplified and effective solution, Mango (Figure 4.2)

67

adopts MDE for effectively representing offloadable components with software

qualities as a model – called Caller-Callee model. ACTS design pattern is

proposed to describe the functional aspects of the architecture. Caller-Callee

model is a model representation of the ACTS design pattern, however at the

design phase, as shown in Figure 4.2. In this section qualities and quality

attributes are used interchangeably to both refer to Software Quality Attributes

(SQA).

4.2.2 Benefits of the Approach

The Mango approach (Figure 4.2) aims at achieving efficiency by treating the

identified overheads/challenges in MCA as a software engineering problem;

rather than merely an optimisation problem. The intention is that by

addressing the earlier discussed concerns (presented in Chapter 3) as a

software engineering problem, the need for complex optimisation or

refactoring processes (fulfilled by custom runtimes) would be mitigated; thus

resulting in a fine-grained, simplified, yet effective solution.

Furthermore, the core benefits of Mango approach have been presented in

the following listing. These benefits highlight the novel contributions of the

approach, and are evaluated in the case studies section. They are as follows

(the last two points are specific to the evaluation phase);

 Full-tier efficiency.

 Variability awareness.

 Suboptimal awareness.

 Development efficiency.

 Full-tier evaluation.

 Robustness of test.

 Reproducibility of test.

4.2.2.1 Full-tier Efficiency

Full-tier efficiency is achieved at all phases of the development. At the design

phase, full-tier efficiency refers to modelling of qualities for mobile and cloud

68

tier. At the architecture phase, full-tier efficiency refers to the context aware

decision making based on the mobile and cloud tier qualities. At the

verification phase full-tier efficiency refers to the ability to verify/capture the

overhead of overall offloading model for energy/resource usage or

performance savings at mobile and cloud tier, thus addressing problem I of

Chapter 3. The full-tier efficiency in the aforementioned phases are captured

in the Caller-Callee model and ACTS pattern. Details of how the Caller-Callee

model provides full-tier efficiency as a solution to problem I (in chapter 3) is

presented in section 4.3.3.

4.2.2.2 Variability Awareness

Variability awareness refers to the capability of the Mango architecture to

adapt (or make decisions) in varying environmental conditions with minimal

overhead, whether normal or adverse conditions, in order to achieve software

target qualities. Variability awareness is achieved through context-aware

optimisation logic – which is the logic of the Context component of the ACTS

design pattern.

The context-aware optimisation is based on the use of execution time as the

single core parameter for decision making, consequently mitigating the

overhead from measuring multiple environmental parameters. Thus, the

variability awareness benefit addresses the existing decision making

challenge (problem II of Chapter 3).

4.2.2.3 Suboptimal Awareness

Suboptimal awareness refers to the capability of the Mango approach in

avoiding situations where offloading does not yield benefits. Suboptimal

awareness is achieved by quality verification of Mango approach (i.e. the

Quality verifier and Selective Analyser in Mosaic framework).

This benefit is made possible due to the fact that MCA components can be

flexibly integrated into a meta-model (which is engineered to code). The

behaviour of the model can then be used to determine if an offloadable task

69

will justifiably yield benefits. Since the implementation code is based on a

meta-model it can be forward engineered or reversed (depending on whether

or not the offloadable task passed the verification). Thus Quality verification

addresses the problem inability to evaluate the overhead of overall offloading

model (problem I of Chapter 3).

4.2.2.4 Development Efficiency.

Development efficiency refers to the ability of the Mango approach to

seamlessly and effectively achieve the MCA transformation process during

development with no custom runtime intervention. This is achieved through

the model-driven approach in Mango with meta-modelling and

transformations – further detailed in the Mosaic framework (Chapter 5).

By adopting a model-driven approach, Mango addresses problem III of

Chapter 3 – which refers to the difficulty of the adoption of optimisation

algorithms due to tight-coupling to custom runtimes. Furthermore, as a model-

driven approach, Mango focuses conceptualisation of implementation logic on

the meta-models and templates, thus highly fostering reuse (at platform

independent level – i.e. models and platform level – i.e. templates).

4.2.2.5 Full-tier evaluation

Full-tier Analyser (at the evaluation phase) addresses the coarse granularity

problem of the existing evaluation approach (problem VI of Chapter 3) by

providing an evaluation mechanism which takes into account the mobile and

cloud tier, and their respective qualities (full-tier qualities) presented in the

design phase. Thus, Full-tier Analyser (in evaluation) directly maps to full-tier

optimisation (in architecture), as shown in Figure 4.2. The full-tier efficiency in

the evaluation phase is captured within the Full-tier Analyser of Beftigre

framework.

4.2.2.6 Robustness of Test

Evaluation in Mango approach is highly robust to evaluate the efficiency of

MCA, as well as capture differences between two compared MCA schemes

70

or approaches. The proposed Beftigre approach is robust to produce full-tier

results as well as capture test scenarios based on environmental parameters

which can reused as tests. The behaviour-driven features (through use of

annotated clauses) of Beftigre evaluation approach makes it robust in

capturing test results effectively, thus addressing the problems (IV-V of

Chapter 3) associated with current evaluation approach.

4.2.2.7 Reproducibility of Test

Evaluation in Mango approach also makes it possible to produce test results

which are consistent/reproducible (in other words, arriving at a conclusion

which is unbiased by the testing environments, or environmental factors). This

is achieved by control measures proposed by the evaluation approach (called

Beftigre – further discussed in Chapter 6). Inconsistency and variability

problems of the existing evaluation approach (i.e. problem IV and V of Chapter

3) are addressed by the reproducibility benefit.

Other benefits of the architecture are presented in the summary section. The

rest of the chapter presents the approach in details based on the four phases

of the approach (illustrated in Figure 4.2).

4.3 Designing the Model

Context-driven requirements analysis for Caller-Callee model (CRAC)

presented in Figure 4.3, is not an alternative requirements analysis approach.

CRAC can be viewed as a complimentary requirements analysis approach.

This is because its main purpose is to identify offloadable components in an

MCA, in order to generate the Caller-Callee model – which applies SQAs to

the identified offloadable components.

CRAC involves three phases; requirements listing, component classification

and caller-callee modelling.

71

4.3.1 Phase 1: Requirement Listing

This phase involves the presentation of both functional and non-functional

requirements. The non-functional requirements are the SQAs which the

system is to adhere to. In Mango approach four SQAs are considered for MCA

optimisation as shown in Table 4.1 – these are mobile performance, mobile

energy-efficiency, cloud resource-efficiency and software availability. The

functional requirements are the features of the application, defined by their

functional purpose as shown in Table 4.2.

Example: In a face detection application comprising of three requirements;

face capture, face detection and face tagging. The requirement listing is

presented below:

Table 4.1 Non-functional (N) Requirement Listing

Requirements Listing Tiers

N1 Performance Mobile

N2 Energy Mobile

N3 Resource Cloud

N4 Availability Cloud and Mobile

Figure 4.3 CRAC Process

72

Table 4.2 Functional (F) Requirement Listing

Requirements Listing Functions

F1 Face capture Capture an image

F2 Face detection Detect face from the capture

F3 Face tagging Add a description to the detected face

4.3.2 Phase 2: Component Classification

As shown in Figure 4.3, phase 2 is an extension from (or based on) the

functional requirements activity of phase 1. Phase 2 involves the identification

of the Caller (i.e. the sensor-centric component that references the Callee)

and the Callee (offloadable component) from the functional requirements

listing.

Identifying the Callee. The Callee (which is the offloadable component), is

identified based on the assumption that any component that does not rely on

a mobile-constrained10 resource is an offloadable component.

Identifying the Caller. After a Callee is identified then the Caller is identified as

the requirement which directly references (or makes calls to) the Callee

requirement.

At the requirements phase, these components are identified qualitatively by

abstractly deducing from the functional description provided for the

requirement. (The component classification are refined quantitatively by static

and dynamic analysis – using the Mosaic framework, presented in Chapter 5).

10 Mobile-constrained resources are resources that are constrained to mobile devices, and consequently
cannot be provision on the cloud. E.g. client-only APIs and resources such as GPS, camera,
microphone, and other sensors.

Table 4.3 Component Classification

Requirements Listing Classification

F1 Face capture Caller of F2

F2 Face detection Callee

F3 Face tagging -

73

Example: based on the face detection application, Face capture can be

speculated as sensor-centric as it would involve using the camera to capture

an image. Assuming the description added to faces are obtained from the

user’s mobile contact, then face tagging would be sensor-centric as well, since

it depends on the client-APIs – i.e. for retrieving mobile contacts. Face

detection requirement however can be speculated as the offloadable

component (Callee) since it runs an algorithm on the captured image, for

detection. Thus face capture is the Caller of face detection, as shown in Table

4.3.

As presented later in Mosaic (Chapter 5), the component classification phase

is inherently fulfilled by static and dynamic analysis of application source code.

The output of which is a call-graph artefact, useful for Caller-Callee modelling.

4.3.3 Phase 3: Caller-Callee Modelling

This phase involves the integration of the non-functional requirements (i.e. the

SQAs from phase 1) with identified offloadable components (from phase 2) at

the mobile and cloud tier of the MCC system. The model fulfils the SQA

integration objective of Mango architecture. Therefore, designing a Caller-

Callee model (Figure 4.4) involves specifying nodes and qualities for mobile

and cloud tiers.

A problem identified with existing MCA approaches is that of the inability to

evaluate the overhead of the overall offloading model, consequently resulting

in performance overhead (problem I in chapter 3). The Caller-Callee model

Figure 4.4 Caller-Callee Model

 Key:

Caller

Callee

Callee

mobile cloud

[p]

performance
energy

resource

Request/calls

Response/results

failover

availability

74

provides full-tier efficiency as a solution to this problem. This is achieved by

encapsulating all the features of the MCA transformation in the meta-model,

which involves both the mobile and cloud tiers. The model consists of both the

nodes and the logic for achieving set qualities, thus encapsulating the overall

offloading logic at the early stage of development – design phase.

4.3.3.1 Specifying nodes

The Caller-Callee model (Figure 4.4) is specified using two node types; the

Callee node (being the offloadable component) and Caller node (the

component referencing or calling the Callee). Furthermore, in specifying the

nodes, two representational Callee nodes are modelled – one for the mobile

tier and one for the cloud tier. This is to model offloading scenarios of the MCA

which can be executed at mobile or cloud tier.

4.3.3.2 Specifying qualities

The quality specification in the Caller-Callee model involves two activities;

1) Specification of attributes in tiers. At the Callee nodes, all qualities to

be implemented for mobile and cloud tiers are assigned. For example,

as shown in Figure 4.4, performance and energy efficiency attributes

are for the mobile tier, while availability and resource-efficiency

attributes are for the cloud tier. In the Caller-Callee model, qualities are

assigned to Callee(s) of tiers in form of tags, as shown in Figure 4.4.

2) Specification of priority attribute. Priority attribute is the mobile tier

attribute used to execute the application at runtime. This is the static

context for the application (see Context in ACTS Pattern section).

Priority attribute is specifiable by the user, in other words, it is based

on user preference. Within the Caller-Callee model, priority attribute is

represented on the call or request11 link to the Callee, which signifies

that priority attributes have to be available before the call to the Callee

11 Request refers to the reference made to the remote Callee (i.e. the cloud Callee), while calls refers
to the reference made to the local/mobile Callee. Similarly response and results are feedbacks received
from Callee at the cloud and mobile tier, respectively.

75

in order for optimisation decision to be made. From Figure 4.4, the

symbol “[p]” denote that performance is prioritised over energy-

efficiency. Priority specification is particularly useful for the mobile tier,

as it implements qualities which can be traded-off between each other.

For example, performance can be traded off for energy.

The response/result links connect from Callee to Caller. This signifies that the

Caller continues execution after response from the Callee. The response link

from remote Callee to local Callee is used to signify failover feature – in case

of any remote errors or network disconnection, execution is passed back to

local Callee rather than the Caller to avoid wrong results (i.e. for data integrity)

or prevent application crash.

Decoupling priority attributes from generic attribute specification provides

flexibility in application usage, so that users can define the context of

execution for applications, as opposed to an undisclosed context; popularly

used in the research – which assumes energy saving need for any execution

scenario. For example, a benefit is that; with the decoupling a user can choose

performance as priority in a scenario of high battery availability, and energy-

efficiency with an intention to save battery usage.

As presented later in Mosaic (Chapter 5), the Caller-Callee model is defined

as a generated ACTS source template implementing the Mango architecture

with specified SQAs – based on the call-graph artefact of phase 2.

4.4 A Pattern Oriented Architecture for Context-aware

Optimisation

ACTS (which stands for Aspect, Context, Task and Service) is an architectural

pattern which Mango architecture uses to implement the Caller-Callee model.

The purpose of the pattern is to provide an implementation skeleton for the

Mango architecture which spans through the mobile tier and cloud tier. ACTS

is composed of four components; Aspect, Context, Task and Service. The

76

Class diagram of Figure 4.5 illustrates the functions of the components

described below in details.

4.4.1 Aspect: Dynamic Crosscutting Component

The Aspect component is an AOP Aspect used to intercept calls made by the

Caller to the Callee, and then routes execution to the task component (to either

offload or execute locally) using parameters required for the Callee execution.

After the execution, the Aspect returns results to the Caller to continue

execution. The three aforementioned functions fulfilled by Aspect is illustrated

in Figure 4.5 by interceptCaller, routeToTask(params) and updateCaller,

respectively. The ACTS component which Aspect directly collaborates with is

the Task – i.e. by routing to it. The interceptCaller and updateCaller are fulfilled

by Aspect around pointcut. To support use of Aspect on the mobile tier,

AspectJ Android plugin12 is used.

12 AspectJ Android Plugin: https://github.com/uPhyca/gradle-android-aspectj-plugin

Figure 4.5 ACTS Pattern (Class Diagram)

77

Why AOP Aspect? In Aspect Oriented Programming (AOP), Aspects are used

to implement crosscutting concerns – such as logging, transaction, and

security[81]. The purpose of using Aspect in ACTS pattern is to implement

offloadable component (i.e. Callee) as crosscutting concern – so that an

optimisation applied to an identified Callee will apply to all aspects of the

program where that Callee is used. Also importantly, the use of AOP makes

Mango architecture useful for legacy systems, as Callees are not required to

be manually identified or modified. Thus, eliminating the need for multiple

implementation and reducing development time. For example; Kwon et al. [4]

proposes use of annotation to annotate the identified Callee methods – which

implies that a developer needs to keep track of different occurrences of an

offloadable tasks; this is impractical and development inefficient.

4.4.2 Context: Representation of User and Environmental Contexts

Context, a key principle in mobile pervasive systems [64] refers to the

circumstances that form the settings for an event, or simply the elements of

user’s environment that are relevant for the application [64], [109]. This is

similar to the MCA environmental factors mentioned in the review (see section

2.3.2), however in Mango the term ‘Context’ is used for better insight. Contexts

used in Mango are grouped into two categories; Static and Dynamic Context.

The static context is the specified quality attribute considered as the priority

attribute for executing the application at any given time. For example, given

that energy and performance form the possible static context for the mobile

tier, specifying energy at any given time will execute the Callee for mobile

energy-efficiency. Static contexts are however reliant on the dynamic context

for decision making.

The dynamic context is the basis on which the decision making of the MCA is

made. It is the core logic for the decision maker, and is analogous to the ‘use

of environmental factors’ approach adopted by the related work. It is

composed of elapsed time (of mobile and cloud execution) and execution

mode (i.e. for mobile or cloud execution) generated at runtime. The Context

78

component of ACTS is used to specify logic for persisting, retrieving and

adapting the dynamic context (as shown in Figure 4.5). The purpose of storing

the dynamic context is so that they can be used in decision making of

subsequent executions within the Task component.

In a nutshell, the static context is the priority attribute specifiable by the user,

while dynamic contexts are elapsed times (from mobile and cloud tiers) and

execution mode obtained during runtime – further explained in Algorithm 4.1.

Within an Android application, Contexts are stored in Shared Preferences as

Algorithm 4.1 Adaptive Context-aware Decision Maker
Require: mode, mt and ct in Context DB.
 //By default mode in Context DB is set to mobile

 1: overhead = 0 //performance as priority SQA

 2: if mode == 'decider' then
 3: if (mt + overhead) > ct then
 4: runOnCloud
 5: else
 6: runOnMobile
 7: end if
 8: else if mode == 'mobile' then
 9: runOnMobile
10: mode ← 'cloud'
11: else if mode == 'cloud' then
12: runOnCloud
13: mode ← 'decider'
14: end if

15: runOnMobile
16: t1 = start time
17: execute Callee on mobile
18: t2 = finish time
19: mt ← t2 - t1 //mt is mobile elapsed time
20: end

21: runOnCloud
22: try
23: t1 = start time
24: execute Callee in Cloud
25: t2 = finish time
26: ct ← t2 - t1 //ct is cloud elapsed time
27: catch: runOnMobile
28: end

29: mode ← 'mobile' :: on user command

79

it is a simple persistent key string storage option with most minimal overhead

compared to other options (such as SD card, SQLite or remote storage).

4.4.3 Task: Context-aware optimisation component.

The core function of the Task component is to execute the offloadable

component i.e. handleCallee(params) of Figure 4.5. Task is the component

which transforms a mobile app into MCA, by providing; socket implementation

for remote execution of Callee, and adaptive context-based decision maker

which makes use of the Context component of ACTS to decide when to

offload. Based on the decision the Task executes the Callee on the mobile or

cloud tier and returns the result to Aspect. After the Callee is handled, Task

updates the Context database with dynamic context, to ensure that executions

are based on recent knowledge – particularly important due to the

unpredictability of MCA environment.

Why Task? ACTS Task component is implemented as a subclass of Android

AsyncTask API – which is used to perform background operations without

manipulating UI thread. The reason for implementing Task as an AsyncTask

class is so as to avoid resource overhead of handling socket connections on

the main UI thread – which could also crash the application.

Algorithm 4.1 provides the algorithm used for decision making within Task

component. The decision-making process uses;

 Context DB to persist and retrieve dynamic context.

 Static context to prioritise an SQA during decision making.

 Dynamic context for adaptive decision making.

Using Context DB: The execution mode, mt and ct are persisted in and

retrieved from the Context DB. For example (see Algorithm 4.1) lines 10 and

13 updates the mode in Context DB, and lines 19 and 26 updates the mt and

ct respectively. Whereas, lines 2, 8 and 11 retrieves mode from the Context

DB to check its state, line 3 retrieves/makes use of mt and ct from the Context

DB.

80

Setting static context: The algorithm starts by setting the static context

variable; i.e. overhead, which is 0 for mobile performance as priority attribute.

For mobile energy as priority attribute, the overhead is obtained as a

percentage (x%) of the mobile elapsed time (mt), i.e. x% × mt. The purpose is

to specify the maximum performance overhead permissible for energy

optimisation (therefore 0 signifies that no overhead is allowed hence

performance as priority attribute).

Adaptive decision: Three execution modes are defined; decider, mobile and

cloud mode (see Algorithm 4.1). At any mode of execution; whether an offload

is done (lines 21-28) or not (lines 15-20), the elapsed times are always

updated (i.e. lines 19 and 26). Thus, ensuring that the decision making

process is up-to-date with changing environmental state. The initial execution

mode of the Context DB is mobile mode – this is the mode of the first execution

of the application.

Therefore when an application is executed initially, with the initial mode being

set as mobile; thus satisfying the condition of line 8; line 9 and 10 is executed.

Line 9 runs the Callee on mobile and updates the elapsed time (mt) in the

Context DB (as shown in line 15 to 20). Line 10 then updates the mode in the

Context DB to cloud.

On the next execution of the application, as the mode is set to cloud, lines 12

and 13 is then executed. Line 12 offloads to the cloud and updates the elapsed

time (ct) in the Context DB (as shown in lines 21-28). Line 13 then updates

the mode in the Context DB to decider.

On subsequent executions the decider mode uses the stored context for

deciding when or when not to offload. The decider mode executes lines 3 to

7. The decider makes use of the overhead variable (at line 3) set earlier by

static context (line 1), when making offload decision. If the sum of the mobile

elapsed time (mt) and overhead is greater than the cloud time (ct) then the

Callee is offloaded to the cloud for execution. As mentioned earlier, a 0

overhead (as used in Algorithm 4.1) signifies mobile performance as priority

81

attribute, thus adding 0 to mt in line 3 results to the original mt. However, for

energy efficiency as priority attribute; a non-zero overhead is added to mt,

before being compared (>) against ct. Increasing mt using the non-zero

overhead is a way to force energy-saving by offloading, despite performance

compromise. In other words increasing mt by a percentage (using the

overhead) is a way to prioritise offloading for the purpose of mobile energy

savings, with performance trade-off (of the % of overhead).

Line 27 of Algorithm 4.1 implements the failover modelled in Fig 3. This is

useful in case of a situation where the offload encounters an error. In such

situation, the Callee is executed on the mobile tier. Note that lines 21 to 28 of

Algorithm 4.1 is a simplified version of Algorithm 4.3 – which presents the

complete algorithm for runOnMobile.

Also important; the adapt function in the Context component can be used to

reset the ContextDB mode back to mobile execution mode; which refreshes

the optimisation logic. Resetting can be useful for updating the values of the

modes to most recent environmental condition for better accuracy in the

optimisation logic. Thus the purpose of line 29 in Algorithm 4.1. As shown in

line 29, the control is handed to the user. In other words, the user can refresh

the logic at any point in time.

4.4.4 Service (and Shared Context)

Services are cloud implementations of Callee; for which execution is based

on the shared context. Services receive parameters from the offload request

from the Task component, handle the remote execution of the Callee and

sends a response back to the Task component. Two key software qualities

implemented for the cloud tier, as shown in the Caller-Callee model, are

software availability and resource-efficiency. The term Shared Context is used

here to denote the fact that the cloud tier qualities are shared for effective

integration of the qualities – i.e. to minimise overhead on the application

performance. Context sharing for the cloud tier quality attribute is either

 between cloud tier services (i.e. Service and Service) or

82

 between the cloud tier (Service) and mobile tier (Task)

Service to Service Context Sharing: Cloud qualities can be integrated into an

MCA by implementing the cloud qualities (within a Service) to collaborate with

another Service. In other words, the Service acts as a surrogate to the cloud

tier Service which originally handles offload requests. This is exemplified by

line 4 of Algorithm 4.2 which redirects the execution of the Callee to an

alternate Service in a situation where the CPU is overworked – for resource

Algorithm 4.2 Shared Context for Cloud tier, Service
Let: x represent available CPU in %
 y represent CPU Threshold in %
 z represent Time Threshold in ms

 1: result = null
 2: Thread t:
 3: if x < y then
 4: result = alt Service //Service to Service
 //do nothing, for Service to Task
 5: else
 6: result = execute Callee
 7: end if
 8: end
 9: t.start()
10: t.join(z)
11: if t.isAlive() then
12: t.interrupt() //Service to Task
13: end if
14: send result to mobile

Algorithm 4.3 Shared Context for Mobile tier, Task
Let: z represent Time Threshold in ms

 1: runOnCloud
 2: try
 3: t1 = start time
 4: result = null
 5: Socket s = new Socket(host, port)
 6: s.setSoTimeout(z)
 7: write Callee params through socket
 8: result = read result from cloud
 9: t2 = finish time
10: ct ← t2 - t1 //ct is cloud elapsed time
11: if result == null then
12: runOnMobile
13: end if
14: catch: runOnMobile
15: end

83

efficiency. The CPU threshold represent the minimum available CPU on the

cloud tier which can process the Callee request with minimal overhead. The

alternate service implements a version of the Callee, however does not

require redirection logic (and quality implementation), it only acts as a server

surrogate to the main Service and returns the result to the main Service.

Service to Task Context Sharing: Cloud qualities can be integrated into an

MCA by implementing the cloud qualities (within Service) to collaborate with

the mobile tier (Task). In this type of context sharing, the Task component

provides complementary features to enforce the cloud tier qualities. These

complementary features are implemented within the method which handles

the offload (i.e. runOnCloud) in the Task. For example; Algorithm 4.2 provides

the snippet for context sharing in the cloud tier, which implements the resource

efficiency and availability qualities.

According to Bass et al. [23], availability is the probability that a system will be

operational when it is needed. In other words, availability is concerned with

the consequences of a system failure. In Algorithm 4.2, a time threshold (z) is

used to specify the maximum expected elapsed time for the cloud tier to

complete execution of the Callee. The time threshold is therefore used to

determine availability in the cloud tier. Consequently exceeding the time

threshold (which is maximum elapsed time) signifies unavailability – which can

be due to any number of reasons such as high demand of the software,

intensive resource use/over-utilization or system failure. The performance of

the Callee can also be affected by network (bandwidth and latency) which may

not be manageable by the availability feature within the cloud tier (since

network is external factor to the cloud processing resource). Consequently,

the mobile tier acts as a surrogate to ensure availability and performance

using the socket timeout (line 6) – in which case an exception is thrown to the

catch clause, which runs the Callee on the mobile tier – as shown in line 14 of

Algorithm 4.3.

As shown in Algorithm 4.2, the Callee execution is implemented within a

thread, so as to use the thread join(z) and interrupt() methods to implement

84

availability. The join method waits at most z milliseconds for the thread to

complete. While the interrupt method implemented after the join call ends the

process of the thread (see lines 11-13) if not completed within the time, z

specified by join (in line 10). If the thread is terminated prior to completion, the

result sent to the mobile (on line 14 of Algorithm 4.2) is null. The mobile

complements the cloud tier Callee availability quality by executing the mobile

Callee node if the result is null (as shown in lines 11-13 of Algorithm 4.3).

Similarly, the mobile tier can also be used as a surrogate for cloud resource-

efficiency quality, by not redirecting to alternate Service when the cloud CPU

is overworked (i.e. highlighted line 4 of Algorithm 4.2), in which case a null

response is sent to the mobile; and consequently, Callee execution is handled

by the mobile.

4.5 Quality Verification

Quality Verification (Figure 4.6) is an evaluation process which is used to

determine if an identified offloadable component (Callee) will certainly yield

benefits when offloaded. The purpose of performing the quality verification

after the architecture phase is to include the optimisation logics of the Mango

architecture in the verification process. Consequently, phase 3 of Mango

approach ensures that the remote execution time including the decision

overhead within the Mango architecture, does not compromise the

performance of the mobile application – at least in normal environmental

conditions. Furthermore, quality verification is performed dynamically (i.e. at

runtime), further details are presented in Mosaic (Chapter 5).

Figure 4.6 Quality Verification

85

4.6 Behaviour-driven Full-tier Green Evaluation

The evaluation approach used in Mango is called Beftigre (details presented

in Chapter 6). Beftigre (abbreviation, for behaviour-driven full-tier green

evaluation) provides an evaluation for MCA by taking into account the full-tier

qualities attributes of the architecture, as shown in Figure 4.7. The challenges

and difficulties of the mobile-centric architecture scenario approach fall into

the category of (green13) software testing/evaluation [23], [34]. In response to

the identified challenges (see Chapter 3), Beftigre is proposed, which adopts

the behaviour-driven technique to address challenges 1 and 2. Furthermore,

the thesis treats challenge 3 as a testing granularity problem, consequently

resolved by fine-grained testing of mobile tier and cloud tier (i.e. full-tier).

The behaviour-driven (BDD) concept is achieved at the Comparator

component as annotations: with the purpose of presenting the factors

surrounding MCA test in a comparable and communicable manner.

Consequently BDD terms such as Given, When and Then are used. Platform

monitors are useful for monitoring the platform for target metrics whereas the

Metrics Collector computes the gathered data. For instance, at the mobile tier,

power and performance monitors and collectors are used for gathering metrics

13 Green is the term used for software optimisation and testing based on the energy-efficiency and
performance metrics [10], [18]. Since offloading schemes target energy-efficiency of mobile devices,
similarly scenario based comparison is within the green software testing category.

Figure 4.7 Behaviour-driven Full-tier Green Evaluation

86

for energy and performance computation. And for the cloud-tier resource

monitors and collectors are used for CPU and memory metrics. Thus full-tier

qualities (or attributes) are analysed at the evaluation phase. Details of the

Beftigre approach and how the identified research gaps have been addressed

are presented in Chapter 6 and Section 7.7.

4.7 Summary

Table 4.4 Summary of Mango Architecture

Tiers ACTS Design Pattern Caller-Callee Model

Mobile Aspect Caller

Context -

Task Callee

Cloud Service (with Shared Context) Callee

Class
Aspect

Collaborators
 Task

Responsibility
 Intercepts Caller

calls to Callee.
 Routes execution to

Task.
 Returns results and

execution to Caller.

Class
Task

Collaborators
 Aspect
 Context
 Service

Responsibility
 Receives Callee

parameters from
Aspect.

 Implements the
optimisation logic on
the Callee.

 Dispatches Callee
execution to mobile
or cloud tier.

 Adapts context

Class
Context

Collaborators
 Task

Responsibility
 Provides logic for

persisting context to
storage.

 Implements logic for
adapting context.

Class
Service

Collaborators
 Task
 Service Responsibility

 Receives Callee
parameters from
Task.

 Implements the
optimisation logic on
the Callee.

 Dispatches Callee
execution to mobile
or cloud tier.

 Provides shared
attributes to
alternate Service.

Figure 4.8 Class Responsibility of ACTS

This chapter presented the Mango Architecture as a model-driven architecture

which is defined by a Caller-Callee model and an ACTS design pattern (as

87

summarised by Table 4.4). The architecture aims at integrating software

quality attributes (SQAs) at the mobile and cloud tier. The SQAs explored by

the architecture are performance and energy-efficiency; for the mobile tier,

and resource efficiency and software availability; for the cloud tier. Although

four SQAs has been proposed, more SQAs can be implemented following the

Mango architectural style. The Caller-Callee model is used to integrate the

specified SQAs with identified offloadable component (Callee) at mobile and

cloud tier.

The greyed out cells in Table 4.4 also shows the connection between the

Caller-Callee Model nodes and ACTS components. ACTS stands for Aspect-

Context-Task-Services pattern. Figure 4.8 presents a summary of the

responsibilities of ACTS components using the Class Responsibility

Collaborator (CRC) model [110]. In Figure 4.8 the Class is the ACTS

component, the Responsibility is something that the class knows or does, and

the Collaborators are other classes that the class interacts with to fulfil its

responsibilities.

The purpose of the design pattern is to implement the Caller-Callee model;

thus actualising the Mango architecture in a code base for mobile and cloud

tiers. The decision making in Mango architecture is based on execution

contexts (at mobile and cloud tier) and assisted by a Time Threshold at both

tiers (Algorithms 4.2 and 4.3). The Time threshold ensures that the

architecture is robust enough to absorb any stresses on the mobile

performance due to unpredictable adverse environmental conditions.

Other benefits of Mango architecture are as follows;

 Reduced development complexity. The implementation process –

involving identification of CI tasks and implementation of their

optimisation code, is simplified through modelling. The Mosaic

framework assists in modelling.

 Unobtrusive optimisation for legacy systems. The approach is also

suitable for optimisation of legacy systems as the Mango components

88

are loosely coupled to (or decoupled from) the base system though

Aspects. As shown in the case study, no significant changes are

required to be made to the existing legacy code in order to optimise the

application for mobile-cloud offloading.

 Controlled over-head, improved efficiency. The approach makes use of

adaptive time based decision making to ensure improved efficiency at

runtime (as opposed to multiple environmental factors).

 Flexible full-tier quality integration. The approach supports seamless

integration of SQAs for both mobile and cloud tiers, as a way to drive

efficiency at both tiers. E.g. mobile performance and energy efficiency,

cloud resource efficiency and availability.

 Extensive reusability support. The approach highly promotes

reusability through a templating process. The Mosaic framework

implements ACTS as templates which can be adapted to suit any

specific domain requirement.

 Taxonomy robustness. The approach is efficient with different

application taxonomies in such a way that it can adapt to accommodate

non-computation intensive applications with insignificant overhead.

This benefit has been verified with data intensive applications – in

Chapter 7.

89

Chapter 5. Mosaic Modelling Approach

A Modeller and Analyser for MCA

5.1 Introduction

This chapter introduces the Mosaic framework, which is a model-based

selective approach for identification of Callees (i.e. offloadable or computation

intensive tasks in mobile applications). The framework is composed of three

key parts – Selective analyser, Caller-Callee modeller and Quality Verifier as

shown in Figure 5.1. The aforementioned Mosaic features fulfil the CRAC

phases (presented in Chapter 4), as presented in the following bullet points.

This chapter is grouped based on the three Mosaic components;

 Selective Analyser: is used for identifying offloadable tasks by applying

rules to static analysis process. The output is a call-graph (.mcg). This

feature fulfils Phases 1 and 2 of CRAC process (see Chapter 4).

 Caller-Callee Modeller: is used to model Caller-Callee nodes with

SQAs useful for MCA optimisation. And also used for generating the

ACTS pattern code following the Caller-Callee model. This feature

fulfils Phase 3 of CRAC process (see Chapter 4) – which is phase 1

and 2 of Mango approach.

Figure 5.1 MOSAIC Framework

Asp
ect

Context

Ta
sk

Se
rvi

ce

90

 Quality Verifier: is a form of architecture validator, which is used to

ensure that the Mango architecture will yield performance benefits. This

feature fulfils Phase 3 of Mango approach (see Chapter 4).

The three aforementioned features of Mosaic are provided as an Android

library, and the modelling feature is also provided as a GUI tool.

A benefit of the Mosaic (alongside others presented in Chapter 4) over its

counterparts [4], [8], is that it supports seamless modifiability of code (through

the modeller tool) while in development (i.e. forward and backward-

engineering of code) as opposed to existing counterparts which are not as

robust. Also Mosaic possesses a better performance in identification of

Callees. The core objective of Mosaic is to provide the MDE set of tools for

realising the Mango approach from design to verification (phase 1 to 3 of

Figure 4.2).

Figure 5.2 Selective Analysis Approach

91

5.2 Selective Analyser

To identify offloadable tasks, Mosaic first adopts the static analysis approach,

adopted elsewhere [8] – which is based on analysing the classes of an

application to produce a call-graph. Rules are applied to the static analysis

process to enhance the identification of offloadable components – in this

research this approach is referred to as a selective analysis approach. Thus;

the purpose of the Selective Analyser is to achieve finer granularity in static

analysis through the use of rules for identification of offloadable tasks. Since

static analysis is incapable of identifying computation intensive components

at finer-granularity, the selective approach is proposed to achieve finer

granularity by applying rules (Algorithm 5.1) to the static analysis process. The

analysis process produces a final call-graph which specifies the offload

candidates in form of Caller-Callee mapping; however the most important

component is the Callee – since the pointcut of AOP Aspect is used to

intercept any occurrences of the Callee. Selective analysis (Figure 5.2) is

based on three kinds of rules; inclusion, exclusion and default rules.

Algorithm 5.1 Selective Analysis within Mosaic
Let: r represent the rule repository

 1: if r.hasInclusion() then
 2: use inclusions as call-graph
 3: else
 4: x ← compile classes into jar
 5: while x has call do
 6: if nonR(call) && nonExclusion(call) && nonLang(call) &&
 nonGenerated(call) && nonConstructor(call)
 then
 7: add call to call-graph
 8: end if
 9: next call
10: end while
11: end if
12: save call-graph to file

Figure 5.3 Rules Repository illustrating Inclusion and Exclusion rules

1: android.app.Activity findViewById

2: android.widget.BaseAdapter *

3: in package.Class:callee

92

5.2.1 Inclusion Rules

From Algorithm 5.1, the Selective Analyser first checks the existence of any

inclusion rules (line 1); and specifies offload candidates based on these rules

if they exist (line 2). Inclusion rules are rules added to the repository for the

purpose of specifying Callees/offloadable candidates allowed in the program.

They are beneficial for explicitly specifying distinct offloadable candidates for

evaluation and can be specified by appending the word ‘in’ before the full

Callee specification – i.e. package name, class name and method name, as

shown by line 3 of Figure 5.3.

As mentioned earlier, the key achievement of the selective approach is the

identification of offloadable tasks at a finer granularity. With the selective

analyser, rules can be added to the analysis process until finer results are

achieved. Also, the results of the dynamic analysis can be used to formulate

rules (as inclusion rules) to achieve finer granularity of call-graph; thus

allowing for flexibility in the software development process.

5.2.2 Exclusion Rules

Exclusion rules are rules added to the repository for the purpose of specifying

call properties which are to be excluded from the program as offloadable

candidates. During static analysis, project classes are scanned and the calls

made within the class are derived. Each call consists of various properties as

presented in Table 5.1. The call properties used for an exclusion rule are “sa

callee” or “sa *” as shown in lines 1 and 2 respectively of Figure 5.3.

Table 5.1 Call properties used in selective static analysis

Symbol Description

caller The Caller, which is a method

a Class of caller

sa Super class of caller

callee The Callee, which is a method

b Class of callee

93

“sa callee” excludes a call if the super class of the caller and its callee are

specified in the exclusion rule. For example, from line 1 of Figure 5.3, if a call

has its caller superclass as Android Activity, and the called method (i.e. the

callee) is findViewById, then the callee is not an offloadable candidate. This is

because findViewById is an Android’s Activity native method – i.e. tied to the

view of the mobile device, and therefore cannot be offloaded. Therefore the

exclusion rules are useful for excluding device/sensor-centric call properties.

“sa *” is similar to “sa callee”, but the * is used as a wildcard character to

exclude all methods (callees) associated with the specified sa.

The reverse of the exclusion rules must be met by a call in order to be

considered as an offloadable candidate, i.e. nonExclusion(call), as shown in

line 6 of Algorithm 5.1.

5.2.3 Default Rules

Default rules, like exclusion rules, specify call properties to be excluded from

the program as offloadable candidates. The difference between exclusion and

default rules is that exclusion rules are specified within the repository, and

therefore with custom exclusion rules can be added to tailor the analyser for

a program. Default rules, however, are standard exclusion rules which cannot

be modified as they are provided by the system. These rules are useful to

exclude calls which are generally mobile device or platform specific. Like the

exclusion rules, the reverse of the default rules must be met by a call in order

to be considered as an offloadable candidate (see line 6 of Algorithm 5.1). The

constituents of the default rules are presented below;

 nonR(call)

The rule is used to exclude a call if the class of the Caller is R. R is an Android

generated resource class – used for assets such as widgets and layouts. It is

mobile device specific, and thus cannot be offloaded to the cloud.

 nonLang(call)

The rule is used to exclude a call if the class of the Callee is a Java or Android

language class. This is determined by checking if the package name of the

94

class (of the Callee) begins with ‘android’ or ‘java’ before the first period (i.e.

android. or java.). The java.lang and android platform classes are defined by

the JVM and DVM runtimes and thus cannot be offloaded.

 nonGenerated(call)

The rule is used to exclude a call-graph item if the Caller or Callee is a

constructor. This is determined by checking if the Caller or Callee is <init>.

<init> in Java signifies that a method is a constructor. A constructor alone

cannot be offloaded as they are required for object creation, moreover, it is

impractical to offload a constructor without their dependencies.

 nonConstructor(call)

The rule is used to exclude a call-graph item if the Caller, the Callee, the class

of the Caller, or the class of the Callee are generated by the Java platform.

This is determined by checking if the class or method names contains the

dollar $ sign. In Java, $ is used to annotate the names of inner classes (e.g.

$class_name) or anonymous inner classes (e.g. $number); and their methods

(e.g. $number). By convention, these forms of classes are used to implement

platform specific methods e.g. ActionListener and actionPerformed used in

swing programming. Thus they are not appropriate offload candidates.

5.3 Caller-Callee Modeller

Caller-Callee Modeller is used to model Caller-Callee nodes with SQAs useful

for MCA optimisation. The Caller-Callee model is introduced in Chapter 4. This

section presents the modeller to actualise/validate the model introduced in

Chapter 4. The Caller-Callee modeller is provided in two forms;

 A modelling tool: The modelling tool (or Modeller, for short) is a GUI

– built on the JGraphX14 swing API [111]; used to independently

model offloadable components like any independent MDE tool (e.g.

14 JGraphX User Manual is useful for extending the modelling layer and is located at
https://jgraph.github.io/mxgraph/docs/manual_javavis.html

95

MySQL Workbench). The tool generates two forms of output; first

the model diagram (.mod file), and the transformed model (ACTS

classes). The tool is useful for the design process of new systems

as it separates the model diagram from the transformed model.

Appendix C shows a screenshot of the Modeller and sample model

diagram (.mod) file.

 A library feature: In this case, the modeller is integrated with the

Mosaic library (.jar) file which can be loaded into the IDE during

development. The output of the modeller in the library is the

transformed model (ACTS classes). The library is useful for legacy

systems (and for continuous integration), as it is loaded within the

development environment.

The modeller uses Caller and Callee as nodes (obtained from earlier

presented call-graph) to create the model – while specifying the SQAs for the

model, as shown in steps 1 and 2 of the Modeller process (Figure 5.4). The

modeller process is completed by generating ACTS classes (i.e. step 3) which

is an implementation of the model diagram.

Figure 5.4 Modeller process

Add Nodes

Add SQAs

Generate ACTSModel

1

2

3

TransformCreate

96

5.3.1 Model Creation

As shown in Figure 5.5, the Modeller defines four nodes (as presented in rule

r, in Algorithm 5.2) and four attributes (as presented in rule sr, in Algorithm

5.2). The nodes are; Mobile, Cloud, Caller and Callee node. The attributes

are; mobile performance (p), mobile energy (e), cloud resource (r), and

software availability (a).

The Caller-Callee model is a graph of nodes (or vertices), connectors (or

edges), and attributes (i.e. SQAs). Algorithm 5.2 presents the process for

validating nodes – Lines 1-8, connectors – Lines 9-17, and the model as a

whole (nodes, connectors and attributes) – Lines 18-24.

5.3.1.1 Node Validation

Node validation is used to validate the model when a node is added to the

model, during the model creation. The node validation algorithm (Lines 1-8) is

implemented as an event listener for a drag and drop event on the node. The

condition in Line 3 ensures that for any model; there is only one instance of

all nodes except Callee node, for which the condition ensures there are only

Figure 5.5 A valid Caller-Callee model diagram from Modeller

97

two instances of it. The reason for two instances of a Callee is that it is required

to be implemented on the mobile and cloud tiers.

5.3.1.2 Connector Validation

Connector validation is used to validate the model when a connector is added

to the model, during the model creation. The connector validation algorithm

(Lines 9-17) is implemented as an event listener for a drag and drop event on

the connector. The modeller defines Connectioln rule (r) used to validate

Algorithm 5.2 Model validation algorithm
Require: Model in view as m
 Connection rule as r ← { (Caller, Mobile, 1, 1), (Mobile, Callee, 1, 1),
 (Caller, Cloud, 1, 1), (Cloud, Callee, 1, 1) }
 SQA rule as sr ← { (Mobile, Callee, "p, e"), (Cloud, Callee, "r, a") }
 m.size(a) ← return the number of a nodes in m
 r.isValid(a, b) ← return true if a links to b in r
 m.validate(rule) ← validates connections in m against rule

//(A,B,1,1) in r means A links to B in 1 to 1 bi-directional relationship
//(A,B,"x,y") in sr means B in A can only have x and/or y SQA

Let: a represent action performed
 e represent drag event

 1: if e is on node then
 2: n ← get the node dropped in model
 3: if m.size(n) == 0 || (n is Callee && m.size(n) < 2) then
 4: add node
 5: else
 6: ignore node
 7: end if
 8: end if

 9: if e is on connector then
10: s ← get the source node of the connector
11: t ← get the target node of the connector
12: if r.isValid(s, t) then
13: connect s to t
14: else
15: ignore connection
16: end if
17: end if

18: if a is validate action then
19: if m.validate(r) && m.validate(sr) then
20: 'The model is valid'
21: else
22: 'The model is invalid'
23: end if
24: end if

98

connectors. The connection rule (r, presented in Algorithm 5.2) is used to

define the relationship between nodes, thus specifying the kind of connections

(source/target) allowed for a node. The condition in Line 12 ensures that the

source and target nodes of a connector comply to r.

5.3.1.3 Model Validation

Model validation is used to validate the model as a whole, after the model

creation is completed, prior to model transformation. The model validation

algorithm (Lines 18-24) is implemented as an action, thus can be executed

any time during or after the model creation. It is however required for verifying

that the model complies with the defined rules. Two set of rules are defined

for model validation, they are; Connection rules (r) and SQA rules (sr). While

the Connection rules define the connections between nodes as mentioned

earlier, the SQA rules define the software qualities allowed for a connection.

As shown in sr in Algorithm 5.2, performance and energy SQAs are applicable

to connections from Mobile to Callee node as they are mobile tier SQAs.

Furthermore, resource and availability SQAs are applicable to connections

from Cloud to Callee node as they are cloud tier SQAs. These SQAs have

been detailed in Chapter 4. Line 19 validates the model by validating the

nodes, connectors and attributes.

 Validating the connection (nodes and connectors)

m.validate(r) is used to validate the connections (i.e. connectors and nodes)

in the model m against the connection rule r.

Connectors are validated by verifying that all the connectors in the model

comply with the connection rule. E.g. Caller must be connected to Mobile,

Mobile must be connected to Callee, etc. as defined by r.

Whereas nodes are validated by verifying that all the rules in r were

implemented by a connection. E.g. connections; Caller to Mobile, Mobile to

Callee, Caller to Cloud and Cloud to Callee must exist in a 1 to 1 relationship

99

in the model. This would result in one Mobile node, one Cloud node, one Caller

node and two Callee nodes (one for the mobile tier and one for the cloud tier).

 Validating the attributes

m.validate(sr) is used to validate attributes of the connections (i.e. connectors

and nodes) in the model m against the SQA rule sr.

The attributes of connectors in the modeller specify priority attributes used for

execution (presented in Chapter 4). Priority attributes apply to the mobile

qualities; thus, m.validate(sr) verifies that the priority attributes on the

connectors comply to sr. E.g. the attribute of the connector must be either ‘p’

or ‘e’.

The attributes of the nodes specify all SQAs to be implemented in a tier

(mobile or cloud). m.validate(sr) also verifies that the attributes on the nodes

comply to sr. The nodes of interest are the Callee nodes. Thus m.validate(sr)

verifies that the Callee node with Mobile parent has ‘p’ or/and ‘e’ and the

Callee node with Cloud parent has ‘r’ or/and ‘a’ as SQAs.

A valid Caller-Callee model (e.g. Figure 5.5) is utilised by the modeller to

engineer MCA application based on the ACTS design pattern (i.e. model

generation for Mango architecture). By adopting a standardised modeller (built

on JGraphX), a created Caller-Callee model diagram can be easily modified

and reused in different applications. Thus the mosaic framework supports

modifiability and reuse of artefacts during development.

5.3.2 Model Transformation

The modeller also fulfils the model transformation process in Mosaic

framework which uses templates to transform a model into an application

code-base compliant to the mango architectural style. Templates are .tmp files

implementing the ACTS design pattern described in Chapter 4. Furthermore,

templates constitute valid code bodies with placeholders – which are

100

substituted with appropriate values during transformation and tags – which

are integrated as SQAs.

5.3.2.1 Code bodies

Table 5.2 presents the code bodies (or targets) of the templates. The Aspect

template is based on AspectJ Aspect class – and it makes use of the

annotation style AspectJ as shown in Figure 5.6. The Task template is based

on Android Tasks; hence a subclass of the Android Task class. Context and

Service templates are both plain Java classes. All generated code have .java

extensions, in other words, they are Java classes.

5.3.2.2 Placeholders for Callee Properties

Placeholders are specified with square brackets within the .tmp file as shown

in the Aspect template presented in Figure 5.6. Appendix D presents the

complete ACTS templates used in the modeller process. The placeholders in

templates are of two types: i) meta-model placeholders; which are

Table 5.2 Template targets

ACTS Templates (*.tmp) Description Tiers

Aspect AspectJ Aspect Mobile tier

Context Plain Class

Task Android Task

Service Plain Class Cloud tier

Figure 5.6 Aspect Template

101

placeholders derived from call-graph meta-model. They are [Callee],

[Arguments], [ArgumentIDs], [CastedArguments] and [Return] placeholders.

And ii) custom placeholders; which are placeholders independent of the meta-

model but added to expedite development. They are [Host] and [Port]

placeholders.

[Callee] placeholders are substituted with the actual class name during

transformation. Although the Caller is presented in the model, in the actual

implementation, the Caller class is not required, as Aspect pointcut is used to

intercept the program at any point where the Callee is called. [Callee]

placeholders are used within Aspect and Task templates.

[Arguments] placeholders specify the argument types and identifiers of the

Callee. [Arguments] placeholders are used in Aspect template. Within the

Aspect class, they are applied at the method declarations of the pointcut and

advice, as shown in Lines 11 and 15 of Figure 5.6 respectively. These are

useful for obtaining the arguments of the Callee when the call is intercepted.

[ArgumentIDs] placeholders are substituted with identifiers of the arguments.

While the [Arguments] placeholder consists of argument types and identifiers,

the [ArgumentIDs] only specifies the identifiers. These are useful in the Aspect

class for passing the arguments to the Task to launch the execution, as shown

in Line 16 of Figure 5.6. They are also used in the pointcut and advice code

of the Aspect class for specifying the argument identifiers of the Callee, as

shown in Lines 10 and 14 of Figure 5.6 respectively.

[CastedArguments] placeholders are [ArgumentIDs] which are casted with the

argument types from [Arguments]. [CastedArguments] are used as arguments

for [Callee] in order to make a call to the offloadable task. [CastedArguments]

are used in the Task and Service classes of ACTS when calling the offloadable

task.

[Return] placeholders are substituted with the return type of the Callee.

[Return] placeholders are used in Aspect template as shown in Line 15 of

Figure 5.6. They are also used in Task template.

102

[Host] placeholders are used to specify the host IP address of the cloud. They

are used in the Task template.

[Port] placeholders are used to specify the port number which the cloud server

is listening to. They are used in the Task and Service templates.

A demonstration of the transformation of ACTS by Mosaic framework is

presented in the Case studies (Chapter 7).

5.3.2.3 Tags for Quality Attributes

Four quality attribute (SQA) types are provided by the Mango architecture as

presented in the Model’s SQA rule (sr in Algorithm 5.2). These are;

performance and energy-efficiency for the mobile tier; resource-efficiency and

software availability for the cloud tier.

Within the Modeller (as shown in Figure 5.5), the attributes for tiers are

specified on the mobile tier (i.e. Mobile → Callee node) and cloud tier (i.e.

Cloud → Callee node). And the priority attribute (e.g. p) is specified on the

connector. Quality attributes are mapped to sections of the templates using

tags. In order words, tag sections are used to wrap the implementation of a

quality attribute, for a given template.

During model transformation, the quality attributes specified on the tiers are

mapped to sections of the template as described below. sr in a tag denotes

Figure 5.7 Mobile tier tags at Task Template

<sr:p>
private static final int OVERHEAD = 0;

</sr:p>

<sr:e>
private static final int OVERHEAD = /*Value ms*/;

</sr:e>

<sr:pe>
private static char pa = /*get priority attribute from UI*/;

private static int overhead(){
if(pa=='e'){

return /*Value ms*/;
}
return 0;

}
</sr:pe>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

103

SQA rule, p denotes performance, e denotes energy-efficiency, r denotes

resource-efficiency and a denotes availability. Notice that the sr tag attributes

(i.e. p, e, a, r) match those defined in the Modeller in Algorithm 5.2. The Mosaic

framework recognises pre-defined tags and associates them to a model

diagram (.mod). In creating quality attribute sections in templates the sr tags

must be used in an open and close format, similar to HTML tags convention.

Mobile tier qualities (shown in Figure 5.7) are implemented within the Task

template. The mobile tier qualities currently implemented in Mango are

performance (sr:p, lines 1-3) and energy-efficiency (sr:e, lines 5-7). These are

presented in using the sr tags, notice that qualities can be combined at the

mobile tier (e.g. sr:pe for performance and energy-efficiency combined, lines

Figure 5.8 Cloud tier tags at Service Template

<sr:a>
public static void dispatcher(Object[] params) {

thread = new Thread(new Runnable() {
@Override
public void run() {

result = [Callee]([CastedArguments]); //Callee on this server
}

});
thread.start();
try {

thread.join(TIME_THRESHOLD);
if (thread.isAlive()) thread.interrupt();

} catch (InterruptedException ex) { }
}

</sr:a>

<sr:r>
public static void dispatcher(Object[] params) {

if (availableCPU() < CPU_THRESHOLD) {
result = /*reference to the Callee on an alternate server*/

} else {
result = [Callee]([CastedArguments]); //Callee on this server

}
}

</sr:r>

<sr:ar>
public static void dispatcher(Object[] params) {

thread = new Thread(new Runnable() {
@Override
public void run() {

if (availableCPU() < CPU_THRESHOLD) {
result = /*reference to the Callee on an alternate server*/

} else {
result = [Callee]([CastedArguments]); //Callee on this server

}
}

});
thread.start();
try {

thread.join(TIME_THRESHOLD);
if (thread.isAlive()) thread.interrupt();

} catch (InterruptedException ex) { }
}

</sr:ar>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

104

9-18). Using the format presented in Figure 5.7, more software quality

attributes can be integrated into the mobile tier of Mango architecture.

Furthermore, Cloud tier qualities (shown in Figure 5.8) are implemented within

the Service template. The cloud tier qualities currently implemented in Mango

are availability (sr:a, lines 1-15) and resource-efficiency (sr:r, lines 17-25).

These are presented using the sr tags. Notice that qualities can be combined

at the mobile tier (e.g. sr:ar for performance and energy-efficiency combined,

lines 27-45). Using the format presented in Figure 5.8, more software quality

attributes can be integrated into the cloud tier of Mango architecture.

5.4 Quality Verifier

The Quality Verifier is used to validate the Mango architecture. In Mosaic

framework a Profiler Aspect class is the implementation of the Quality Verifier

Algorithm 5.3 Profiler Aspect
Require: callee from call-graph,
 scenario from Profiler DB
//By default scenario is set to local

 1: before callee:
 2: t1 = start time
 3: end

 4: after callee:
 5: t2 = finish time
 6: t = t2 - t1
 7: if scenario == 'local' then
 8: lt ← t
 9: scenario ← 'mobile'
10: else if scenario == 'mobile' then
11: print 'mobile overhead is ' + (t - lt)
12: scenario ← 'cloud'
13: else if scenario == 'cloud' then
14: cs ← lt - t
15: print 'cloud saving is ' + cs
16: scenario ← 'decider'
17: else if scenario == 'decider' then
18: if cs > 0 then
19: print 'decider saving is ' + (lt - t)
20: end if
21: reset Context DB
22: scenario ← 'mobile'
23: end if
24: end

105

which handles the architecture validation. The Profiler Aspect (Algorithm 5.3)

is an AOP Aspect class used to evaluate an identified offloadable candidate

to determine if it could yield benefits when offloaded. The Profiler Aspect is

composed of a before and after pointcut (lines 1-3 and 4-24) which marks the

points before and after the Callee execution using timestamps (lines 2 and 5)

– so as to calculate the elapsed time of execution. The use of AOP for

component evaluation is explored in greater detail in [84].

The Profiler Aspect is firstly generated by Mosaic for an offload candidate (or

Callee) and is used for the evaluation of Callee performance in local execution

and Mango execution scenarios (Figure 5.9).

The Profiler Aspect (Algorithm 5.3) adopts a similar flow of execution as the

decision maker within the Task component (Algorithm 4.1). In other words, the

scenarios within the Profiler Aspect are congruent to the modes in the

decision-maker and stored within the Profiler DB for the purpose of

administering evaluation for all execution modes. The default scenario is the

local scenario, as it is executed before Mango scenarios.

5.4.1 Measuring Local Execution of Callee

After a Callee is identified and the Profiler Aspect generated, the mobile app

is then executed to measure the elapsed time for the local execution scenario.

The elapsed time for local is stored in profiler DB (which is an Android shared

Figure 5.9 Profiler Aspect for Architecture Verification

local
ProfilerAspect Local

1

2

Scenarios:

ProfilerDB
Mango
(ACTS)

mobile

cloud

decider

106

preferences storage) – line 8. And the scenario is then set to mobile, for the

purpose of evaluating the first Mango mode (which is mobile by default –

Algorithm 4.1)

5.4.2 Measuring Mango Execution of Callee

After the generation of ACTS components, the application can be executed

with the Profiler Aspect to measure the Mango implementation of the

offloadable candidate (based on best possible environmental scenario15).

Repeating execution of the Mango optimised application will evaluate the

mobile, cloud and decider modes of Mango – thus capturing all modes.

Lines 21 and 22 reset the Context DB (i.e. the mode becomes set to default

mobile), while setting the scenario back to mobile. This is to allow the

repetition of the evaluation for the best possible environmental scenario. The

purpose of using the best possible Mango execution scenario is to determine

if the offload candidate will most certainly yield benefits – i.e. given any

arbitrary environmental condition from best to adverse.

5.4.3 Comparing Execution Scenarios

The mobile overhead, the cloud saving and the decider saving are estimated

by the Profiler Aspect for various execution scenarios.

The mobile overhead (line 11) is a comparison between the execution time of

Mango’s mobile scenario and that of the local scenario. This is used to

estimate the possible overhead contributed by Mango to the execution of the

Callee when it is not offloaded.

The cloud saving (lines 14-15) is a comparison between the execution time of

the local scenario and that of Mango’s cloud scenario. If the cloud saving is

15 Best possible environmental scenario means that the mango execution can be repeated to obtain
lowest elapsed times for mango execution – stored in profiler repository.

107

a positive value, then the offload candidate will yield benefits, otherwise it will

not.

The decider saving (lines 18-20) is obtained if the cloud saving is positive. And

it is used to estimate the savings when the decision maker is executed prior

to offload.

Chapter 7 presents an evaluation of Mosaic using Case Studies (with Section

7.4 demonstrating, in particular, the effectiveness of the Profiler Aspect).

5.5 Mosaic Library Usage

The Mosaic library and modeller are the key tools that make up the framework.

The modeller as presented in section 5.3 is used for creating or modifying the

Caller-Callee model diagram. The mosaic library, however, implements all the

features of the framework – which includes selective analyser, modeller and

Figure 5.10 Project Build Gradle for Mosaic

Figure 5.11 App Build Gradle for Mosaic

108

quality verifier; apart from the diagramming interface of the modeller.

Therefore, as the library is not GUI-based, it provides an interface (presented

in section 5.5.2) for specifying SQAs in order to transform model for ACTS

classes. The library has been tested using Android studio, and the formats

presented below are associated with Android studio.

5.5.1 Library Dependencies

The Mosaic library is a jar file which can be loaded into the mobile application

being developed, via the Gradle script of the application. To setup the mosaic

library in the project;

 Add the annotation style Android plugin as a classpath dependency of

the project as shown in Line 8 of 10. The Aspect code generated by the

library is dependent on AspectJ annotation-style library. Furthermore;

apply the AspectJ plugin within the app build.gradle and add the library

as compile dependency as shown in Lines 2 and 7 respectively of

Figure 5.11.

 Add the mosaic jar as a compile dependency in the app build.gradle as

shown in Line 8 of Figure 5.11.

 Setup the arguments for the mosaic library within the app build.gradle

as shown in Lines 11-21 of Figure 5.11.

 An application must specify the INTERNET Android permission in the

manifest file in order to use the Mango architecture; as shown in line 7

of Figure 5.12. The INTERNET permission is used for connecting to

the cloud via the Task class (of ACTS pattern). Note that the Context

class (of ACTS pattern) uses Shared Preferences for storing context

Figure 5.12 Android Permission for Mango

109

information and therefore does not require permission via the Manifest

file.

5.5.2 Library Arguments

The Mosaic library supports seven arguments as presented in Figure 5.11,

Lines 14-20.

The first argument is the project home (Line 14). This is the directory that holds

all the project files. It can be referenced from Gradle using file('..') or by

providing the absolute path e.g. 'C:\\AndroidProjects\\Sample' where Sample

is the home folder created by Android studio to hold the Sample project.

The second argument is the Android SDK directory (Line 15). This is the

directory where the Android SDK was installed to. It can be referenced from

Gradle using android.getSdkDirectory().getAbsolutePath() or by providing the

absolute path e.g. 'C:\\Users\\Chinenyeze\\AppData\\Local\\Android\\sdk'.

The third argument is the compile SDK version used by the project (Line 16)

and the support version if applicable. If the project uses a support SDK, it is

appended to the compile SDK argument, separating the two with a colon. If a

project uses support SDK it is indicated in the dependencies of the app

Gradle.build. E.g. compile 'com.android.support:support-v4:23.0.0' would be

part of the dependencies in Figure 5.11, to use a version 4 support SDK. The

compile SDK version can be referenced from Gradle using

android.compileSdkVersion or by providing the string explicitly, e.g. 'android-

23'. The support SDK version can be provided by appending a colon and the

support SDK version to the compile SDK version. E.g. 'android-23:4' would

refer to compile SDK version 23 and support SDK version 4. Using Gradle

variable format, the sample argument would look like

android.compileSdkVersion+':4'. A compile SDK is required for the third

argument, the support SDK is only required if applied to a project.

The fourth argument is the core package(s) of the application (Line 17). The

specified package(s) must be the packages of interest for analysis. The

110

default package of the application can be referenced from Gradle using

android.defaultConfig.applicationId or explicitly e.g. 'com.sample.mypackage'.

To reference more than one package, the argument can be provided as a

comma-separated string of packages, e.g. 'com.sample.one, com.sample.two'.

The fifth argument is the rules repository (Line 18). This is an optional

argument. If not provided the analyser would use the default exclusion rules

(see section 5.2) to generate a call-graph. If provided, the argument must be

the absolute path to the rules repository, e.g.

'C:\\AndroidProjects\\rules.mrl'. The granularity of default exclusion rules in

identifying offload candidates is evaluated in section 5.6.

The sixth argument is the jars used (Line 19). This is an optional argument.

However if any external or third-party jar(s) were referenced by the project,

they are provided in this argument, e.g. 'MyJar.jar'. The jar(s) are required

by the analyser to analyse the project. If more than one jar apply they are

separated by a comma, e.g. 'JarOne.jar, JarTwo.jar'. The jar names are

required and not the absolute path, as the analyser references the jar from the

lib directory of the project.

The seventh argument is the specification of SQAs for the model (Line 20).

This argument is required for the model transformation. SQAs are specified

using character symbols (as presented in SQA rule, sr in Algorithm 5.2). As

shown in line 20, the first set of SQAs are for the mobile tier, followed by the

cloud tier SQA and subsequently the priority attribute.

The fifth and sixth arguments can be replaced with a 0 (as used in Line 19) in

order to skip any of the arguments.

5.5.3 Code Refactoring

The framework generates the code-base to be used for development.

However, a few refactoring processes are required (as demonstrated in the

Case Studies – Chapter 7), as the code-base is only a scaffold based on the

generic template.

111

 Mobile tier requires Android Activity

Aspect requires an Android activity to launch/initialise the Task and Context

class. An activity can be exposed by any Android Activity class (e.g. the

Activity class on which the Caller is implemented) and then used within the

Aspect class.

 Mobile tier requires socket connection and permission

The Task class at the mobile tier uses Java socket to connect to the cloud, in

order to execute the Callee remotely, the host and IP address has to be

supplied to the socket. Also, the parameters sent to the cloud and the result

must be cross-checked to be appropriate to the Callee. Furthermore, the

Android internet permission must be provided in the Android manifest file, to

allow for the remote communication.

 Mobile tier requires Service in Manifest

The Service class of the mobile tier are Android services, and consequently;

they are required to be specified in the Android manifest file.

 Cloud tier requires Callee implementation

The analyser only provides a method of the Callee for the cloud tier template.

Consequently, the Callee implementation is required for the Callee method

within the Task class of the cloud tier.

5.6 Performance Evaluation

The performance evaluation was performed for Mosaic library on Windows 10

x64 PC, with Intel i7 2.20GHz CPU and 8GB memory, using four Android

applications as case studies – Linpack, MatCalc, MathDroid and NQueen.

Furthermore, the average of 20 test samples in each app was used to

investigate the performance of the library by comparing its Mosaic build time

112

with that of Default. The build time16 is used as a basis for evaluation as this

is when the Mosaic library is executed. The build time is measured using

Android Studio’s build functionality.

 Default scenario is the build time without the Mosaic library.

 Mosaic scenario is the build time which uses the Mosaic library, and

also performs the selective analysis and generation process.

16 Build time is the time to (re)build the modules and libraries of a project. Mosaic library is executed at
build time.

Table 5.3 Mosaic file extensions

Apps Dependent Libraries Call-graph Items

Jar Size (KB) Total Default Rule Custom Rule

Linpack - - 249 2 1

MatCalc Jama-1.0.2.jar 33 1280 30 1

MathDroid Calc.jar 233 2666 31 1

NQueen achartengine1.0.0.jar 99 2077 24 1

Key: Total Total call-graph items

 Default Rule Final call-graph items identified using Mosaic default rule

 Custom Rule Final call-graph offloadable item identified using Mosaic custom rule

Figure 5.13 Mosaic vs. Default Build Time

4.0991

5.2012 5.3527
4.5038

6.3581

8.138

9.2555

7.6521

LINPACK MATCALC MATHDROID NQUEEN

Bu
ild

 T
im

e
(s

)

Mosaic vs. Default Build Time

Default Mosaic

113

Based on the results in Figure 5.13, Linpack, MatCalc, MathDroid and

NQueen shows a 55.11%, 56.46%, 72.91% and 69.9% increase respectively

resulted by the Mosaic analysis at build time. Consequently showing an

overhead of 55-73% increase in build time.

Although the results (as illustrated by Figure 5.13) shows that Mosaic incurs

some overhead (55-73% overhead) to the build time of an application, some

of the applications (e.g. MathDroid and NQueen) portray higher overhead than

the others (e.g. Linpack and MatCalc). The increased overhead in Mosaic

scenario is affected by three key factors (summarised in Table 5.3):

 Total call-graph items. The more the number of call-graph items the

higher the build time. As shown in Figure 5.13 and Table 5.3, Linpack

has the most minimal total number of call-graph items (249), whereas

MathDroid has the highest (2666). Consequently, the Mosaic overhead

in Linpack is the least (55.11%), and that of MathDroid is the highest

(72.91%) of the case studies.

 Existence of Jar dependencies. Mosaic library loads dependencies

into the classpath when analysing an application, (without the

dependencies in the classpath, the analysis will be unsuccessful as

classes which reference the dependent jars will break the analysis

process). Since the jars are loaded into the classpath, their classes are

also subjects of the analysis process. Consequently, an application

which has no dependency will have lesser build time compared to an

application with dependency. E.g. Linpack app which has no jar

dependencies (and therefore lesser number of call-graph items), has

much lesser build time in comparison to other apps which has jars (as

shown in Table 5.3).

 Size of Dependency Jar files. Jars can be of different sizes, a jar with

larger size means that more classes are implemented in the jar – thus

increasing the total call-graph items. And consequently, requiring more

time for analysis.

114

Despite the 55-73% increase in build time, the total build times are less than

10s (MathDroid being the maximum, at 9.2555s). Similar frameworks, which

however is useful for only analysis (for identification of offloadable tasks) such

as Elicit [8], records an average analysis time of 30-40s, which is in fact 233-

344% increase on the Mosaic elapsed (build) time. Considering that the

mosaic build time includes the full features of the framework using default

model, and not only analysis process, the Mosaic framework saves

development time, with an absolute accuracy when the custom rule is used

(see sections 5.2.1 and 5.2.2).

What is meant by absolute accuracy? This is in comparison with the existing

counterpart analysis tool – Elicit. Hassan et al. [8] uses similar applications

presented in Figure 5.13 (i.e. MatCalc, MathDroid and NQueen) to evaluate

the performance of Elicit, which results to 30-40s on average. Furthermore,

the effectiveness of Elicit for identification of offloadable items is investigated;

and the items identified as offloading candidates for MatCalc, MathDroid and

NQueen are 1, 5, and 2 in number. Using the Mosaic framework, rules are

applied to identify the same and specific offloading candidates, as shown in

Table 5.4. Thus templates can be generated for specific identified candidates.

Note that; an application build time can be sped up by commenting out the

Mosaic execution command (i.e. javaexec in Gradle in Figure 5.11) after

offloading candidate (Callee) have been identified, and templates generated.

5.7 Summary

This chapter presented the Mosaic Framework as an MDE tool for Mango

architecture to address the challenges (see Related Work, Chapter 3 for

Table 5.4 Offloading Candidates

App Offloading Candidates (Callees)

Linpack rs.pedjaapps.Linpack.Linpack class

MatCalc times(Matrix B) method of Matrix class

MathDroid computeAnswer(String query) method of Mathdroid class

NQueen nQueenCount(int input) method of NQueen class

115

details) of the existing MCA optimisation approaches – most especially

addressing the gap of development and performance inefficiency (i.e. the key

aims of Mosaic). The framework was developed to drive the Mango

architecture. As a model-based framework, Mosaic generates application

code, by use of a model from Modeller, for identified offloadable components

(identified by the Selective Analyser). Table 5.5 summarises the files used

within the framework.

The model (.mod) is created using the Caller-Callee Modeller (or can be

obtained from the Transformer; for default model). It is the file that specifies

the SQAs used for the mobile and cloud tiers and the defined contexts used

within the application. In Mosaic, the model makes it easy to reuse SQAs in a

MCA application, by abstracting the SQA logic as models, decoupled from the

actual Caller-Callee definitions within the call-graph.

The ACTS templates (.tmp) implement the ACTS design pattern presented in

Chapter 4, and are used as the code-bodies for scaffolding the Mango derived

MCA application. The model transformation process uses templates to

generate the ACTS classes (which are Java classes) implementing the Mango

architecture. A benefit of the Mango architecture is that; as a model-driven

approach, no significant changes are required to be made in order to adapt

legacy systems for mobile-cloud optimisation. Thus, it is development

efficient. Also Mosaic is performance efficient, in the sense that it validates the

architectures of the application prior to deployment to ensure that the use of

Table 5.5 Mosaic file extensions

Mosaic file extensions Description

Mosaic rule repository .mrl Used for selective analysis

Mosaic call-graph .mcg Output of selective analysis

Used for model creation

Caller-Callee Model .mod Output of model creation

Used for model transformation

Mosaic template .tmp Used for model transformation

ACTS classes .java Output of model transformation

116

Mango architecture within an application will most certainly yield benefits –

this is achieved by the Quality Verifier.

Finally, an evaluation of the Mosaic framework was conducted, to investigate

its overhead in development. Compared to existing counterpart the library is

more efficient – incurring lesser development/build time, compared to the

added 233-344% increased overhead of the counterpart.

117

Chapter 6. Beftigre Evaluation Approach

An Approach for MCA Evaluation and Comparison

6.1 Introduction

This section presents a framework – known as Beftigre17, for evaluating

mobile cloud applications. Beftigre stands for behaviour-driven full-tier green

evaluation. The novelty of the approach is to use formalised software

engineering concepts/methodology to assist in testing and comparing

between offloading schemes applied in MCAs. Although Beftigre is presented

in the Mango approach, it can also be used for evaluating existing MCA and

their offloading schemes. Unlike existing evaluation approach adopted in the

literature, Beftigre can present a full-tier consistent result for the MCA

offloading scheme being evaluated.

Methodology:

Behaviour-driven: Behaviour-driven development (BDD) is a design approach

to aid collaboration between non-technical contributors (such as business

analysts, or users) and software engineers. Consequently, BDD gears

towards more verifiable and collaborative test process by being able to

compare expected behaviours with actual results, following standard

simplified scenarios – constructed by simple language clauses, GIVEN,

WHEN and THEN [108]. Beftigre adopts the BDD concept and simple clause

approach, to simplify the comparison and evaluation of offloading schemes,

and thus; simplifying software design decisions.

Full-tier: the approach adopts the concept of fine-grained software testing to

present the implications of an offloading scheme on the mobile tier as well as

on the cloud tier. By evaluating the system as a whole the approach can detect

whether an offloading scheme is aware of both mobile and cloud resource

17 Beftigre is pronounced /biːf ˈtaɪ.ɡər/ as in beef-tiger.

118

consumption. The full-tier objective of the approach is also assisted by the

BDD concept.

Glossary of Terms:

 Actual: This is the test results of the application under test.

 Expected: This is the test results of an application with which is the

basis of comparison against an application under test. These values

are provided in Beftigre annotations (@Given, @When and @Then).

 Evaluation vs. Comparison: Evaluation involves performing a test

without comparison (i.e. expected values), while Comparison involves

the use of expected values (in other words, there is an expectation of

the outcome).

Appendix E to H presents the implementation specific details on the Beftigre

evaluation approach. Also the source code implementation of the framework

and further technical guide is provided in the Beftigre documentation

website18.

6.2 The Beftigre Approach

The challenges and difficulties of the mobile-centric architecture scenario

approach fall into the category of (green19) software testing/evaluation [23],

[34]. In response to the identified challenges (see Section 3.3.1 of Related

Work), the thesis proposes an evaluation approach known as Beftigre, which

adopts the behaviour-driven technique to address challenge 1 and 2.

Furthermore, the thesis treats challenge 3 as a testing granularity problem,

consequently resolved by fine-grained testing of the mobile tier and the cloud

tier (i.e. full-tier). In particular, the approach makes the following novel

contributions:

18 Beftigre documentation: http://beftigre-mca.appspot.com
19 Green is the term used for software optimisation and testing based on the energy-efficiency and
performance metrics [10], [18]. Since offloading schemes target energy-efficiency of mobile devices,
similarly scenario based comparison is within the green software testing category.

119

1) Behaviour-driven Comparison – as single scenario

Beftigre adopts BDD concept. BDD simplifies software testing by using

clauses which can easily be communicated across development team to

construct a scenario for testing [112]. Similarly, Beftigre’s Comparator (Figure

6.1) uses these clauses in form of annotations to specify the expected (THEN)

MCA system behaviour, given a set of conditions (GIVEN and WHEN). The

annotations can be applied to a test function (TFn; which is a method to test

the mobile component – as shown in Figure 6.1), and the information supplied

through the annotations is then used (by Full-tier Analyser) to evaluate or

compare against the actual test results. Thus, the behaviour-driven

comparison process acts as a single scenario replacing varying architecture

scenarios, and alleviating inconsistency of architecture scenarios; therefore a

solution to challenge 1 and 2. Furthermore, the annotations are used to

implement full-tier comparison (to address challenge 3) by using @Given and

@When annotations to specify mobile and server expected preconditions

respectively, for comparison on Then clauses.

Markers are objects for counter-based instrumentation which has attributes

that can be written to file for processing. The purpose of Markers is to integrate

Figure 6.1 Beftigre system architecture

Mobile device Cloud VM

Power Monitor

 TFn

Full-tier Analyser Results

Markers, M

Comparator, @

SC

Server Monitor

Resource Simulator

Metrics CollectorMC
@
M

The
scheme

The
scheme

mobile
cloud

full-tier
actual

WHEN bandwidth is C AND latency is D
 cloudCPU is E AND cloudMemory is F

THEN mElapsedTime is G AND mUsedEnergy is H
 cUsedCPU is I AND cUsedMemory is J

GIVEN mobileCPU is A AND mobileMemory is B
full-tier

expected

Test function/method Application Components Mobile offloadable Components

Beftigre Logs and Results Beftigre Components Server offloaded Components

TFn MC

SC

Key:

120

instrumentation counters with annotation information (of comparator

component) for efficient single scenario comparison. The start and finish

counters in Markers component are vital to calculating actual values of THEN

clause (mobile energy and time, server CPU and memory used) which are

used to compare against expected values of @Then annotation. Thus, Marker

interface contributes to the behaviour-driven solution to challenge 2 and

contributes a foundation for full-tier analysis (i.e. based on THEN clauses).

2) Full-tier Analysis – results from mobile and cloud perspective

Beftigre evaluates a MCA from mobile (power usage and performance) and

cloud (resource usage) perspective to produce full-tier actual test results. The

analysis is accomplished by Full-tier Analyser (details presented later in

Algorithm 1 and 2). The aim is that by full-tier analysis (as opposed to mobile-

centric testing) an offloading technique can be finely evaluated in terms of its

impact on the system as a whole. [34], shows that a fine-grained approach to

energy measurement (using counters) can reveal specific energy usage

points. Similarly, to identify specific energy points, Beftigre adopts fine-grained

measuring distributed across the mobile tier (using Markers) and cloud tier

(using Metrics Collector). Consequently, by revealing the mobile to cloud

resource consumption implications of a MCA application, the full-tier analysis

objective addresses challenge 3.

3) Unified Monitoring – for facilitation of full-tier results

The required data for full-tier analysis is collected by Power Monitor and

Markers for mobile energy and performance respectively; by Metrics Collector

for cloud resource usage; and by Resource Simulator for determining cloud

resource availability and network. By unified monitoring of mobile and cloud

tiers, the aforementioned components contribute to the full-tier evaluation.

Specifically, these components (Figure 2) contributes to the research

objectives as follows;

Power Monitor is achieved by PowerTutor model via an API for seamless

integration with the BDD objective of Beftigre. The power monitor generates

121

PowerLog, which (in conjunction with counters from Marker component) is

used to compute actual mobile energy usage which is used to compare

against the expected used energy attribute of @Then annotation. This is a

step which contributes to the mobile-tier of the full-tier evaluation, using

behaviour-driven concept.

Server Monitor provides the logic for monitoring and serving the cloud tier

metrics useful for the behaviour driven full-tier evaluation. It uses PerfMon

Server Agent to compute metrics for actual cloud-tier values of Then clause

(i.e. percentage CPU and memory usage), and socket server programs to

compute metrics for actual values of Where clause (i.e. available percentage

CPU and memory).

Resource Simulator makes it possible to evaluate the MCA scheme based on

different set environmental conditions. Furthermore, it provides the capability

for introducing controlled rigour (i.e. experimental replication) to the evaluation

process (as shown later in section 5). In the implementation section, the

simulator is provisioned with the server monitor.

Metrics Collector provides the logic (client programs) for saving the cloud-tier

metrics received from the server monitor component. The metrics collector

persists the actual values for When clause and cloud-tier values of Then

clause. By generating evaluation data for cloud-tier, the metrics collector

contributes to the full-tier solution to challenge 3.

The aforementioned components focus on monitoring: power and

performance for the mobile tier, and resource usage for cloud tier, because

they are the popularly investigated green metrics for MCA domain [4], [7], [46],

[113], [114]. Mobile energy is increasingly gaining research interest due to the

resource-constrained nature of mobile devices and the increasing demand for

rich mobile applications. Resource usage (specifically CPU and memory) is a

commonly investigated metric when monitoring workload impact on the cloud

[46], [115]. In the current Beftigre approach, the scope of the energy

measurement is at the application level, i.e. the overall energy consumption

122

of the mobile execution. The overall mobile energy is measured using the

power tutor model and applies to all network types (including WLAN and 3G).

6.3 Design Details

6.3.1 Behaviour-driven Comparison

Behaviour-driven comparison is achieved by the Comparator interface. The

comparator is implemented as a method named getBaseStatus() which

calculates actual mobile CPU and memory availability, consequently;

contributing to the single scenario and behaviour-driven objective, by

providing actual values for Given clause. It is made as the last API call (as

seen on Line 29 Figure 6.2a), to ensure the process does not add any

overhead to the power and performance readings; furthermore, it is designed

as an android alarm monitor service, to ensure the process completes even

after the test is terminated (i.e. tearDown() method on line 30).

Figure 6.2 BAND Template

import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.annotations.*;
public class SampleTest extends...{
 private Band band;
 private Marker m = new Marker("Label");
 public SampleTest(){
 super(SampleActivity.class);
 }
 @Override
 protected void setUp() throws Exception{
 super.setUp();
 band = new Band(getActivity(), this);
 band.startPowerMonitoring();
 band.registerMarkers(m);
 }
 @Given(mobileCPU=97, mobileMemory=26)
 @When (bandwidth=4387, latency=31,
 cloudCPU=42, cloudMemory=20)
 @Then (mElapsedTime=21832, mUsedEnergy=721.3,
 cUsedCPU=58, cUsedMemory=30)
 public void testMethod() throws Exception{
 m.start();
 /*do test*/
 m.finish();
 }
 @Override
 protected void tearDown() throws Exception{
 band.saveMarkers();
 band.stopPowerMonitoring();
 band.getBaseStatus();
 super.tearDown();
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32

import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.exceptions.*;
public class SampleActivity extends...{
 private Band band = new Band();
 private Marker m1 = new Marker("Label1");
 private Marker mN = new Marker("LabelN");
 @Override
 protected void onCreate(Bundle...)(){
 super.onCreate(savedInstanceState);
 //start power monitor from test class
 try{
 band.registerMarkers(m1, mN);
 }catch(DuplicateLabelException d){...}
 /*app code*/
 }
 public void appMethod1() throws Exception{
 m1.start();
 /*app code*/
 m1.finish();
 }
 public void appMethodN() throws Exception{
 mN.start();
 /*app code*/
 mN.finish();
 }
 //save markers within test class
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

DuplicateLabelEx

DuplicateStartMarkerEx

DuplicateFinishMarkerEx

UnevenMarkersEx

(a) In Test Module (b) In Application Module

123

The annotations: @Given, @When, and @Then are the basis on which

offloading schemes are evaluated or compared. @Given annotation specifies

the expected percentage CPU and memory availability of the mobile device,

both of which are integer typed. Recall, the actual value for Given clause is

obtained from getBaseStatus(). @When annotation specifies the expected

bandwidth (bps), latency (ms), and server percentage CPU and memory

availability, all of which are integer typed. The actual value for the When

clause is obtained from the server monitors. @Then annotation specifies the

expected mobile elapsed time (ms) and used energy (mJ), and cloud

percentage used CPU and memory, during the period of the test. All

parameters are integer typed except used energy which is double typed.

 @Given is a precondition for the mobile end, while @When is the

precondition for the server end. @Then annotation is the postcondition with

elements specifying values to be asserted or compared against. Both the pre

and post conditions are based on the full-tier concept (i.e. mobile and cloud

involved).

6.3.2 Platform Monitoring and Control

Full-tier Platform Monitoring is achieved by power monitor and server monitor

interfaces for the mobile and cloud tiers respectively.

6.3.2.1 Power Monitor

Power monitoring in Beftigre is achieved using the PowerTutor [50] model.

Although the PowerTutor monitor is widely adopted in the research for mobile

power monitoring, it is worth noting that the PowerTutor seems to produce

accurate energy measurement for specific brands and models of mobile

devices and rough estimates for others [50]. However, as exact

measurements may not be necessary for relative comparisons, this thesis

adopts the widely used PowerTutor model, leveraging the core logic of the

monitor for Beftigre API. Furthermore, two methods are exposed to start and

124

stop the monitor. In Beftigre API, the PowerTutor20 based monitor is not a UI-

based application but a service which runs at the background to monitor the

application power usage. startPowerMonitoring() launches PowerTutor, while

stopPowerMonitoring() stops and saves power data to PowerLog.

The purpose of adapting the monitor as an API is for seamless integration with

the mobile test package; consequently, allowing for ease of control of the

monitoring process from the code. Furthermore, as a background process, the

monitor does not interfere with the application being tested. As shown in lines

14 and 28 of Figure 6.2a, the monitor is started and stopped right before and

after the call to register and save marker objects within setup and teardown

methods of the Android test framework, respectively. This is to ensure that the

monitor captures all test execution process.

6.3.2.2 Server Monitor and Simulator

The server monitor interface is used to orchestrate three monitoring processes

and two resource simulation processes on the server. For server monitoring:

PerfMon Server Agent monitors the percentage CPU and memory usage.

CPUMemoryAvail computes percentage CPU and memory availability using

20 PowerTutor; https://github.com/msg555/PowerTutor [01-Jul-2016].

Figure 6.3 Logical functions of Server Monitor and Metrics Collector

Server Monitor Interface Metrics Collector Interface

MetricsLog

HTTP
Sampler

PerfMon Metrics
Collector

Jm
et

er
 T

es
t

Send HTTP
Requests

Orchestrator

 Key:

Input
Processes

CPUMemoryAvailServer
BandwidthLatencyServer
PerfMon ServerAgent

TC Utility
Stress Utility

CPUMemoryAvail
Client

BandwidthLatency
ClientSo

ck
et

 C
lie

nt
s

Set Simulator
Params

Server

Get metrics Get metrics

Start Monitor
and Simulator

Monitor

Simulator

125

SIGAR API21. And BandwidthLatency is used for obtaining bandwidth and

latency. The last two monitors are java socket server programs. For resource

simulation: the Traffic Control Utility is used to simulate different network

conditions (using the parameters: bandwidth and latency)22, the Stress Utility

is used to simulate CPU and memory load (using the parameters: CPU load

and memory load). TC and Stress are both Linux utilities, and along with

SIGAR API, they are popularly adopted for server resource monitoring and

simulations. To start the monitoring the aforementioned simulation

parameters are passed to the Server Monitor Interface (as shown in Figure

6.3).

6.3.3 Metrics Collection

Full-tier Metrics Collection is achieved by Marker and Metrics Collector

interfaces for the mobile and cloud tiers respectively.

6.3.3.1 Marker

Markers are objects for counter-based instrumentation (line 6, Figure 6.2a)

which has attributes that can be written to file for processing. A marker object

takes a label attribute as a parameter which is used to associate counters with

test functions. After markers have been created, registerMarkers() is used to

validate and assign a unique identifier to all marker objects to be used in the

test, while saveMarkers() is used to save and write the attributes of registered

Marker objects to MarkerLog. A marker object (Mn, n is an integer typed

unique identifier) consists of the following attributes: Mn_start, Mn_finish,

Mn_label and Mn_anno. Mn_start and Mn_finish are references to the

timestamps in ms used to identify the execution block for the test section.

Mn_label is the reference to the label assigned during marker creation. And

21 SIGAR API; https://support.hyperic.com/display/SIGAR [01-Jul-2016].
22 Slow: simulates low bandwidth, high-latency; https://gist.github.com/obscurerichard/3740206 [01-Jul-
2016].

126

Mn_anno is a reference to the annotations assigned to the test function (i.e.

lines 17 to 19, Figure 6.2a).

Beftigre carries out four types of exception handling associated with Marker

objects: DuplicateLabelException is thrown if two or more markers were

registered with the same label. Labels are used to create a unique identifier

for markers, no two markers can have the same label.

DuplicateStartMarkerException and DuplicateFinishMarkerException are

thrown from the Marker class. The former is thrown when the API identifies

that start() was called more than once on a registered marker while the latter

is thrown when finish() is called more than once on a registered marker.

UnevenMarkerException is caused if a marker set was incomplete. For

example when a marker is started by calling the start() method, and not

finished. All registered markers must have a complete set. A marker is said to

have a complete set if it calls a start() and a finish() method.

With the Beftigre API, one test method can be created within a test project to

test the overall application – this includes only a marker object and

annotations (see Figure 6.2a). Multiple markers can be applied within the

application project; however, annotations are not applicable in this scope (see

Figure 6.2b) because the annotations of the main test method (in Figure 6.2a)

covers any markers used within the application project (in Figure 6.2b).

Furthermore, service-based API features (such as start and stop power

monitoring, and base status service) are only declared once from the test

projects, as the call from test project captures the application module

execution.

6.3.3.2 Metrics Collector

Following the start of server monitors and simulators, is the launch of metrics

collectors. The Metrics Collector Interface is composed of three metrics

collector processes within the orchestrator (as shown in Figure 6.3).

CPUMemoryAvailClient records the percentage CPU and memory availability

obtained from CPUMemoryAvail monitor. BandwidthLatencyClient records

127

bandwidth and latency, which is measured by sending packets to and from

the BandwidthLatency monitor. CPUMemoryAvailClient and

BandwidthLatencyClient collectors execute only once (i.e. when metrics

collectors are launched) and then terminates. PerfMon Metrics Collector runs

continually for a scheduled time, recording server CPU and memory usage at

intervals using Apache JMeter binaries. Furthermore, PerfMon Metrics

Collector is launched as a listener, based on HTTP request sampling, within

JMeter test plan. The test plan implements a loop controller to ensure that

metrics recording process is continuous until a scheduled duration is elapsed.

The duration is any speculated time, in seconds, which covers the evaluation

process.

Network and resource availability metrics from Socket clients are first logged

into MetricsLog, followed by the Resource usage metrics from PerfMon

Metrics Collector. The purpose of using PerfMon Metrics Collector for

continuous recording of resource usage at intervals is so that the average

percentage resource usage (of the MCA scheme being evaluated) can be

computed after the test is done. See Algorithm 6.1 for further details.

6.3.4 Full-tier Analysis and Control

Full-tier analysis and control is achieved by the Full-tier Analyser interface.

Completing the test on the mobile and server tier generates three logs:

MarkerLog and PowerLog from the mobile; and MetricsLog from the server.

The full-tier analyser interface (analyser for short) analyses data stored in the

logs both from mobile and cloud tier to produce full-tier results. The analyser

also references the behaviour-driven annotation from the test for comparison.

Algorithm 6.1 Evaluate function, to produce actual values of Then clause
Require: TS and TF, PS and PF, CS and CF, MS and MF, which represent start and finish
range for mobile time, mobile power, cloud CPU usage and cloud memory usage values
from Map.

 1: a_mElapsedTime ← TF - TS
 2: a_mUsedEnergy ← (sum(PS : PF) / count(PS : PF)) × a_mElapsedTime
 3: a_cUsedCPU ← sum(CS : CF) / count(CS : CF)
 3: a_cUsedMemory ← sum(MS : MF) / count(MS : MF)

128

The analyser contributes the final solution to the challenges in Section 3.3.1

by consolidating the contributions of all the Beftigre components.

Algorithms 6.1 and 6.2 presents the Evaluate and Assert functions of the full-

tier analyser respectively, used to compute the results of the MCA test.

Evaluate presents the algorithm useful for evaluating an offloading scheme

(self-evaluation) which gives a full-tier result (mobile performance and energy,

with cloud CPU and memory used) that is, the actual values of Then clause.

Assert presents the algorithm useful for comparing between offloading

schemes. Assert extends the Evaluate function in order to determine the

relationship between the schemes using the behaviour driven annotations, by

asserting which scheme is more efficient based on the given and where

conditions or whether the expected and actual values are from the

Algorithm 6.2 Assert function, to produce assertion of comparison
Require: actual values of Then clause from Evaluate.
inRange(a, b) : return true; if a is in ± 5% range of b
lessOrMore(a) : return a . "% more"; if a is positive else a . "% less"
isCongruent(a, b, c, d) : return true; if any three of a, b, c, d is within ± 1%
/* e_... are expected values, a_... are actual values */

 1: Set variables for all the expected values from annotation attributes:
 e_mobileCPU, e_mobileMemory,
 e_cloudCPU, e_cloudMemory, e_bandwidth, e_latency,
 e_mElapsedTime, e_mUsedEnergy, e_cUsedCPU, e_cUsedMemory
 2: Set variables for the actual values of Given and When clauses:
 a_mobileCPU, a_mobileMemory,
 a_cloudCPU, a_cloudMemory, a_bandwidth, a_latency
 3: if (inRange(a_mobileCPU, e_mobileCPU) & inRange(a_mobileMemory, e_mobileMemory)
 & inRange(a_cloudCPU, e_cloudCPU) & inRange(a_cloudMemory, e_cloudMemory)
 & inRange(a_bandwidth, e_bandwidth) & inRange(a_latency, e_latency))
 then
 4: assert_mElapsedTime ← (a_mElapsedTime – e_mElapsedTime) × 100 / e_mElapsedTime
 5: assert_mUsedEnergy ← (a_mUsedEnergy – e_mUsedEnergy) × 100 / e_mUsedEnergy
 6: assert_cUsedCPU ← (a_cUsedCPU – cUsedCPU) × 100 / e_cUsedCPU
 7: assert_cUsedMemory ← (a_cUsedMemory – e_cUsedMemory) × 100 / e_cUsedMemory
 8: result ← lessOrMore(assert_mElapsedTime) . lessOrMore(assert_mUsedEnergy) .
 lessOrMore(assert_cUsedCPU) . lessOrMore(assert_cUsedMemory)
 9: if (isCongruent(assert_mElapsedTime, assert_mUsedEnergy,
 assert_cUsedCPU, assert_cUsedMemory))
 then
10: "The compared systems are similar"
11: end if
12: end if

129

same/similar system/offloading scheme. The functions which make up the

analyser are presented below in the order of execution;

 ExtractExpected extracts the expected value of all attributes of

annotations from MarkerLog.

 ExtractActual extracts the actual (or measured) values of Given and

When clause, i.e. mobile CPU and memory availability from PowerLog;

and cloud CPU and memory availability, bandwidth and latency from

MetricsLog (used in line 2 of Algorithm 6.2).

 Map obtains the start timestamp (TS) and finish timestamp (TF) from

MarkerLog, and matches them to that of the PowerLog and MetricsLog

in order to obtain the exact mobile power (PS to PF), cloud CPU (CS

to CF) and cloud memory (MS to MF) used by the MCA during the

evaluation.

 Evaluate (Algorithm 6.1) firstly computes the elapsed time (ms), used

energy (mJ), average CPU usage (%) and average memory usage (%)

using the data from Map function.

 Assert (Algorithm 6.2) compares Then clause actual values from

Evaluate function with the @Then annotation expected values from

ExtractExpected function to assert a result following some condition.

Assert is achieved in two stages below;

Stage 1 Assertion:

Result – The assertion result (lines 4-8, Algorithm 6.2) gives the

percentage increase or decrease23 between expected scheme and

actual scheme at a full-tier scale (i.e. mobile elapsed time, mobile used

energy, cloud CPU usage and cloud memory usage).

23 Percentage increase (in actual value compared to expected value) means increased or more resource
demand, while percentage decrease means decreased or less resource demand.

130

Condition – The assertion is performed if the Given and When values

(from Evaluate and annotation) are within ± 5% range24 (meaning

schemes are comparable).

Final Assertion:

Result – asserts that the expected and actual schemes are of the same

or similar system (lines 9-11, Algorithm 6.2).

Condition – the assertion is true if any three values of Then clauses of

Stage 1 Assertion are within ± 1%. In other words if after comparing

actual and expected of Then clause, and any three of its attributes (i.e.

any three of mobile time, mobile energy, cloud CPU and cloud memory)

has percentage increase or decrease within the range of ± 1%, then

the actual and expected schemes are similar or the same.

After the above analysis process is completed, a CSV file containing the

computed values/summary of analysis is generated for reporting purpose.

6.4 Performance Evaluation

The performance evaluation was performed for BAND API on Windows 10

x64 PC, with Intel i7 2.20GHz CPU and 8GB memory. Furthermore, the mean

value of 30 test samples (on local execution) was used to investigate the

performance (overhead) of the API on mobile testing by comparing the build,

setup and execution time of Default test setup against Beftigre setup (Figure

6.4). The Default setup, is the conventional android test setup with Robotium

API for UI test, while Beftigre setup adds the BAND API to the default setup.

Build time; measured using Android Studio’s build functionality; is the time to

(re)build the modules and libraries of the project. Setup and execution time

are measured using Java timestamp utility. Setup time is the time it takes to

24 Existing experimental research e.g. [117], uses 5% range as acceptable range of comparison
between expected and actual power readings (for power meters vs power models, respectively). ±5%
range is therefore applied to green metrics in this thesis.

131

initialise all test library objects used (i.e. Lines 11-16 of Figure 3a). Execution

time is the time from setup to test completion.

From Figure 6.4, less than 0.3% increase is observed in the execution time,

which implies no overhead is caused by the test API to the application build

time. This is because the libraries which contribute to the build-time overhead

are those used within the application module (and not the test module), such

as Mosaic library – presented in Chapter 5. Also, as the power monitor runs

as a different android service (and as a different process) to the test process,

its execution has no significant effect on the test; this is similar to executing

PowerTutor app external to the application under test. Consequently, the

results of the evaluation show that BAND API has no significant overhead to

the android test process. And also since the API integrates with the test

process/project, the API does not interfere with the actual execution of the

application under test.

6.5 Summary

This chapter presented the Beftigre evaluation approach as a solution to the

challenges of mobile-centric architecture scenarios approach to MCA

evaluation – challenges presented in the Methodology (Chapter 3) in details.

The objective of the approach is i) full-tier evaluation: which is to achieve

Figure 6.4 BAND API Performance Evaluation

106303

20520 19947

106336

20521 20034

BUILD SETUP EXECUTION

El
ap

se
d

Ti
m

e
(m

s)

Band vs. Default Performance

Default Band

132

evaluation at a fine granularity for MCA by taking the metrics of both mobile

and cloud tiers into consideration, ii) comparability: which makes it possible to

evaluate MCA comparing between counterpart techniques, and iii)

reproducibility: which makes it possible to repeat tests for a given MCA and

arrive at the same conclusion. This is achieved by controlling the

environmental factors of MCA. Control is administered through the server

simulator and full-tier analyser.

Table 6.1 presents a summary of the Beftigre framework and the coordination

between the two APIs. From Table 6.1 the preconditions (Given and When)

and post conditions (Then) of the test process, are full-tier, in other words,

they span through the mobile and cloud tier. Furthermore, at each tier, logs

are generated to provide data for computing metrics that reveal the

implications of a test process at each tier. The evaluation and demonstration

of effectiveness for Beftigre approach has been achieved using real world

applications and presented in the Case Studies (Chapter 7).

Table 6.1 Summary of Beftigre components (of Band and Befor APIs)

Clauses Metrics Source Beftigre Component/Interface

Expected Actual Both

Given Mobile % CPU availability

 Mobile % Memory availability

Comparator’s

Annotations

Comparator’s

BaseService

F
u

ll-
tie

r
A

na
ly

se
r

When Bandwidth (bps)

 Latency (s)

 Cloud % CPU availability

 Cloud % Memory availability

Comparator’s

Annotations

Socket Clients, with

Socket Servers.

Then Mobile Elapsed Time (ms)

 Mobile Used Energy (mJ)

Comparator’s

Annotations

Marker

F
u

ll-
tie

r
A

na
ly

se
r

Power Monitor

 Cloud % CPU usage

 Cloud % Memory usage

Perfmon Metrics

Collector, with

Server Agent

133

Chapter 7. Case Studies

Using Real-life Applications to Critically Analyse Mango

7.1 Introduction

This chapter uses four different android applications as case studies to

evaluate the proposed Mango approach. Table 7.1 describes the applications

and their functionalities. These applications are chosen based on their unique

characteristics/taxonomy: Linpack25 and NQueen26 are computation intensive,

MatCalc27 and MathDroid28 are data intensive. The use of a case study with a

sample size of four taxonomy unique applications in the thesis is because it is

the popularly adopted sample size and sampling technique for MCA

experiments in the literature, e.g. [7], [8], [52]. Furthermore, these applications

have also been evaluated by previous studies [7], [8], [52]. Details of the

selection criteria are presented in Appendix B.

The objectives of the experiments in this section are as follows:

 To evaluate the effectiveness of the Mosaic framework in identifying

Callees based on Quality Verification (phase 3 of Mango approach).

25 Linpack: https://github.com/pedja1/Linpack
26 NQueen: https://github.com/acelan/NQueen
27 MatCalc: https://github.com/kc1212/matcalc
28 MathDroid: https://code.google.com/archive/p/enh/source

Table 7.1 Characteristics of the case studies

Application Offloading candidates CI DI Description

(Android apps)

Linpack run() method of Linpack class Linear algebra

benchmark app

MatCalc times(Matrix B) method of Matrix class Matrix calculator app

MathDroid computeAnswer(String query) method of

Mathdroid class

 Calculator app

NQueen nQueenCount(int input) method of NQueen

class

 NQueen computation

app

Key: CI – computation intensive, DI – data intensive.

134

Recall that quality verification determines whether an identified

offloadable candidates (Callees) will most certainly yield benefits when

adopting the Mango architectural approach. (See Section 7.5 for

evaluation).

 To evaluate the proposed Mango architecture in terms of the earlier

stated benefits: suboptimal awareness, variability (context) awareness,

and full-tier awareness for SQAs. Recall that SQAs considered in

Mango are: performance and energy-efficiency for the mobile, and

resource-efficiency and availability for the cloud. (See Section 7.6 for

evaluation).

 To evaluate the proposed Beftigre approach in terms of the earlier

stated benefits: full-tier effectiveness, robustness of test, reproducibility

of test. (See Section 7.7 for evaluation).

A benefit of Mango architecture is that; as a model-driven approach, no

significant changes are required to be made in order to adapt legacy systems

for mobile-cloud optimisation (the model-based framework, Mosaic aids with

the adaptation). In this chapter, the required changes made to the base code

– in order to make it suitable for Mango architecture – have been presented

in the ‘Legacy Adaptation’ section (7.4).

7.2 Experimental Settings

7.2.1 Experimental Variables

Table 7.2 presents the experimental variables used with the case studies.

Table 7.2 Experimental Variables

Dependent Independent Control (factors)

- Green metrics:

Mobile Performance

Mobile Energy usage

Cloud CPU usage

Cloud Memory usage

- Other quality attributes:

Application availability

- Architecture scenarios:

Local

Optimal

Offloading scheme/Architecture

Mobile CPU availability

Mobile memory availability

Cloud CPU availability

Cloud memory availability

Bandwidth

Latency

Size of transferred data

135

The dependent variables are the events being studied, and expected to

change whenever the independent variable is altered. As shown in Table 7.2,

the events studied are green metrics for mobile and cloud tiers. Also, quality

attributes are investigated.

The independent variables: for the experiment are Local, Optimal and

Offloading architecture scenarios. Table 7.3 presents the criteria for selecting

the independent variables – which is based on recurrent scenarios in the

literature (i.e. the summary column of Table 7.3). Beftigre framework is a MCA

evaluation (and comparison) approach contributed/proposed by this research

as an improvement on the architecture scenario evaluation approach.

Following an investigation into the scenarios used in the evaluation of the

selected offloading techniques, a summary is presented in Table 7.3. The

summary column uses a common term to present the recurrent scenarios, as

follows:

 Local: the original app runs entirely on the phone [4], [7], [52], [116].

[52] also specifies Offload-Local which is a scenario where the

optimised application runs entirely on the phone. In the experiment,

Local is used since it is recurrent of the two.

 Server: all identified offloadable components are executed on the cloud

[4], [7], [52].

Table 7.3 Selection of Independent Variables

Summary Techniques (and distinct scenarios used)

POMAC TB-CP DPartner

Local OnDevice Smart phone only Phone

Offload(Local)

Server OnServer Offload(All) Offload(All)

Optimal Optimal Offload(only Assessed) Offload(only Monitored) diff.

RTT

Offloading-

scheme

POMAC Offload(+adapted)

Offload w/Threshold

On-Demand Offload

136

 Optimal: only offloadable components that are assessed as

computation intensive (or data intensive) are executed on the cloud [4],

[7], [52].

 Offloading scheme: is the scenario comprising the proposed offloading

scheme [4], [7], [52], [116], e.g. POMAC, TB-CP, DPartner, (and in this

research; MANGO).

The control variables: also has an effect on the dependent variables, so they

are also monitored in the system. For the experiment, these include

bandwidth, latency and size of data being transmitted. Although the control

variables are naturally challenging to control, the Beftigre framework presents

a technique to effectively monitor these variables for a comparison process.

The technique is behaviour-driven and uses a full-tier evaluation technique –

details presented in Chapter 6. Note that: some or all (depending on the

scheme) of the control variables are adopted in offloading schemes to predict

optimal behaviour or make offload decisions.

7.2.2 Metrics, Tools & Platform

As a green software research, the key metrics being measured in this

research are Green metrics for mobile and cloud tier. These are energy usage

and elapsed time (performance) for mobile, and resource usage (i.e. CPU and

memory usage) for cloud (see Table 7.4). The case studies evaluate the

approach based on three green metrics – energy usage, resource usage and

performance.

Table 7.4 Metrics, Tools & Platforms for Case Studies

Green metrics Measuring Tools Domain/Platform

Energy usage Power Tutor model – computes mobile power

usage.

Mobile: Android

Samsung galaxy S3

Performance Java timestamp utility – computes total

execution time.

Resource

usage

PerfMon Server Agent & Metrics Collector –

computes % CPU and memory usage.

Cloud: Amazon EC2

Ubuntu instance

137

The mobile device used is Samsung Galaxy S3 Neo running Android 4.4.2

(KitKat) on Quad-core 1.4 GHz, with 1.5GB memory. While the cloud

configuration is an Amazon EC2 m3 instance running Linux Ubuntu 14.04 64

bit, with Intel Ivy Bridge 2.5GHz CPU and 3.75GB memory. Furthermore, Java

JDK 1.8 was used for implementing the case studies – mobile and cloud tier.

The minimum SDK version was set as 15 for the android applications, with

compile SDK from version 22 upwards. The selected case studies have been

tested on the new Android Studio 2.0, thus; the contributions and results of

this research are up-to-date with current development tools and consequently

relevant for current software practice.

Power Tutor was used for measuring the power usage of the mobile

application. It is chosen because it is the most popular power model adopted

in the literature [4], [7], [52] – and has also been used in evaluating the

selected offloading schemes. Energy-efficiency (EE) metric [34] was gotten

as a derived metric by computing energy usage based on the power logs of

power tutor. Similarly, resource efficiency was determined from the CPU and

memory usage logs from the server. These logs are obtained through PerfMon

ServerAgent and PerfMon Metrics Collector (more on the evaluation tools

presented in Chapter 6). Furthermore, the measuring tools presented in Table

7.4 are all open sourced and also components of the Beftigre framework

presented in Chapter 6.

Figure 7.1 Experimental Process

138

7.2.3 Experimental Process

The experiment on each case study (Table 7.1), combined the architecture

scenario evaluation with Beftigre full-tier evaluation for full-tier qualities,

involved three key tasks/processes. As shown in Figure 7.1 these are; 1)

designing scenarios, 2) designing and launching tests, and 3) measuring full-

tier qualities; i.e. metrics for both the mobile and cloud tier.

Firstly, for each case study three architecture scenarios (i.e. the independent

variables – Local, Server & Mango) are designed. Based on these architecture

scenarios in combination with the applications used in the literature, Mango

approach is compared against counterpart techniques. Secondly, an android

test project is designed for each case study, which is irrespective of the

architecture scenario. In other words, the same test is used for all architecture

scenarios of a case study app. And thirdly, green metrics are measured for

the application under test. For the mobile-centric architecture scenario

evaluation approach, the metrics measured are mobile energy used and

mobile elapsed time. In the Beftigre evaluation option, only the offloading

scheme is evaluated, other architecture scenarios are not necessary. The test

is then annotated with Beftigre annotations for comparison or evaluation, then

the green metrics are collected based on a full-tier evaluation (i.e. mobile and

cloud tier). The mobile tier metrics being elapsed time and used energy, and

the cloud tier metrics being used CPU and memory, as presented in Table

7.2.

Two adaptive optimisation techniques have been selected to evaluate the

Beftigre evaluation approach. The techniques of comparison are POMAC (a

machine learning approach) [7], [8] and TB-CP (a threshold-based

checkpointing approach) [4].

7.3 Test Classes

In order to accurately measure the effect of Mango architectural approach to

MCA optimisation on the application, the test is written to capture the exact

execution of the offloadable (CI) task – i.e. the Callee. This is achieved by

139

implementing the finish marker (of the Band API) immediately after the Callee

is completed.

To execute the finish marker immediately after the Callee is completed entails

capturing a predictable or set Callee output – using Robotium29

solo.waitForText(String text) rather than solo.waitForActivity(String activity).

The difference is that the former returns true immediately a passed text is

found on display, whereas the latter returns true after all processes in a

passed activity is completed – thus incurring more waiting time. (Appendix I

presents the Test Classes for the case studies and screenshots of test output).

 A Predictable Callee Output

The predictable Callee output is the result of the Callee that is known before

execution and thus can be passed to solo.waitForText(String text) prior to the

test execution. The test assertions for MatCalc, MathDroid and NQueen case

studies are based on the results of the Callee, as they are predictable outputs

(see Appendix I.2, I.3 and I.4 respectively, for the classes).

The mathematical results for Callee of MatCalc and MathDroid (given a set of

inputs) can be predicted/obtained without execution. For example;

MatCalc app has its Callee as the matrix multiplication task. Therefore given

two matrix A and B then the result A.B can be predicted as shown below.

If Matrix A is 1 2 3
4 5 6
7 8 0

and Matrix B

is

0.5
2
8

Then A.B = 28.5

60
19.5

Thus the test assertion is implemented based on the predicted results (i.e. A.B

above), as; solo.waitForText("28.5\n60\n19.5").

MathDroid app has its Callee as the number multiplication task. Therefore

given two numbers 3 and 7, the product is 21. Thus the test assertion is

implemented based on the product as; solo.waitForText("21").

29 Robotium [119] is an Android UI testing API.

140

NQueen app has its Callee as the counter functionality of game – which gives

the total number of possible queens in an x square game. Given an input (x)

of 14, the total number of possible queens are 365596. Thus the test assertion

is implemented based on the expected result as; solo.waitForText("365596").

 A Set Callee Output

The set Callee Output is a notification string used to indicate when the Callee

execution is completed. This is achieved by implementing an Android toast

with the notification string, after the Callee implementation, as shown below;

Toast.makeText(getApplicationContext(), "Callee completed.", Toast.LENGTH_SHORT).show();

This approach is used for the case studies comprising Callee outputs that

cannot be clearly predicted prior to execution, e.g. Linpack (see Appendix I.1

for the test class). Within the test class, the set Callee output is referenced as

the notification string, as; solo.waitForText("Callee completed.").

7.4 Legacy Adaptation

As shown in Table 7.5, code scaffolding was achieved in two ways; Mosaic

automated refactoring, and manual refactoring. The Mosaic automated

refactoring is the generation of the ACTS classes by the Mosaic framework –

Table 7.5 Legacy Adaptation

Place holders

/refactor

Linpack MatCalc MathDroid NQueen

Mosaic automated refactoring

[Callee] …MainActivity

.runLinpack

…MainActivity

.times

…Mathdroid

.computeAnswer

…NQueen

.nQueenCount

[Arguments] Class clazz Matrix A,

Matrix b

String query int input

[References] clazz A, b query input

[Return] Result Matrix Node Integer

Manual refactoring /implementations

Activity MainActivity

.activity

MainActivity

.activity

Mathdroid

.activity

NQueen.activity

Serialisation Required - (In Legacy) - (In Legacy) -

Cloud tier Required Required Required Required

141

which replaces all placeholders (in templates) with actual values (from the call-

graph model). The manual refactoring entails further changes and

implementation that was required to fully adapt the application to the Mango

architecture (or as a MCA application – e.g. Cloud tier implementation).

Furthermore, the source code screenshots used for explanation of the legacy

adaptation process are obtained only for Linpack application, for the purpose

of demonstration. However, the snippets of the ACTS classes for the four case

studies are presented in Appendix J.

7.4.1 Mosaic automated refactoring

The highlighted segments in Figure 7.3 and Figure 7.2 shows the adaptation

on the Aspect and Task templates made by Mosaic, to generate the Aspect

and Task classes, respectively. To demonstrate Mosaic automated

refactoring the code screenshot have only been presented for Aspect and

Task classes as they show all Mosaic placeholders.

The Mosaic call-graph, mcg (Table 7.6) is the model for the generation of the

actual values of the Mosaic placeholders. This is the identified offloadable

callee for MCA optimisation. As noted in the Mosaic framework (Chapter 5),

the mcg (Table 7.6) specifies the superclass of the Caller, the Caller, the

Callee, its return type and its argument types – which are relevant for model

transformation into ACTS classes.

Table 7.6 Mosaic Call-graph (mcg)

For Linpack
android.app.Activity rs.pedjaapps.Linpack.MainActivity:run

rs.pedjaapps.Linpack.MainActivity:runLinpack rs.pedjaapps.Linpack.Result java.lang.Class

For MatCalc
android.app.Activity com.android.matcalc.MainActivity:customTimes

Jama.Matrix:times Jama.Matrix Jama.Matrix

For MathDroid
android.app.Activity org.jessies.mathdroid.Mathdroid:exe

org.jessies.mathdroid.Mathdroid:computeAnswer org.jessies.calc.Node java.lang.String

For NQueen
android.app.Activity com.mango.queens.NQueen:computeNQueen

com.mango.queens.NQueen:nQueenCount int int

142

As shown in Table 7.5 and Figure 7.3 (Line 8) Mosaic replaces the [Callee]

placeholder with appropriate rs.pedjaapps.Linpack.MainActivity.runLinpack

from the mcg (Table 7.6). Similarly the [Arguments], [ArgumentIDs] and

[Return] placeholders are transformed to appropriate values as shown in

Figure 7.3, Aspect class (Lines 11 and 15 for [Arguments] as Class arg_0,

Lines 10, 14 and 16 for [ArgumentIDs] as arg_0 and Line 15 for [Return] as

Result). This transformation is also achieved for other ACTS classes.

For example, for the Task class the [Callee] and [CastedArguments]

placeholders for referencing the offloadable method has been transformed

Figure 7.2 Task Class for Linpack

Figure 7.3 Aspect Class for Linpack

package mango;

import ...
import rs.pedjaapps.Linpack.MainActivity;
import rs.pedjaapps.Linpack.Result;

public class Task extends AsyncTask<Object, Integer, Result> {
private static Result result = null;
...
private static final int TIMEOUT = 5000;
private static final int OVERHEAD = 2542; //25% OVERHEAD

@Override
protected Result doInBackground(final Object[] params) {

...
}

private void runOnMobile(Object[] params) {
result = MainActivity.runLinpack((Class)params[0]);

}

private void runOnCloud(Object[] params) {
try {

Socket socket = new Socket("46.137.91.122", 3);
...
result = (Result) inputStream.readObject(); //read
...

} ...
}
...

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

143

appropriately as shown in Line 19 of Figure 7.2, with [CastedArguments]

replaced by (Class)params[0]. Furthermore, the [Return] placeholder which

holds the return type of the Callee is replaced by Result object as shown in

Lines 7, 8, 14 and 26 of Figure 7.2 Task class.

Also as shown in Table 7.5, the Mosaic transformation was also performed for

MatCalc, MathDroid and NQueen applications. Table 7.5 shows that, like

Linpack (used for demonstration), Mosaic also transformed placeholders for

these applications into appropriate ACTS classes with actual values derived

from mcg (Table 7.6).

7.4.2 Exposing and Referencing an Activity

The Context class (of ACTS) requires an activity to create shared preferences

used in the decision-making at the mobile tier. The activity to be referenced

by the Context class is therefore needed to be exposed from an android

activity class – by initialising an Android activity as a public static variable. The

initialisation of the exposed activity static variable is performed within the

onCreate(…) method of the Android activity, to ensure that the activity (static

variable) is initialised immediately the Android activity is created. To ensure

that the variable is always set when the application is launched the

main/launcher activity of the application is used to initialise the static activity

variable used by Context class (i.e. the launcher activity is the activity that

starts the app).

Figure 7.4 Launcher Activity of Linpack

package mango;
import ...

public class MainActivity extends Activity implements Runnable {
 ...
 public static Activity activity;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 activity = MainActivity.this;

 ...
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

144

Exposing and referencing the activity are achieved manually, as shown by the

highlighted sections of Figure 7.4 and Figure 7.5. Exposing the activity

requires two lines of code as shown in Figure 7.4 – which involves declaring

the static variable of Activity type (Line 6) and initialising the variable with the

launcher activity (Line 13). Whereas referencing the activity only requires two

lines of code as shown in Figure 7.5 – which involves importing the activity

(Line 3) and calling the activity (Line 6).

Furthermore, as shown in Table 7.5, activities are also manually exposed and

referenced for the MatCalc, MathDroid and NQueen applications; with their

respective launcher activities as MainActivity, Mathdroid and NQueen classes

respectively.

7.4.3 Serialising Objects

By convention, as with distributed systems, objects passed across the

network, have to be serializable. In Java, this is achieved by implementing

java.io.Serializable interface (to allow communication across the network). As

shown in Table 7.5, objects are required for the Callees of Linpack, MatCalc

and MathDroid applications.

For the Linpack application, to execute the Callee (i.e. runLinpack method),

java.lang.Class is required as an argument – which is a generic Java class.

However, the execution of the Callee returns a Result object – which means

that the result class is required to be serialised in order to execute the Linpack

Callee remotely. The legacy Result class does not implement Serializable

interface, therefore it was refactored by implementing java Serializable

interface to allow for the object to be transmitted across the network.

Figure 7.5 Context Class for Linpack

package mango;
import ...;
import rs.pedjaapps.Linpack.MainActivity;

public class Context {
 private static Activity activity = MainActivity.activity;
 ...
}

1
2
3
4
5
6
7
8

145

For the MatCalc application, to execute the Callee (i.e. times method), Matrix

objects are required as arguments, moreover, the Callee also returns a Matrix

object. Thus the Matrix class has to be serializable in order to allow for remote

execution of MatCalc’s identified Callee. As indicated in Table 7.5, the legacy

MatCalc application already defines the Matrix class as serializable, thus

refactoring was not necessary. Similarly, the Node class of legacy Mathdroid

application was already defined as serializable and was not refactored.

7.4.4 Implementing the Cloud tier

Unlike the mobile tier which already consists of the implementation of the

Callee, the cloud tier always requires the Callee to be implemented (as shown

in Table 7.5). The implementation of Callee on the cloud tier is not achieved

by Mosaic; as there may be libraries (Table 7.7) required by the Callee during

execution. Thus Callees are implemented manually on the cloud tier and

integrated or called within the generated Service class of ACTS pattern.

Table 7.7 shows the libraries and classes required for implementing the Callee

on the cloud tier. For MatCalc, the identified offloadable Callee (i.e. times

method from Table 7.1) is within the library, whereas that of other case study

apps are within classes. All the aforementioned dependencies presented in

Table 7.7 are deployed in the cloud alongside their respective Service class

(of ACTS pattern), which together make up the cloud tier of the Mango MCA

architecture. Mosaic placeholders found within the Service template are

transformed by Mosaic while transforming other ACTS components – as

Table 7.7 Cloud tier Callee dependencies

Apps Cloud tier Callee dependencies

Libraries Classes

Linpack - rs.pedjaapps.Linpack.Linpack.java (Callee)

rs.pedjaapps.Linpack.Result.java

MatCalc Jama-1.0.2.jar (Callee) com.android.matcalc.MatrixParser.java

MathDroid Calc.jar org.jessies.mathdroid.Mathdroid.java (Callee)

NQueen - com.queens.nQueenLib.java (Callee)

Key: (Callee) signifies the location of the implementation of the Callee method.

146

presented earlier. Moreover, the CPU threshold and Time threshold of the

Service class can be set manually.

For the case studies; CPU threshold was set as 30% – an arbitrary value to

signify the minimum CPU availability of the cloud to process any request. Time

threshold was set to correspond to the approximate tolerable local execution

time to the nearest 1000ms. For example, the average local execution time of

Linpack is 4733ms, the Time threshold at the cloud tier is set to 5000ms. The

screenshot for the code base of the Service classes for the case studies are

presented in Appendix J.

7.5 Critical Analysis of Mosaic Approach

Table 7.1 presents the initially identified offloadable candidates for each of the

applications. The initially identified offloadable candidates are based on the

selective analysis presented in Algorithm 5.1. To enhance the initial

identification, inclusion rules were applied for Callees based on the identified

offloadable candidates in the literature [8], [52] – thus Table 7.1 outcome.

To further determine the efficacy to yield offload benefits, Algorithm 5.3

(Profiler Aspect) is applied to the initially identified Callees of Table 7.1. The

result of Profiler Aspect is presented in Figure 7.6, based on 10 experiments.

Figure 7.6 Mosaic (Profiler Aspect) evaluation of offload candidates

-2000

0

2000

4000

6000

8000

10000

Linpack MatCalc MathDroid NQueen

Ti
m

e
(m

s)

local time
mobile overhead
cloud saving
decider saving

147

Mobile overhead: Recall that mobile overhead compares Mango mobile

scenario to the local execution scenario. The results show that Mango does

not contribute significant overhead when executing the Callee on the mobile,

as shown in MatCalc, and Mathdroid. The mobile overhead for Linpack yields

a negative value due to differences in environmental states, naturally, this is

not supposed to be so. However, environmental states are unpredictable, thus

comprising outliers. Such outliers show that Mango mobile scenario in Linpack

comprised of more favourable environmental factors compared to the local

scenario. The reverse being the case for NQueen.

Cloud saving: Recall that cloud saving compares Mango cloud scenario with

the local execution scenario, and negative value of cloud saving means no

offload benefits, and therefore not recommended for MCA optimisation. From

the results of Fig. 8 the Profiler Aspect evaluation shows that offloading the

offload candidates for MatCalc and MathDroid does not yield benefits, with

MatCalc having a significant lower bound – significantly inefficient. Hassan et

al. [8] also evaluates MathDroid and MatCalc based on the identified

offloadable candidates in Table 7.1, and these applications are found to not

yield offload benefits after optimisation. The literature asserts that this is due

to the application being data intensive. Moreover the evaluation in the related

work[8] does not focus on the Callee, but rather the entire optimised

application – thus the results of the evaluation (in [8]) seem to portray a

closeness between local execution and MCA optimisation (and a possibility

for savings) – i.e. for MatCalc and MathDroid, however, this is not the case as

shown by the negative cloud saving of the aforementioned apps in Fig. 8.

Using Profiler Aspect provides a finer granularity of evaluation by using

pointcuts to point to the exact call to the Callee and using before and after

advices to measure the exact execution time of the Callee of concern.

In the Mango evaluation section, the Mango architecture was applied to

MatCalc and MathDroid, to demonstrate that the evaluation of the application

as a whole is significantly different from the Callee evaluation (fulfilled by

Aspect Profiler). This sheds light on the reason why the local (or on-device)

148

execution of app is interpreted as being close to the MCA optimised scenario

by related work [8].

7.6 Critical Analysis of Mango Architecture

In this section, the proposed architecture is evaluated by comparing three

scenarios; Local, Server and Mango scenarios. The local scenario executes

the Callee on the mobile device, the server scenario executes the Callee

remotely in the cloud, while the Mango scenario executes using the proposed

architecture. For the server and Mango scenarios, 10 experiments are

conducted by simulating fog settings (which has higher bandwidth and low

latency) and cloud settings (which is based on adverse network conditions).

In Fog setting (denoted by F, in the graph) the following was used: 100Mbps

bandwidth, 20ms latency, 2 CPU and 2 memory worker threads. In Cloud

setting (denoted by C, in the graph) the following was used: 50kbps

bandwidth, 1s latency, 6 CPU and 4 memory worker threads. Note: the worker

threads are used (by Stress Utility) to stress the server CPU and memory.

The results of the experiments (and Mango benefits/efficiencies) are

discussed based on observed behaviours – classified in three sections;

suboptimal awareness, variability awareness and full-tier awareness.

7.6.1 Suboptimal awareness

Recall from the Profiler Aspect evaluation, that the MatCalc and MathDroid

applications do not yield offloading benefits. Similarly, as shown in Figure 7.7

the server scenario (which executes the Callee on the server) is significantly

inefficient (both performance and energy wise) compared to local execution.

Mango architecture captures the aforementioned concern during decision-

making and does not offload subsequent executions of the Callee – thus

avoiding the overhead of offloading without actual benefits. Consequently,

compared to the server scenario, Mango is more efficient. However, in

comparison to the local scenario, some overhead – although not significant

(5.33%) – is incurred by the decision-making process. Thus reemphasizing

149

Figure 7.7 Performance and Energy Results of the Mobile tier

150

Figure 7.8 Cloud tier Results for Resource Efficiency and Availability

151

the importance of the fine-grained evaluation by Profiler Aspect (Quality

Verifier) at the earlier stages of identification of offloading candidates – a proof

of hypothesis H1.

Hypothesis H1 in Chapter 3 presented that Offloading any task which

compromises the condition where combined overhead of all MCA components

is always lesser than local, will always compromise performance, even if the

remote execution time of offloadable component is less than that of local.

Suboptimal awareness refers to the capability of the Mango approach in

avoiding such situations where offloading does not yield benefits. The Mosaic

framework (of Mango approach) provides a Selective Analyser which selects

offloadable components by applying the rules in the rules repository. The rules

repository is composed of both exclusion and inclusion rules that are applied

during the process of identification of offloadable tasks. Such suboptimal tasks

are added to the rules repository for exclusion during identification process.

This means that the final transformed MCA will exclude such tasks not yielding

offloadable benefits (in other words, completely avoiding the 5.33% overhead

mentioned above), and thus avoiding the overhead resulting in improper

identification of offloadable tasks (a solution to Problem I of Chapter 3).

7.6.2 Variability awareness

Variability awareness refers to the capability of the Mango architecture to

adapt (or make decisions) in varying environmental conditions with minimal

overhead, whether normal or adverse conditions, in order to achieve software

target qualities. Figure 7.7 presents the result for favourable conditions as F

(i.e. fog settings), and for adverse conditions (i.e. adverse cloud settings).

For Linpack and NQueen offloading, (Server F) yields performance and

energy benefits, this is also achieved by Mango (F), see Figure 7.7. However,

as shown by the case studies, always offloading in adverse conditions (Server

C) may compromise performance, Mango (Mango C) is aware of such

variability in environmental conditions – achieving at least 30% performance

improvement in adverse conditions compared to the always offloading

152

scenario. And also achieving energy and performance improvements (from

10-30% performance improvement on normal cloud conditions, and from 72%

energy savings for normal cloud conditions – all compared to local execution

scenario). Conclusively, Mango approach is aware of both favourable and

adverse environmental conditions to achieve mobile energy and performance

efficiency. Thus, time based context-aware decision making in mango is used

to achieve accuracy in decision making, without the overhead of multiple

parameter monitoring (solution to Problem II of Chapter 3).

7.6.3 Full-tier awareness

Figure 7.8 presents the resource usage results for adverse cloud conditions

(i.e. Server C and Mango C). Furthermore, the results of Figure 7.8 are

focused on Linpack and NQueen, as it has been established in earlier sections

(6.1 and 6.2.1) that MatCalc and MathDroid does not meet the effective

offloading criteria and that as a consequence; offloading to the cloud would

result in a mobile performance overhead, as well as unnecessary cloud

resource usage.

To investigate the cloud resource usage (Figure 7.8), the CPU and memory

are monitored. The highlighted section of the graphs (in Figure 7.8) shows the

execution of the Callee on the cloud. Recall from the Mango algorithm that

Time Threshold is applied in the cloud and mobile tier (Algorithms 4.2 and 4.3

respectively) as a way to ensure that the application’s performance is not

compromised by adverse environmental conditions of offloading.

Consequently, in adverse cloud conditions, a better performance is achieved

at the mobile tier by using the proposed architecture (Mango C) compared to

always offloading (Server C), as shown in Figure 7.7, and mentioned earlier

in 6.2.2. Simultaneously, at the server, the Time Threshold achieves resource

savings during adverse conditions, with Mango (Mango C) compared to

always offloading (Server C) as shown in Figure 7.8. For example with

Linpack, the elapsed cloud tier execution time for the Server scenario is

approximately 16.4s, however, this is cut down to 5s with the Time Threshold

of Mango, and for both scenarios the resource usage is approximately 60%

153

and 22% for CPU and memory respectively. Thus; the CPU was in more busy

states for the Server C than Mango C for an extra 11s time period; similarly

with the Memory. Thus Mango (Mango C) is more resource efficient for cloud

in adverse conditions. Note: the Time Threshold in Mango was set by using

the approximate average response time of the Server in normal condition.

Conclusively, Mango approach is aware of both the mobile tier and the cloud

tier in achieving software qualities (for improving the efficiency of the

application) – a justification for hypothesis H2.

7.7 Critical Analysis of Beftigre Approach

To evaluate Beftigre approach, it is compared against the conventional Non-

BDD approach using the case study applications. Thus the focal scenarios

are;

 Beftigre: the proposed behaviour-driven full-tier approach, and

 Non-BDD: the mobile-centric architecture scenario approach (using

Local, Server and Scheme scenarios) – see Chapter 3 for details.

Sample Compared Schemes:

For each approach (Beftigre and Non-BDD) two offloading schemes are

compared:

 Scheme1 is based on threshold-based policy, similar to [4].

In threshold-based offloading scheme [4], a method is offloaded only when its

parameter data size is greater than a predefined threshold value. The scheme

in [4] is implemented based on runtime checkpointing which incurs a

transmission overhead due to varying offload data size, hence the use of data

size for thresholding. The experiment omits runtime checkpointing, thus

making the offload data size fixed for all the applications used in the

experiment. Consequently, a predefined threshold is used based on the

network rather than data size. Therefore, the criteria for offloading in Scheme1

is when bandwidth is greater than 500bps and latency is greater than 150ms.

154

The bandwidth and latency values are obtained by sending packets to and

from the server. The premise behind the effectiveness of static thresholds –

such as Scheme1 – is that the local execution time of the application for the

threshold used is always greater than the remote execution time; therefore,

using the threshold would amount for time or energy savings [4]. Within the

Simulation Parameters section, the WLAN offload favourable condition

simulates an environment favourable for the static threshold of Scheme1.

 Scheme2 is based on perceptron algorithm, similar to [7].

Scheme2 uses multiple criteria for offloading – based on learned data (as

opposed to a predefined static threshold). Offload criteria are bandwidth,

latency, server and mobile CPU and memory availabilities. The adapted

perceptron algorithm used in the experiment is open sourced30. To extract

learning data for Scheme2, a special version of the application is

implemented, which has the offloadable component execute remotely

(LearnRemote) and locally (LearnLocal). LearnRemote and LearnLocal are

instrumented with random simulation parameters (including WLAN, Outlier

and 3G) to generate the following metrics; mobile CPU and memory available,

server CPU and memory available, bandwidth, latency, and elapsed time. The

generated data is then used to build the training dataset classified for remote

or local execution. A data subset is classified as a remote data if the remote

execution time is greater than local execution time, otherwise, it is classified

as local data.

Simulation Parameters:

Stress and TC utility (also utilised by Beftigre’s Resource Simulator) are used

to provide parameters which simulate different environmental conditions to

test the schemes. The simulation parameters presented below are used to

maintain the same level of rigour for both Beftigre and Non-BDD approaches,

and also used to discuss the results (see Table 7.8 and Table 7.9).

30 Perceptron Algorithm in Java; https://github.com/nsadawi/perceptron [01-Jul-2016].

155

 WLAN: consists of 30mbps bandwidth, 20ms latency, 2 CPU worker

loads and 2 memory worker loads. With these parameters, local

execution time is greater than remote execution time, which is

appropriate for offload.

 Outlier: consists of 20mbps bandwidth, 200ms latency, 2 CPU worker

loads and 2 memory worker loads. These parameters are used to verify

the offloading schemes.

 3G: consists of 500kbps bandwidth, 200ms latency, 5 CPU worker

loads and 5 memory worker loads. With these parameters, local

execution time is less than remote execution time.

The settings used in WLAN, Outlier and 3G are found to be commonly used

in experiments [7], [8]. The results of the experiment have been presented in

the tables (Table 7.8 and Table 7.9) and figures (Figure 7.9, Figure 7.10 and

Figure 7.11), and discussed in the following three sub-sections. Following the

full-tier and behaviour-driven objective of Beftigre, the approach has been

evaluated against the earlier described mobile-centric architecture scenario

approach (Non-BDD).

Figure 7.9 Bandwidth and Latency

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9

Ba
nd

w
id

th
 (b

ps
) a

nd
 L

at
en

cy
 (m

s)

Samples

Bandwidth-Server

Latency-Server

Bandwidth-Scheme1

Latency-Scheme1

Bandwidth-Scheme2

Latency-Scheme2

156

7.7.1 Inconsistency challenge to Non-BDD

The Non-BDD approach (Table 7.8) presents the elapsed time and used

energy of the mobile device during the period of the experiment. Since the

same level of rigour was applied on all experiment, sample population of 9 (3

samples from each simulation parameters – 3G, WLAN, and Outlier) was

used. Table 7.8 further specifies three architecture scenarios: Local, Server

and the scheme being evaluated. Local and server results are the same for

both schemes and are consequently used as a basis for evaluating the

schemes (using % difference), and subsequently used for comparison in the

 Figure 7.10 Cloud CPU and Memory availability

Figure 7.11 Mobile CPU and Memory availability

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9

Cl
ou

d
CP

U
 a

nd
 M

em
or

y
av

ai
la

bi
lit

y
(%

)

Samples

CPU-Server Memory-Server CPU-Scheme1

Memory-Scheme1 CPU-Scheme2 Memory-Scheme2

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

M
ob

ile
 C

PU
 a

nd
 M

em
or

y
av

ai
la

bi
lit

y
(%

)

Samples

CPU-Local Memory-Local CPU-Server Memory-Server

CPU-Scheme1 Memory-Scheme1 CPU-Scheme2 Memory-Scheme2

157

Non-BDD scenario. However, following the Beftigre approach to also

investigate other environmental conditions, the results show inconsistencies

and complex correlation between scenarios. For example, the Local scenario

(which is affected by less environmental inconsistencies – only mobile CPU

and memory availability – Figure 7.11), begins with its first sample as 90%

and 14%, whereas Scheme1 and Scheme2 are 98% and 18%, 85% and 17%

for CPU and memory availability respectively. This inconsistency follows

through the samples, and also occurs in the Server scenario. Even more, the

Server scenario inconsistencies are more profound as it also involves network

and server resources – Figure 7.9 and Figure 7.10.

Conclusively, Non-BDD is not very effective for the comparison of schemes

as each sample that make up the mean of the experiments are affected by

different conditions – which are unrelated to the scheme. With Non-BDD,

however, generalised conclusions can be made, such as; scheme1 is more

energy efficient compared to scheme2 on the basis of local and server

scenarios - this would be based on the assumption that a more rigorous

Table 7.8 Non-BDD Evaluation and Comparison

Architecture
Scenarios

Scheme1 (3G, WLAN, Outlier) Scheme2 (3G and WLAN, Outlier)
Elapsed Time
(ms)

Used Energy
(mJ)

Elapsed Time
(ms)

Used Energy (mJ)

Linpack
Local 21952.50 3168.23 21952.50 3168.23
Server 21948.67 2539.87 21948.67 2539.87
Schemes: 21953.33 2206.08 21945.33 3102.39
Local % diff. -0.0038 35.8055 0.0327 2.1
Server % diff. -0.0212 14.0663 0.0152 -19.9395

MatCalc
Local 6313.22 492.48 6313.22 492.48
Server 8340.03 711.17 8340.03 711.17
Schemes: 6403.33 517.07 7009.98 583.10
Local % diff. -1.42 -4.87 -10.46 -16.85
Server % diff. 26.27 31.61 17.33 19.79

NQueen
Local 17123.02 2702.13 17123.02 2702.13
Server 16980.88 2009.89 16980.88 2009.89
Schemes: 15707.00 2609.05 15689.52 1898.99
Local % diff. 8.63 3.51 8.74 34.91
Server % diff. 7.79 25.94 7.91 5.67
Note: Local % diff. and Server % diff. is the percentage difference of the scheme in comparison to
Local and Server scenarios respectively. A negative value is used to signify a loss in energy
savings or performance.

Non-BDD Evaluation and Comparison above is based on mean values of samples similarly adopted by existing works

[4], [7].

158

experiment would span different environmental conditions, as 35.8mJ to 2.1J

ratio is a significant saving on Scheme1. The significant saving is due to the

simulation parameters used which seemed to favour Scheme1 as the

robustness of Scheme2 in adverse conditions seemed to be compromised by

its energy intensive decision making – especially if the adverse conditions are

not extreme – further explained in the next point. Having extracted a

conclusive result using Non-BDD approach, it is difficult to tell the behaviour

Table 7.9 Beftigre Evaluation and Comparison/Assertion

Label @Given:
mobile

@When: cloud/network @Then: mobile @Then: cloud Final
Assert

CPU Mem. CPU Mem Bandw. Lat. Time Energy CPU Mem.
Linpack Evaluation
Scheme1 93 18 41 67 560 243 22208 3008 58 28 -
Scheme2 81 41 41 62 557 247 21887 3181.08 60 32 -
Linpack Compare: Scheme2 expected on Scheme1 actual
Expected 81 41 41 62 557 247 21887 3181.08 60 32 -
Actual 92 17 41 68 559 241 22304 3029.44 58 29 -
Assert - - - - - - 1.91%

more
4.77%
less

3.33%
less

9.38%
less

Different

Linpack Compare: Scheme1 expected on Scheme1 actual
Expected 93 18 41 67 560 243 22208 3008 58 28 -
Actual 92 16 41 68 563 240 22233 3031 58 29 -
Assert - - - - - - 0.11%

more
0.76%
more

0% 3.57%
more

Similar
system

MatCalc Evaluation
Scheme1 90 23 38 56 505 211 7033 613.41 55 26 -
Scheme2 92 22 38 56 512 224 6442 537.07 55 26 -
MatCalc Compare: Scheme2 expected on Scheme1 actual
Expected 92 22 38 56 512 224 6442 537.07 55 26 -
Actual 94 21 38 58 507 209 7075 625.12 55 26 -
Assert - - - - - - 9.37%

more
15.15%
more

0% 0% Different

MatCalc Compare: Scheme1 expected on Scheme1 actual
Expected 90 23 38 56 505 211 7033 613.41 55 24 -
Actual 91 22 38 56 501 217 7085 609.91 55 24 -
Assert - - - - - - 0.75

more
0.57%
less

0% 0% Similar
system

NQueen Evaluation
Scheme1 84 25 43 67 552 246 16344 2810.11 59 29 -
Scheme2 89 25 42 65 540 244 15702 1908.09 59 30 -
NQueen Compare: Scheme2 expected on Scheme1 actual
Expected 86 25 42 65 540 244 15702 1908.09 59 30 -
Actual 85 25 42 68 553 241 16289 2797.42 59 30 -
Assert - - - - - - 3.67%

more
37.80%
more

0% 0% Different

NQueen Compare: Scheme1 expected on Scheme1 actual
Expected 84 25 43 67 552 246 16344 2810.11 59 29 -
Actual 85 25 43 68 553 243 16302 2785.90 59 30 -
Assert - - - - - - 0.26%

less
0.87%
less

0% 3.39%
more

Similar
system

Full-tier Results (i.e. Then clauses) are presented above based on a comparison between Scheme1 vs. Scheme2 –
Outlier simulation parameters used.

Key: Given: mobile CPU and memory availability (%), When: cloud CPU and memory availability (%), bandwidth
(bps) and latency (ms), Then: mobile elapsed time (ms), mobile used energy (mJ), cloud used CPU (%) and cloud
used memory (%).

159

of the scheme, for instance, given a specific (or category of) environmental

condition.

Also notice that for MatCalc application which is data-intensive, Non-BDD

(Table 7.9) shows Scheme1 to be 31.61% more energy-efficient compared to

Server whereas Scheme2 is only 19.79% more efficient. Beftigre approach

(Table 7.9) shows the reverse to be the case. This is understandable because

Scheme2 is based on trained data and is aware that the application is data-

intensive, and therefore stops subsequent offload. The misconception of

results associated with the Non-BDD approach is due to the randomisation of

samples – in which case there is more presence of favourable conditions

(such as WLAN) than unfavourable (such as 3G). Also with NQueen

application, the same inconsistency issue reoccurs in Non-BDD (Table 7.9)

where Scheme1 and Scheme2 are presented with very close results for

elapsed time, i.e. 8.63% and 8.74% respectively, which is however clarified

by Beftigre approach (Table 7.9). Also, there is no consistency across

applications with the Non-BDD approach (Table 7.9), for example; Scheme 1

is more energy-efficient in Linpack application (using Local scenario)

compared to Scheme 2, but in NQueen the reverse is the case. Beftigre,

however, maintains consistency across applications.

7.7.2 Beftigre Full-tier Effectiveness

Table 7.9 presents the results of a sample evaluation and comparison using

the Beftigre approach. First, the schemes are self-evaluated using the outlier

simulation parameter (20mbps bandwidth, 200ms latency, 2 CPU loads and 2

memory loads), these are provided through the Orchestrator’s Server Monitor

Interface. Evaluation of Scheme1 gives 22208ms and 3008mJ, and Scheme2;

21887ms and 3181mJ for mobile tier green metrics (elapsed time and used

energy). Furthermore, the cloud CPU and memory usage during the process

are obtained – as 58% and 28% for Scheme1, 60% and 32% for Scheme2.

From Table 7.9 evaluation, a prediction can be made; from the CPU and

memory usage of both schemes; that Scheme1 was executed locally and did

not offload whereas Scheme2 did.

160

Recall that in Scheme1, the criteria for offload is set to be as bandwidth >=

500bps and the latency <= 150ms, as a result, using the outlier, Scheme1 was

not offloaded – thus consuming more time and energy. This means that

Scheme1 is not robust enough to be aware of conditions beyond the

parameters of its criteria constraints. Conversely, Scheme2 which learns from

trained data is not only aware of adverse, environmental conditions but also

incurs training overhead – which in this case is more energy consequential

than time. The overhead is caused by the decision-making process;

communication to and from the server to calculate cloud CPU and memory

availability, as well as mobile resource availability and network states, prior to

deciding to offload. Inspecting the full-tier analysis, it can be deduced that,

based the outlier parameters Scheme2 is both inefficient in mobile and cloud

tier. However, since it is aware of the environment, its benefits would be more

appreciated in adverse conditions (which may include mobile devices with

very low computing capacities).

7.7.3 Robustness of Beftigre Assertion

As well as deducing the behaviour of a scheme using the full-tier analysis. By

adopting BDD concepts, Beftigre makes it easy to communicate expected

goal of offload schemes within software teams; from business analyst to

software engineers. For example, Table 7.9 also shows the comparison of the

schemes based on the earlier evaluated simulation parameters. By re-

executing Scheme1 changes in the actual experimental values can be

observed, however, these changes are within ± 1% of the percentage increase

or decrease between the expected of Scheme1 and actual of Scheme1 (to

satisfy Line 9 of Algorithm 6.2). The reverse is the case when Scheme1 is

compared against Scheme2, the percentage increase/decrease are beyond ±

1%.

161

Consequently, by developing a test plan (using simulation parameters) earlier,

and a sample application, schemes can be better evaluated, compared and

communicated between the development team – thus adopting the wider

software engineering objective of BDD. Furthermore by adopting Beftigre, one

can avoid inconsistencies, and the difficulty of variability of architecture

scenarios through the use of guided annotations, while providing a finer

granularity of results through full-tier analysis/evaluation.

7.7.4 Reproducibility Effectiveness of Beftigre

Table 7.10 uses the statistical method (of standard deviation) to verify the

effectiveness of Beftigre for repeatability or reproducibility of its test results.

The verification is achieved using: mean (on five samples for each Scheme

run with Outlier parameters), standard deviation and 5% range criteria. Recall

that in Beftigre approach, 5% range criterion is the basis on which two

schemes are compared. In other words: two schemes are comparable if the

preconditions (@Given and @When) of the expected scheme are within ± 5%

range of the actual preconditions – as shown by inRange(a, b) method of

Algorithm 2. The 5% range criterion is popularly explored in research [117]

and in a similar context to Beftigre (i.e. for comparison). The purpose for which

Table 7.10 Replication capability of Beftigre Evaluation

 @Given: mobile @When: cloud/network
CPU Mem. CPU Mem. Bandw. Lat.

Linpack
Scheme1 Mean 92.54 18.50 41.30 67.30 560.12 243.03
Scheme1 Deviation 1.13 0.84 0.65 1.30 11.25 5.43
Scheme1 5% range 4.63 0.93 2.03 3.37 28.01 12.15
Scheme2 Mean 84.25 42.01 41.50 63.40 558.31 247.80
Scheme2 Deviation 1.25 1.03 0.55 1.44 9.96 4.04
Scheme2 5% range 4.21 2.10 2.08 3.17 27.92 12.39

MatCalc
Scheme1 Mean 92.91 23.20 38.06 56.85 506.45 217.00
Scheme1 Deviation 1.21 0.77 0.71 0.82 5.00 2.01
Scheme1 5% range 4.65 1.16 1.90 2.84 25.32 10.85
Scheme2 Mean 91.44 22.31 38.42 56.10 517.66 220.60
Scheme2 Deviation 2.22 0.90 0.74 1.31 4.02 6.03
Scheme2 5% range 4.57 1.12 1.92 2.81 25.88 11.03

NQueen
Scheme1 Mean 84.60 24.84 43.44 68.70 550.98 245.31
Scheme1 Deviation 1.01 1.09 0.58 2.77 9.03 3.93
Scheme1 5% range 4.23 1.24 2.17 3.44 27.55 12.27
Scheme2 Mean 86.08 25.06 42.02 65.22 548.40 249.16
Scheme2 Deviation 2.30 1.02 0.99 2.40 7.72 3.20
Scheme2 5% range 4.30 1.25 2.10 3.26 27.42 12.91

N.B. The replication data above was verified using the Outlier parameters.

162

the range criteria was applied in Beftigre approach is in consideration of the

unpredictable and varying nature of the MCA environment. The difficulty to

predict MCA environments is a challenge which in practice contributes to the

inconsistencies of existing MCA evaluation approach (as discussed in Section

3.3.1). To achieve a solution with a better consistency of results, Beftigre

applies environmental control and scoping. Control is orchestrated by the

Resource Simulator while the range criteria (of Full tier analyser) provides

scope for comparison. Together the aforementioned features achieve

reproducibility as shown in Table 7.10.

For example, from Table 7.10 varying samples have been executed using the

Outlier parameter settings, and the deviation gives the varying range of the

samples – demonstrating natural inconsistencies in MCA. However, despite

the inconsistencies there are mostly overlaps in the values of the

environmental metrics (i.e. CPU, memory, etc.) for the schemes (Scheme1

and Scheme2). Furthermore, the deviations are also within the ± 5% range

criteria (not more or less), thus validating the scoping effectiveness of the Full-

tier analyser (achieved by inRange) for comparison of schemes. Therefore the

extent to which replication can be achieved in our evaluation approach is by

using range criteria and applying an element of control to the environment.

7.8 Summary

By applying four case studies (of varying taxonomies – data and compute

intensities) in the evaluation of Mango architecture this chapter has

demonstrated that the architecture is effective in; achieving full-tier efficiency

(i.e. savings for mobile and cloud tier), awareness of varying environmental

conditions (i.e. adapting to normal and adverse conditions), and suboptimal

awareness (i.e. awareness of situations where offloading does not yield

benefits). Furthermore, Mosaic framework was also evaluated and proves to

be effective in the identification of offloadable candidates at a finer granularity

– through the use of AOP technique. By fine-grained evaluation of offload

candidates, Mosaic is capable of determining offloadable candidates that can

yield benefits at an earlier stage of development. Furthermore, the framework

163

is useful for scaffolding MCA code from templates implementing the proposed

ACTS design pattern of Mango, so as to automate the refactoring process in

legacy systems. Furthermore, by comparing the Beftigre evaluation approach

against existing evaluation approaches, it has been proven to be effective in

the full-tier evaluation of MCAs. Also, the Beftigre evaluation approach

presents better accuracy and granularity in the comparison between systems

through the use of annotations, making it possible to use appropriate software

engineering and testing concepts such as BDD (assertions) in the evaluation

of MCAs.

164

Chapter 8. Conclusions

8.1 Introduction

The research undertaken for this thesis has enabled the development of a

novel approach for green MCA software systems. The approach involves a

model-driven architecture, a model-driven framework which realises the

architecture, and a testing framework suitable for the architectural objectives

(summarised in Figure 8.1). Together they serve to provide an efficient Mobile

Cloud Application (MCA) development and testing process useful for

developers; moreover providing improved mobile and cloud optimisation (or

savings) useful for users and service providers. These research outcomes

involve both traditional and latest theory support (such as surrounding; AOP,

MDE and MCA offloading), and are backed by up-to-date technologies (such

as Android Gradle compatibility for proposed frameworks, JGraphX for

modelling based on XMI, Gradle Android AspectJ plugin for AOP).

Figure 8.1 Conclusions of the Thesis

This chapter discusses the above research outcomes in terms of how well

they achieve the research objectives defined previously and fulfil the different

individual requirements involved. Next, the conclusions are reached and the

165

contributions are presented. Finally, the future research directions are

outlined.

8.2 Conclusions and Contributions

Despite the variety of efforts made towards mobile application optimisation

using the cloud as surrogate – i.e. MCAs, the challenges of these approaches

in delivering efficient solutions applicable to the development process,

continues to be a major factor hindering their adoption in MCA development.

Most specifically these existing approaches are challenged by optimisation

overhead, development inefficiency, overall inefficiency in qualities and

inadequate testing. While literature on MCA were reviewed, the study was

also based on literature pertaining to MDE for mobile development; as MDE

is a prominent technique in achieving development efficiency among several

other benefits. The research showed that existing mobile MDE approaches

have not explored the MCA domain and moreover they cannot be directly

applied to the MCA domain due to the multi-tier (mobile and cloud) nature of

MCAs. Consequently, the motivation to apply MDE in the MCA domain to

eliminate the challenges in existing MCA optimisation approaches – mostly

caused due to the use of custom runtimes in MCAs. Also existing MCA

testing/evaluation approach is not robust to support the evaluation of mobile

tier as well as cloud tier of MCA; consequently a need for a full-tier evaluation

approach. Thus the concerns of MCA are generally associated with the SDLC

of MCA; in terms of development and testing.

The thesis aims towards an efficient MCA development approach which takes

into consideration the mobile and cloud tier during optimisation – and

consequently improves full-tier qualities (mobile energy and performance;

cloud resource and availability). The approach applies the MDE concept in

MCA order to facilitate development efficiency. Furthermore; an efficient

testing approach is achieved for effective full-tier evaluation of MCAs. The key

contributions are summarised below;

166

8.2.1 Contribution I: Mango Approach

This thesis presented a novel architecture and process for MCA development

named Mango. It owns the following main features; 1) it introduces a process

for MCA analysis which is based on identification of offloadable tasks, 2) it

employs MDE; thus proposing meta-modelling in MCA called the Caller-Callee

model which handles full-tier specification of qualities, and 3) it reveals an

optimisation approach based on a design pattern for MCA called ACTS; which

facilitates reuse. In Mango, optimisation logic is implemented as an ACTS

design pattern.

The benefit of the Mango architecture is in achieving a model-driven approach

to MCA development which drives development efficiency – realised by the

meta-modelling concept. Also by integrating full-tier qualities, i.e. qualities for

both mobile and cloud tiers, into the MCA, the architecture achieves better

overall efficiency for the MCA (realised as better mobile performance and

energy usage and better cloud resource usage and awareness of software

availability).

8.2.2 Contribution II: Context-aware Green Architecture

The Mango architecture was proposed in the thesis as a context-aware

architecture. Optimisation in the architecture is based on awareness of two

kinds of context, which are user context and environmental context.

Consequently, due to the finer granularity of context-awareness the

architecture achieves mobile performance and energy savings even in

adverse environment conditions – as shown in the experiments (section

7.6.2). Also as an architecture which targets full-tier qualities, the

consequence of context-aware decision making in Mango also yields resource

savings in the cloud tier. This has also been demonstrated in the experiments

(section 7.6.2).

167

8.2.3 Contribution III: Mosaic Approach

This thesis presented a novel MDE framework named Mosaic for realising the

proposed Mango architecture objective. A key novelty of Mosaic is its

seamless integration with the mobile development environment as an API –

via the Gradle console. Its novelty contribution is based on the following main

features; 1) Selective Analyser for identification of offloadable tasks, 2) an API

interface for specifying quality attributes for underlying meta-model, 3) a

transformation engine which uses meta-model and ACTS templates to

generate application code. Mosaic optimisation logic is defined in the

templates implementing ACTS pattern; thus facilitating reuse. And 4) Profiler

Aspect; a profiling system for architecture evaluation to ensure that an

optimisation process for an identified offloadable task will most certainly yield

benefits – thus avoiding optimisation overhead. Mosaic is model-driven, and

the benefit is to achieve a platform-independent design of the Mango solution

for MCA. Using the Model, quality attributes can be specified for the mobile

and cloud tier of the application while modelling offloadable components. The

modeller is a graph-based modelling tool which generates information in XMI

format. This makes it highly interoperable; as transformation code can be

written for any platform (based on ACTS pattern) to consume the model.

8.2.4 Contribution IV: Beftigre Evaluation Approach

This thesis presented Beftigre approach for evaluation of MCA. An important

achievement of Beftigre is in the full-tier evaluation capability and behaviour-

driven concept. Full-tier evaluation makes it possible to evaluate the MCA at

a finer granularity which takes into consideration metrics from both mobile and

cloud tiers. Behaviour-driven evaluation makes it possible to provide a

consistent and reliable comparison between other approaches or counterpart

techniques. (See Chapter 6 for details). Experiments have shown in

comparison to the approach adopted in the literature, that Beftigre is more

reliable providing results at a fine granularity and reproducibility.

168

8.3 Future Work

Considering future research directions on mobile development, the future

work will target extending the proposed frameworks for multiple platforms as

an extended MDE feature. For example; although Mango is model-driven, the

Mosaic transformation tool which realises the architecture has been explored

in the context of Android platform. Therefore for future development, Mosaic

should be extended to support other popularly used mobile platforms (such as

Windows Phone and iPhone) – this can be done by implementing the ACTS

design pattern for the respective platforms and transformation code to

transform meta-model based on the pattern. The aforementioned cross-

platform transformation feature will further enhance the adoption of Mango

approach in MCAs.

Also, the current MCA meta-model proposed by this thesis was focused on

MCA offloadable tasks, future work can integrate the MCA meta-model with

the generic meta-model for a mobile application. This can be achieved by

extending the proposed MCA meta-model of this thesis to incorporate any of

the existing reviewed mobile modelling frameworks (in the literature review

chapter). Similarly, the APIs which have been implemented based on the

proposed Beftigre test framework can be extended to target more platforms.

Unlike Mango and Mosaic, Beftigre is not model-driven but rather language-

specific. Consequently, implementing Beftigre for different platforms will

involve re-implementing the entire system. This would also involve

implementing for different OS platforms in the cloud as well as mobile

platforms. Therefore research will have to properly investigate ways to

achieve this, and any third party libraries that may assist (for example; libraries

to assist in monitoring a Windows cloud environment, and power monitoring

for windows phone).

169

References

[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing:
architecture, applications, and approaches,” Wirel. Commun. Mob. Comput., vol. 13,
no. 18, pp. 1587–1611, 2013.

[2] S. Bhattacharya, K. Gopinath, K. Rajamani, and M. Gupta, “Software Bloat and
Wasted Joules : Is Modularity a Hurdle to Green Software?,” Computer (Long. Beach.
Calif)., vol. 44, no. 9, pp. 97–101, 2011.

[3] E. Capra, C. Francalanci, and S. A. Slaughter, “Is software ‘green’? Application
development environments and energy efficiency in open source applications,” Inf.
Softw. Technol., vol. 54, no. 1, pp. 60–71, Jan. 2012.

[4] Y.-W. Kwon and E. Tilevich, “Energy-Efficient and Fault-Tolerant Distributed Mobile
Execution,” in 2012 IEEE 32nd International Conference on Distributed Computing
Systems, 2012, pp. 586–595.

[5] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and P.
Bahl, “MAUI: making smartphones last longer with code offload,” in Proceedings of the
8th international conference on Mobile systems, applications, and services - MobiSys
’10, 2010, vol. 17, pp. 49–62.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic execution
between mobile device and cloud,” in Proceedings of the sixth conference on
Computer systems - EuroSys ’11, 2011, pp. 301–314.

[7] M. A. Hassan, K. Bhattarai, Q. Wei, and S. Chen, “POMAC : Properly Offloading
Mobile Applications to Clouds,” in Proceedings of the 6th USENIX conference on Hot
Topics in Cloud Computing, 2014, pp. 1–6.

[8] M. A. Hassan, Q. Wei, and S. Chen, “Elicit : Efficiently Identify Computation-intensive
Tasks in Mobile Applications for Offloading,” in 2015 IEEE International Conference
on Networking, Architecture and Storage (NAS), 2015, pp. 12–22.

[9] B. Trask, D. Paniscotti, A. Roman, and V. Bhanot, “Using model-driven engineering to
complement software product line engineering in developing software defined radio
components and applications,” in Companion to the 21st ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications - OOPSLA ’06,
2006, pp. 846–853.

[10] G. Lami, L. Buglione, and F. Fabbrini, “Derivation of Green Metrics for Software,” in
Software Process Improvement and Capability Determination, T. Woronowicz, T.
Rout, R. V. O’Connor, and A. Dorling, Eds. Springer Berlin Heidelberg, 2013, pp. 13–
24.

[11] C. Calero and M. Piattini, “Introduction to Green in Software Engineering,” in Green in
Software Engineering, Cham: Springer International Publishing, 2015, pp. 3–27.

[12] M. Dick, S. Naumann, and N. Kuhn, “A Model and Selected Instances of Green and
Sustainable Software,” in What Kind of Information Society? Governance, Virtuality,
Surveillance, Sustainability, Resilience, vol. 328, J. Berleur, M. D. Hercheui, and L. M.
Hilty, Eds. Springer Berlin Heidelberg, 2010, pp. 248–259.

[13] S. Naumann, M. Dick, E. Kern, and T. Johann, “The GREENSOFT Model: A reference
model for green and sustainable software and its engineering,” Sustain. Comput.
Informatics Syst., vol. 1, no. 4, pp. 294–304, Dec. 2011.

170

[14] D. Rogers and U. Homann, “Application Patterns for Green IT,” The Architecture
Journal - Green Computing, 2009. [Online]. Available: https://msdn.microsoft.com/en-
us/library/dd393307.aspx. [Accessed: 18-Jan-2016].

[15] S. Murugesan, “Harnessing Green IT: Principles and Practices,” IT Prof., vol. 10, no.
1, pp. 24–33, 2008.

[16] C. Reimsbach-kounatze, “Towards Green ICT Strategies - Assessing Policies and
Programmes on ICT and The Environment,” no. 155. OECD Working Party on the
Information Economy, 2009.

[17] B. Steigerwald and A. Agrawal, “Developing Green Software | Intel® Developer Zone,”
2011. [Online]. Available: http://software.intel.com/en-us/articles/developing-green-
software. [Accessed: 18-Jan-2016].

[18] P. Bozzelli, Q. Gu, and P. Lago, “A systematic literature review on green software
metrics,” VU University Amsterdam, The Netherlands, 2013.

[19] J. Taina and S. Mäkinen, “Green Software Quality Factors,” in Green in Software
Engineering, Cham: Springer International Publishing, 2015, pp. 129–154.

[20] I. Goiri, R. Beauchea, K. Le, T. D. Nguyen, M. E. Haque, J. Guitart, J. Torres, and R.
Bianchini, “GreenSlot: Scheduling energy consumption in green datacenters,” in
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis on - SC ’11, 2011, pp. 1–11.

[21] N. Vasić, P. Bhurat, D. Novaković, M. Canini, S. Shekhar, and D. Kostić, “Identifying
and Using Energy-Critical Paths,” in Proceedings of the Seventh COnference on
emerging Networking EXperiments and Technologies on - CoNEXT ’11, 2011, pp. 1–
12.

[22] L. Benini and G. De Micheli, “System-level power optimization: techniques and tools,”
ACM Trans. Des. Autom. Electron. Syst., vol. 5, no. 2, pp. 115–192, 2000.

[23] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed.
Boston: Addison-Wesley Professional, 2003.

[24] M. A. Khan, C. Hankendi, A. K. Coskun, and M. C. Herbordt, “Software optimization
for performance, energy, and thermal distribution: Initial case studies,” in 2011
International Green Computing Conference and Workshops, 2011, pp. 1–6.

[25] M. Denti and J. K. Nurminen, “Performance and energy-efficiency of scala on mobile
devices,” in 2013 Seventh International Conference on Next Generation Mobile Apps,
Services and Technologies, 2013, pp. 50–55.

[26] C.-W. You and H. Chu, “Replicated client-server execution to overcome
unpredictability in mobile environment,” in 2004 4th Workshop on Applications and
Services in Wireless Networks, 2004. ASWN 2004., 2004, pp. 21–29.

[27] M.-D. Cano and G. Domenech-Asensi, “A secure energy-efficient m-banking
application for mobile devices,” J. Syst. Softw., vol. 84, no. 11, pp. 1899–1909, 2011.

[28] I. Sommerville, Software Engineering, 9th ed. Pearson, 2011.

[29] J. Williams and L. Curtis, “Green: The New Computing Coat of Arms?,” IT Prof., vol.
10, no. 1, pp. 12–16, 2008.

[30] C.-H. Hsu, S.-C. Chen, C.-C. Lee, H.-Y. Chang, K.-C. Lai, K.-C. Li, and C. Rong,
“Energy-Aware Task Consolidation Technique for Cloud Computing,” in 2011 IEEE
Third International Conference on Cloud Computing Technology and Science

171

(CloudCom), 2011, pp. 115–121.

[31] B. Zhong, M. Feng, and C.-H. Lung, “A Green Computing Based Architecture
Comparison and Analysis,” in 2010 IEEE/ACM Int’l Conference on Green Computing
and Communications & Int’l Conference on Cyber, Physical and Social Computing,
2010, pp. 386–391.

[32] R. Morgan and D. MacEachern, “SIGAR - System Information Gatherer And Reporter,”
2010. [Online]. Available: https://support.hyperic.com/display/SIGAR/Home.
[Accessed: 18-Jan-2016].

[33] J. Tayeb, K. Bross, C. S. Bae, C. Li, and S. Rogers, “Intel Energy Checker Software
Development Kit User Guide,” 2010. [Online]. Available: https://goo.gl/Yrtbn9.
[Accessed: 01-Jul-2016].

[34] T. Johann, M. Dick, S. Naumann, and E. Kern, “How to measure energy-efficiency of
software: Metrics and measurement results,” in 2012 First International Workshop on
Green and Sustainable Software (GREENS), 2012, pp. 51–54.

[35] K. Naik and D. S. L. Wei, “Software Implementation Strategies for Power-Conscious
Systems,” Mob. Networks Appl., vol. 6, no. 3, pp. 291–305, 2001.

[36] N. Amsel and B. Tomlinson, “Green Tracker : A Tool for Estimating the Energy
Consumption of Software,” in Proceedings of the 28th of the international conference
extended abstracts on Human factors in computing systems - CHI EA ’10, 2010, pp.
3337–3342.

[37] N. Amsel, Z. Ibrahim, A. Malik, and B. Tomlinson, “Toward Sustainable Software
Engineering (NIER Track),” in Proceeding of the 33rd international conference on
Software engineering - ICSE ’11, 2011, pp. 976–979.

[38] A.-L. Kor, C. Pattinson, I. Imam, I. AlSaleemi, and O. Omotosho, “Applications, energy
consumption, and measurement,” in 2015 International Conference on Information
and Digital Technologies, 2015, pp. 161–171.

[39] A. Sinha and A. P. Chandrakasan, “JouleTrack - A Web Based Tool for Software
Energy Profiling,” in Design Automation Conference, 2001. Proceedings, 2001, pp.
220–225.

[40] A. Kansal, F. Zhao, and A. A. Bhattacharya, “Virtual Machine Power Metering and
Provisioning,” in Proceedings of the 1st ACM symposium on Cloud computing - SoCC
’10, 2010, pp. 39–50.

[41] M. Yi and J. De Vega, “Intel® Power Gadget,” 2015. [Online]. Available:
https://software.intel.com/en-us/articles/intel-power-gadget-20. [Accessed: 18-Jan-
2016].

[42] R. Yamini, “Power Management in Cloud Computing Using Green Algorithm,” in 2012
International Conference On Advances In Engineering, Science And Management
(ICAESM), 2012, pp. 128–133.

[43] R. Yanggratoke, F. Wuhib, and R. Stadler, “Gossip-based Resource Allocation for
Green Computing in Large Clouds,” in 2011 7th International Conference on Network
and Service Management, 2011, pp. 171–179.

[44] H.-M. Chen and R. Kazman, “Architecting ultra-large-scale green information
systems,” in 2012 First International Workshop on Green and Sustainable Software
(GREENS), 2012, pp. 69–75.

[45] J. Baliga, R. W. a Ayre, K. Hinton, and R. S. Tucker, “Green Cloud Computing:

172

Balancing Energy in Processing, Storage, and Transport,” Proc. IEEE, vol. 99, no. 1,
pp. 149–167, Jan. 2011.

[46] D. Fang, X. Liu, L. Liu, and H. Yang, “TARGO: Transition and reallocation based green
optimization for cloud VMs,” Proc. - 2013 IEEE Int. Conf. Green Comput. Commun.
IEEE Internet Things IEEE Cyber, Phys. Soc. Comput. GreenCom-iThings-CPSCom
2013, pp. 215–223, 2013.

[47] S. J. Chinenyeze, X. Liu, and A. Al-dubai, “An Aspect Oriented Model for Software
Energy Efficiency in Decentralised Servers,” in 2nd International Conference on ICT
for Sustainability, 2014, vol. 2, pp. 112–119.

[48] Y. Jadeja and M. Kirit, “Cloud Computing - Concepts, Architecture and Challenges,”
in 2012 International Conference on Computing, Electronics and Electrical
Technologies (ICCEET), 2012, pp. 877–880.

[49] W.-T. Tsai, X. Sun, and J. Balasooriya, “Service-Oriented Cloud Computing
Architecture,” in 2010 Seventh International Conference on Information Technology:
New Generations (ITNG), 2010, pp. 684–689.

[50] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang, “Accurate
Online Power Estimation and Automatic Battery Behavior Based Power Model
Generation for Smartphones,” in Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis -
CODES/ISSS ’10, 2010, pp. 105–114.

[51] N. Vallina-rodriguez, P. Hui, J. Crowcroft, and A. Rice, “Exhausting Battery Statistics,”
in Proceedings of the second ACM SIGCOMM workshop on Networking, systems, and
applications on mobile handhelds - MobiHeld ’10, 2010, pp. 9–14.

[52] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, “Refactoring android Java
code for on-demand computation offloading,” in Proceedings of the ACM international
conference on Object oriented programming systems languages and applications -
OOPSLA ’12, 2012, vol. 47, no. 10, p. 233.

[53] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,” Futur.
Gener. Comput. Syst., vol. 29, no. 1, pp. 84–106, 2013.

[54] S. Zachariadis, C. Mascolo, and W. Emmerich, “SATIN: A component model for mobile
self organisation,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3291, Springer
Berlin Heidelberg, 2004, pp. 1303–1321.

[55] M. Wichtlhuber, J. Rückert, D. Stingl, M. Schulz, and D. Hausheer, “Energy-efficient
mobile P2P video streaming,” in 2012 IEEE 12th International Conference on Peer-to-
Peer Computing, P2P 2012, 2012, pp. 63–64.

[56] E. E. Marinelli, “Hyrax : Cloud Computing on Mobile Devices using MapReduce,”
Carnegie Mellon University, Pittsburgh, PA 15213, 2009.

[57] P. Yu, X. Ma, J. Cao, and J. Lu, “Application mobility in pervasive computing: A
survey,” Pervasive Mob. Comput., vol. 9, no. 1, pp. 2–17, 2013.

[58] T. Justino and R. Buyya, “Outsourcing resource-intensive tasks from mobile apps to
clouds: Android and aneka integration,” in 2014 IEEE International Conference on
Cloud Computing in Emerging Markets (CCEM), 2014, pp. 1–8.

[59] G. Lee, H. Park, S. Heo, K.-A. Chang, H. Lee, and H. Kim, “Architecture-aware
automatic computation offload for native applications,” in Proceedings of the 48th
International Symposium on Microarchitecture - MICRO-48, 2015, pp. 521–532.

173

[60] T. Lemlouma and N. Layaida, “Context-aware adaptation for mobile devices,” in IEEE
International Conference on Mobile Data Management, 2004. Proceedings. 2004,
2004, pp. 106–111.

[61] S. Miyake and M. Bandai, “Energy-Efficient Mobile P2P Communications Based on
Context Awareness,” in 2013 IEEE 27th International Conference on Advanced
Information Networking and Applications (AINA), 2013, pp. 918–923.

[62] S. Huang and J. Mangs, “Pervasive Computing: Migrating Applications to Mobile
Devices: A Case Study,” in 2008 2nd Annual IEEE Systems Conference, 2008, pp. 1–
8.

[63] M. Satyanarayanan, “Pervasive computing: vision and challenges,” IEEE Pers.
Commun., vol. 8, no. 4, pp. 10–17, 2001.

[64] D. Saha, “Pervasive Computing: A Paradigm for the 21st Century,” Computer (Long.
Beach. Calif)., vol. 36, no. 3, pp. 25–31, 2003.

[65] “PowerTutor,” 2013. [Online]. Available: https://github.com/msg555/PowerTutor.
[Accessed: 18-Jan-2016].

[66] M. Mari and N. Eila, “The impact of maintainability on component-based software
systems,” in Proceedings of the 20th IEEE Instrumentation Technology Conference
(Cat No 03CH37412) EURMIC-03, 2003, pp. 25–32.

[67] A. Immonen, “A method for predicting reliability and availability at the architecture
level,” Softw. Prod. Lines Res. Issues Eng. Manag., pp. 373–422, 2006.

[68] A. Immonen and E. Niemelä, “Survey of reliability and availability prediction methods
from the viewpoint of software architecture,” Softw. Syst. Model., vol. 7, no. 1, pp. 49–
65, 2008.

[69] “NQueen,” 2015. [Online]. Available:
https://play.google.com/store/apps/details?id=com.memmiolab.queens. [Accessed:
18-Jan-2016].

[70] “Mezzofanti,” 2009. [Online]. Available: https://code.google.com/p/mezzofanti/.
[Accessed: 18-Jan-2016].

[71] “Picaso,” 2013. [Online]. Available: https://code.google.com/p/picaso-eigenfaces/.
[Accessed: 18-Jan-2016].

[72] “MatCalc,” 2012. [Online]. Available: https://github.com/kc1212/matcalc. [Accessed:
18-Jan-2016].

[73] “MathDroid,” 2013. [Online]. Available: https://f-
droid.org/repository/browse/?fdid=org.jessies.mathdroid. [Accessed: 18-Jan-2016].

[74] “ZXing,” 2016. [Online]. Available: https://github.com/zxing/zxing. [Accessed: 18-Jan-
2016].

[75] Droidslator, “Droidslator,” 2010. [Online]. Available:
https://code.google.com/p/droidslator/. [Accessed: 18-Jan-2016].

[76] “JJIL,” 2009. [Online]. Available: https://code.google.com/p/jjil/. [Accessed: 18-Jan-
2016].

[77] “OSMAnd,” 2016. [Online]. Available: https://github.com/osmandapp/Osmand.
[Accessed: 18-Jan-2016].

174

[78] P. Čokulov, “Linpack,” 2014. [Online]. Available: https://github.com/pedja1/Linpack.
[Accessed: 18-Jan-2016].

[79] “XRace,” 2008. [Online]. Available: https://code.google.com/p/xrace-sa/. [Accessed:
18-Jan-2016].

[80] Y. Gu, V. March, and B. S. Lee, “GMoCA: Green mobile cloud applications,” in 2012
First International Workshop on Green and Sustainable Software (GREENS), 2012,
pp. 15–20.

[81] R. Laddad, AspectJ In Action: Enterprise AOP with Spring Applications, Second Ed.
Manning Publications Co., 2010.

[82] M. Forgáč and J. Kollár, “Static and Dynamic Approaches to Weaving,” in 5th
Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and
Informatics, 2007, no. 1, pp. 201–210.

[83] S. Chiba, Y. Sato, and M. Tatsubori, “Using HotSwap for Implementing Dynamic AOP
Systems,” 1st Workshop on Advancing the State-of-the-Art in Run-time Inspection.
2003.

[84] S. J. Chinenyeze, X. Liu, and A. Al-dubai, “DEEPC : Dynamic Energy Profiling of
Components,” in 40th IEEE Computer Society International Conference on
Computers, Software & Applications, 2016, pp. 1–6.

[85] The AspectJ Team, “The AspectJ (TM) Programming Guide,” 2003. [Online].
Available: http://www.eclipse.org/aspectj/doc/released/progguide/index.html.
[Accessed: 18-Jan-2016].

[86] L. Gaouar, A. Benamar, and F. T. Bendimerad, “Model Driven Approaches to Cross
Platform Mobile Development,” in Proceedings of the International Conference on
Intelligent Information Processing, Security and Advanced Communication, 2015, pp.
1–5.

[87] V. Cortellessa, A. Di Marco, and P. Inverardi, “Software performance model-driven
architecture,” in Proceedings of the 2006 ACM symposium on Applied computing -
SAC ’06, 2006, pp. 1218–1223.

[88] D. C. Schmidt, “Model-Driven Engineering,” Computer (Long. Beach. Calif)., vol. 39,
no. 2, pp. 25–31, 2006.

[89] M. A. Laguna and B. Gonzalez-Baixauli, “Requirements Variability Models: Meta-
model based Transformations,” in Proceedings of the 2005 symposia on
Metainformatics - MIS ’05, 2005, vol. 214, pp. 1–9.

[90] A. Carton, S. Clarke, A. Senart, and V. Cahill, “Aspect-Oriented Model-Driven
Development for Mobile Context-Aware Computing,” in First International Workshop
on Software Engineering for Pervasive Computing Applications, Systems, and
Environments (SEPCASE ’07), 2007, pp. 1–4.

[91] S. Komatineni and D. MacLean, “Introducing the Android Computing Platform,” in Pro
Android 4, Berkeley, CA: Apress, 2012, pp. 1–22.

[92] F. A. Kraemer, “Engineering android applications based on UML activities,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 6981 LNCS, pp. 183–197, 2011.

[93] M. Usman, M. Z. Iqbal, and M. U. Khan, “A Model-Driven Approach to Generate Mobile
Applications for Multiple Platforms,” in 2014 21st Asia-Pacific Software Engineering
Conference, 2014, pp. 111–118.

175

[94] A. G. Parada and L. B. de Brisolara, “A Model Driven Approach for Android
Applications Development,” in 2012 Brazilian Symposium on Computing System
Engineering (SBESC), 2012, pp. 192–197.

[95] K. Lamhaddab and K. Elbaamrani, “Model Driven Reverse Engineering: Graph
Modeling For Mobiles Platforms,” in 2015 15th International Conference on Intelligent
Systems Design and Applications (ISDA), 2015, pp. 392–397.

[96] X. Jia and C. Jones, “Cross-Platform Application Development Using AXIOM as an
Agile Model-Driven Approach,” in Software and Data Technologies, vol. 411 CCIS,
Springer Berlin Heidelberg, 2013, pp. 36–51.

[97] A. G. Parada, E. Siegert, and L. B. De Brisolara, “Generating Java code from UML
class and sequence diagrams,” in 2011 Brazilian Symposium on Computing System
Engineering, 2011, pp. 99–101.

[98] “applause,” 2014. [Online]. Available: https://github.com/applause/applause.
[Accessed: 18-Jan-2016].

[99] Automobile, “The AutoMobile Project | Automated Mobile App Development,” 2014.
[Online]. Available: http://automobile.webratio.com. [Accessed: 18-Jan-2016].

[100] C. Jones and X. Jia, “Using a Domain Specific Language for Lightweight Model-Driven
Development,” in Evaluation of Novel Approaches to Software Engineering, vol. 551
CCIS, L. A. Maciaszek and J. Filipe, Eds. Springer International Publishing, 2015, pp.
46–62.

[101] H. Heitkötter, T. A. Majchrzak, and H. Kuchen, “Cross-Platform Model-Driven
Development of Mobile Applications with MD2,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing - SAC ’13, 2013, pp. 526–533.

[102] Z. Hemel and E. Visser, “Declaratively programming the mobile web with Mobl,” ACM
SIGPLAN Not., vol. 46, no. 10, pp. 695–712, 2011.

[103] Z. Hemel and E. Visser, “Mobl: The New Language of the Mobile Web,” in Proceedings
of the ACM international conference companion on Object oriented programming
systems languages and applications companion - SPLASH ’11, 2011, pp. 23–24.

[104] Y. Falcone and S. Currea, “Weave droid: aspect-oriented programming on Android
devices: fully embedded or in the cloud,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering - ASE 2012, 2012, pp.
350–353.

[105] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling policy for collaborative
execution in mobile cloud computing,” in 2013 Proceedings IEEE INFOCOM, 2013,
pp. 190–194.

[106] A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen, M. Kemppainen, and D. T. Labs,
“Can Offloading Save Energy for Popular Apps?,” in Proceedings of the seventh ACM
international workshop on Mobility in the evolving internet architecture - MobiArch ’12,
2012, pp. 3–10.

[107] A. Rohatgi, “WebPlotDigitizer - Extract data from plots, images, and maps,” 2016.
[Online]. Available: http://arohatgi.info/WebPlotDigitizer/. [Accessed: 18-Jan-2016].

[108] C. Solís and X. Wang, “A study of the characteristics of behaviour driven
development,” in Proceedings - 37th EUROMICRO Conference on Software
Engineering and Advanced Applications, SEAA 2011, 2011, pp. 383–387.

[109] M. Kuna, H. Kolaric, I. Bojic, M. Kusek, and G. Jezic, “Android / OSGi-based Machine-

176

to-Machine Context-Aware System,” in Proceedings of the 2011 11th International
Conference on Telecommunications (ConTEL), 2011, pp. 95–102.

[110] K. Beck and W. Cunningham, “A laboratory for teaching object oriented thinking,” ACM
SIGPLAN Not., vol. 24, no. 10, pp. 1–6, 1989.

[111] “JGraphX,” 2016. [Online]. Available: https://github.com/jgraph/jgraphx. [Accessed:
18-Jan-2016].

[112] M. Hüttermann, “Specification by Example,” in DevOps for Developers, Berkeley, CA:
Apress, 2012, pp. 157–170.

[113] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “AppScope: Application Energy
Metering Framework for Android Smartphones Using Kernel Activity Monitoring,” in
Proceedings of the 2012 USENIX conference on Annual Technical Conference, 2012,
p. 36.

[114] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh, “Who killed my
battery?: analyzing mobile browser energy consumption,” in Proceedings of the 21st
international conference on World Wide Web, 2012, pp. 41–50.

[115] A. Shackelford, “Monitoring the Application,” in Beginning Amazon Web Services with
Node.js, Berkeley, CA: Apress, 2015, pp. 171–208.

[116] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura, “COSMOS :
Computation Offloading as a Service for Mobile Devices,” in Proceedings of the 15th
ACM international symposium on Mobile ad hoc networking and computing - MobiHoc
’14, 2014, pp. 287–296.

[117] C. Seo, S. Malek, and N. Medvidovic, “Estimating the energy consumption in pervasive
java-based systems,” in 6th Annual IEEE International Conference on Pervasive
Computing and Communications, PerCom 2008, 2008, pp. 243–247.

[118] “Testing from the Command-Line | Android Developers.” [Online]. Available:
http://developer.android.com/tools/testing/testing_otheride.html#RunTestsCommand.
[Accessed: 18-Jan-2016].

[119] RobotiumTech, “Robotium,” 2016. [Online]. Available:
https://github.com/robotiumtech/robotium. [Accessed: 01-Jul-2016].

177

Appendix A Abbreviations and Acronyms

All the abbreviations and acronyms used in this thesis are defined below.

Abbreviation

/Acronyms

Description

ACTS Aspect Context Task Service design pattern

AMEE Aspect-oriented Model for Energy-Efficiency at server layer

AOP Aspect Oriented Programming

BDD Behaviour-Driven Development

BEFTIGRE Behaviour-driven Full-tier Green Evaluation

CRAC Context-driven Requirements Analysis for Caller-Callee model

DEEPC Dynamic Energy Profiling of Components

DVM Dalvik Virtual Machine

DSL Domain Specific Language

EE Energy-efficiency

GUI Graphical User Interface

IaaS Infrastructure as a Service

I/O Input/output

IDE Integrated Development Environment

JVM Java Virtual Machine

MANGO Model-driven Architecture for integration of software quality with Green Optimisation

in MCAs

MCA Mobile Cloud Applications

MCC Mobile Cloud Computing

MDD Model-Driven Development

MDE Model-Driven Engineering

MOSAIC Model-based Selective Approach for Identification of Computation intensive tasks

OOP Object-Oriented Programming

PaaS Platform as a Service

PIM Platform Independent Model

PSM Platform Specific Model

SaaS Software as a Service

SDLC Software Development Life Cycle

SDP Software Development Process

VM Virtual Machine

*Italicised are contributed from this research: ACTS, AMEE, BEFTIGRE, CRAC, DEEPC,

MANGO, and MOSAIC.

178

Appendix B Selection Criteria for Case Studies
The case studies used to evaluate Mango, are chosen from the pool of applications used to

evaluate the offloading schemes/approaches in the research. A complete listing of the case

studies used in the literatures are given in Table 1 (which gives 12 apps in total).

Table 1: List of case studies used in the literature

S/N Apps31 Tax Sample Offloading Schemes Description

POMAC/Elicit EFDM DPartner

1 Picaso [71] D Face recognition
app

2 MatCalc [72] D Matrix calculator

3 MathDroid [73] D Calculator

4 NQueen [69] C NQueen game

5 Droidslator [75] CD Translation app

6 Mezzofanti [70] C OCR app

7 ZXing [74] D Bar code reader

8 JJIL [76] C Face recognition
app

9 OsmAnd [77] C Street map

10 Andgoid [52] CD Chess game

11 Linpack [78] C Linear algebra
benchmark app

12 XRace [79] CD Car racing game

Key. Tax: Application taxonomy. C: Computation intensive. D: Data intensive.

Notice that each literature uses both computation and data -intensive applications to evaluate

the schemes. Similarly, for this research, two computation intensive and two data intensive

applications have been chosen.

The criteria for selection of the case study applications are code accessibility, application

correctness and network robustness (Table 2).

 Code Accessibility: the source code for a selected app must be accessible, not just

the android application package (APK installer). This is important to be able to

perform static analysis and offload refactoring. Note that other offload techniques

which optimise at bytecode level or at runtime, may not need/require the source code

for experimentation, hence obsolete apps were feasible case studies for such

research, however Mango approach requires source code access.

31 The Apps are the source code required for experimentation. Note that the references appended to
the Apps links to the source code or google play app.

179

 App Correctness: a selected application must be able to execute with no errors – i.e.

having the relevant features in performing as expected. The correctness of the app

is important as error-composed/buggy application can impact experimental results of

the research. Moreover, applications which are not functionally correct may even

compromise offloading decision – if these segments are the computation intensive

components of the app. e.g. Mezzofanti, which is missing a language pack.

 Network Robustness: a selected app has to be able to run their key features with or

without an internet connection. This criteria guarantees that all key requirements of

the app are as well available in the local execution scenario.

Criteria values: ‘Yes’ means the condition is satisfied, ‘No’ means the condition was not

satisfied. ‘-’ means the condition was not determined as the code was not accessible. Note

that; for code accessibility, if only APK file is found but no source code found, ‘No’ is marked.

In a situation where all conditions/criteria are satisfied, the app is selected as a case study.

Table 2: Case studies matching the selection criteria.

S/N Apps32 Code Accessibility App Correctness Network Robustness

1 Picaso [71] Yes No Yes

2 MatCalc [72] Yes Yes Yes

3 MathDroid [73] Yes Yes Yes

4 NQueen [69] Yes Yes Yes

5 Droidslator [75] Yes No No

6 Mezzofanti [70] Yes No No

7 ZXing [74] Yes Yes Yes

8 JJIL [76] No - -

9 OsmAnd [77] Yes Yes No

10 Andgoid [52] No - -

11 Linpack [78] Yes Yes Yes

12 XRace [79] Yes No No

OsmAnd was found to contain build errors which could not be resolved due to some

inaccessible modules. After refactoring, the refined app was found to be tightly coupled to

remote services, consequently, it was not selected as a case study. Similarly Droidslator,

Mezzofanti and XRace failed the network robustness selection criteria. Some other apps

such as NQueen, JJIL and Andgoid could not be determined as the source code of the

32 The Apps are the source code required for experimentation. Note that the references appended to
the Apps links to the source code or google play app.

180

applications could not be found. Picaso was missing core face database, and thus could not

be used. Out of the 12 samples presented in Table 2, four passed the criteria for selection –

as shown in Table 3. The selected case studies are; Linpack, MatCalc, MathDroid and

NQueen.

Table 3: Selected Case Studies.

Apps Computation intensive Data intensive

Linpack [78]

MatCalc [72]

MathDroid [73]

NQueen [69]

As shown in the analysis of case studies above, the kind of taxonomies predominant in the

literatures are computation intensive and data intensive applications. Consequently, the

experiments for MANGO aims to demonstrate that the model is efficient in these taxonomy of

applications.

181

Appendix C Mosaic Modeller

C.1 Modeller showing sample Caller-Callee model diagram

C.2 Mosaic Model File (.mod)

<?xml version="1.0" encoding="UTF-8"?>
<mxGraphModel>
 <root>
 <mxCell id="0" />
 <mxCell id="1" parent="0" />
 <caller id="2" name="Caller">
 <mxCell parent="1" style="caller" vertex="1">
 <mxGeometry as="geometry" height="150" width="150" x="120" y="250" />
 </mxCell>
 </caller>
 <callerprop id="21" name="Caller Name">
 <mxCell parent="2" style="label;image=/images/p_caller.png" vertex="1">
 <mxGeometry as="geometry" height="20" width="120" x="10" y="40" />
 </mxCell>
 </callerprop>
 <calleeprop id="22" name="Caller Name">
 <mxCell parent="2" style="label;image=/images/p_callee.png" vertex="1">
 <mxGeometry as="geometry" height="23" width="130" x="10" y="69" />
 </mxCell>
 </calleeprop>
 <mobile id="3" name="Mobile">
 <mxCell parent="1" style="image;image=/images/mobile.png" vertex="1">
 <mxGeometry as="geometry" height="100" width="80" x="370" y="380" />
 </mxCell> </mobile>

182

 <cloud id="4" name="Cloud">
 <mxCell parent="1" style="image;image=/images/cloud.png" vertex="1">
 <mxGeometry as="geometry" height="75" width="80" x="380" y="190" />
 </mxCell>
 </cloud>
 <mxCell edge="1" id="5" parent="1" source="2" style="" target="3" value="">
 <mxGeometry as="geometry" relative="1">
 <mxPoint as="sourcePoint" x="410.0" y="230.0" />
 <mxPoint as="targetPoint" x="250.0" y="480.0" />
 </mxGeometry>
 </mxCell>
 <mxCell edge="1" id="6" parent="1" source="2" style="" target="4" value="">
 <mxGeometry as="geometry" relative="1">
 <mxPoint as="sourcePoint" x="410.0" y="230.0" />
 <mxPoint as="targetPoint" x="620.0" y="490.0" />
 </mxGeometry>
 </mxCell>
 <callee id="11" name="Callee">
 <mxCell parent="1" style="callee" vertex="1">
 <mxGeometry as="geometry" height="140" width="150" x="560" y="360" />
 </mxCell>
 </callee>
 <performance id="17" name="Performance">
 <mxCell parent="11" style="label;image=/images/m_perform.png" vertex="1">
 <mxGeometry as="geometry" height="23" width="130" x="10.0" y="30" />
 </mxCell>
 </performance>
 <energy id="18" name="Energy">
 <mxCell parent="11" style="label;image=/images/m_energy.png" vertex="1">
 <mxGeometry as="geometry" height="23" width="130" x="10" y="60" />
 </mxCell>
 </energy>
 <callee id="12" name="Callee">
 <mxCell parent="1" style="callee" vertex="1">
 <mxGeometry as="geometry" height="140" width="150" x="560" y="160" />
 </mxCell>
 </callee>
 <availability id="19" name="Availability">
 <mxCell parent="12" style="label;image=/images/m_avail.png" vertex="1">
 <mxGeometry as="geometry" height="23" width="130" x="10" y="60" />
 </mxCell>
 </availability>
 <resource id="20" name="Resource">
 <mxCell parent="12" style="label;image=/images/m_resrc.png" vertex="1">
 <mxGeometry as="geometry" height="23" width="130" x="10" y="30" />
 </mxCell>
 </resource>
 <mxCell edge="1" id="15" parent="1" source="3"
style="edgeStyle=mxEdgeStyle.EntityRelation;fontSize=18" target="11" value="p">
 <mxGeometry as="geometry" relative="1">
 <mxPoint as="sourcePoint" x="220.0" y="430.0" />
 <mxPoint as="targetPoint" x="230.0" y="730.0" />
 </mxGeometry>
 </mxCell>
 <mxCell edge="1" id="16" parent="1" source="4" style="fontSize=18"
target="12" value="r">
 <mxGeometry as="geometry" relative="1">
 <mxPoint as="sourcePoint" x="620.0" y="450.0" />
 <mxPoint as="targetPoint" x="660.0" y="720.0" />
 </mxGeometry>
 </mxCell>
 </root>
</mxGraphModel>

183

Appendix D Mosaic Templates for ACTS

D.1 Aspect Template

D.2 Context Template

package mango;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Pointcut;

@org.aspectj.lang.annotation.Aspect
public class Aspect {

@Pointcut("call(* [Callee](..)) && args([ArgumentIDs])")
public static void offloadMethod([Arguments]) {
}

@Around("offloadMethod([ArgumentIDs]) && !within(Aspect) && !within(Task)")
public [Return] aroundOffloadMethodCall(ProceedingJoinPoint jp, [Arguments]) throws Throwable {

return new Task().execute(new Object[]{[ArgumentIDs]}).get();
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

package mango;

import android.app.Activity;
import android.content.SharedPreferences;
/*Import an Activity*/;

public class Context {
 private static Activity activity = /*activity*/;
 public static boolean refresh = false;

 private static final String PREFERENCES = "mangoPreferences";
 private static SharedPreferences settings = activity.getSharedPreferences(PREFERENCES, 0);
 private static SharedPreferences.Editor editor = settings.edit();

 public static long getCloudTime() {
 return settings.getLong("cloudTime", 0);
 }

 public static void setCloudTime(long cloudTime) {
 editor.putLong("cloudTime", cloudTime);
 editor.commit();
 }

 public static long getMobileTime() {
 return settings.getLong("mobileTime", 0);
 }

 public static void setMobileTime(long mobileTime) {
 editor.putLong("mobileTime", mobileTime);
 editor.commit();
 }

 public static String getMode() {
 if (refresh) {
 refresh = false;
 return "mobile";
 }
 return settings.getString("mode", "mobile");
 }

 public static void setMode(String mode) {
 editor.putString("mode", mode);
 editor.commit();
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

184

D.3 Task Template

package mango;

import android.os.AsyncTask;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.Socket;

public class Task extends AsyncTask<Object, Integer, [Return]> {
private static [Return] result = null;
private static String mode; //execution mode
private static final String MOBILE = "mobile";
private static final String CLOUD = "cloud";
private static final String DECIDER = "decider";
private static final int TIMEOUT = /*Value ms*/;

<sr:p>
private static final int OVERHEAD = 0;

</sr:p>
<sr:e>

private static final int OVERHEAD = /*Value ms*/;
</sr:e>
<sr:pe>

private static char pa = /*get priority attribute from UI*/;

private static int overhead(){
if(pa=='e'){

return /*Value ms*/;
}
return 0;

}
</sr:pe>

@Override
protected [Return] doInBackground(final Object[] params) {

dispatcher();

switch (mode) {
case MOBILE:

long mobileStart = System.currentTimeMillis();
runOnMobile(params);
long mobileTime = System.currentTimeMillis() - mobileStart;
Context.setMobileTime(mobileTime);
break;

case CLOUD:
long cloudStart = System.currentTimeMillis();
runOnCloud(params);
long cloudTime = System.currentTimeMillis() - cloudStart;
Context.setCloudTime(cloudTime);
break;

}

return result;
}

private void dispatcher() {
switch (Context.getMode()) {

case DECIDER:
if ((Context.getMobileTime() + OVERHEAD) > Context.getCloudTime()) {//or overhead()

mode = CLOUD;
} else {

mode = MOBILE;
}
break;

case MOBILE:
mode = MOBILE;
Context.setMode(CLOUD);
break;

case CLOUD:
mode = CLOUD;
Context.setMode(DECIDER);
break;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

185

D.4 Service Template

186

<sr:r>
public static void dispatcher(Object[] params) {

if (availableCPU() < CPU_THRESHOLD) {
result = /*reference to the Callee on an alternate server*/

} else {
result = [Callee]([CastedArguments]); //Callee on this server

}
}

</sr:r>
<sr:ar>

public static void dispatcher(Object[] params) {
thread = new Thread(new Runnable() {

@Override
public void run() {

if (availableCPU() < CPU_THRESHOLD) {
result = /*reference to the Callee on an alternate server*/

} else {
result = [Callee]([CastedArguments]); //Callee on this server

}
}

});
thread.start();
try {

thread.join(TIME_THRESHOLD);
if (thread.isAlive()) thread.interrupt();

} catch (InterruptedException ex) { }
}

</sr:ar>

public static int availableCPU() {
int usedcpu = 0;
try {

Sigar sigar = new Sigar();
usedcpu = (int) Math.round(sigar.getCpuPerc().getCombined() * 100);

} catch (SigarException ex) { }
return 100 - usedcpu;

}
}

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

187

Appendix E Beftigre BAND API Screenshots

E.1 Band API Setup method

Required imports are com.beftigre.band.Band, com.beftigre.band.Marker and

com.beftigre.band.annotations.*. During setup; (i) Band is initialised with activity (i.e.

getActivity(), necessary for the test process) and test object (i.e. ‘this’, used to get

annotations), (ii) power monitor is started and (iii) markers are registered.

E.2 Band API Test method

Notice that @Given annotation attributes are set to 0, this is for evaluation. For the case of

comparison all annotations attributes will require a real value assigned to them.

Marker start and finish methods are called before and after the execution of the test, so as to

capture the test process.

188

E.3 Band API TearDown method

At teardown markers are saved, power monitor is stopped and the BaseService is started to

obtain % CPU and memory availability of the mobile device.

E.4 Band API BaseService logcat output

After the test is passed/completed the BaseService runs (to compute % CPU and memory

availability of the mobile device) until the count value (i.e. second argument) specified in

getBaseStatus API call is completed. Note the first argument of getBaseStatus is interleave

or interval – in seconds. A toast message is also sent by the API to the mobile when the

BaseService is completed.

189

Appendix F Beftigre BEFOR Tool Screenshots

F.1 EC2 Ubuntu instance setup

Beftigre has been tested on EC2. Notice the case-one key pair (pem) file, this is used to

connect to Befor API.

F.2 EC2 Security groups

Notice that ports 22, 8080, 4848, 1, 2, and 3 have been added in the security group for Beftigre

test. These are the default ports for Beftigre test.

190

F.3 Connection and Test Parameter settings

Notice case-one.pem file from EC2 setup, and ports 22, 1 and 2 already opened in security

groups. Also achieved by params API command.

F.4 Install setup files

Below is the output highlighting the six files/programs used to setup the server for Beftigre

test, as mentioned in Section 6.4.4.3. Also achieved by setup API command.

Output Terminal

BandwidthLatencyServer port: 1
CPUMemoryServer port: 2
files\BandwidthLatencyServer.java created.
files\CPUMemoryAvailServer.java created.
BandwidthLatencyServer.java, CPUMemoryAvailServer.java and sigar.zip copied to
server.
Archive: sigar.zip
 creating: sigar/
 inflating: sigar/.sigar_shellrc
 inflating: sigar/libsigar-amd64-freebsd-6.so
 inflating: sigar/libsigar-amd64-linux.so
 inflating: sigar/libsigar-amd64-solaris.so
 inflating: sigar/libsigar-ia64-hpux-11.sl
 inflating: sigar/libsigar-ia64-linux.so

191

 inflating: sigar/libsigar-pa-hpux-11.sl
 inflating: sigar/libsigar-ppc-aix-5.so
 inflating: sigar/libsigar-ppc-linux.so
 inflating: sigar/libsigar-ppc64-aix-5.so
 inflating: sigar/libsigar-ppc64-linux.so
 inflating: sigar/libsigar-s390x-linux.so
 inflating: sigar/libsigar-sparc-solaris.so
 inflating: sigar/libsigar-sparc64-solaris.so
 inflating: sigar/libsigar-universal-macosx.dylib
 inflating: sigar/libsigar-x86-freebsd-5.so
 inflating: sigar/libsigar-x86-freebsd-6.so
 inflating: sigar/libsigar-x86-linux.so
 inflating: sigar/libsigar-x86-solaris.so
 inflating: sigar/log4j.jar
 inflating: sigar/sigar-amd64-winnt.dll
 inflating: sigar/sigar-x86-winnt.dll
 inflating: sigar/sigar-x86-winnt.lib
 inflating: sigar/sigar.jar
exit-status: 0
SIGAR API setup completed.
exit-status: 0
BandwidthLatencyServer and CPUMemoryAvailServer setup completed.
Remember to set up your offloadable component from the terminal.
Reading package lists...
Building dependency tree...
Reading state information...
unzip is already the newest version.
0 upgraded, 0 newly installed, 0 to remove and 171 not upgraded.
Archive: ServerAgent-2.2.1.zip
 inflating: startAgent.sh
 inflating: startAgent.bat
 creating: lib/
 inflating: lib/libsigar-x86-freebsd-6.so
 inflating: lib/libsigar-pa-hpux-11.sl
 extracting: lib/sigar.jar
 inflating: lib/libsigar-s390x-linux.so
 inflating: lib/libsigar-x86-solaris.so
 inflating: lib/libsigar-ppc-aix-5.so
 inflating: lib/libsigar-ia64-hpux-11.sl
 inflating: lib/sigar-amd64-winnt.dll
 inflating: lib/libsigar-ppc64-aix-5.so
 inflating: lib/libsigar-ppc-linux.so
 inflating: lib/libsigar-universal-macosx.dylib
 inflating: lib/libsigar-amd64-solaris.so
 inflating: lib/libsigar-ppc64-linux.so
 inflating: lib/libsigar-sparc64-solaris.so
 inflating: lib/sigar-x86-winnt.dll
 inflating: lib/libsigar-ia64-linux.so
 inflating: lib/sigar-x86-winnt.lib
 inflating: lib/libsigar-x86-linux.so
 inflating: lib/libsigar-sparc-solaris.so
 inflating: lib/libsigar-amd64-linux.so
 inflating: lib/libsigar-x86-freebsd-5.so
 extracting: lib/log4j.jar
 inflating: lib/libsigar-universal64-macosx.dylib
 inflating: lib/libsigar-amd64-freebsd-6.so
 extracting: lib/cmdrunner-1.0.1.jar
 extracting: lib/jorphan-2.6.jar
 extracting: lib/logkit-2.0.jar
 extracting: lib/sigar-1.6.4.jar
 extracting: lib/avalon-framework-4.1.5.jar
 extracting: ServerAgent.jar
extracting: CMDRunner.jar

192

F.5 Setup offload components

Using Linpack android app as an example, the .class files of the offloadable compute-

intensice component (rs.pedjaapps.Linpack.Linpack) has been zipped into rs.zip, alongside

its dependency files (in this case rs.pedjaapps.Linpack.Result). The main method to start the

program is within rs.pedjaapps.Linpack.Linpack. Thus, the offload setup is as shown in the

screenshot below;

When start is clicked the following output is displayed: showing that the zip has been extracted

on the server, and the program has been launched using the start command entered. Also

achieved by offload API command. Note: exit-status: 0 shown in the output signifies that

the process or command was successfully executed at the server.

 inflating: LICENSE
Monitor setup completed.
exit-status: 0
Network Throttler (slow) setup completed.
Reading package lists...
Building dependency tree...
Reading state information...
The following NEW packages will be installed:
 stress
0 upgraded, 1 newly installed, 0 to remove and 171 not upgraded.
Need to get 0 B/17.0 kB of archives.
After this operation, 73.7 kB of additional disk space will be used.
Selecting previously unselected package stress.
(Reading database ... 52190 files and directories currently installed.)
Preparing to unpack .../stress_1.0.1-1ubuntu1_amd64.deb ...
Unpacking stress (1.0.1-1ubuntu1) ...
Processing triggers for install-info (5.2.0.dfsg.1-2) ...
Processing triggers for man-db (2.6.7.1-1ubuntu1) ...
Setting up stress (1.0.1-1ubuntu1) ...
Stress setup completed.
exit-status: 0

193

Note that when server monitor is stopped the offload components are also stopped – this is

because stopping server monitoring process kills all java processes. To start the offload

components again during a test, just enter only the start command without a zip (as the zip

has already been uploaded the first time). Note: there could be a likely case where starting

an application requires a library in the class path (used to compile), in that case, ensure that

the library’s jar(s) is/are uploaded in the zip alongside the classes, then run the application as

follows: -cp .:path/to/lib.jar mainclass i.e. including class path in the start command.

F.6 Set simulation params

The screenshot below shows simulation parameters of 20mbps bandwidth, 200ms latency, 2

CPU and memory loads with 130s timeout. The parameters are saved in SimLog. Also

achieved by simulate API command.

Output Terminal

Uploading...
C:\Users\Chinenyeze\App\files\rs.zip selected.
Uploading...
Components successfully setup.
Archive: rs.zip
 creating: rs/
 creating: rs/pedjaapps/
 creating: rs/pedjaapps/Linpack/
 inflating: rs/pedjaapps/Linpack/Linpack.class
 inflating: rs/pedjaapps/Linpack/Result.class
exit-status: 0
Starting...
exit-status: 0
Start command successfully issued.

194

F.7 Start server monitors

The output below highlights the (three) server monitors started alongside stress and throttle

utilities for simulations. Also achieved by start API command.

F.8 Edit .jmx test plan

This launches a text editor with the generated test plan template. Also achieved by editplan

API command. The important aspect to edit in the test plan are presented below. Notice port

8080 is being used, and already opened in the security group. The server argument is same

as the IP address used to connect Befor API. Users and rampup value can be left as 1. Refer

to http://jmeter.apache.org/usermanual/test_plan.html for understanding terms in testplan.

Another important argument is the path, which refers to any hosted html file or resource, which

can be publicly accessed by jmeter for the test.

Output Terminal

Throttle type:custom bandwidth:20mbps latency:200ms
Stress: cpu, mem, time: 2 2 130
CPU and Memory stress started.
Stress will stop automatically after timeout
exit-status: 0
ServerAgent monitor started.
CPUMemoryAvailServer monitor started.
BandwidthLatencyServer monitor started.
Remember to start your offloadable component from the terminal.
param 20mbps
param 200ms
command=slow
bandwidth=20mbps
latency=200ms
Adding new queuing discipline
Throttler started.
exit-status: 0
SimLog created.

195

F.9 Start metrics collector

This begins metrics collection for the amount of time in seconds, specified by the duration

argument within the test plan. Thus, metrics collection automatically stops after the time

elapses – after which it is then adequate to stop the server monitor if wished to. The collected

metrics are saved in MetricsLog. Also achieved by collect API command.

Notice from the output below that the Socket clients (BandwidthLatencyClient &

CPUMemoryClient) are first used to retrieve the bandwidth, latency, %CPU and memory

availability from the server, prior to the jmeter test – which then begins metrics collection

based on %CPU and memory usage.

F.10 Stop server monitor

This stops the ServerAgent monitor, Socket monitors (i.e. BandwidthLatencyServer and

CPUMemoryAvailServer), and throttle utility. The stress utility is automatically stopped after

the specified timeout (as shown in Set simulation params section). Also achieved by stop

API command.

Output Terminal

BandwidthLatencyClient port: 1
CPUMemoryClient port: 2
MetricsLog created.
Bandwidth and Latency received.
%CPU and %Memory avail. received.
Test started.
Test finished.
You could stop the Monitor if you wish.

Output Terminal

ServerAgent monitor stopped.
param clear
command=clear
bandwidth=100kbps
latency=350ms
resetting queueing discipline
Throttler stopped.
Socket monitors stopped
exit-status: 0

196

F.11 Extract results

This extracts results (dat and csv files) from logs. Also achieved by extract API command.

First MarkerLog, MetricsLog and PowerLog have to be selected, as below

When the right required logs are selected and opened, the checkboxes for the ‘Required Logs’

panel are checked, as below;

When the ‘Extract results’ button is clicked, the data files (CPULog.dat, MarkerLog.dat,

MemLog.dat and PowerLog.dat) and results summary file (summary.csv) are extracted into

results directory.

Note that SimLog is not required for computing results, it only used to know which simulation

parameters achieved a result, for repeatability of test.

197

F.12 Plot

This plots graph from extracted (data) files. Also achieved by plot API command. Clicking

‘Plot’ prompts to select the data files to plot.

Then, click OK to plot.

The sample graph above shows the plotting for distinct used power (i.e. power at different

timestamp, from PowerLog.dat file) and the elapsed time (i.e. start and finish timestamp, from

MarkerLog.dat) of the test.

198

Appendix G Beftigre BEFOR API Commands
This appendix presents a list of all Befor API commands and how they are used. Within the

API, this information can be obtained using help command.

The commands without argument are presented in the table below.

Command Function of the command
clear Clears the Befor console.
collect Begins collection of server metrics once the server monitor is launched.
editplan Provides UI useful to edit the jMeter testplan prior to 'collect' command.
exit Exits the Befor console.
setup Installs and copies all necessary files for the test unto the server.
start Starts the server monitors.
stop Stops the server monitors.
help Provides Help information for all Befor commands, or for a specific Befor

command when passed as argument. E.g. help setup

199

 auto Command

Automates the Beftigre full-tier testing of mobile (Band) and cloud (Befor) tiers. The command

usage have been presented in section . Presented below is the output from auto command

execution;

Befor started.
logs directory found. results\plot directory found. files directory found.
files\slow already exist. files\TestPlan.jmx already exist. files\sigar.zip
already exist.
Befor:~$ auto "C:\Users\Chinenyeze\App\files\script.auto"
"C:\Users\Chinenyeze\AppData\Local\Android\sdk\platform-tools" 1 40
The auto script file was not found.
Befor:~$ auto
"C:\Users\Chinenyeze\Documents\NetBeansProjects\BEFtigreOR\files\script.auto"
"C:\Users\Chinenyeze\AppData\Local\Android\sdk\platform-tools" 1 40
params initialised.
offload initialised.
simulate added to list.
am initialised.

***Automated test started.
params command completed.
exit-status: 0
offload command completed.
SimLog created.
simulate command completed.
CPU and Memory stress started.
Stress will stop automatically after timeout
exit-status: 0
ServerAgent monitor started.
CPUMemoryAvailServer monitor started.
BandwidthLatencyServer monitor started.
Remember to start your offloadable component from the terminal.
param 200mbps
param 180ms
command=slow
bandwidth=200mbps
latency=180ms
Adding new queuing discipline
Throttler started.
exit-status: 0
start command completed.
621 219
ServerCPU:41 ServerMem:74
MetricsLog created.
collect command completed.
WARN 2016-04-09 16:17:04.948 [jmeter.u] (): Unexpected value set for boolean
property:'server.exitaftertest', defaulting to:false
WARN 2016-04-09 16:17:04.995 [jmeter.u] (): Unexpected value set for boolean
property:'jmeterengine.startlistenerslater', defaulting to:true
INFO 2016-04-09 16:17:04.995 [jmeter.e] (): Listeners will be started after
enabling running version
INFO 2016-04-09 16:17:04.995 [jmeter.e] (): To revert to the earlier behaviour,
define jmeterengine.startlistenerslater=false
WARN 2016-04-09 16:17:04.995 [jmeter.u] (): Unexpected value set for boolean
property:'jmeterengine.remote.system.exit', defaulting to:false
WARN 2016-04-09 16:17:04.995 [jmeter.u] (): Unexpected value set for boolean
property:'jmeterengine.stopfail.system.exit', defaulting to:true
WARN 2016-04-09 16:17:04.995 [jmeter.u] (): Unexpected value set for boolean
property:'jmeterengine.force.system.exit', defaulting to:false

200

 cleanup Command

Uninstalls all setup files if no argument is supplied, or deletes the third argument from the

server based on the second argument d or f.

cleanup cleanup -d directory cleanup -f file

-d directory – the directory to be deleted from the server.

-f file – the file with extension to be deleted from the server, e.g. Sample.java.

 extract Command

Extracts the test results from logs as .dat files.

extract markerLog powerLog metricsLog

markerLog – the absolute file name of MarkerLog_123.log, e.g. "C:\App\logs\MarkerLog_123.log"

powerLog – the absolute file name of PowerLog_123.log, e.g. "C:\App\logs\PowerLog_123.log"

metricsLog – the absolute file name of MetricsLog_123.log, e.g. "C:\App\logs\MetricsLog_123.log"

The .log files are generated with timestamps appended to their file names. 123 above represents the

timestamp.

 offload Command

Uploads and/or starts offloadable components based on any of three options; u, s or us.

offload -u zipfile offload -s mainclass offload -us zipfile mainclass

-u – signifies an upload, expecting the following argument to be a zip file.

-s – signifies a start, expecting the following argument to be a start command.

-us – combines the functionality of -u and -s.

zipfile – the zip file to upload, which gets extracted at the server, e.g. "C:\App\zipfile.zip"

mainclass – the class name used to start an offloaded component by java interpreter; this must include

the name of the package too, as per standard programming convention.

Note: there could be a likely case where starting an application requires a library in the class path (used

to compile), in that case, ensure that the library’s jar(s) is/are uploaded in the zip alongside the classes,

JMeter test started for Metrics collector.
rs.pedjaapps.Linpack.LinpackTest:.
Test results for InstrumentationTestRunner=.
Time: 23.475
OK (1 test)
am command completed.
ServerAgent monitor stopped.
param clear
command=clear
bandwidth=100kbps
latency=350ms
resetting queueing discipline
Throttler stopped.
Socket monitors stopped
exit-status: 0
stop command completed.
***Automated test completed.

201

then run the application as follows; i.e. including class path in the start command and putting the start

command in quotes:

offload -s "-cp .:path/to/lib.jar mainclass"
offload -us zipfile "-cp .:path/to/lib.jar mainclass"

 params Command

Sets up parameters for prior connection to the server. It is a required command, and takes 7

arguments in the specified order.

params pemfile ip port user jmeter blport cmport

pemfile – the .pem file from EC2 server setup.

ip – the ip address of the server.

port – the port number for the server connection.

user – the server registered user.

jmeter – the absolute path of Apache JMeter home directory, e.g. " C:\App\jmeter"

blport – the port number for BandwidthLatencyServer and Client.

cmport – the port number for CPUMemoryServer and Client.

 plot Command

Plots graph using the extracted .dat files, it takes one to three logs as arguments in any order.

plot PowerLog plot PowerLog AppLog plot PowerLog AppLog CPULog MemLog

PowerLog – the absolute file name of PowerLog.dat, e.g. "C:\App\results\PowerLog.dat"

AppLog – the absolute file name of AppLog.dat, e.g. "C:\App\results\AppLog.dat"

CPULog – the absolute file name of CPULog.dat, e.g. "C:\App\results\CPULog.dat"

MemLog – the absolute file name of MemLog.dat, e.g. "C:\App\results\MemLog.dat"

 simulate Command

Sets up parameters for the simulation of resource stress and network throttle.

simulate bandwidth bandwidthType latency cpuload memload timeout

bandwidth – an integer representing the bandwidth.

bandwidthType – the bandwidth unit type, e.g. bps, kbps or mbps.

latency – an integer representing the latency in ms.

cpuload – an integer representing the cpu load.

memload – an integer representing the memory load.

timeout – an integer representing the timeout in s for cpu and memory load.

 auto: Automating the Full-tier Test

auto is the Beftigre framework’s test automation command which is used to automate the

Beftigre full-tier testing of mobile (Band) and cloud (Befor) tiers. This makes it easy to repeat

experiments on the Beftigre Framework (The output logs and data files from Beftigre are

presented in Appendix H). As shown in the snippet below, the test automation is initiated by

202

calling the auto command of Befor API with the following three required arguments, and an

optional fourth;

auto auto_script adb_dir reruns interleave
auto "C:\script.auto" "C:\path\to\Android\sdk\platform-tools" 4 40

 first argument: the auto script file (.auto)

 second argument: the full path to adb.exe (i.e. Android Debug Bridge)

 third argument: the number of reruns of the experiment

 fourth argument: the interleave (in seconds) between reruns

The purpose of the interleave argument is to allow the BaseService of Band API to complete

execution – as this is necessary for full-tier evaluation.

An auto script file must specify commands useful for full-tier test. The format is given below;

(See Appendix G for details on Befor API commands). Since the file is for full-tier test, the

auto command only supports five Befor commands relevant for testing the cloud tier; params,

offload, simulate, start, collect, and stop. The am command is used with the adb.exe

to launch the test on the mobile tier.

1 params pemfile ip port user jmeter blport cmport
2 offload -s mainclass
3 simulate bandwidth bandwidthType latency cpuload memload timeout
4 simulate bandwidth bandwidthType latency cpuload memload timeout
5 simulate bandwidth bandwidthType latency cpuload memload timeout
6 start
7 collect
8 am instrument -w -e class rs.pedjaapps.Linpack.LinpackTest

rs.pedjaapps.Linpack.test/android.test.InstrumentationTestRunner
9 stop

Figure 6.2 auto Script File

The required commands for constructing the script file to execute auto command are params,

offload, simulate and am. One or more lines of simulate can be provided. start,

collect, and stop are optional. As they do not require any argument they are automatically

handled by auto command in Befor API.

203

Algorithm auto execution algorithm
Require: auto_script, adb_dir, reruns and interleave
 1: read auto_script file
 2: list ← load simulate commands into array list
 3: run params command
 4: if no interleave or interleave < 30 or interleave > 180 then
 5: interleave = 30
 6: endif
 7: counter = 0
 8: for i=0; i < reruns; i++ do
 9: run offload start command
10: run list.get(counter)
11: run start command
12: wait (10)
13: run collect command
14: run am command using adb.exe at adb_dir
15: wait (10)
16: run stop command
17: wait (interleave)
18: counter++
19: if counter >= list.size() then
20: counter = 0
21: endif
22: endfor

Algorithm 6.3 presents the execution procedure of auto command. Notice from the sample

script file (Figure 6.2) that simulate command is parsed thrice (Lines 3-5 of Figure 6.2), this

implies that the reruns of the experiment will be performed based on the given simulate

commands. This is achieved (within Befor API) by sequentially looping through a list of

simulate commands for each run (Line 10 of Algorithm 6.3). When all simulate commands are

looped through but reruns are not completed then the system will restart simulation from the

top of the list (Line 20 of Algorithm 6.3). The offload start command (Line 2 of Figure 6.2) is

required in auto script to launch the offloadable component at the server. auto script, can be

killed at any point using Ctrl+C. The interleave argument of auto command is optional, and

defaults to 30 seconds. Also 30 seconds interleave is used if the provided interleave is below

the default or above 180 max set threshold (Lines 4-6 of Algorithm 6.3). The 10 seconds wait

at Lines 12 and 15 (in Algorithm 6.3) are used to ensure that the start and am commands are

completed before the metrics collection and stop command respectively. The first wait (Line

12) is important as the collect command runs the socket clients, which requires socket server

monitors to be already running and listening (on specified ports in params command).

Similarly, the second wait (Line 15) ensures that the metrics collection does not overlap the

mobile device test (am command) during completion – to ensure accuracy of readings.

204

How to obtain the right am command:

auto requires that the test project is already installed on the target devices prior to running

the test. This is a prerequisite for executing android test command line.

The application project and test project can be installed on first execution from Android studio

(command line option alternatives here []). To check that a device is connected use adb

devices command. Ensure that the command line directory is changed to the adb location

first, e.g.

cd C:\Users\Chinenyeze\AppData\Local\Android\sdk\platform-tools

Then enter

adb shell pm list instrumentation

the above command gives a directive of the test projects installed on the connected device,

in the format below;

instrumentation:rs.pedjaapps.Linpack.test/android.test.InstrumentationTe
stRunner
(target= rs.pedjaapps.Linpack)

From the above output the instrumentation points to <test package>/<runner class> and the

target specifies the <application package> of the installed app to be evaluated. [118] provides

further useful adb documetation.

Given that the class of the test code is rs.pedjaapps.Linpack.LinpackTest, then the am

command for auto script in Befor API can be constructed as follows;

am instrument -w -e class <test code class> <test package>/<runner
class>
am instrument -w -e class rs.pedjaapps.Linpack.LinpackTest
rs.pedjaapps.Linpack.test/android.test.InstrumentationTestRunner

205

Appendix H Beftigre Logs and Data Files

H.1 MarkerLog_123.log

The first part gives the package name of the application under test. The second part gives the

values of marker objects. The third part gives the values for the BaseService process.

H.2 PowerLog_123.log

The first part gives a listing of the mobile device settings. The second part gives the process

IDs of the running applications – which is used to identify the resources used by a process.

The third part gives the consumption values of the resources used by different processes.

app rs.pedjaapps.Linpack

M1_label Linpack
M1_start 1459029740369
M1_finish 1459029762226
M1_anno na

mobileCPU 96.7659
mobileMemory 20.849531

1

3

2

phone-service in-service
phone-network HSDPA
batt_temp 29.5
batt_charge 8.28
LCD-brightness 255
...

associate 10061 rs.pedjaapps.Linpack@3
associate 10065 com.google.android.music@2513
...

begin 1 1459029741736
total-power 1086
LCD-10356 900
CPU-freq 1134.0
CPU-10061 221
CPU-10029 0
...

begin 2 1459029742802
total-power 1152
LCD-10356 900
CPU-freq 1728.0
CPU-10061 232
CPU-10029 0
...

begin n [timestamp]
...

1

2

3

206

H.3 MetricsLog_123.log

The first part gives the bandwidth, latency and % cloud CPU and memory availability – actual

values for Where clause. The second part gives the % cloud CPU and memory usage,

collected by PerfMon Metrics Collector from PerfMon Server Agent, this is the actual values

for the cloud tier of Then clause.

H.4 SimLog_123.log

This is the log of the simulation parameters. The log is to inform the parameters that generated

a particular results – for reproducibility of test.

H.5 MarkerLog.dat

This is the data file obtained from MarkerLog.log and gives the mobile start and finish

timestamp of the test – used to calculate the mobile elapsed time.

H.6 PowerLog.dat

This is the data file obtained from an analysis on PowerLog.log and MarkerLog.log. It gives

the mobile start and finish timestamp and the trailing power readings associated between

these timestamps – used to calculate the mobile used energy.

bandwidth 571
latency 238
cloudCPU 43
cloudMemory 73

2016/03/26 22:01:58.334,26145,46.137.91.122 Memory,,,,,true,0,0,0,0
2016/03/26 22:01:58.351,57142,46.137.91.122 CPU,,,,,true,0,0,0,0
2016/03/26 22:01:59.353,18973,46.137.91.122 Memory,,,,,true,0,0,0,0
2016/03/26 22:01:59.354,58333,46.137.91.122 CPU,,,,,true,0,0,0,0
...

1

2

bandwidth 20mbps
latency 200ms
cpuload 2
memoryload 2

Timestamp Power
1459029740369 0.0
1459029742802 28.378378378378375
...
1459029761713 14.594594594594595
1459029762226 0.0

Label Start Finish
Linpack 1459029740369 1459029762226

207

H.7 CPULog.dat

This is the data file obtained from an analysis on MetricsLog.log and MarkerLog.log. It gives

the mobile start and finish timestamp and the trailing cloud CPU usage readings associated

between these timestamps – used to calculate the cloud used CPU.

H.8 MemLog.dat

This is the data file obtained from an analysis on MetricsLog.log and MarkerLog.log. It gives

the mobile start and finish timestamp and the trailing cloud memory usage readings

associated between these timestamps – used to calculate the cloud used Memory.

H.9 Summary.csv

This is a summary file computed from all data files. The sample below gives the result for

evaluation (not comparison). Comparison output has been presented with case studies.

M
ar

ke
r

La
be

l

M
ob

ile
CP

U

M
ob

ile
M

em
or

y

Ba
nd

w
id

th

La
te

nc
y

Cl
ou

dC
PU

Cl
ou

dM
em

or
y

m
El

ap
se

dT
im

e(
m

s)

m
U

se
dE

ne
rg

y(
m

J)

cU
se

dC
PU

(%
)

cU
se

dM
em

or
y(

%
)

Fi
na

lA
ss

er
t

S1-F1 Linpack 97 21 571 238 43 73 21857 2899.46 58 21 -

*The .log files are generated with timestamps appended to their file names. 123 appended to

the filenames of .log files represents timestamps.

Timestamp Memory
1459029740369 0
1459029741369 26
1459029742369 16
...
1459029760384 26
1459029761384 18
1459029762226 0

Timestamp CPU
1459029740369 0
1459029741369 58
1459029742369 58
...
1459029760384 60
1459029761384 57
1459029762226 0

208

Appendix I Case Studies Test Classes

I.1 Linpack Test

package rs.pedjaapps.Linpack;

import android.test.ActivityInstrumentationTestCase2;
import android.widget.Button;
import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.annotations.Given;
import com.robotium.solo.Solo;

public class LinpackTest extends ActivityInstrumentationTestCase2 {
 private Solo solo;
 private Band band;
 private Marker m = new Marker("Linpack");

 public LinpackTest() {
 super(MainActivity.class);
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 solo = new Solo(getInstrumentation(), getActivity());
 band = new Band(getActivity(), this);
 band.startPowerMonitoring();
 band.registerMarkers(m);
 }

 @Given(mobileCPU = 0, mobileMemory = 0)
 public void testLinpack() throws Exception {
 m.start();
 solo.clickOnView((Button) solo.getButton("Run Linpack"));
 boolean result = solo.waitForText("Callee completed.");
 assertEquals(true, result);
 m.finish();
 }

 @Override
 protected void tearDown() throws Exception {
 band.saveMarkers();
 band.stopPowerMonitoring();
 band.getBaseStatus(5, 6); //interleave and count
 solo.finishOpenedActivities();
 super.tearDown();
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

209

I.2 MatCalc Test

package com.android.matcalc;

import android.test.ActivityInstrumentationTestCase2;
import android.widget.EditText;
import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.annotations.Given;
import com.cong89.matcalc.R;
import com.robotium.solo.Solo;

public class MatCalcTest extends ActivityInstrumentationTestCase2 {
 private Solo solo;
 private Band band;
 private Marker m = new Marker("MatCalc");

 public MatCalcTest() {
 super(MainActivity.class);
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 solo = new Solo(getInstrumentation(), getActivity());
 band = new Band(getActivity(), this);
 band.startPowerMonitoring();
 band.registerMarkers(m);
 }

 @Given(mobileCPU = 0, mobileMemory = 0)
 public void testMatCalc() throws Exception {
 m.start();
 solo.enterText((EditText) solo.getView(R.id.matrixA), "1,2,3\n4,5,6\n7,8,0");
 solo.enterText((EditText) solo.getView(R.id.matrixB), "0.5\n2\n8");
 solo.clickOnButton("AB");
 boolean result = solo.waitForText("28.5\n60\n19.5");
 assertEquals(true, result);
 m.finish();
 }

 @Override
 protected void tearDown() throws Exception {
 band.saveMarkers();
 band.stopPowerMonitoring();
 band.getBaseStatus(5, 6); //interleave and count
 solo.finishOpenedActivities();
 super.tearDown();
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

210

I.3 MathDroid Test

package org.jessies.mathdroid;

import android.test.ActivityInstrumentationTestCase2;
import android.widget.Button;
import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.annotations.Given;
import com.robotium.solo.Solo;

public class MathdroidTest extends ActivityInstrumentationTestCase2 {
 private Solo solo;
 private Band band;
 private Marker m = new Marker("Mathdroid");

 public MathdroidTest() {
 super(Mathdroid.class);
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 solo = new Solo(getInstrumentation(), getActivity());
 band = new Band(getActivity(), this);
 band.startPowerMonitoring();
 band.registerMarkers(m);
 }

 @Given(mobileCPU = 0, mobileMemory = 0)
 public void testMathdroid() throws Exception {
 m.start();
 solo.clickOnView(solo.getView(R.id.menu_clear));
 solo.clickOnView((Button) solo.getButton("3"));
 solo.clickOnView((Button) solo.getView(R.id.times));
 solo.clickOnView((Button) solo.getButton("7"));
 solo.clickOnView((Button) solo.getView(R.id.exe));
 boolean result = solo.waitForText("21");
 assertEquals(true, result);
 m.finish();
 }

 @Override
 protected void tearDown() throws Exception {
 band.saveMarkers();
 band.stopPowerMonitoring();
 band.getBaseStatus(5, 6); //interleave and count
 solo.finishOpenedActivities();
 super.tearDown();
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

211

I.4 NQueen Test

package com.mango.queens;

import android.test.ActivityInstrumentationTestCase2;
import android.widget.EditText;
import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.annotations.Given;
import com.robotium.solo.Solo;

public class NQueenTest extends ActivityInstrumentationTestCase2 {
 private Solo solo;
 private Band band;
 private Marker m = new Marker("NQueen");

 public NQueenTest() {
 super(NQueen.class);
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 solo = new Solo(getInstrumentation(), getActivity());
 band = new Band(getActivity(), this);
 band.startPowerMonitoring();
 band.registerMarkers(m);
 }

 @Given(mobileCPU = 0, mobileMemory = 0)
 public void testMathdroid() throws Exception {
 m.start();
 solo.enterText((EditText) solo.getView(R.id.nqEdit), "14");
 solo.clickOnView(solo.getView(R.id.nqBtn));
 boolean result = solo.waitForText("365596");
 assertEquals(true, result);
 m.finish();
 }

 @Override
 protected void tearDown() throws Exception {
 band.saveMarkers();
 band.stopPowerMonitoring();
 band.getBaseStatus(5, 6); //interleave and count
 solo.finishOpenedActivities();
 super.tearDown();
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

212

I.5 Screenshots of Test

Linpack: before test Linpack: after test MatCalc: before test

MatCalc: after test MathDroid: before test Mathdroid: after test

213

NQueen: before test NQueen: after test

214

Appendix J Case Studies ACTS Snippets
Note: Appendix J only shows the mosaic generated (and manually refactored) sections of the

source code for the ACTS classes of the case studies. The underlined code segments in the

figures are manually added while the rest of the class body are generated by Mosaic. The

highlighted code segments show the placeholders transformed by Mosaic for the specific case

study app. Only part of the template has been shown here, as emphasis are on the

transformed placeholders and refactored sections. For complete generic template structure

of ACTS components see Appendix D.

J.1 Linpack Aspect

J.2 Linpack Context

215

J.3 Linpack Task

J.4 Linpack Service

216

J.5 MatCalc Aspect

J.6 MatCalc Context

J.7 MatCalc Task

package mango;

import ...

@org.aspectj.lang.annotation.Aspect
public class Aspect {

@Pointcut("call(* com.android.matcalc.MainActivity.customTimes(..)) && args(arg_0, arg_1)")
public static void offloadMethod(Matrix arg_0, Matrix arg_1) {
}

@Around("offloadMethod(arg_0, arg_1) && !within(Aspect) && !within(Task)")
public Matrix aroundOffloadMethodCall(ProceedingJoinPoint jp, Matrix arg_0, Matrix arg_1) throws Throwable {

return new Task().execute(new Object[]{arg_0, arg_1}).get();
}

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

package mango;

import ...
import com.android.matcalc.MainActivity;

public class Context {
private static Activity activity = MainActivity.activity;
...

}

1
2
3
4
5
6
7
8
9

217

J.8 MatCalc Service

J.9 MathDroid Aspect

J.10 MathDroid Context

package com.android.matcalc;

import ...
import org.hyperic.sigar.*;
import java.io.*;
import java.net.*;

public class Service {
private static Matrix result = null;
private static final int CPU_THRESHOLD = 32; //%
private static final int TIME_THRESHOLD = 5500; //ms
...

public static void main(String[] args) {
try {

ServerSocket serverSocket = new ServerSocket(3);
...

} catch (Exception ex) { }
}

public static void dispatcher(Object[] params) {
...
result = MainActivity.customTimes((Matrix)params[0], (Matrix)params[1]);
...

}
...

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

package mango;

import ...

@org.aspectj.lang.annotation.Aspect
public class Aspect {

@Pointcut("call(* org.jessies.mathdroid.Mathdroid.computeAnswer(..)) && args(arg_0)")
public static void offloadMethod(String arg_0) {
}

@Around("offloadMethod(arg_0) && !within(Aspect) && !within(Task)")
public Node aroundOffloadMethodCall(ProceedingJoinPoint jp, String arg_0) throws Throwable {

return new Task().execute(new Object[]{arg_0}).get();
}

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

218

J.11 MathDroid Task

J.12 MathDroid Service

219

J.13 NQueen Aspect

J.14 NQueen Context

J.15 NQueen Task

package mango;

import ...
import com.mango.queens.NQueen;

public class Context {
private static Activity activity = NQueen.activity;
...

}

1
2
3
4
5
6
7
8
9

220

J.16 NQueen Service

