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Abstract 

 

With the resource constrained nature of mobile devices and the resource 

abundant offerings of the cloud, several promising optimisation techniques 

have been proposed by the green computing research community. Prominent 

techniques and unique methods have been developed to offload 

resource/computation intensive tasks from mobile devices to the cloud. Most 

of the existing offloading techniques can only be applied to legacy mobile 

applications as they are motivated by existing systems. Consequently, they 

are realised with custom runtimes which incur overhead on the application. 

Moreover, existing approaches which can be applied to the software 

development phase, are difficult to implement (based on manual process) and 

also fall short of overall (mobile to cloud) efficiency in software quality 

attributes or awareness of full-tier (mobile to cloud) implications.  

To address the above issues, the thesis proposes a model-driven architecture 

for integration of software quality with green optimisation in Mobile Cloud 

Applications (MCAs), abbreviated as Mango architecture. The core aim of the 

architecture is to present an approach which easily integrates software quality 

attributes (SQAs) with the green optimisation objective of Mobile Cloud 

Computing (MCC). Also, as MCA is an application domain which spans 

through the mobile and cloud tiers; the Mango architecture, therefore, takes 

into account the specification of SQAs across the mobile and cloud tiers, for 

overall efficiency. Furthermore, as a model-driven architecture, models can be 

built for computation intensive tasks and their SQAs, which in turn drives the 

development – for development efficiency. Thus, a modelling framework 

(called Mosaic) and a full-tier test framework (called Beftigre) were proposed 

to automate the architecture derivation and demonstrate the efficiency of 

Mango approach. By use of real world scenarios/applications, Mango has 

been demonstrated to enhance the MCA development process while 

achieving overall efficiency in terms of SQAs (including mobile performance 

and energy usage compared to existing counterparts). 
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Chapter 1. Introduction 

1.1 Introduction 

The purpose of this chapter is to introduce the work carried out in this thesis. 

The chapter first introduces the research areas of interest and associated 

gaps in the form of a problem statement; and further presents the aims and 

objectives targeted towards fulfilling the gaps. Consequently, the body of 

knowledge contributed by this thesis to the research area is presented. Also 

presented is the research method adopted by the thesis which highlights the 

criteria for success. The chapter is concluded with a thesis structure. 

1.2 Problem Statement 

Mobile devices are increasingly gaining popularity due to their convenience of 

usage and portability for end-users. In current times it is possible to perform 

all or most daily computing requirements on mobile devices, given that there 

are a vast amount of mobile applications that ensure this possibility. Portability 

in mobile devices is realised by lightweight components such as microchips, 

batteries etc. which makes mobile devices resource constrained in nature 

compared to counterpart computing environments (such as laptops, desktops 

and servers). Although there is a continuous advancement in the mobile 

hardware industry, the applications which run on these environments offer a 

higher range of rich features most of which consume mobile resource (battery 

inclusive) and consequently energy inefficient. Furthermore, with mobile 

computing dependent on battery life which is highly constrained [1], many 

research works have investigated techniques for prolonging the battery life 

and reducing the extensive use of other mobile resources. Since software 

bloat are the key contributors to the energy consumption in computing devices 

[2], [3], a vast amount of research investigate ways to improve the applications 

running on the mobile device to use fewer resources which amount to 

energy/battery savings. 
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Energy efficiency and performance are important qualities for mobile 

applications because of the resource constrained nature of mobile devices. In 

other words, mobile devices do not possess very high computing power as 

other computing platforms (such as laptops and desktops), and moreover, 

they also possess a more constrained power supply, thereby making energy-

efficiency and performance crucial mobile software qualities. 

A major contributor to the energy efficiency of mobile applications is the use 

of the cloud (a resource-rich environment) to complement the mobile end (a 

resource-constrained environment), thus the goal of mobile cloud applications 

(MCA).  

Due to the dynamic characteristics of MCAs, that is constant changing 

resource state and workload in MCA environments, mobile energy 

optimisation is now dependent on varying runtime environmental factors (such 

as network bandwidth and latency, data size and server conditions to mention 

but a few). Various approaches (details presented in the literature review) 

have been proposed in the literature for mobile cloud offloading, which 

achieve energy or performance savings in some given scenarios, however, 

available approaches still have their known issues and drawbacks. The gaps 

on MCA have been categorised into optimisation overhead, development 

inefficiency, overall inefficiency, and inadequate testing; 

 Optimisation Overhead 

Some approaches are inefficient to use as a result of the unaccounted 

overhead cost of the optimisation process. For instance, for an application 

where an optimisation approach always overshadows the offloading benefits 

during runtime, such application or task may not require MCA optimisation. 

Moreover, existing techniques in an attempt to automate the development 

process implement heavy-weight (custom) runtimes which contribute their 

own performance cost to the optimisation process. 
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 Development Inefficiency 

Following from the first point, existing MCA optimisation approaches are 

based on custom runtimes which incur an overhead, moreover, these 

runtimes are required to be setup at the mobile and cloud tier prior to 

execution. Although these automate the MCA process, the identification of 

offloadable components in most approaches [4]–[6] are achieved manually 

(which is difficult to predict without execution). The few [7], [8] which automate 

the identification process targets already packaged legacy systems (with the 

aim of not modifying the code base). 

 Overall Inefficiency in Qualities 

Some approaches [5], [6] (which may handle optimisation overhead) may be 

overly constrained to mobile optimisation (i.e. with a focus on mobile energy 

and performance) to the extent of ignoring the efficiency of the cloud surrogate 

(which, in cloud computing research, is popularly investigated in terms of 

qualities such as cloud resource efficiency and service availability) – thereby 

compromising overall efficiency. Moreover, other cloud-aware offloading 

schemes [7], [8] do not reflect this awareness in their evaluation process. 

 Inadequate Testing 

As mentioned in point three, offloading schemes which are both aware of 

mobile and cloud tiers in their offloading decision making do not reflect the 

awareness in their evaluation. This is due to the lack of an appropriate MCA 

testing framework. The existing testing approach is focused on evaluating 

mobile performance and energy usage alone – i.e. mobile tier only. 

1.3 Aim and Objectives of the Research 

Driven by the above motivations and gaps, the vision of the research is to 

provide effective approaches for development and evaluation of MCAs – in 

other words improving the development life cycle of MCAs. To a wider extent, 

this would consequently enhance development efficiency, fine-grained 

optimisation, overall efficiency in terms of full-tier qualities and reliable testing. 
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Accordingly, the aim of the thesis is to convey the critical features required for 

the optimisation of MCA in a unified architecture.  

Scope: The full-tier quality attributes investigated by the thesis include the 

popularly investigated mobile performance and energy usage metrics as 

mobile tier qualities. And for the cloud tier qualities, resource efficiency and 

availability, which are prevalent qualities in cloud computing research, are 

explored. In this thesis, the architecture is defined as a model-driven 

architecture which drives the development process based on meta-models 

and achieves automation via a design pattern implementing the optimisation 

logic for MCA offloading. The model-driven approach, at the current state of 

the thesis, targets the Android mobile devices and Amazon cloud. From the 

architecture, the frameworks for development and evaluation (which also 

fulfils the full-tier objective of the architecture) are derived. Thus, the thesis is 

classified under the sub-field of model-driven MCA optimisation. More 

specifically the objectives of the research are as follows: 

 To Develop an Approach for Full-tier Software Qualities and Green 

Optimisation in MCAs 

In order to mitigate the current gap in monolithically tiered optimisation – 

where mostly investigated metrics are associated with the mobile tier, and also 

to improve overall efficiency; the first objective will focus on a model-driven 

architectural approach to MCA development. Model-driven engineering 

(MDE) is a paradigm which exploits domain models to effectively solve a 

recurring problem. Therefore, the proposed model-driven architecture will 

allow for the specification of software qualities alongside green attributes for 

both mobile and cloud tiers. As a model-driven architecture, these qualities 

can be modelled at an earlier stage of development independent of any 

platform specific requirement. 
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 To Develop an Approach to the Automation of MCA Development 

Process without Custom Runtime 

As mentioned earlier, custom runtimes in existing MCA offloading approaches 

incur optimisation overhead. To mitigate this overhead, custom runtimes have 

to be avoided in the development process. Model-driven engineering (MDE) 

simplifies the development process using models of design patterns 

(alongside tools) to increase productivity by automating processes. 

Consequently, the second objective will explore a model-driven engineering 

option in form of a framework for automating the development process of 

MCA. The framework will encompass the intricacies of the MCA development; 

possibly from analysis (involving identification of offloadable tasks) to design 

(involving platform independent conceptualisation) to implementation 

(involving the platform specific optimisation). Consequently, this ought to drive 

efficiency and productivity in MCA development, mitigating optimisation 

overhead and development inefficiency. 

 To Develop an Approach to the Evaluation and Comparison of 

MCAs 

Currently, there is no test framework that has been proposed for evaluating 

MCAs. Consequently leading to inconsistencies in the way testing is 

performed within the domain, thus; making it difficult to compare between 

MCA optimisation approaches. Moreover, evaluation in existing literature 

focuses on mobile-tier metrics; thus it is difficult to ascertain the overall 

efficiency of a given approach. The third objective is to develop a framework 

based on the Behaviour-driven Development (BDD) concept which can be 

applied to MCAs and useful for measuring its overall efficiency by taking the 

full-tier metrics (i.e. mobile and cloud impacts) into consideration. 

Behaviour-driven (from BDD) is a concept that uses different parameters with 

simple clauses (given, where, then) to construct a scenario that defines an 

application. These scenarios can then be expected or compared. 
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Full-tier refers to test coverage with finer-granularity - i.e. including all 

participating tiers of an architecture. For MCAs, the concept of full-tier would 

involve both the mobile tier and the cloud tier. 

 To Conduct Case Studies and Evaluation 

For proof-of-concept, validation and evaluation, the final objective is to apply 

a series of real-life case studies and experiments to critically examine the 

proposed approaches and framework implementations. Furthermore, to 

establish a comparison with existing work the case studies are used to 

establish the efficacy of the proposed approach in terms of mobile tier qualities 

(performance and energy efficiency) and cloud tier qualities (resource 

efficiency and software availability). 

1.4 Contribution to Knowledge 

As shown above, the aim of the thesis to convey the critical features required 

for the optimisation of MCA in a unified architecture is achieved in four specific 

objectives. The first three objectives are focused on developing an approach 

towards the central aim – these are a direct connecting thread to the 

contributions of the thesis which are as follows;  

 Model-driven Approach for Integration of Software Quality with 

Green Optimisation in MCAs (Mango) 

The thesis proposes a novel model-driven architectural approach for MCA 

development. The approach specifies a structure of processes/phases for 

integrating software qualities and green optimisation objectives in the mobile 

tier (performance and energy efficiency) and cloud tier (availability and 

resource efficiency). As a model-driven architecture, this underlying structure 

is based on meta-models and design pattern. Meta-models are used by 

Mango to encapsulate and integrate the mobile tier logic and the cloud tier 

logic at a platform independent level; which includes the modelling of identified 

offloading tasks. Context-driven Requirements Analysis for Caller-Callee 

model (CRAC) is a proposed process for achieving the aforementioned meta-
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modelling. Furthermore, for platform specific implementation of the 

optimisation logic and realisation of MCA offloading scheme; Aspect Context 

Task Service design pattern (ACTS) is proposed by Mango. Consequently; by 

adopting a model-driven architectural approach to MCA optimisation; overall 

efficiency in qualities is achieved as optimisation logic can be both modelled 

in full-tier both independent of and specific for the platform. Moreover; the 

architecture, then makes it possible to implement frameworks to transform 

meta-models to specific application code, as presented in the next point. 

 Context-aware Architecture for Green Optimisation 

The core of the proposed Mango approach is the optimisation architecture. 

Mango architecture has been proposed in the thesis for achieving efficiency 

at runtime while taking the full-tier quality attributes into consideration. The 

context adopted by the approach are user and environmental contexts. The 

objective is that by context-awareness both from the user and environmental 

perspectives (rather than only environmental), an improved efficiency in target 

qualities can be achieved. 

 Model-based Selective Approach to Identification of Computation 

intensive tasks (Mosaic) 

In order to enhance development efficiency and mitigate the optimisation 

overhead due to custom runtimes; a model-driven framework/tool called 

Mosaic is proposed to realise the Mango approach in MCA development. 

Mosaic provides a set of features that realises the MDE triad; editor, language 

and generator [9] while taking into account the intricacies of MCA – i.e. 

surrounding identification and verification of offloading tasks. Mosaic provides 

a graph-based editor for meta-modelling which is based on XMI. Mosaic uses 

templates to specify domain specific language/structure which implements the 

design pattern proposed in Mango. And Mosaic provides a framework feature 

for generating application code using meta-models and templates. The 

transformation feature is used to verify that an optimisation process will most 

certainly yield benefits – consequently mitigating the optimisation overhead 
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concern. Furthermore, development efficiency is achieved through high 

decoupling and automation fulfilled by the transformation process. 

 Behaviour-driven Full-tier Green Evaluation (Beftigre) 

In the absence of an appropriate MCA testing framework which considers full-

tier implications of an optimisation scheme (i.e. implications on both the mobile 

and cloud tiers), this thesis proposes Beftigre. The novelty of Beftigre is its 

ability to define a structured approach to MCA evaluation based on the 

concept of Behaviour driven development – using annotations to evaluate and 

compare between systems by asserting expectations. The other key novelty 

of Beftigre is its interfacing structure from which is utilised; which is as an API 

(called BAND) that integrates with the Android mobile test framework, and an 

API and tool (called BEFOR) that integrates with the cloud tier. By providing a 

full-tier testing framework; Beftigre makes it possible to evaluate the overall 

efficiency of a MCA or its optimisation scheme. It also drives development 

efficiency given that all reporting and analysis from mobile and cloud are 

automated. 

1.5 Research Method 

The thesis adopts a combination of research methods including literature 

review and tool-based case studies. 

Initially, comprehensive review of the current state of the art is undertaken 

with regard to green software, MCA offloading schemes, MCA evaluation 

approaches, and techniques found useful for mobile development – AOP and 

MDE. Through in-depth review and analysis of the latest literature, several 

issues and limitations are found on existing MCA optimisation approaches and 

evaluation approaches. These lead to the design and development of the 

series of novel approaches proposed subsequently. 

To justify and evaluate the proposed MCA optimisation approach and 

evaluation approach, two prototype frameworks/tools are implemented (one 

for the proposed optimisation approach and another for the proposed 
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evaluation approach) and a series of case studies are conducted. Utilising a 

number of distinct real-world applications adopted in existing works, 

experiments are conducted to evaluate the functionality, effectiveness/ 

efficiency and any other key target objectives of proposed approaches; as a 

way to practically re-iterate the benefits of the approach compared to existing 

works – this is a key criterion for success. 

Papers have been published based on research outcome at each milestone. 

This enables valuable assessments of the work from other researchers in 

terms of contribution and justification within the field, and also leveraged as a 

crucial activity to assert the success/relevance of the research. 

1.6 The Structure of the Thesis 

The thesis is organised as follows: 

Chapter 1 gives the introduction of the research including; the problem 

statement, the aim and objectives of the research and the contributions to 

knowledge. 

Chapter 2 broadly reviews the relevant literature; including the background of 

green software, mobile cloud applications (MCA); and concepts in offloading 

schemes, and techniques found useful for mobile application development 

such as; aspect-oriented programming and model-driven engineering. 

Chapter 3 is the problem definition and methodology chapter. The problems 

pertaining to the two main research areas; MCA optimisation approaches and 

MCA evaluation approaches, are presented and used to motivate this 

research. The methodology adopted by the thesis to address the identified 

gaps are also presented in this section, as a way to introduce the contributions 

of the thesis. 

Chapter 4 presents a formal description of the MCA optimisation approach 

proposed by this research – called Mango; which is a model-driven 

architecture for integration of software quality with green optimisation in 

MCAs. 
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Chapter 5 presents a model-driven framework called Mosaic; which is used to 

transform models into application code based on the proposed Mango 

architecture. 

Chapter 6 presents a MCA evaluation approach and framework called 

Beftigre; which is useful for seamless MCA testing (seamless through 

annotating mobile test class) with mobile and cloud metrics taken into account 

– thus full-tier. 

In Chapter 7, using popularly adopted real-world applications, a series of case 

studies and experiments are conducted to illustrate and evaluate the efficacy 

of the proposed approach in terms of mobile tier qualities (performance and 

energy efficiency) and cloud tier qualities (resource efficiency and software 

availability). Also, the efficacy of the frameworks is demonstrated using the 

case studies. 

Finally, Chapter 8 summarises the thesis by presenting the conclusions and 

the future work. 
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Chapter 2. Literature Review 

2.1 Introduction 

This chapter presents a background to green software and conducts a broad 

survey of many techniques that have been found useful for engineering mobile 

applications. Key techniques used are such as Task Offloading (based on 

Mobile Cloud Computing) – focused on green objectives, Model Driven 

Engineering and Aspect Oriented Programming are presented. These 

techniques are the foundation of the development of the proposed approach. 

2.2 Green Software 

2.2.1 Definition 

The concept of green software [10]–[13]; sometimes used interchangeably 

with sustainable software [10]–[12], is derived from green IT or computing – 

which deals with the study and process of manufacturing, using, and disposing 

of computing hardware products with minimal impact on the environment. As 

a result of the success of green IT – hardware research, green software 

research began an investigation into applying ‘green’ principles from hardware 

products into software products and their processes. And also, similar to the 

direct environmental impact of IT hardware, regarding IT software; application 

inefficiencies like inefficient algorithms and resource usage e.g. high Central 

Processing Unit (CPU) usage, are sources of high energy consumption [11], 

[14]. As the total electrical energy consumption by computer equipment 

increases, there is a consequent increase in greenhouse gas emissions. Each 

client/personal computer in use generates about a tonne of CO2 every year 

[15]. Therefore, software has indirect environmental implications. 

The term ‘Green software’ is therefore used to refer to software applications 

that efficiently monitors, manages and utilises underlying resource(s) with 

minimised or controlled impact on the environment [10]–[13]. Green Software 

Engineering is a newly coined name and a branch of software engineering 

increasingly gaining interest, and which aims at improving existing software 
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design and implementation approaches to achieve energy or resource 

efficient software. Green IT presents two key roles software plays in 

sustainability; [3], [11], [16] 1) as a tool to monitor and optimize the energy 

efficiency of any system production or operation process – also referred to as 

greening by Software (or IT), and 2) as a target of energy efficiency initiatives 

– also referred to as greening in Software (or IT). Green software engineering 

focuses on IT as a target of energy efficiency – i.e. greening in software.  In 

the rest of the report, green software engineering will be used interchangeably 

with green optimisation, for brevity. 

2.2.2 Green Optimisation Objectives 

Various works such as [17], show that efficient resource usage by software 

leads to improved energy usage, and in several other works energy or power 

awareness of applications is achieved by control of system resources such as 

the CPU and memory. Furthermore, software does not have a direct 

environmental impact, but indirect impact through resources [13], [17], thus, 

the result of optimising applications by managing control on system resources 

is improved energy usage of the application. Therefore, (as presented in 

section 2.2.1); 

 A key objective of green software is efficient resource usage and 

efficient energy usage [18], [19]. And energy efficiency and resource 

efficiency are often considered as congruent in the research. 

The focus of green software on energy and resource efficiency was motivated 

by the success of green computing research for datacentres domain [20]–[22] 

– which largely targeted optimisation of datacentres for low energy and 

optimum hardware resource requirements. 

Furthermore, software systems are often presented in terms of functional and 

non-functional requirements [23]. While functional requirements deal with the 

functionalities, capabilities, services or behaviours of the system, non-

functional requirements (also known as quality attributes) deals with 

requirements that support the delivery of system functionalities. Examples of 
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quality attributes are performance, accessibility, security and development 

efficiency to mention but a few [23]. 

So far energy efficiency and resource efficiency (popular targets of green 

optimisation) are often considered in context and conjunction with other 

software quality attributes. Hence the varying themes of green software 

research; Performance (response or execution time) and energy efficiency 

[24]–[26], optimal accessibility and resource efficiency [26], energy efficient 

secure systems [27], development efficiency and energy efficiency [3] etc. The 

practice of implementing green metrics as a quality attribute in the context of 

some other quality attribute(s) – such as performance, accessibility, security, 

etc. is often imbibed by current research as a means to explore trade-offs and 

possible consequences of green optimisation, for software quality assurance. 

This trade-off capability of the software product to meet the current needs of 

a set (required) functionality – say resource usage, without compromising the 

ability to meet future needs – say changing workload/performance, is often 

referred to as Sustainability of Software [10] – this is a core green software 

objective. Thus; 

 Another key objective of green software is to achieve greenness as a 

quality attribute which finely integrates with other software qualities 

such as performance and availability. By finely integrates – meaning 

achieving green metrics with little or no performance (other qualities) 

compromise. 

2.2.3 Artefacts and Approaches 

2.2.3.1 Process and Product Artefact 

Green software optimisation targets two main artefacts: the process and the 

product (code) [10], [13]. In this review, artefact is used to describe what is 

being optimised. The artefacts are sometimes referred to as assets. It is to be 

noted that green IT targets a more generic level of assets (which is due to the 

objective of using software as a means for environmental sustainability, rather 
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than a target), such as product, processes, people, project infrastructure, and 

institutional context [10]. 

In the case of greening in software, the process artefact refers to the software 

development life cycle (SDLC) rather than general business processes. For 

example, optimising processes in green IT domain involves; managing how 

hardware products are used, operational decisions such as the promotion of 

electronic systems for business automation – ‘going paperless’, promoting 

teleconferencing to reduce carbon footprints etc.; which all drift from the 

SDLC. 

The SDLC sometimes referred to as software development process (SDP) or 

simply software process is a process for planning, creating, testing, and 

deploying software applications. There exist many different software 

processes, but all must specify four key phases or activities that are 

fundamental to software engineering [23], [28]; 

1. Software specification – which refers to the functionality of the software 

and constraints on its operations. 

2. Software design and implementation – which refers to the production 

of the software to meet specifications. 

3. Software validation – which refers to the evaluation or testing of the 

software to ensure it does what the customer wants. 

4. Software evolution – which refers to the evolvability of the software to 

meet changing customer needs. 

2.2.3.2 Conceptual and Algorithmic Approach 

Conceptual techniques such as architectures or models present a 

comprehensive plan required for achieving green software [29], and they 

could span through multiple phases of the software development life cycle. An 

example is the GREENSOFT model which adopts a layered approach to 

software sustainability; to structure concepts, strategies or guidelines, 

activities and processes for i) green software and ii) it's engineering [13]. With 

the GREENSOFT model, the aspect of the model which focuses on the 
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engineering of green software (i.e. ii, as marked in the statement above), 

adopts a lifecycle approach to investigate optimisation concepts for various 

phases of SDLC. In practice, however, existing green software conceptual 

models do not integrate well with SDLC or software implementation in specific 

application domains, and thereby not utilised for specific application domains. 

Consequently, varying literature propose green software solutions which 

target a specific application domain by focusing on optimisation of the 

software product (as an artefact). In such cases, optimisation is achieved 

through implementation of efficient algorithms [30] – i.e. algorithmic approach 

to green software engineering. 

Algorithmic approaches are techniques that directly apply to or make 

changes to the software code. These include i) refactoring for efficient 

resource usage, ii) use of energy aware custom runtimes which manipulate 

the programs execution or code base, or iii) green compilers or IDEs. 

Refactoring techniques aim to make changes to the structural composition of 

the system in such a way that the new code base or optimised component 

uses less resource to accomplish the same or even more tasks. In green 

software, optimising the code base can warrant structural change which leads 

to a more optimised architecture. For example, the research in [31], through 

comparison of two commonly used distributed architectural patterns shows 

that the choice of architecture adopted in a software program affects its energy 

consumption. Custom runtimes are additional codebase – often independent 

of the functional features of the system – implemented in a software 

application to aid its efficient use of resource or energy. E.g. [32], [33]. Custom 

Runtimes are often used for executing custom optimisation logic which is 

otherwise foreign to the base runtime of a program. The runtimes may 

comprise monitors (power monitor; for energy awareness or resource monitor; 

for resource awareness) which monitor different environmental state in order 

to make an optimisation decision at runtime. Green compilers are used for 

generation of optimised codebase for efficient use of resources or energy [30], 

[34], [35]. Green compilers are targeted towards specific resources such as 
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CPU optimisation or GPU optimisation and therefore are often vendor specific 

as well as resource-type specific. 

2.2.4 Green Software Application Domains 

Green software has been explored in a number of domains, this have been 

broadly classified into three; desktop environments, cloud computing 

environments, and mobile environments. The focus of the classification is 

green software (not green IT hardware, which may include other domains 

such as embedded systems). 

2.2.4.1 Desktop environments (End-user applications) 

Different utility programs or applications of the same software category (i.e. 

fulfilling the same functions, e.g. browsers) have been shown to have varying 

energy or resource consumption [36]–[38]. Moreover, consumption or bloat in 

large applications is mostly due to deeply layered frameworks around which 

they are built – especially in scenarios where only a few of the features of such 

frameworks are utilised by the application [2]. To address such runtime bloat 

leading to energy inefficiencies in end-user applications, refactoring approach 

is proposed to use only components within a framework, that are being utilised 

by the application[2]. Furthermore, a number of end-user resource or energy 

monitoring applications have been proposed in the literature [36], [39]–[41] to 

keep track of resource or energy usage of applications. With the aid of such 

monitors, users can control applications that consume excess resource, a few 

of the monitors can also be set to automatically turn-off programs which are 

not being utilised at any point in time. 

2.2.4.2 Cloud computing environments 

Green software engineering has been applied in the context of cloud 

computing – which spans through public (datacentres), private and hybrid 

clouds. Due to high energy demands in data centres caused by increasing 

demand for cloud computing services, several approaches (e.g. [30], [42]–[44] 

etc.) have been proposed as a solution towards efficient management of cloud 
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resources, of which a popular software-based approach is the load balancing 

approach [30], [45]–[47]. Load balancing deals with even distribution of 

workload across interconnected servers to mitigate overutilization (high 

consumption/runtime bloat) or underutilisation (runtime waste) of resources 

[45]–[47]. 

Cloud computing, also referred to as ‘the cloud’, provides three main service 

models – Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and 

Software as a Service (SaaS) [48], [49] as presented in Figure 2.1. As the key 

objective of cloud computing (from the cloud provider perspective) is 

outsourcing services based on pay-per-use – much similar to the 

telecommunication ‘Pay as you Go’ mobile cost-effective model, the 

consequence has frequently led to increasing cloud resource consumption in 

usual (non-optimised) scenario or day-to-day operations [30], [45], [46]. Most 

cloud providers (especially, of IaaS) adopt green ICT models which focus on 

hardware sustainability – such as datacentre cooling mechanisms, re-design 

of datacentres for energy management by sensors. However, hardware 

sustainability techniques do not directly handle the resource misuse of 

consumers. As a consequence, administrative software systems (which 

include power-aware algorithms such as shown in [30]) are being adopted and 

are built in a way to monitor, and efficiently allocate tasks to servers – an 

application of green software to the cloud, however, focus is on using software 

 
Figure 2.1 Cloud Service Models [48], [49] 
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as a means to attain resource efficiency (i.e. greening by software). Recent 

advances in green software (which focuses on optimised software; greening 

in software), has also had a positive impact on the cloud (SaaS and PaaS). In 

which case, software services provisioned by the cloud are not only 

orchestrated externally (to minimise excess resource usage by high demand 

on a resource) but are also optimised based on the awareness of the internal 

software features (which minimises resource usage based on user context-

awareness) [46]. For example; Chinenyeze et al. [47] presents an aspect-

oriented model for energy efficiency (AMEE) in decentralised servers. AMEE 

is focused on the use of Aspect component for resource optimisation through 

load-balancing based on awareness of application context – i.e. finer-grained 

application control. 

2.2.4.3 Mobile environments 

In mobile environments – such as smartphones and tablets – software 

applications are used to monitor resource utilisation and control the execution 

of mobile applications, in such a way as to extend battery life. A typical 

scenario is the use of such applications (e.g. [50]) to monitor and shutdown 

services which are not being used – these are examples of greening by 

software. Moreover, advances in green software have investigated techniques 

for improving the greenness of mobile application at finer granularity [51], [52] 

such as simple algorithmic/rule-based optimisation, computation offloading, 

context-aware resource management within applications etc. With the ever 

increasing demand on the mobile device and its resource constrained nature, 

the research on green mobile optimisation is experiencing continuous 

attention and interest by academic research and the industry. With advances 

in cloud computing, the popular green software optimisation approach for 

mobile devices is towards the use of cloud as a surrogate to enhance 

execution of mobile tasks – this phenomena is commonly known as Mobile 

Cloud Computing (MCC). This thesis focuses on the mobile cloud applications 

aspect of mobile domain. 
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2.3 Mobile Cloud Applications 

Mobile Cloud Applications (MCAs) are mobile applications optimised by the 

use of cloud computing as a surrogate for execution of resource-intensive 

tasks. Thus, MCAs are a product of the MCC paradigm. 

The mobile tier of the MCA is composed of the mobile device, whereas the 

cloud tier is popularly implemented as clouds or fogs (cloudlets). Fogs or 

cloudlets are installations of small datacentres at designated locations and 

connected to larger cloud servers via the internet. Fogs are much closer to the 

end-user device than the cloud; with the aim of providing mobility at the cloud 

tier [53]. 

A number of MCC research also proposes the use of mobile services at the 

cloud tier – which is similar to cloud services but provisioned by a collection 

of mobile devices. In other words, mobile devices are considered as providers 

of cloud, making up a peer-to-peer network as in [54]–[56]. This is also a form 

of fog computing, however, the focus is on the use of mobile devices for cloud 

provisioning, rather than cloudlets. 

From a greening in software perspective, MCAs are realised through a 

technique known as Offloading [1], [53]. Consequently, various research 

proposes offloading schemes around the optimisation of mobile performance 

and energy usage, focused on the use of high computation resources as a 

surrogate – whether as clouds or as collaborating mobile resources, i.e. fogs, 

[4]–[7], [52]. 

2.3.1 MCA Offloading Schemes 

Task offloading is an algorithmic mobile optimisation technique that involves 

the transfer of computation or resource intensive tasks of a mobile application 

to a remote system (cloud or fog) with higher processing capability for 

execution [52], [57]. Existing offloading schemes employ both code refactoring 

techniques (i.e. transformations) and the use of custom runtimes; thus an 

algorithmic approach (as presented in section 2.2.3). Custom runtimes can 
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execute as background processes which encapsulate the MCA offload model 

for a mobile platform. Android is the most popularly investigated mobile 

platform for MCA as shown in the literature, e.g. [4]–[7], [52], [58] to cite but a 

few. 

MCA offload models or schemes typically consists of three key components 

which are; identification mechanism, decision maker and offloading 

mechanism. These components can be defined by a number of properties (as 

shown in Table 2.1). 

2.3.1.1 Identification of Offloadable Task 

The identification mechanism as shown in Table 2.1 is defined by two 

properties: the type of transformation and the level of granularity. 

 The type of transformation refers to the technique used to analyse and 

mark tasks as offloadable. This can be either manual or automated. 

 The level of granularity is defined by how many of the three MCA 

components an offloading model takes into account during the process 

of identification of offloadable tasks. 

Table 2.1  Comparison of offload models (derived from [4]–[7], [59]) 

System Identification Mechanism Decision Maker Offloading Mechanism 

Type of 

Transformation 

Level of 

Granularity 

Type of 

Threshold 

Used 

Parameters 

Offloading 

Type 

Automation 

System 

Kwon et 

al. [4] 

Manual 

(Annotation) 

Low Static Resource Cloning Custom 

Runtime 

MAUI [5] Manual 

(Annotation) 

Low Dynamic Resource Cloning Custom 

Runtime 

Hassan et 

al. [7], [8] 

Automated High Dynamic Resource 

(full) 

Partitioning Partial 

Runtime 

Native 

Offloader 

[59] 

Automated High Dynamic Resource Partitioning Partial 

Runtime 

N.B. This table is not an exhaustive list of the models, but a list of distinct representative models – 
consisting unique characteristics. 
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To transform a mobile application into an MCA, identification of offloadable 

tasks is a sine qua non activity. This can be achieved either manually or 

automatically. 

Schemes classified by manual transformation require source code 

modification for identification of offloadable task. As illustrated by Figure 2.2, 

in manual transformations, annotations are used by the developer to identify 

methods of the code that are resource intensive [4], [5]. The challenge with 

the manual identification of offloadable components is that it is difficult to 

ascertain which components are actually resource-intensive prior to 

execution/runtime. Moreover, a manually identified task may be tightly 

coupled to a resource constrained code (even if the identified task is actually 

resource-intensive). Also, since manual transformation does not follow any 

systemic approach (such as static or dynamic analysis) to identify offloadable 

task, it therefore cannot account for the general impact of other MCA 

components. Thus, manual transformation possess low level of granularity in 

identification of offloadable tasks (e.g. [4] and [5]). 

Schemes classified by automated transformation do not require source code 

modification in the identification of offloadable tasks. The automated 

transformation approach makes use of static and dynamic analysis of the 

application to identify the offloadable tasks [7], [8]. The purpose of the static 

analysis is to filter out methods that are resource-constrained or tightly 

   
Figure 2.2 Types of Transformation in MCA (derived from [4]–[7]) 
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coupled to other resource-constrained methods. Static analysis is achieved 

by performing a call-graph analysis on the bytecode of the application 

(whether packaged or not). The purpose of the dynamic analysis is to estimate 

that a statically identified offloadable task yields benefit when executed 

remotely in the cloud. This estimation is achieved by comparing the local 

execution time of the offloadable task against its remote execution time. While 

the static analysis does not require execution of the program, dynamic 

analysis requires execution of the program, and also requires that the 

offloadable task is setup in the cloud prior to the analysis. 

Since current automated transformation do not require source code 

modification (i.e. no need for annotations), the custom runtime stores the 

method signatures of offloadable tasks and intercepts any methods at runtime, 

which have their signature stored in the repository of the custom runtime [6], 

[7]. Automated transformations are explored for legacy systems – where 

source code may not be available for refactoring, while manual approaches 

are explored mostly in application development or scenarios where source 

code is accessible. 

As shown by Table 2.1, automated transformations are marked as possessing 

high (implying, better) level of granularity in the identification of offloadable 

components as it includes runtime (dynamic) analysis. 

2.3.1.2 Decision Making 

The decision maker as shown in Table 2.1 is defined by two properties: the 

type of thresholding and used parameters. 

 The type of thresholding refers to the adaptive capability of the 

offloading model – which can be either static (where thresholds are 

fixed) or dynamic (where thresholds adapt to environmental state, 

based on machine learning algorithms). 

 Used parameters refers to the type and number of parameters (or 

environmental factors) used for implementing the thresholds. Some of 
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the factors include mobile CPU availability, network bandwidth, latency, 

etc. Details are presented in section 2.3.2. 

Decision making is a feature in offloading schemes and used to decide when 

to offload or when not to offload. Decision making can be based on simple 

algorithms such as static thresholds [4] or can be as complex as machine 

learning algorithms including the use of multi-layer perceptron [7]. In either 

case, these algorithms employ varying environmental factors in offload 

decision making. Hassan et al. [7] suggests that the more the environmental 

factors are considered in the decision-making process, the greater the depth 

of accuracy of the decision maker. However, accuracy is traded-off for an 

element of overhead due to much monitoring as shown in [7]. An important 

objective of this thesis is to minimise overhead by using a time-based context-

aware approach (a key feature of the later presented Mango approach). The 

intention is that by using time as a singular parameter for thresholding, the 

overhead resulting from extensive monitoring of many resources can be 

reduced. 

2.3.1.3 Remote Execution of Offloadable Task 

The offloading mechanism as shown in Table 2.1 is defined by two properties: 

the offloading type and the automation system. 

 The offloading type refers to the mechanism by which the identified 

offloadable task is offloaded to the cloud. 

 The automation system refers to how automation of all MCA 

components/process are achieved.  

The characterisation by remote execution of offloadable tasks is also referred 

to as the offloading mechanism of the MCA offloading scheme by some 

literatures [4], [7]. This feature describes the structural composition of the 

cloud-tier after the MCA refactoring process. To execute the offloadable tasks 

remotely, the cloud tier can either be setup as a clone of the mobile device 

(i.e. cloning) or as independent components executed remotely (i.e. 

partitioning). 
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Figure 2.3 Types of Offloading Mechanism in MCA (derived from [4]–[7]) 

Cloning [4]–[6] involves the setup of a virtual mobile device in the cloud (as 

illustrated by Figure 2.3). The full mobile application is also installed on the 

virtual device and executes remotely at the same time as the local application. 

The cloning approach works by state synchronisation/checkpointing. In other 

words, when a check pointed state (i.e. thread) is reached, a snapshot is 

created for fault-tolerance and the state of execution is offloaded to the cloud 

which continues execution on the virtual device (on the cloud), after which the 

final state (of remote execution) is synchronised with the local state. 

Partitioning [7], [52] involves the setup of identified offloadable task as 

independent components in the cloud. In partitioning, virtual device is not 

required. Partitioning works by using sockets to transmit execution parameters 

to the cloud. The component in the cloud listens for socket connections and 

processes the mobile request using the parameters sent. Response is in turn 

sent to the mobile tier after execution using socket API. 

2.3.2 Environmental Factors affecting MCA Decision Making 

Varying offloading schemes proposed by existing literature makes decisions 

based on (monitoring) a collection of varying environmental factors of MCA 

(such as, data size as in [4], network bandwidth and latency as in [5], etc.) The 

awareness or monitoring of environmental factors is also referred to as context 

awareness [60]–[62]. As shown in Table 2.2 , these factors are proposed by 

existing literature as impacting MCAs and used for offload decision making. 
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Table 2.2  Decision making factors in MCAs. 

System Used Parameters (Resources monitored for thresholds) 

Mobile 

CPU 

availability 

Mobile 

memory 

availability 

Cloud 

CPU 

availability 

Cloud 

memory 

availability 

Network 

bandwidth 

Network 

latency 

Data 

size 

Kwon et 

al. [4] 

       

MAUI [5]        

Hassan 

et al. [7], 

[8] 

       

Native 

Offloader 

[59] 

       

 

 Mobile CPU availability 

Mobile CPU availability is measured in percent and is of particular importance 

for computation intensive tasks. In other words the lower the percentage CPU 

availability, the greater the chance of mobile energy consumption or 

performance compromise for a computation intensive task. Thus; the objective 

is to execute a (computation intensive) task on the mobile device when the 

percentage CPU availability is higher or at least above a set threshold. Mobile 

CPU availability is obtained programmatically by examining the /proc/stat files 

in Android to compute the percentage CPU available. 

 Mobile Memory availability 

Mobile memory availability is measured in percent and is particularly of 

importance for data intensive task. In other words the lower the percentage 

memory availability, the greater the chance of mobile energy consumption or 

performance compromise for a data intensive task. Thus; the objective is to 

execute a (data intensive) task on the mobile device when the percentage 

memory availability is higher or at least above a set threshold. A higher bound 

mobile CPU and memory availability are useful for determining when to 

execute a task on a mobile device. Mobile memory availability is obtained 
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programmatically by examining the /proc/meminfo files in Android to compute 

the percentage memory available. 

 Cloud CPU availability 

Cloud CPU availability is measured in percent and is particularly of importance 

for computation intensive task. In other words the lower the percentage CPU 

availability, the greater the chance of mobile energy consumption or 

performance compromise for a computation intensive task. Thus; the objective 

is to execute a (computation intensive) task on the cloud when its percentage 

CPU availability is higher or at least above a set threshold. The notion is that 

avoiding offload to the cloud when the cloud CPU is overworked can curtail 

mobile performance compromise. Cloud CPU availability is obtained 

programmatically by examining the /proc/stat files in a Linux-based server to 

compute the percentage CPU available. 

 Cloud Memory availability 

Cloud memory availability is measured in percent and is particularly of 

importance for data intensive task. In other words the lower the percentage 

memory availability, the greater the chance of mobile energy consumption or 

performance compromise for a data intensive task. Thus; the objective is to 

execute a (data intensive) task on the cloud when its percentage memory 

availability is higher or at least above a set threshold. The notion is that 

avoiding offload to the cloud when the cloud memory is overworked can curtail 

mobile performance compromise. A higher bound cloud CPU and memory 

availability are useful for determining when to offload a task to the cloud. Cloud 

memory availability is obtained programmatically by examining the 

/proc/meminfo files in a Linux-based server to compute the percentage 

memory available. 

 Network Bandwidth 

Network bandwidth is the average rate of a successful data transfer through 

a network communication path. It is measured in bits per second and achieved 



27 
 

programmatically by sending packets to and from the server to measure the 

bandwidth. The objective of monitoring the bandwidth is to offload a task when 

the bandwidth is higher than a set threshold. The notion is that the higher the 

bandwidth the greater the tendency for mobile energy or performance savings. 

 Network Latency 

Network latency is the time interval or delay between request and response 

over a network communication path. It is measured in milliseconds and similar 

to bandwidth, it is achieved programmatically by sending packets to and from 

the server to measure the latency. The objective of monitoring the latency is 

to offload a task when the latency is lower than a set threshold. The notion is 

that the lesser the latency the greater the tendency for mobile energy or 

performance savings. 

 Data size 

Data size is the size of the data transmitted over the communication network. 

It is measured in series of bytes (i.e. B, KB, and MB) and can be achieved 

programmatically by checking the byte size of the request packet prior to client 

socket transmission. The objective of monitoring the data size is to offload a 

task when the data size is lower than a set threshold. The notion is that 

transmitting larger data packets over the network could result in increased 

energy usage or performance compromise. 

As mentioned earlier in section 2.3.1.2, the challenge of making offload 

decisions by monitoring the environmental factors is that it contributes 

performance overhead in MCAs at runtime. An important objective of this 

thesis is to minimise this overhead by using execution time as the key factor 

for making offload decisions. Further details behind the concept are presented 

in Chapter 3. 

The popularly investigated metrics in the literature for MCA offloading 

schemes are performance and energy efficiency. These are also observed in 

the objective of the monitored environmental factors presented above. The 
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Green metrics of MCA investigated by this research are presented in the 

following section. Note that the environmental factors are different from the 

MCA green metrics, as the environmental factors (presented in this section) 

are used for deciding when to perform an offload, whereas the MCA 

associated green metrics (presented in the following section) are used to 

evaluate the efficiency (or useful savings achieved) within the MCA.  

2.3.3 MCA Associated Green Metrics 

Following the green software objective (section 2.2.2), the green metrics have 

been identified as energy and resource efficiency [18]. However, the core 

investigated green metrics for MCA is mobile energy efficiency, as the focus 

of MCA offloading schemes is optimisation of the mobile application. 

Moreover, the MCA also involves the cloud-tier thus this research also 

presents cloud resource efficiency as a relevant green metric for MCA. 

Furthermore; green software objectives also investigate trade-off based on 

other software qualities. And the popularly investigated software quality in the 

literature for MCA offloading schemes is mobile performance, in this research 

software availability is also investigated (at both mobile and cloud tiers) as a 

relevant software quality for MCAs. 

2.3.3.1 Mobile Performance 

According to Bass et al. [23], performance is defined to be how long it takes 

an application to respond to an event. The key drive to the advancement in 

mobile computing is the portability of mobile devices – which is defined by 

fluidity and ease of operation [57], [63], [64]. From a user perspective, the 

ease of operation or usability of a mobile application is critically dependent on 

its performance. Thus performance is a crucial metric in MCA (as considered 

in the MCA literature e.g. [4]–[7], [52] to cite but a few), moreover mobile 

performance is popularly explored in the context of MCAs as a trade-off 

software quality to mobile energy efficiency. 

In MCA, mobile performance is often measured by computing the difference 

between the time of call (or request) to an offloadable task and the time of 
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result (or response) after execution of the offloadable task. While call and 

result refer to a scenario where the offloadable task is executed on mobile, 

request and response refer to when offloaded to the cloud. Time (mentioned 

above) is a representative of timestamp – which is often computed 

programmatically using the Java timestamp utility as in [31], and is measured 

in ms. 

2.3.3.2 Mobile Energy 

According to Johann et al. [34], energy efficiency is the ratio of useful work 

done to used energy. In other words, it is the amount of energy incurred for 

executing a task. 

Energy efficiency is derived from three quantities; power, time and work done 

[3], [34] – in this way, energy efficiency is used in the comparison of two or 

more entities where their useful work done is likely to vary, as the case of [31], 

[34]. However, in a situation of comparison between entities of similar work 

done or singular evaluation, energy efficiency is congruent to energy usage 

(i.e. using two quantities; power and time). Consequently, the term energy 

efficiency and energy usage (or energy used), is used interchangeable in MCA 

research. Power Tutor [65] is a popularly adopted model or tool used by the 

literature [4]–[7], [52] for mobile power monitoring. 

2.3.3.3 Cloud Resource 

Achieving cloud resource efficiency in a mobile cloud environment requires 

care so as to not compromise mobile performance. (As highlighted by the 

objectives of the cloud-based environmental factors – section 2.3.2). 

Resource efficiency in servers (the cloud) is often achieved through load 

balancing [47] (see section 2.2.4.2). 

Although cloud resource efficiency is not often explored in the research on 

MCAs, investigating resource efficiency/usage for cloud can be achieved 

using the core impacted resource of the cloud – i.e. CPU and memory 

resource. Moreover, these relate to the key aspects of application taxonomy 
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in MCA (i.e. computation and data intensive taxonomies, see section 2.3.4). 

Thus for cloud resource usage of MCAs; percentage CPU utilisation and 

memory utilisation are the key metrics. Percentage CPU utilisation and 

memory utilisation can be measured by examining the /proc/stat and 

/proc/meminfo files respectively in a Linux-based server. 

2.3.3.4 Software Availability 

According to Bass et al. [23], availability is the probability that a system will be 

operational when it is needed. In other words, availability is concerned with 

avoiding system failure. Most research does not take software availability into 

consideration in the implementation of MCA schemes (this category of 

schemes use only network exception catch, e.g. [5], [6], [52]). Moreover, a few 

studies which consider availability investigates only at the mobile tier, e.g. [4]. 

Availability is achieved at the mobile tier by implementing a time limit to how 

long the mobile device can wait on the cloud to complete the execution of a 

request. When the time limit is elapsed the execution is made on the mobile 

tier. Availability can also be implemented in a similar manner for the cloud tier 

– this is presented by Mango in this research. While the time limit for mobile 

tier targets the total elapsed time – which includes the network to-and-fro 

communication time and the cloud execution time, the time limit for the cloud 

tier targets only the cloud execution time. Thus for a finer granularity, the time 

limit used at the mobile tier is more than that of the cloud tier. 

Availability is an execution quality [66], and thus realised by several time 

associated measures such as mean time to failure (MTTF), mean time to 

repair (MTTR) and failure rate [67], [68]. MTTF and MTTR are measurable in 

ms. Furthermore, since performance – an execution quality – is popularly used 

in the mobile tier, in this research we explore availability for the cloud tier – as 

shown later in the case studies in Chapter 7. Availability in the cloud tier is 

measured using MTTR – which is achieved by measuring the time (in ms) it 

takes for the cloud tier to execute a task (or optimally react) in an adverse 

condition. 
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2.3.4 Application Taxonomy 

Application taxonomy defines the classification for applications in which MCAs 

have been explored in the literature. Application taxonomy for MCAs has been 

derived by exploring the case studies used in the evaluation of offloading 

schemes in the literature; as shown in Table 2.3. Furthermore; the offloading 

schemes used to generate the taxonomy vary across the sampled schemes 

in 1, and are based on Android applications. POMAC2 [7], [8] characterised 

under automated transformation schemes. EFDM3 characterised under 

manual transformation schemes and cloning schemes. DPartner is 

characterised under partitioning. 

MAUI [5] demonstrates a resource-intensive application (with fast battery 

consumption) by implementing features within a synthetic application to 

perform a large bulk-data transfer over the Wi-Fi interface, consume the entire 

CPU, and keep the display backlight on. Such resource-intensive applications 

motivate the MCA research. As shown in Table 2.3, these applications can be 

classified in three taxonomies according to their resource consumption, they 

are: Computation-intensive, Data-intensive and Hybrid applications. 

 

 

                                            

2 POMAC: Properly Offloading Mobile Applications to Clouds 
3 EFDM: Energy-Efficient and Fault-Tolerant Distributed Mobile Execution 

Table 2.3  Application Taxonomy 

System Taxonomy (based on case studies used in the literature) 

Computation-intensive Data-intensive Hybrid 

Kwon et al. [4] NQueen [69], 

Mezzofanti [70] 

Picaso [71], MatCalc [72], 

MathDroid [73], ZXing [74] 

Droidslator [75] 

Hassan et al. 

[7], [8] 

Mezzofanti [70], 

JJIL [76], OsmAnd [77] 

ZXing [74] Droidslator [75] 

Dpartner [52] Linpack [78] - Andgoid [52], 

XRace [79] 

Note that the references appended to the Apps links to the source code or google play app. 
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2.3.4.1 Computation-intensive Applications 

Computation-intensive applications are a class of mobile applications that are 

highly (or significantly) dependent on the computing power (i.e. CPU resource) 

of the mobile device. An application or process is categorised as being highly 

dependent on the CPU usually based on the high frequency of the use of the 

CPU resource within a given time, for example: 

 Tasks that iteratively compute a mathematical function, in categories of 

benchmark applications and complex algorithmic applications e.g. 

Linpack, NQueen. 

 Tasks that frequently acquire and compute sensor data within the 

mobile device, in categories of GPS applications and games e.g. 

OsmAnd, Mezzofanti. 

The core benefits of offloading schemes are realised with computation-

intensive applications; as this class of applications consumes the most battery 

(or energy) from the mobile device. Most computation intensive applications 

fall into the category of gaming applications and media processing 

applications (i.e. image/video processing applications such as face 

recognition apps, optical character recognition apps etc.) as shown in the 

literature, for example, [5], [7], [8], [80]. 

2.3.4.2 Data-intensive Applications 

Data-intensive applications are a class of mobile applications that devote most 

of their processing time to I/O and manipulation of data. Due to the focus on 

manipulation of data, these applications make more use of memory and 

network than the processing power. In other words,  

 tasks that hold and frequently read in-memory data for computation, in 

categories of arithmetic computations, e.g. MatCalc. 

 tasks that offload large dataset across the network, in categories of 

barcode decoders and face recognition applications, e.g. ZXing and 

Picaso. 
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In most scenarios data-intensive applications do not consume significant 

mobile energy, unless in situations of poor communication network or 

situations where they also require extensive computation – i.e. hybrid 

applications. Studies [4], [8] have emphatically shown that offloading 

applications that do not consume significant mobile energy (such as data 

intensive applications), can result in mobile performance compromise or even 

a slight increase in energy usage. 

2.3.4.3 Hybrid Applications 

Hybrid applications are applications where the identified offloadable task is 

both computation intensive and data intensive. A typical example of hybrid 

applications is video streaming, e.g. Droidslator, and online gaming 

applications. This category of applications consumes both network resource 

intensely while performing CPU demanding tasks. 

As mentioned earlier, offloading such tasks is likely to save energy only if they 

consume significant mobile energy. 

2.3.5 MCA Evaluation Approach 

The MCA architecture generally comprises three sets of components [4], [5], 

[7], [52], these are, the mobile offloadable components (MCs), the server 

components (SCs) and the components of the Offloading scheme/model. 

Mobile offloadable components are first identified4. These components are 

subsequently replicated on the server (as server components) to improve 

mobile resource usage. The third set comprises the offloading scheme 

components – which handle decision making based on monitoring data of the 

current environmental state to predict when offload process is beneficial. The 

scheme can be launched in both tiers – mobile and cloud tier (as shown at the 

top middle section of Figure 2.4, i.e. (b)). The evaluation section of Figure 2.4 

(i.e. (c)) illustrates the mobile-centric architecture scenarios method of 

                                            

4 The analysis for offloadable classes is necessary due to the inadequacy of the cloud to perform some 
mobile specific functions such as those tied to sensors, cameras, GPS etc.; and also to identify the 
application features that are resource-intensive. 
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evaluation adopted by current literature, which is based on two features: the 

focus on mobile-tier and the use of architecture scenarios.  

2.3.5.1 Focus on Mobile-tier 

To evaluate the efficiency of such systems (MCA with offloading schemes) 

two abstract phases are taken into account, they are mobile device test and 

server test; however, most research focus is on the mobile end [4], [5], [7], 

[52]. For example, various works [4], [7], [52] achieve rigorous tests by 

randomization of environment conditions such as network (bandwidth and 

latency) and server/cloud resource (CPU and memory), using throttling and 

load generation respectively, in order to evaluate mobile power usage and 

performance. Consequently, the results of the evaluation do not highlight the 

scheme’s implications on the cloud tier (the focus of evaluation is depicted by 

the solid block around each scenarios in section c of Figure 2.4). Although the 

implementation of the MCA offloading schemes takes into full account the 

architectural change, the evaluation of the schemes does not clearly account 

for the impact of the scheme on the full system tiers. This and further 

challenges pertaining to the current MCA Evaluation approach are presented 

in section 3.3. 

 

 
Figure 2.4 MCA architecture with mobile-centric architecture scenarios 

...
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2.3.5.2 Use of Architecture scenarios 

The literature uses architecture scenarios to evaluate MCA offloading 

schemes. These scenarios currently vary between literatures. For example [7] 

defines four scenarios (OnDevice,  OnServer, Optimal and POMAC) to 

evaluate POMAC. While [4] defines five scenarios (Smartphone only, 

Offloading w/All objects, Offloading w/Necessary objects, Offloading 

w/Necessary objects - delta, and Offloading w/Threshold check) to evaluate 

its proposed static thresholding scheme. Although the variability of 

architecture scenarios in current literature poses a challenge to comparing 

existing schemes (see section 3.3.1), these can be summarised based on 

similarities between scenarios as shown in Table 2.4 and illustrated by Figure 

2.4.  

Local is the execution of the application without any offloading. Server is a 

scenario where all offloadable objects are always executed on the server. 

Optimal is a scenario where only assessed objects are offloaded. Assessed 

objects are the objects identified as computation or data-intensive. The 

Scheme is based on extending the previous optimal scenario with decision-

making5 mechanisms for offload. It refers to the proposed offloading schemes 

in the literatures. 

                                            

5 Decision making is the check on the environment conditions of the communications which influence 
the offloading. Decision making mechanisms can be based on single (static) thresholds [4] or predictive 
learning [7]. 

Table 2.4  Architecture Scenarios for MCA Evaluation 

Summary of Scenarios ST [4] Specific Scenarios POMAC [7] 

Specific Scenarios 

Local Smartphone only OnDevice 

Server Offloading w/All objects OnServer 

Optimal Offloading w/Necessary objects (delta) Optimal 

The Scheme Offloading w/Threshold check POMAC 

N.B. The summary column is used to match the scenarios from the literature [4] and [7]. 
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2.4 Aspect Oriented Programming 

2.4.1 Definition and Terms 

Aspect-oriented programming (AOP) provides a component-based approach 

to the implementation of crosscutting concerns6 [81]. The concept of code 

injection at points of execution is one of the core features of AOP. A number 

of libraries implement the AOP concept, such as AspectJ for Java and 

PostSharp for .NET.  AOP provides two types of crosscutting; 

 Dynamic crosscutting – which modifies the behaviour of the program. 

Dynamic crosscutting is fulfilled by join points (via pointcuts and 

advices) which makes it possible to define dynamic structure of 

crosscutting concerns [81]. in AspectJ and, 

 Static crosscutting – which modifies the static structure of the types 

(classes, interfaces, and other aspects) and their weave-time 

behaviour [81]. Static crosscutting is fulfilled by forms known as 

introductions or inter-type member declarations. 

AOP is often used for safety checks, logging and other concerns that can exist 

across class or method definitions – hence crosscutting concerns. The 

crosscutting concerns in which the AOP technique is explored is largely based 

on the modification of software behaviour; thus dynamic crosscutting 

dominates the use of AOP [81]. In AOP a weaver is used to apply aspects (or 

weave crosscutting concerns) into a target object to create a new, proxied 

object. The two types of weaving are as follows; 

 Static weaving – performs the weaving before compilation. It is efficient 

in producing highly optimised woven code whose speed is comparable 

to that of the code written in traditional methodologies (without AOP 

techniques) [82]. 

                                            

6 A crosscutting concern refers to a requirement or program which (although in most cases is not a 
functional requirement of the system) is or has potential to be recurrent in various parts of the program. 



37 
 

 Dynamic weaving – also known as load-time-weaving (LTW), dynamic 

weaving is performed after compilation; in load-time or runtime. 

Dynamic weaving is useful for reloading objects during execution [83] 

and as shown by Chinenyeze et al. [84] it is also particularly efficient in 

energy evaluation of components of similar structures. 

From a Java programming context, AspectJ is the canonical open-source 

Java library which finely implements AOP concepts. It adds to Java a few new 

constructs: pointcuts, advice, inter-type declarations and aspects. 

Aspect. An aspect is an encapsulation of these new (aforementioned) 

constructs and acts as the unit of modularity for crosscutting concerns, – 

analogical to Java classes, in behaviour. As seen from the examples in the 

following section, crosscutting code is implemented once as aspects 

(LogInterceptor of Figure 2.5 and Runner of Figure 2.6). 

For clarification of some other AOP associated terms, some definitions have 

been given by exemplification in the following section. 

2.4.2 AOP by Example 

2.4.2.1 Dynamic Crosscutting 

The Logger example presented in Figure 2.5, demonstrates how AOP can be 

used (in a dynamic crosscutting manner – using pointcuts) to alter the dynamic 

behaviour of a system (without directly modifying the original source code). 

 
Figure 2.5 Dynamic crosscutting in AOP (showing pointcut and advices) 

1: public aspect LogInterceptor
2: {
3:    pointcut method() : call(public * MyBanking.*(..));
4:    
5:    before() : method()
6:    {
7:        Logger.doLoggingBefore();
8:    }
9:
10:   after() : method()
11:   {
12:       Logger.doLoggingAfter();
13:   }
14:}

    public void save (Object arg)
    {
        //business logic goes here
    }
}

public class MyBanking
{
    public void pay (String bar)
    {
        //business logic goes here
    }

...

before

before

after

after
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The example presented in Figure 2.5 is based on the traditional AspectJ 

syntax. Some AspectJ extensions also provide annotation based syntax for 

AOP as shown in [81]. 

Pointcut. A pointcut is a program construct that selects join points and 

collects join point context or data. In object-oriented programs join points 

consists of operations such as method calls, method executions, object 

instantiations, constructor executions, field references and handler executions  

[81], [85]. Pointcuts and advice dynamically affect program flow [85] and will 

be adopted for our model implementation. And within the aspect, the point of 

execution where the code is to be woven is specified – as a pointcut, (Line 3 

of LogInterceptor). 

Advice. In AOP behaviours are added using Advice. An Advice is the actual 

snippet of code that can be executed before, after or around the pointcut. In 

other words, an advice defines the code to execute upon reaching selected 

point(s) of execution. For example, the specifier keywords before and after 

in lines 5 and 10 respectively are used to specify when the logging advice in 

lines 7 and 12 are to be executed within pointcuts. 

2.4.2.2 Static Crosscutting 

The Runner example presented in Figure 2.6 illustrates how AOP can be used 

in a static crosscutting manner to change the structure of a class. As 

mentioned earlier, while dynamic crosscutting changes the way that a 

program executes – using join points, static crosscutting affects the static 

structure of the program – using an introduction. 

Introduction. An introduction is a member of Aspect that defines or modifies 

a member of another type such as a class. The declare keyword used in line 

 
Figure 2.6 Static crosscutting in AOP (showing declare and inter-type) 

1: public aspect Runner
2: {
3:    declare parents: Sample implements Runnable;
4:    public void Sample.run() { ... }
5: }

public class Sample
{
    public void method ()
    {...}
}
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3 of Figure 2.6 is an example of an introduction. While join points are used for 

dynamic crosscuts, introductions are used for static crosscuts. 

In the example above (in Figure 2.6) the Runner aspect makes the Sample 

class runnable by first; declaring that the Sample class fulfils the Runnable 

interface, using the declare keyword on line 3. And second; defining the 

appropriate inter-type void run() method as public on line 4. 

2.5 Model-Driven Engineering 

As mentioned earlier (in section 2.3.1), existing offloading schemes employ 

the use of custom runtimes; with the aim of automating the optimisation 

process of MCA. These custom runtimes, however, contribute overhead 

during MCA execution (as presented later in Related Work; Chapter 3). In 

traditional software development, there are many approaches to accelerate 

design and development. Among these approaches, Model-driven 

Engineering (MDE) has received attention because it provides abstraction 

through high-level models (e.g. UML), consequently facilitating the 

implementation of (complex) software [86]. MDE and Model-driven 

development (MDD) are often used interchangeably, the same is applicable 

to this section. 

2.5.1 Definition and Terms 

Model-driven engineering (MDE) focuses on exploiting domain models to 

effectively solve a recurring problem. Consequently, MDE simplifies the 

development process using models of design patterns (alongside tools) to 

increase productivity [9], [87]–[89]. Popular objectives of MDE are the 

realisation of generic models, i.e. platform independent models (PIM) and 

specific models; i.e. platform-specific models (PSM) and the transformation 

between the two. PIM is the most abstracted form of a model, and are the 

blueprints from which PSM are derived. At PSM, software artefacts can be 

realised using tools. The popular features that make the triad of 

platform/domain-specific modelling (PSM) are: editor, language and generator 

[9]. 
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An editor allows users to modify the template of the model or program the 

language for the model. The domain specific language (DSL) ensures that the 

program is correct by defining a language or template structure. While the 

generator is used to generate executable implementations of the model – a 

process also known as transformation. It is also useful for generating 

additional software artefacts that are synchronised with the model. 

Furthermore, they synthesise artefacts from models to ensure consistency 

between application implementation and information related to functional and 

quality requirements captured by the models [9], [87]. 

In other words; MDE is applicable to various SDLC phases, thus; it can be 

used to specify a sequence of models from requirements to features, and from 

both of these to architecture (which includes modelling qualities) [87], [89]. 

The transformation process is based on respective meta-models. A meta-

model is a model of model. Meta-modelling is the process of generating meta-

models. It involves the development of rules and structures used for modelling 

a set domain problems. In other words, meta-models explicitly describe how 

domain-specific models are built. 

2.5.2 MDE Technologies for Mobile 

The MDE technologies for mobile are grouped in two headings – i) those that 

have been explored in Java mobile applications (J2ME), which are generally 

often applicable to all traditional java applications which run on JVMs, and ii) 

those that are applicable to mobile platforms with different VMs from JVM; 

such as Android running on Dalvik Virtual Machine (DVM). Based on up to 

date knowledge none of the explored MDE technologies have investigated the 

MCA domain towards mobile optimisation. 

2.5.2.1 Technologies for Java Mobile 

Carton et al. [90] investigates the use of AOP techniques and MDD for 

modelling context; targeted towards J2ME applications. The modelling in [90] 

is achieved through Eclipse Modelling Framework (EMF). EMF provides a 

Java/XML-based modelling and code generation framework. Transformation 
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in EMF (i.e. the generator) is based on Java Emitter Templates (JET) to 

transform PSM to code. The templates are validated based on plain Java 

classes, moreover, the JET learning curve for the construction of templates 

can be quite steep, as the full structure of the class has to be constructed 

using a templating language. Thus, EMF is compatible with Java applications, 

and this includes J2ME applications – i.e. Java Mobile Edition group of 

applications, as shown in [90]. EMF, however, is not compatible with the 

popular current day mobile platform – i.e. Android. Although Android 

applications are developed in Java language they do not run on the traditional 

JVM (they run on DVM), moreover, new concepts such as Activity, Service 

and other Android specific APIs are introduced; some of which are due to the 

presence of varying mobile sensors [91], [92]. Consequently, EMF was not 

used in this research. 

2.5.2.2 Technologies for Cross Mobile 

As mentioned earlier, due to the uniqueness of the Android platform, EMF 

which was adopted for J2ME mobile applications in [90] could not be 

seamlessly applied in Android; consequently varying generators e.g. [93]–[96] 

are proposed to target transformation in regards to Android mobile 

applications. These are categorised based on how they perform 

modelling/transformation; 

 UML-based Transformers 

UML-based transformers are a class of transformers that achieve model 

transformation based on UML models. Usman et al. [93] propose a generator 

called MAG (Mobile App Generator) for the transformation of multiple mobile 

platforms – Android and  Windows phone. MAG is based on UML modelling. 

MAG performs the transformation using a state pattern which takes as input; 

template classes and state machine with UML profile, in order to produce as 

output; specific mobile application classes for Windows or Android phone.  

Parada et al. [94] extends the GenCode tool (which is naturally targeted 

towards Java code like EMFs) [97] to generate Android code based on class 
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and sequence diagrams. Thus [94] like [93]; are based on UML modelling. 

The structure for the application (java files/classes) are generated from the 

class diagrams. The extended GenCode in [94] also allows for generation of 

Android API components such as Activity and Services (a limitation of EMF 

used in [90]). The behaviour of the application is generated from the sequence 

diagrams; such as method invocations and loops; however, some operations 

such as mathematical operations and variable assignment are not generated. 

 Graph-based Transformers 

Graph-based transformers are a class of transformers that achieves model 

transformation based on graph models. Lamhaddab et al. [95] uses MDE in 

graph models (MDEG) as a practical solution for reverse engineering across 

different mobile platforms (i.e. cross-platform development). MDEG 

represents complex systems as models (usually XMI: XML Metadata 

Interchange) in graph format. This provides more flexibility in transformation 

as shown by [95] – which demonstrates MDEG’s flexibility in cross-platform 

transformation. For cross-platform transformation, a specific application in a 

platform is considered an instance of a meta-model. Instances of meta-models 

are annotated with tags or annotations for platform specific transformation. 

 DSL-only Transformers 

DSL-only transformers are a class of transformers that achieves model 

transformation only based on a custom domain specific language. They also 

target a similar aim of cross-platform mobile development through modelling, 

however, modelling is based on a language, not UMLs or graphs. Example of 

such tools/frameworks are applause [98], Automobile [99], AXIOM [96], [100], 

MD2 [101] and Mobl [102]. These approaches are aimed at generating native 

code for different platforms through DSL, with the exception of Mobl which is 

based on the Web (i.e. transformed application is based on HTML5, CSS and 

Javascript) which is native feeling (though not native) application [102], [103]. 
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2.6 Summary 

This chapter presented the background on green software engineering, 

mobile cloud applications, aspect-oriented programming and model-driven 

engineering as shown in Figure 2.7. Green software was introduced as 

applications that efficiently utilises resources during runtime. The 

consequence of which would be efficient resource usage and efficient energy 

usage – thus meeting an objective of green software. Also, a second identified 

objective or concern of green software is its integration with software quality 

attributes such as performance. 

2.6.1 Green Software Engineering and MCA 

Energy and resource efficiency have been considered a software quality 

attribute (since the advent of green software engineering), alongside other 

quality attributes like performance and security. In MCA, however, the metrics 

combination popularly explored are mobile performance and energy efficiency 

(performance representing a software quality, and energy-efficiency 

 

Figure 2.7 Summary of Review and Scope of the Thesis 
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Dynamic: weaves at runtime
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Dynamic: modifies behaviour
Static: modifies structure

MDE

Process:
Solves problems in a domain by 
models.
Specific features: editor, 
language and generator.

Technologies:
UML-based (e.g. class diagrams)
Graph-based (XMI)
DSL-based (custom languages)
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representing a green metric). Moreover, MCA is not a monolithically tiered 

domain as it is composed of the mobile and cloud tiers which are both faced 

with unique challenges – i.e. resource constrained challenge for the mobile 

domain, and the challenge of efficient provisioning anchored to the cloud 

domain. Consequently, in MCA, the aforementioned challenges have to be 

fully taken into consideration when investigating MCA metrics: 

 To observe the efficiency of a MCA offloading scheme on resource-

constrained mobile device – performance and energy usage is 

considered as metrics for the mobile tier. 

 To observe the efficacy of a MCA offloading scheme for cloud 

provisioning – resource usage and software availability are considered 

as metrics for the cloud tier. 

Thus, this thesis investigates full-tier qualities for MCA. Furthermore, to 

achieve and monitor the aforementioned qualities, this research explores the 

following: 

 An architecture for efficient MCA offloading based on the full-tier 

qualities. The aim of the architecture is both for development-efficiency 

and high decoupling (Achieved through MDE and AOP techniques). 

 An evaluation approach for MCA based on the full-tier qualities (the 

details on the motivation is presented in Chapter 3). 

2.6.2 Opportunities for AOP in MCA 

AOP has been explored in mobile computing for implementing crosscutting 

concerns or weaving application-ready (off-the-shelf) features into an 

application as in [104]. AOP however until now, has not been explored in the 

context of MCAs (in achieving green software for mobile applications). 

AOP is popularly used in dynamic crosscutting, and the Logger example in 

Figure 2.5 is one of many applications of AOP concepts in software 

engineering. Success has been achieved in the use of AOP to address 

security checks, performance, transaction management etc. [81] as 
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crosscutting concerns, some of which are concerned with software quality 

attributes such as security and performance. In a similar way with regards to 

MCAs; offloadable tasks are concerns associated with mobile energy 

efficiency. Thus AOP aspects could be employed in the implementation of 

offloadable tasks as cross cutting concerns – this can offer two key benefits 

to MCAs; 

 Source decoupling 

Aspects can help decouple MCA optimisation logic from the code base of 

legacy systems. This means that no major modification is required to be made 

on the source code of existing systems (especially the offloadable 

components) since pointcuts are used to identify join points of offloadable 

components. 

 Reusability 

Following from the source decoupling, only aspects will be subject to code 

refactoring or changes pertaining to offloadable tasks. This means that 

aspects can be reused for different MCAs as they are independent of the 

application code base. In other words, for any MCA an aspect component will 

remain the same structurally, with changes only made to the pointcut which 

refers to the offloadable task(s) of specific MCA. Furthermore, this reusability 

support allows for the development of tools to engineer/customise aspects for 

specific MCAs – in a way where aspects can be designed as templates given 

that it is structurally reusable. This can be accomplished by Model-driven 

Engineering. 

Aspects are applied in the design pattern (later referred to as ACTS) which is 

used to realise the proposed architecture of this research. 

2.6.3 Opportunities for MDE in MCA 

Various technologies, e.g. [93]–[96] have been presented in the literature on 

MDE for mobile development; existing works, however, do not cater for 

software qualities and thus are not focused or applicable to MCA domain. 
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Thus a gap still exists for the application of MDE in MCA development for its 

automation so as to mitigate the need for custom runtimes and yet achieve an 

automated and flexible development process. Furthermore, as current 

contributions in the literature have demonstrated that the use of MDE can 

enhance abstraction and automation in generic mobile development [93]–[96], 

insights are consequently drawn to use MDE for MCA, in its automation of 

development (i.e. Development efficiency) as follows (in fulfilling the triad of 

PSM – discussed in section 2.5.1); 

 By Editable MCA Meta-Models (Editor) 

As presented in section 2.3.1, the identification of offloadable tasks is a sine 

qua non condition for MCA development. Thus a MCA meta-model can be 

used to incorporate offloadable tasks into a model. Furthermore, the quality 

objective of MCA in terms of optimisation aims (which are mobile performance 

and energy efficiency, cloud resource efficiency and availability) can be 

integrated into the model. For greater flexibility, a graph-based model can be 

used with MCAs, as graph-based models are based on XMI as shown by [95]. 

Consequently, an MDE editor for MCA is proposed by this research based on 

a graph model. As identification of offloadable tasks is a core activity in MCAs 

(see section 2.3.1) – this is also achieved in modelling in this study. The 

modelling framework comprises of two meta-models; the call-graph (which 

specifies the offloadable tasks and its properties) and the graph-based model 

(later referred to as Caller-Callee Model, which integrates the optimisation 

aims/attributes into the model). 

 By Reusable MCA Templates (Language) 

As presented in section 2.5.1, DSL is used to specify structure in a program 

through templates. Moreover, MDE models are driven with design patterns 

using tools; to increase productivity [9], [87]–[89]. MCA is a domain centred 

on offloadable tasks; a structure can thus be specified for MCA (for the 

purpose of MDE) by the use of a design pattern which encapsulates 

offloadable tasks and quality attributes as logic. This encapsulation can 
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consequently be presented in the form of templates for reusability. This 

research proposes a design pattern – later referred to as ACTS (for the 

aforementioned Caller-Callee model) which is realised as templates. In order 

to accomplish reusability, the templates are implemented with placeholders 

and tags which are representative of the properties of the meta-model. 

 By Automated MCA Code Generation (Generator) 

The core MCA meta-model (i.e. the Caller-Callee model) and the MCA 

template (i.e. based on ACTS pattern) are used to generate application code 

for the MCA. As a MCA generator, the generator has to be aware of the 

optimisation objective in order to determine scenarios where the MCA will 

yield actual benefits. In this research, the generator is packaged as an 

API/framework, and the automated code generation which performs an 

evaluation (on the model) for asserting that MCA will yield actual benefits is 

later referred to as Quality Verifier. Thus the transformation is achieved in two 

phases; at the design (i.e. modelling) phase and at the verification phase. 

The MDE architecture in the research is presented in later sections as Mango 

and the framework as Mosaic framework. And the MCA evaluation (different 

from model evaluation) is fulfilled by Beftigre framework (a test framework). 

The following chapter presents the methods adopted for the contributions of 

this research. 
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Chapter 3. Problem Statement and Methodology 

3.1 Introduction  

Having presented in the previous chapter, a background for the study based 

on a wide body of literature, this section focuses on formalising the main 

problem or gaps of the study. Consequently, the methodology adopted by this 

thesis to address the problems are presented. Also the chapter presents the 

objectives while introducing the contributions of the thesis. 

The first set of gaps and methodology is associated with the approaches used 

for designing MCAs – i.e. offloading schemes. The second set is associated 

with the evaluation approach adopted in the research on MCAs. 

3.2 MCA Optimisation Approach 

3.2.1 Gaps in existing approaches 

This section presents the gaps relating to MCA offloading models/techniques 

for improving the performance (in the context of execution time) and energy 

usage of mobile device applications. The existing challenges in the literature 

are presented, in this section, in terms of overheads in the components that 

make up the generic MCA architecture (illustrated in Figure 3.1). 

 

 

 
Figure 3.1 MCA architecture based on custom runtime (in the literature) 
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3.2.1.1 Challenges of Identification Technique 

A task is identified for offload if it possesses chances of performance or energy 

improvement when executed remotely – i.e. its remote execution time is lesser 

than local. A key constraint impacting the performance gain of an offloadable 

task is dependence on mobile-only resources – such as sensor or camera, 

etc. 

Zhang et al. [105] adopts a shortest path algorithm to identify an optimal cut 

which minimises offloading overhead. However, this does not take into 

consideration, the aforementioned constraint when identifying an offloadable 

task. Elicit [8] uses the shortest path approach for identifying offloadable tasks, 

and by taking into account the constraint, provides a better performance gain. 

In the literature offloadable tasks can either be identified manually using 

annotations or automatically through static/dynamic analysis as shown in 

Table 3.1. The latter is more development efficient and accurate [8], [59]. 

Furthermore, not all offloaded tasks prove to be performance or energy 

efficient, particularly the data- intensive applications, as shown in the literature 

[7], [8], [52]. Thus raising a question to the effectiveness of the approach used 

Table 3.1  Comparison of offload models (derived from [4]–[7], [59]) 

System Identification Mechanism Decision Maker Offloading Mechanism 

Type of 

Transformation 

Level of 

Granularity 

Type of 

Threshold 

Used 

Parameters 

Offloading 

Type 

Automation 

System 

Kwon et 

al. [4] 

Manual 

(Annotation) 

Low Static Resource: 

data size 

Cloning Custom 

Runtime 

MAUI [5] Manual 

(Annotation) 

Low Dynamic Resource: 

bandwidth 

and latency 

Cloning Custom 

Runtime 

Hassan et 

al. [7], [8] 

Automated High Dynamic Resource: 

(full) 

Partitioning Partial 

Runtime 

Native 

Offloader 

[59] 

Automated High Dynamic Resource: 

Mobile 

memory & 

bandwidth 

Partitioning Partial 

Runtime 

N.B. This table is not an exhaustive list of the models, but a list of distinct representative models – 
consisting unique characteristics. 
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in the identification of offloadable task. Two notions can be deduced; either 

the task in concern was wrongly identified as offloadable or there was an 

overhead during run-time which was unaccounted for during the identification 

process. The second notion is likely a more valid point, because if the decision 

making and offloading components add an overhead during runtime, which 

was not considered during identification, then a particular offloading task may 

never yield performance or energy-efficiency benefits – in a scenario where 

the runtime overhead overshadows the offloading gain. Existing work [4], [7], 

[8], [52], [80] to the best of knowledge does not take into account all MCA 

components during the identification of offloadable tasks. It can be argued that 

the decision maker would effectively allow such scenarios to execute locally. 

The fact, however, is that the decision-making process is a required 

precondition; thus overhead would have already been made. Also, although 

the automated transformation schemes provide a higher level of granularity in 

identification of offloadable tasks (as shown in Table 3.1) it is still prone to 

overhead as it does not consider all the MCA components. Thus an effective 

identification technique must take into account all the MCA components of 

Figure 3.1. 

 Problem I: The techniques for identification of offloadable tasks do not 

evaluate the overhead of the overall offloading model, and therefore 

are prone to overhead during runtime. 

3.2.1.2 Challenges of Decision Maker 

A good way to understand the decision-making component is, as a kind of 

monitor and comparator, rather than just a set of if else conditions.  

As a monitor: conditions are executed by checking (i.e. monitoring) the actual 

environmental state. In MCA a given environmental state is defined by 

different factors/parameters which are; mobile device CPU and memory 

availability, network bandwidth and latency, cloud CPU and memory 

availability, and transmitted data size; as used in the literature [7], [8], [52]. 

Notice that the parameters employed by existing work are resource based (i.e. 
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CPU, memory, and network) as shown in Table 3.1. For accuracy in the 

decision-making process, it is critical that these factors be captured by the 

decision maker. 

Some research such as [7] takes into account all the aforementioned factors 

for decision making, thus providing more decision accuracy with respect to the 

awareness of the environmental state. Most works, however, only consider a 

single or couple of the factors for decision making, for example data size alone 

[4], or a combination of bandwidth and latency [5]. Whichever combination of 

factors are used, an overhead is added to the application performance. For 

example monitoring for network bandwidth and latency, requires sending 

packets to and fro the communicating endpoints (e.g. [7], [8]); which 

contributes its own overhead. Thus the more factors that are considered the 

more overhead but the greater the accuracy in decision making. 

As a Comparator: the actual environmental state obtained by measuring the 

aforementioned environmental factors are compared against a (set of) 

predetermined value(s). Hassan et al. [7] uses a machine learning algorithm 

– specifically multi-layer perceptron, as a comparator due to the use of 

multiple factors in the approach. Expected environmental factors are obtained 

as training data, collected for offload condition – i.e. when remote execution 

time is less than local, and non-offload condition. Kwon et al. [4] uses a single 

thresholding approach on data size for the offloading condition. This is, 

however, ineffective given the varying factors affecting MCA, and the 

unpredictable nature of the environment. Cuervo et al. [5] uses a linear 

regression model on bandwidth and latency – which also fails to compare 

other factors. 

As mentioned earlier, the decision-maker component decides when to offload, 

with the offload condition satisfying a scenario where remote execution time 

is lesser than the local execution time. Consequently, the core factor is the 

elapsed execution time, however as this factor cannot be determined explicitly 

before runtime, the environmental factors with the support of learning models 

(or dynamic thresholds) [5], [7] or static thresholds [4] are adopted in the 
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literature. Thus an effective decision-making process must effectively predict 

time with minimal overheads. 

 Problem II: The accuracy of the decision maker is improved by 

monitoring a series of resources, and performing a threshold 

comparison dynamically (i.e. at runtime). However, dynamically 

monitoring many resources contributes runtime overhead, especially 

as this decision needs to be performed whenever an offloadable task 

is to be executed – whether it is finally offloaded or not. 

In Mango, the elapsed time (from real-time prediction) as the decision 

parameter is used, so as to eliminate the overhead of resource monitoring for 

multiple resource parameters. Furthermore, the time parameter is dynamically 

set by Context (for decider) and Profiler Aspect (for threshold) as shown later 

in Chapter 3. 

3.2.1.3 Challenges of Offloading Mechanism 

Many offloading models implement their offloading mechanisms as runtime 

engines. There are however two key categories to the offloading mechanisms 

used in the literature, they are; cloning and partitioning. See Table 3.1. 

Cloning as the name implies involves execution of a virtual device on the 

cloud. It is based on checkpointing – i.e. adding fault tolerance by saving 

snapshots, and thus creates more overhead in offloading due to state 

synchronisation (requiring as much as approximately 100MB data transfer 

[6]). 

Partitioning makes use of remote procedure calls. Unlike the cloning approach 

which requires the virtual device running on the cloud, the partitioning 

approach only requires the offloadable component executing on the cloud; 

thus more efficient (saving energy and time) compared to cloning. 

Offloading by partitioning has been adopted by both dynamic and static 

optimisation processes in the research. Dynamic optimisation [8] – i.e. 

optimising at bytecode level or runtime is most useful for optimising 
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legacy/existing systems, making it difficult to utilise from an earlier design 

phase of the development process. Moreover, these approaches implement 

complex decision makers. Static optimisation models – optimising at the 

source level, can be adopted in the development process. However, their key 

challenge is the dependence on custom runtime engine, e.g. [4], [58]. As such 

deeply layered frameworks contribute to runtime bloat [2], [3], [106], an 

appropriate mechanism, would need to be simplified – preferably without 

dependencies on custom runtimes to minimise overheads. Thus; Mango 

adopts a model driven approach; eliminating the need for a custom runtime. 

 Problem III: partition based approaches (which is considered more 

efficient of the two offload categories) are currently not applicable to 

the development process as they are built for runtime and solely 

focused on refactoring. This also makes it challenging to adopt existing 

models in real-world application development. 

3.2.2 Methodology and Research hypotheses 

3.2.2.1 Methodology to Solving the Challenge in Identification Technique 

Following the challenges presented relating to the technique for identification 

of offloadable tasks; it is critical that the process for identifying offloadable 

tasks be composed of both the decision making and offloading components. 

In other words, a task is identified for offload if and only if the combined 

overhead of the decision-making component, offloading mechanism and 

remote execution is lesser than local. Thus the expectation is that; 

H1: Offloading any task which compromises the aforementioned 

condition will always compromise performance, even if the remote 

execution time is less than that of local.  

Consequently, a tool called Mosaic (abbreviation for – model-based selective 

approach for identification of Callees) is proposed to effectively identify 

offloadable tasks during development, by taking into account the 

aforementioned constraint. The methodology behind Mosaic is the use of 
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MDE concept in identifying offloadable tasks. Offloadable tasks can be 

presented as meta-models (later discussed as Caller-Callee Model), and other 

MCA components (such as decision making and offloading components) are 

applied to the meta-model as templates (later discussed as Aspect-Context-

Task-Service design pattern). Consequently, the model can be evaluated with 

all components taken into account. 

3.2.2.2 Methodology to Solving the Challenge in Decision Maker 

As mentioned earlier the core purpose of the decision maker is the ability to 

predict the elapsed time prior to offload, so as to know if there will be gain or 

loss given the current environmental state. This prediction is currently 

obtained from different factors, and using learning models (contributing 

overheads) or inaccurate thresholds. As a way to curtail the complexities and 

overhead of learning models and inaccuracies of thresholding based on 

environmental factors, the thesis proposes a time-based context-aware 

decision making approach. The two key concepts behind the approach to 

solving the decision maker problem is; 

 Time-based concept: execution time is the only factor being monitored 

and thus eliminates the overhead of monitoring other MCA 

environmental factors. 

 Context-aware concept: context-aware feature is used to ensure 

accuracy of the time threshold which compares against the execution 

time. Further details on the contexts employed for the decision making 

is presented in section 4.4. 

As the proposed approach makes use of elapsed execution time as the factor 

for decision making (at the mobile and cloud tier), the expectation is that; 

H2: By use of a time-based decision-making process at both mobile 

and cloud tier, software qualities can be achieved at both mobile and 

cloud tiers. 
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3.2.2.3 Methodology to Solving the Challenge in Offloading Mechanism 

To address the challenge of overhead caused by the custom runtime, this 

thesis proposes the use of sockets as the offloading mechanism and 

demonstrate that sockets finely integrate with the research objective of 

achieving software qualities (i.e. in support of the second hypothesis – H2). 

Furthermore, existing custom runtime engines help integrate/automate the 

implementation of decision making and offloading processes into the MCA. 

Similarly, the proposed Mosaic framework automate the development 

process, however, to eliminate the overhead of custom runtimes, Mosaic 

model-driven tool is designed to integrate with the mobile integrated 

development environment (IDE) as a library. 

H3: By use of an MDE tool integral to the IDE, the overhead of 

complex runtime can be mitigated and also MCA components can be 

generated on-demand during development. 

3.3 MCA Evaluation Approach 

3.3.1 Gaps in existing approach 

In this section, examples are used from the research to highlight the problems 

of the currently used MCA evaluation approach (i.e. the architecture scenario 

approach) in the evaluation and comparison of offloading schemes. Thus, 

deriving the goals and novelty of the proposed solution – later presented in 

Chapter 6. 

A Motivating Example: 

Consider a situation in the development of mobile cloud application, the choice 

of an offloading scheme would be a critical decision, as it is the core 

functionality which transforms a mobile app to a MCA [4], [5], [7], [52]. 

Assuming the development team chooses to use an existing scheme, they will 

need to evaluate and compare between existing offloading schemes. Two 

offloading schemes have been selected, one based on single thresholding [4] 

– ST for brevity, and another based on multi-layer perceptron (MLP) [7] – 
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known as POMAC. Also selected is an optical character recognition (OCR) 

Android app; Mezzofanti – used in the source literature [4], [7], to validate the 

schemes. From the source literature [4], [7], the computation intensive 

offloadable component is the OCR functionality. The data presented in Table 

3.2 is obtained from the source literature using WebPlotDigitizer [107]. 

To achieve the evaluation of individual schemes and comparison between the 

schemes (ST vs. POMAC), mobile-centric architecture scenarios provided by 

the source literature are used. Mobile-centric; meaning that the approach 

provides green metrics results for only mobile tier (i.e. performance and 

energy usage). Using mobile-centric architecture scenarios which are 

prevalent in the research [4], [5], [7], [52] however possess challenges which 

make it difficult to come to a satisfactory conclusion for both schemes, in terms 

of evaluation and comparison. 

The problems identified for mobile-centric architecture scenario are grouped 

under three headings (the problem numbering continues from previous 

section as they are all relating to MCA): 

 Problem IV: Variability of architecture scenarios. 

 Problem V: Inconsistency in evaluation results of scenarios for an 

offloading scheme. 

 Problem VI: Coarse-granularity of evaluation. 

Table 3.2  MCA evaluation and comparison by architecture scenarios 

Arch. 

Scenarios 

ST [4] POMAC [7] 

Elapsed Time (ms) Used Energy 

(J) 

Elapsed Time (ms) Used Energy 

(mJ) 

Local 49331.55 86.59 3930.33 4854.24 

Server 27673.79 63.86 34873.15 19839.42 

Optimal 17486.63 44.73 3986.21 4845.10 

The Scheme 10347.59 41.33 4242.32 5085.80 

Local % diff. 130.65 70.76 -7.64 -4.66 

Server % diff. 91.14 42.84 156.62 118.38 

Optimal % diff. 51.30 7.90 -6.23 -4.85 

Note: Local % diff., Server % diff. and Optimal % diff. is the % difference of the scheme in comparison to 
Local, Server, and Optimal scenarios respectively. A negative value is used to signify loss in energy or 
performance. Note that the metrics presented; i.e. elapsed time and used energy; are for the mobile tier. 
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3.3.1.1 Variability of architecture scenarios (making it difficult to compare 

between offloading schemes) 

The literature use varying scenarios to evaluate proposed schemes, e.g. [7] 

defines four7 scenarios to evaluate POMAC, while [4] defines five8 scenarios 

to evaluate ST. Therefore, to establish a basis for comparison, scenarios will 

have to be matched (as presented earlier in section 2.3.5.2). This process 

introduces complexity in comparing schemes especially since scenarios 

which may be congruent (by inference) may have slightly different definitions 

from each other (based on the actual literature implementation). This 

introduces difficulty in communicating varying scenarios between the 

development teams, and also a challenge to the comparison. 

3.3.1.2 Inconsistency in evaluation results of scenarios for an offloading 

scheme 

To evaluate POMAC, [7] defines four scenarios. The efficiency of POMAC is 

evaluated by comparing the POMAC scheme against other defined 

architecture scenarios, using % difference. Deducing from Table 3.2, for 

energy usage it can be concluded that POMAC is approximately 5% inefficient 

compared to both local and optimal scenarios and 118% efficient compared 

to server scenario. Although the local and optimal % differences seem to 

arrive at the same conclusions, there is no clear relationship between the 

scenarios. This is shown by ST which has approximately 71%, 43% and 8% 

energy improvement based on local, server and optimal respectively. This 

challenge makes it difficult to weight a scheme based on easily verifiable 

values or conclusions. 

 

                                            

7 Four scenarios are defined by [7] for evaluating POMAC, they are OnDevice,  OnServer, Optimal and 
POMAC. 
8 Five scenarios are defined by [4] for evaluating ST, they are Smartphone only, Offloading w/All objects, 
Offloading w/Necessary objects, Offloading w/Necessary objects (delta), and Offloading w/Threshold 
check. 
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3.3.1.3 Coarse-granularity of evaluation 

Different literatures use different levels of experimental rigour. For example; 

[7] performed a more rigorous experiment for POMAC evaluation (as the 

scheme is based on MLP), compared to [4]’s experiment for ST which is not 

as rigorous. Comparing ST energy with POMAC (using optimal scenario as 

reference) gives approximately 8% gain in ST and 5% loss in POMAC. The 

case may be that in adverse environmental conditions ST scheme fails to save 

mobile energy (which is true from later experiment conducted – in Chapter 7). 

Also since the analysis is mobile-centric, it fails to provide the overall 

implications of a scheme’s decision to or not to offload. This challenge poses 

difficulty when deciding schemes with overall efficiency (i.e. mobile as well as 

cloud resource aware). The Case Studies (in Section 7.6) later shows that 

with full-tier evaluation one can better understand if a scheme just keeps 

offloading to server, or if it checks server availability (i.e. robustness). 

3.3.2 Methodology for a solution 

To propose a solution for the identified gaps in the existing MCA evaluation 

approach (i.e. the mobile-centric architecture scenarios approach), this thesis 

adopts concepts from Behaviour Driven Development and Fine-Grained 

Testing. 

3.3.2.1 Behaviour Driven Development (BDD) 

A key difficulty in evaluation of MCA identified above is the variability of 

architecture scenarios – which also makes it difficult to compare between 

offloading techniques. Which shows that, since there is no standard as to the 

scenarios to use for justifying efficiency of an offloading technique, different 

literatures/techniques use different scenarios. As a solution to the 

aforementioned difficulty in varying scenarios, this thesis presents an 

approach for MCA evaluation and comparison based on the factors 

surrounding typical MCA scenarios. 
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For example; for a typical scenario, whether server, optimal or scheme, the 

factors surrounding the efficiency of the application are mobile CPU and 

memory availability, server CPU and memory availability, network bandwidth 

and latency [7], [8]. Rather than evaluate schemes by comparing against 

different scenarios which are all affected by the aforementioned factors, this 

research proposes evaluating and comparing schemes on the bases of the 

factors themselves which affect the schemes. 

Furthermore, the implication of the proposed idea of the research is that to 

evaluate an offloading scheme S1, a result can be presented thus: 

 the performance and energy usage of S1 is x and y respectively, given 

the aforementioned factors. This is a more simplified and easy to 

interpret approach as shown in Table 3.3. 

Rather than: 

 the performance and energy usage of S1 is x1 and y1 respectively, 

compared to a scenario (A, which however is affected by its own 

uncontrolled factors), and x2 and y2 compared to another scenario (B, 

which is also affected by its own uncontrolled factors), and x3 and y3 

compared to another scenario (C, which is also affected by its own 

unique factors). Using varying scenarios for evaluation introduces 

unnecessary complexities as shown in Table 3.3. 

 

 

Table 3.3  Simplified MCA Evaluation by Use of Environmental Factors 

Evaluation by Architecture Scenarios Approach Evaluation by environmental factors 

Scenarios S1 Time (ms) S1 Energy (J) Elapsed Time (ms) Used Energy (mJ) 

A % diff. x1 y1 

xx yy 
B % diff. x2 y2 

C % diff. x3 y3 

Assuming A, B and C to be representative of 
scenarios, such as Local, Server and Optimal. 
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And then to compare a second offloading scheme of interest say S2 to the 

previous, S1, the process would be performed as follows: 

 given that the factors of S1 and S2 are closely related compare S1 to 

S2. 

Assuming that S1 is more efficient, then the result can be presented as 

thus; 

 S1 is x% and y% more performance and energy efficient than S2 given 

the factors. 

Rather than: 

 Compare S1 to A and S2 to A; then S1 to B and S2 to B; then S1 to C 

and S2 to C. 

Assuming that S1 is more efficient, then the result can be presented as 

thus; 

 S1 is x% and y% more performance and energy efficient than S2 in A, 

and/or  

S1 is x% and y% more performance and energy efficient than S2 in B, 

and/or  

S1 is x% and y% more performance and energy efficient than S2 in C. 

‘and/or’ meaning that in most cases S1 might not be more efficient in all the 

compared scenarios, thus it is difficult to establish a concrete result for 

comparison using varying scenarios. 

Notice that for the proposed approach; the syntax is ‘given factors then assert 

results’. The above syntax is the core of behaviour driven development (BDD). 

Thus, the behaviour-driven technique is used to address the first two identified 

challenges (i.e. the problem of variability of scenarios and inconsistency of 

results). Consequently, the thesis proposes Beftigre (explored in Chapter 6) 

which adopts the BDD concept and simple clause approach, to simplify the 

comparison and evaluation of offloading schemes, and thus simplifying 

software design decisions. 
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Behaviour-driven development (BDD) is a design approach to aid 

collaboration between non-technical contributors (such as business analysts, 

or users) and software engineers. Consequently, BDD gears towards more 

verifiable and collaborative test process by being able to compare expected 

behaviours with actual results, following standard simplified scenarios – 

constructed by simple language clauses, GIVEN, WHEN and THEN [108]. 

3.3.2.2 Full-tier as the new Fine-grained testing for MCA 

Also presented as a key challenge to current multi-scenario approach to 

evaluation of MCA, is the mobile-centric nature of the evaluation process. 

Thus, only the impact of an offloading scheme on the mobile device is 

estimated. However, MCA is composed of mobile and cloud tiers. Therefore, 

to address the coarse-granularity of current approach, an effective solution 

must take into consideration the mobile as well as the cloud resource impact 

of an offloading scheme.  [34], shows that a fine-grained approach to energy 

measurement (using counters) can reveal specific energy usage in relation to 

specific points of execution. Similarly, to identify specific implications of an 

offloading scheme on an MCA, this research proposes Beftigre (presented in 

details in Chapter 6) which adopts fine-grained measuring across the mobile 

tier (using Markers, to measure energy usage and performance) and cloud 

tier (using Metrics Collector, to measure CPU and memory usage). The 

approach adopts concept of fine-grained software testing to present the 

implications of an offloading scheme on the mobile tier as well as on the cloud 

tier. By evaluating the system as a whole the Beftigre approach can detect 

whether an offloading scheme is aware of both mobile and cloud resource 

consumption. The full-tier objective of the approach is also assisted by the 

BDD concept. 
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3.4 Summary 

This chapter presented the current state of the art in mobile cloud applications 

development. And consequently highlighted the key issues with the domain – 

in terms of optimisation approach and evaluation approach. 

The chapter presented six challenges (as enlisted below) faced by the 

research on MCA which are addressed in this thesis. The first three problems 

are associated with existing optimisation approaches (summarised in Table 

3.1), and the latter three are associated with the evaluation approach used for 

MCAs. 

I. Inability to evaluate the overhead of overall offloading model, which in 

turn results in performance overhead. 

II. Multiple parameter based decision-making (with intension of accuracy 

in environmental prediction) which leads to runtime/performance 

overhead. 

III. The optimisation algorithms are highly dependent on runtime, and thus 

difficult to apply to development process. 

IV. Inconsistency in evaluation results of scenarios for an offloading 

scheme. 

V. Variability of architecture scenarios (making it difficult to compare 

between offloading schemes). 

VI. Coarse-granularity of evaluation – focused on mobile implications of an 

MCA or its offloading scheme. 

To address the identified gaps in existing optimisation approaches this 

research proposed a model driven architecture – Mango, which; 

 Ensure that identified offloadable tasks will most certainly yield 

benefits, during optimisation, prior to final deployment. 

 Is based on execution times as opposed to multiple environmental 

factors as parameters. And employs the use of sockets to implement 

optimum execution. Thus the approach does not seek (or monitor) best 

path of execution (requiring extensive resource monitoring, thus 
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causing overhead), but adopts a good-fit path with respect to execution 

time. That is to say that; decision to offload is made based on time, and 

control of remote execution is achieved based on time (as threshold) – 

this is further explained in Chapters 4 and 5. 

 Is based on model-driven engineering. And thus mitigates the overhead 

caused by custom runtimes. The proposed Mango approach is 

composed of a model and design pattern, which supports the 

architecture for development as well as legacy optimisation. 

Consequently, as an MDE approach, an MDE framework, Mosaic, is 

also proposed to expedite development/optimisation. 

To address the identified gaps in the scenario-based evaluation approach the 

research proposed a behaviour-driven full-tier approach – Beftigre, which; 

 adopts the BDD concept and simple clause approach, to simplify the 

comparison and evaluation of offloading schemes and, thus, simplify 

software design decisions. This is based on the use of the actual 

environmental factors as parameters for evaluation rather than varying 

scenarios. Notice that; the environmental factors are applied now in the 

evaluation process (for finer granularity) rather than into the 

optimisation process (which can cause performance overhead every 

time offload decisions are made); 

 adopts the concept of fine-grained software testing to present the 

implications of an offloading scheme on the mobile tier as well as on 

the cloud tier. 

Conclusively, the research investigates solutions for i) an optimisation 

technique for MCA and ii) evaluation technique for MCAs. The aforementioned 

solutions (both architecture and evaluation) are presented in the following 

chapter – in a unified approach (called Mango).  
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Chapter 4. Mango Architectural Approach 

A Model-driven Context-aware Architecture for MCA 

4.1 Introduction 

This chapter presents Mango: model-driven approach for integration of 

software quality with green optimisation in MCAs. Mango is the core 

contribution of this research. The major aim of the approach is to provide an 

architecture9 which seamlessly integrates software quality attributes (SQAs) 

with the green optimisation objective of MCC, at both the mobile and cloud 

tiers (i.e. full-tier). Also, as MCA is an application domain which spans through 

mobile and cloud tier; Mango architecture therefore takes into account the 

specification of SQAs across the mobile and cloud tiers. Most importantly, in 

the architecture, these attributes are integrated into the system as a way to 

improve efficiency by applying them in a contextual manner – thus, context-

aware. Mango is also a model-driven architecture, thus resource intensive 

tasks and their SQAs necessary for optimisation, can be modelled and 

transformed into code base by MDE tool. As shown in Figure 4.1, two 

frameworks are derived from Mango approach, they are Mosaic and Beftigre. 

Chapter 5, presents the MDE approach and framework, called Mosaic, useful 

for the modelling and transformation of Mango architecture. 

 
Figure 4.1 Mango and Derived Frameworks 

                                            

9 In the thesis, both the overall approach and the architecture are referred to as Mango. The first is 
called Mango approach which yields the latter, called Mango architecture. 



65 
 

As mentioned earlier, the Mango approach targets quality attributes spanning 

through the mobile and cloud tiers. As much as achieving the full-tier quality 

objective within the architecture, the test/evaluation process also has to take 

into consideration the full-tier software quality objective of the architecture. 

 

Figure 4.2 Mango Approach 
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Chapter 6 details the full-tier evaluation approach and framework for mobile 

cloud applications, called Beftigre. Although the full-tier evaluation concept of 

Beftigre is derived from the Mango approach, it is also suitable for testing 

existing offloading schemes due to the full-tier nature of MCAs (i.e. involving 

mobile and cloud tiers) – and consequently addressing the mobile-centric 

challenge of current MCA evaluation approach. 

4.2 Overview of the Approach 

4.2.1 Concepts and Components 

The Mango approach (Figure 4.2) splits the development of MCA into four 

phases: design, architecture, verification and evaluation. The design phase 

introduces a model-driven design to the development process. It is composed 

of the Caller-Callee model. The architecture phase introduces the concept of 

context-aware optimisation. The Mango architecture is pattern oriented and 

introduces the use of Aspect Context Task Service (ACTS) pattern in the 

development. The verification phase is used for quality verification – to verify 

the suitability of the architecture for the application being developed. The 

design, architecture and verification phase are realised by Mosaic framework 

(see Chapter 5). The evaluation phase introduces full-tier and behaviour-

driven concepts for MCA evaluation. Full-tier evaluation makes it possible to 

evaluate the MCA at a finer granularity which takes into consideration metrics 

from both mobile and cloud tiers. Behaviour-driven evaluation makes it 

possible to provide a consistent and reliable comparison between other 

approaches or counterpart techniques. 

As shown in Figure 4.2, Mango Approach groups the design components and 

architecture components into two key features, which are the Caller-Callee 

Model and the ACTS design Pattern respectively. Model-Driven Engineering 

(MDE) focuses on exploiting domain models to effectively solve a recurring 

problem. Consequently, MDE simplifies the development process using 

models of design patterns (alongside tools) to increase productivity [88]. With 

the aim of proposing a simplified and effective solution, Mango (Figure 4.2) 
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adopts MDE for effectively representing offloadable components with software 

qualities as a model – called Caller-Callee model. ACTS design pattern is 

proposed to describe the functional aspects of the architecture. Caller-Callee 

model is a model representation of the ACTS design pattern, however at the 

design phase, as shown in Figure 4.2. In this section qualities and quality 

attributes are used interchangeably to both refer to Software Quality Attributes 

(SQA). 

4.2.2 Benefits of the Approach 

The Mango approach (Figure 4.2) aims at achieving efficiency by treating the 

identified overheads/challenges in MCA as a software engineering problem; 

rather than merely an optimisation problem. The intention is that by 

addressing the earlier discussed concerns (presented in Chapter 3) as a 

software engineering problem, the need for complex optimisation or 

refactoring processes (fulfilled by custom runtimes) would be mitigated; thus 

resulting in a fine-grained, simplified, yet effective solution.  

Furthermore, the core benefits of Mango approach have been presented in 

the following listing. These benefits highlight the novel contributions of the 

approach, and are evaluated in the case studies section. They are as follows 

(the last two points are specific to the evaluation phase); 

 Full-tier efficiency. 

 Variability awareness. 

 Suboptimal awareness. 

 Development efficiency. 

 Full-tier evaluation. 

 Robustness of test. 

 Reproducibility of test. 

4.2.2.1 Full-tier Efficiency 

Full-tier efficiency is achieved at all phases of the development. At the design 

phase, full-tier efficiency refers to modelling of qualities for mobile and cloud 
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tier. At the architecture phase, full-tier efficiency refers to the context aware 

decision making based on the mobile and cloud tier qualities. At the 

verification phase full-tier efficiency refers to the ability to verify/capture the 

overhead of overall offloading model for energy/resource usage or 

performance savings at mobile and cloud tier, thus addressing problem I of 

Chapter 3. The full-tier efficiency in the aforementioned phases are captured 

in the Caller-Callee model and ACTS pattern. Details of how the Caller-Callee 

model provides full-tier efficiency as a solution to problem I (in chapter 3) is 

presented in section 4.3.3. 

4.2.2.2 Variability Awareness 

Variability awareness refers to the capability of the Mango architecture to 

adapt (or make decisions) in varying environmental conditions with minimal 

overhead, whether normal or adverse conditions, in order to achieve software 

target qualities. Variability awareness is achieved through context-aware 

optimisation logic – which is the logic of the Context component of the ACTS 

design pattern. 

The context-aware optimisation is based on the use of execution time as the 

single core parameter for decision making, consequently mitigating the 

overhead from measuring multiple environmental parameters. Thus, the 

variability awareness benefit addresses the existing decision making 

challenge (problem II of Chapter 3). 

4.2.2.3 Suboptimal Awareness 

Suboptimal awareness refers to the capability of the Mango approach in 

avoiding situations where offloading does not yield benefits. Suboptimal 

awareness is achieved by quality verification of Mango approach (i.e. the 

Quality verifier and Selective Analyser in Mosaic framework).  

This benefit is made possible due to the fact that MCA components can be 

flexibly integrated into a meta-model (which is engineered to code). The 

behaviour of the model can then be used to determine if an offloadable task 
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will justifiably yield benefits. Since the implementation code is based on a 

meta-model it can be forward engineered or reversed (depending on whether 

or not the offloadable task passed the verification). Thus Quality verification 

addresses the problem inability to evaluate the overhead of overall offloading 

model (problem I of Chapter 3). 

4.2.2.4 Development Efficiency. 

Development efficiency refers to the ability of the Mango approach to 

seamlessly and effectively achieve the MCA transformation process during 

development with no custom runtime intervention. This is achieved through 

the model-driven approach in Mango with meta-modelling and 

transformations – further detailed in the Mosaic framework (Chapter 5). 

By adopting a model-driven approach, Mango addresses problem III of 

Chapter 3 – which refers to the difficulty of the adoption of optimisation 

algorithms due to tight-coupling to custom runtimes. Furthermore, as a model-

driven approach, Mango focuses conceptualisation of implementation logic on 

the meta-models and templates, thus highly fostering reuse (at platform 

independent level – i.e. models and platform level – i.e. templates). 

4.2.2.5 Full-tier evaluation 

Full-tier Analyser (at the evaluation phase) addresses the coarse granularity 

problem of the existing evaluation approach (problem VI of Chapter 3) by 

providing an evaluation mechanism which takes into account the mobile and 

cloud tier, and their respective qualities (full-tier qualities) presented in the 

design phase. Thus, Full-tier Analyser (in evaluation) directly maps to full-tier 

optimisation (in architecture), as shown in Figure 4.2. The full-tier efficiency in 

the evaluation phase is captured within the Full-tier Analyser of Beftigre 

framework. 

4.2.2.6 Robustness of Test 

Evaluation in Mango approach is highly robust to evaluate the efficiency of 

MCA, as well as capture differences between two compared MCA schemes 
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or approaches. The proposed Beftigre approach is robust to produce full-tier 

results as well as capture test scenarios based on environmental parameters 

which can reused as tests. The behaviour-driven features (through use of 

annotated clauses) of Beftigre evaluation approach makes it robust in 

capturing test results effectively, thus addressing the problems (IV-V of 

Chapter 3) associated with current evaluation approach. 

4.2.2.7 Reproducibility of Test 

Evaluation in Mango approach also makes it possible to produce test results 

which are consistent/reproducible (in other words, arriving at a conclusion 

which is unbiased by the testing environments, or environmental factors). This 

is achieved by control measures proposed by the evaluation approach (called 

Beftigre – further discussed in Chapter 6).  Inconsistency and variability 

problems of the existing evaluation approach (i.e. problem IV and V of Chapter 

3) are addressed by the reproducibility benefit. 

Other benefits of the architecture are presented in the summary section. The 

rest of the chapter presents the approach in details based on the four phases 

of the approach (illustrated in Figure 4.2). 

4.3 Designing the Model 

Context-driven requirements analysis for Caller-Callee model (CRAC) 

presented in Figure 4.3, is not an alternative requirements analysis approach. 

CRAC can be viewed as a complimentary requirements analysis approach. 

This is because its main purpose is to identify offloadable components in an 

MCA, in order to generate the Caller-Callee model – which applies SQAs to 

the identified offloadable components.  

CRAC involves three phases; requirements listing, component classification 

and caller-callee modelling. 
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4.3.1 Phase 1: Requirement Listing 

This phase involves the presentation of both functional and non-functional 

requirements. The non-functional requirements are the SQAs which the 

system is to adhere to. In Mango approach four SQAs are considered for MCA 

optimisation as shown in Table 4.1 – these are mobile performance, mobile 

energy-efficiency, cloud resource-efficiency and software availability. The 

functional requirements are the features of the application, defined by their 

functional purpose as shown in Table 4.2. 

Example: In a face detection application comprising of three requirements; 

face capture, face detection and face tagging. The requirement listing is 

presented below: 

Table 4.1  Non-functional (N) Requirement Listing 

Requirements Listing Tiers 

N1 Performance Mobile 

N2 Energy Mobile 

N3 Resource Cloud 

N4 Availability Cloud and Mobile 

 

 
Figure 4.3 CRAC Process 
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Table 4.2  Functional (F) Requirement Listing 

Requirements Listing Functions 

F1 Face capture Capture an image 

F2 Face detection Detect face from the capture 

F3 Face tagging Add a description to the detected face  

 

4.3.2 Phase 2: Component Classification 

As shown in Figure 4.3, phase 2 is an extension from (or based on) the 

functional requirements activity of phase 1. Phase 2 involves the identification 

of the Caller (i.e. the sensor-centric component that references the Callee) 

and the Callee (offloadable component) from the functional requirements 

listing. 

Identifying the Callee. The Callee (which is the offloadable component), is 

identified based on the assumption that any component that does not rely on 

a mobile-constrained10 resource is an offloadable component. 

Identifying the Caller. After a Callee is identified then the Caller is identified as 

the requirement which directly references (or makes calls to) the Callee 

requirement. 

At the requirements phase, these components are identified qualitatively by 

abstractly deducing from the functional description provided for the 

requirement. (The component classification are refined quantitatively by static 

and dynamic analysis – using the Mosaic framework, presented in Chapter 5). 

                                            

10 Mobile-constrained resources are resources that are constrained to mobile devices, and consequently 
cannot be provision on the cloud. E.g. client-only APIs and resources such as GPS, camera, 
microphone, and other sensors. 

Table 4.3  Component Classification 

Requirements Listing Classification 

F1 Face capture Caller of F2 

F2 Face detection Callee 

F3 Face tagging - 
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Example: based on the face detection application, Face capture can be 

speculated as sensor-centric as it would involve using the camera to capture 

an image. Assuming the description added to faces are obtained from the 

user’s mobile contact, then face tagging would be sensor-centric as well, since 

it depends on the client-APIs – i.e. for retrieving mobile contacts. Face 

detection requirement however can be speculated as the offloadable 

component (Callee) since it runs an algorithm on the captured image, for 

detection. Thus face capture is the Caller of face detection, as shown in Table 

4.3. 

As presented later in Mosaic (Chapter 5), the component classification phase 

is inherently fulfilled by static and dynamic analysis of application source code. 

The output of which is a call-graph artefact, useful for Caller-Callee modelling. 

4.3.3 Phase 3: Caller-Callee Modelling 

This phase involves the integration of the non-functional requirements (i.e. the 

SQAs from phase 1) with identified offloadable components (from phase 2) at 

the mobile and cloud tier of the MCC system. The model fulfils the SQA 

integration objective of Mango architecture. Therefore, designing a Caller-

Callee model (Figure 4.4) involves specifying nodes and qualities for mobile 

and cloud tiers.  

A problem identified with existing MCA approaches is that of the inability to 

evaluate the overhead of the overall offloading model, consequently resulting 

in performance overhead (problem I in chapter 3). The Caller-Callee model 

 
Figure 4.4 Caller-Callee Model 
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provides full-tier efficiency as a solution to this problem. This is achieved by 

encapsulating all the features of the MCA transformation in the meta-model, 

which involves both the mobile and cloud tiers. The model consists of both the 

nodes and the logic for achieving set qualities, thus encapsulating the overall 

offloading logic at the early stage of development – design phase. 

4.3.3.1 Specifying nodes 

The Caller-Callee model (Figure 4.4) is specified using two node types; the 

Callee node (being the offloadable component) and Caller node (the 

component referencing or calling the Callee). Furthermore, in specifying the 

nodes, two representational Callee nodes are modelled – one for the mobile 

tier and one for the cloud tier. This is to model offloading scenarios of the MCA 

which can be executed at mobile or cloud tier. 

4.3.3.2 Specifying qualities 

The quality specification in the Caller-Callee model involves two activities; 

1) Specification of attributes in tiers. At the Callee nodes, all qualities to 

be implemented for mobile and cloud tiers are assigned. For example, 

as shown in Figure 4.4, performance and energy efficiency attributes 

are for the mobile tier, while availability and resource-efficiency 

attributes are for the cloud tier. In the Caller-Callee model, qualities are 

assigned to Callee(s) of tiers in form of tags, as shown in Figure 4.4. 

2) Specification of priority attribute. Priority attribute is the mobile tier 

attribute used to execute the application at runtime. This is the static 

context for the application (see Context in ACTS Pattern section). 

Priority attribute is specifiable by the user, in other words, it is based 

on user preference. Within the Caller-Callee model, priority attribute is 

represented on the call or request11 link to the Callee, which signifies 

that priority attributes have to be available before the call to the Callee 

                                            

11 Request refers to the reference made to the remote Callee (i.e. the cloud Callee), while calls refers 
to the reference made to the local/mobile Callee. Similarly response and results are feedbacks received 
from Callee at the cloud and mobile tier, respectively. 
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in order for optimisation decision to be made. From Figure 4.4, the 

symbol “[p]” denote that performance is prioritised over energy-

efficiency. Priority specification is particularly useful for the mobile tier, 

as it implements qualities which can be traded-off between each other. 

For example, performance can be traded off for energy. 

The response/result links connect from Callee to Caller. This signifies that the 

Caller continues execution after response from the Callee. The response link 

from remote Callee to local Callee is used to signify failover feature – in case 

of any remote errors or network disconnection, execution is passed back to 

local Callee rather than the Caller to avoid wrong results (i.e. for data integrity) 

or prevent application crash. 

Decoupling priority attributes from generic attribute specification provides 

flexibility in application usage, so that users can define the context of 

execution for applications, as opposed to an undisclosed context; popularly 

used in the research – which assumes energy saving need for any execution 

scenario. For example, a benefit is that; with the decoupling a user can choose 

performance as priority in a scenario of high battery availability, and energy-

efficiency with an intention to save battery usage. 

As presented later in Mosaic (Chapter 5), the Caller-Callee model is defined 

as a generated ACTS source template implementing the Mango architecture 

with specified SQAs – based on the call-graph artefact of phase 2. 

4.4 A Pattern Oriented Architecture for Context-aware 

Optimisation 

ACTS (which stands for Aspect, Context, Task and Service) is an architectural 

pattern which Mango architecture uses to implement the Caller-Callee model. 

The purpose of the pattern is to provide an implementation skeleton for the 

Mango architecture which spans through the mobile tier and cloud tier. ACTS 

is composed of four components; Aspect, Context, Task and Service. The 
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Class diagram of Figure 4.5 illustrates the functions of the components 

described below in details. 

4.4.1 Aspect: Dynamic Crosscutting Component 

The Aspect component is an AOP Aspect used to intercept calls made by the 

Caller to the Callee, and then routes execution to the task component (to either 

offload or execute locally) using parameters required for the Callee execution. 

After the execution, the Aspect returns results to the Caller to continue 

execution. The three aforementioned functions fulfilled by Aspect is illustrated 

in Figure 4.5 by interceptCaller, routeToTask(params) and updateCaller, 

respectively. The ACTS component which Aspect directly collaborates with is 

the Task – i.e. by routing to it. The interceptCaller and updateCaller are fulfilled 

by Aspect around pointcut. To support use of Aspect on the mobile tier, 

AspectJ Android plugin12 is used. 

                                            

12 AspectJ Android Plugin: https://github.com/uPhyca/gradle-android-aspectj-plugin 

 
Figure 4.5 ACTS Pattern (Class Diagram) 
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Why AOP Aspect? In Aspect Oriented Programming (AOP), Aspects are used 

to implement crosscutting concerns – such as logging, transaction, and 

security[81]. The purpose of using Aspect in ACTS pattern is to implement 

offloadable component (i.e. Callee) as crosscutting concern – so that an 

optimisation applied to an identified Callee will apply to all aspects of the 

program where that Callee is used. Also importantly, the use of AOP makes 

Mango architecture useful for legacy systems, as Callees are not required to 

be manually identified or modified. Thus, eliminating the need for multiple 

implementation and reducing development time. For example; Kwon et al. [4] 

proposes use of annotation to annotate the identified Callee methods – which 

implies that a developer needs to keep track of different occurrences of an 

offloadable tasks; this is impractical and development inefficient. 

4.4.2 Context: Representation of User and Environmental Contexts 

Context, a key principle in mobile pervasive systems [64] refers to the 

circumstances that form the settings for an event, or simply the elements of 

user’s environment that are relevant for the application [64], [109]. This is 

similar to the MCA environmental factors mentioned in the review (see section 

2.3.2), however in Mango the term ‘Context’ is used for better insight. Contexts 

used in Mango are grouped into two categories; Static and Dynamic Context. 

The static context is the specified quality attribute considered as the priority 

attribute for executing the application at any given time. For example, given 

that energy and performance form the possible static context for the mobile 

tier, specifying energy at any given time will execute the Callee for mobile 

energy-efficiency. Static contexts are however reliant on the dynamic context 

for decision making. 

The dynamic context is the basis on which the decision making of the MCA is 

made. It is the core logic for the decision maker, and is analogous to the ‘use 

of environmental factors’ approach adopted by the related work. It is 

composed of elapsed time (of mobile and cloud execution) and execution 

mode (i.e. for mobile or cloud execution) generated at runtime. The Context 
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component of ACTS is used to specify logic for persisting, retrieving and 

adapting the dynamic context (as shown in Figure 4.5). The purpose of storing 

the dynamic context is so that they can be used in decision making of 

subsequent executions within the Task component. 

In a nutshell, the static context is the priority attribute specifiable by the user, 

while dynamic contexts are elapsed times (from mobile and cloud tiers) and 

execution mode obtained during runtime – further explained in Algorithm 4.1. 

Within an Android application, Contexts are stored in Shared Preferences as 

Algorithm 4.1   Adaptive Context-aware Decision Maker 
Require: mode, mt and ct in Context DB. 
 //By default mode in Context DB is set to mobile 
 
 1:   overhead = 0    //performance as priority SQA 
 
 2:   if mode == 'decider' then 
 3:        if (mt + overhead) > ct then 
 4:             runOnCloud 
 5:        else 
 6:             runOnMobile 
 7:        end if 
 8:   else if mode == 'mobile' then 
 9:        runOnMobile 
10:       mode ← 'cloud' 
11:  else if mode == 'cloud' then 
12:       runOnCloud 
13:       mode ← 'decider' 
14:  end if 
 
15:  runOnMobile 
16:       t1 = start time 
17:       execute Callee on mobile 
18:       t2 = finish time 
19:       mt ← t2 - t1  //mt is mobile elapsed time 
20:  end 
 
21:  runOnCloud 
22:       try 
23:            t1 = start time 
24:            execute Callee in Cloud 
25:            t2 = finish time 
26:            ct ← t2 - t1  //ct is cloud elapsed time 
27:       catch: runOnMobile 
28:  end 
 
29:  mode ← 'mobile' :: on user command 
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it is a simple persistent key string storage option with most minimal overhead 

compared to other options (such as SD card, SQLite or remote storage). 

4.4.3 Task: Context-aware optimisation component. 

The core function of the Task component is to execute the offloadable 

component i.e. handleCallee(params) of Figure 4.5. Task is the component 

which transforms a mobile app into MCA, by providing; socket implementation 

for remote execution of Callee, and adaptive context-based decision maker 

which makes use of the Context component of ACTS to decide when to 

offload. Based on the decision the Task executes the Callee on the mobile or 

cloud tier and returns the result to Aspect. After the Callee is handled, Task 

updates the Context database with dynamic context, to ensure that executions 

are based on recent knowledge – particularly important due to the 

unpredictability of MCA environment. 

Why Task? ACTS Task component is implemented as a subclass of Android 

AsyncTask API – which is used to perform background operations without 

manipulating UI thread. The reason for implementing Task as an AsyncTask 

class is so as to avoid resource overhead of handling socket connections on 

the main UI thread – which could also crash the application. 

Algorithm 4.1 provides the algorithm used for decision making within Task 

component. The decision-making process uses; 

 Context DB to persist and retrieve dynamic context. 

 Static context to prioritise an SQA during decision making. 

 Dynamic context for adaptive decision making. 

Using Context DB: The execution mode, mt and ct are persisted in and 

retrieved from the Context DB. For example (see Algorithm 4.1) lines 10 and 

13 updates the mode in Context DB, and lines 19 and 26 updates the mt and 

ct respectively. Whereas, lines 2, 8 and 11 retrieves mode from the Context 

DB to check its state, line 3 retrieves/makes use of mt and ct from the Context 

DB. 
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Setting static context: The algorithm starts by setting the static context 

variable; i.e. overhead, which is 0 for mobile performance as priority attribute. 

For mobile energy as priority attribute, the overhead is obtained as a 

percentage (x%) of the mobile elapsed time (mt), i.e. x% × mt. The purpose is 

to specify the maximum performance overhead permissible for energy 

optimisation (therefore 0 signifies that no overhead is allowed hence 

performance as priority attribute). 

Adaptive decision: Three execution modes are defined; decider, mobile and 

cloud mode (see Algorithm 4.1). At any mode of execution; whether an offload 

is done (lines 21-28) or not (lines 15-20), the elapsed times are always 

updated (i.e. lines 19 and 26). Thus, ensuring that the decision making 

process is up-to-date with changing environmental state. The initial execution 

mode of the Context DB is mobile mode – this is the mode of the first execution 

of the application.  

Therefore when an application is executed initially, with the initial mode being 

set as mobile; thus satisfying the condition of line 8; line 9 and 10 is executed. 

Line 9 runs the Callee on mobile and updates the elapsed time (mt) in the 

Context DB (as shown in line 15 to 20). Line 10 then updates the mode in the 

Context DB to cloud.  

On the next execution of the application, as the mode is set to cloud, lines 12 

and 13 is then executed. Line 12 offloads to the cloud and updates the elapsed 

time (ct) in the Context DB (as shown in lines 21-28). Line 13 then updates 

the mode in the Context DB to decider.  

On subsequent executions the decider mode uses the stored context for 

deciding when or when not to offload. The decider mode executes lines 3 to 

7. The decider makes use of the overhead variable (at line 3) set earlier by 

static context (line 1), when making offload decision. If the sum of the mobile 

elapsed time (mt) and overhead is greater than the cloud time (ct) then the 

Callee is offloaded to the cloud for execution. As mentioned earlier, a 0 

overhead (as used in Algorithm 4.1) signifies mobile performance as priority 
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attribute, thus adding 0 to mt in line 3 results to the original mt. However, for 

energy efficiency as priority attribute; a non-zero overhead is added to mt, 

before being compared (>) against ct. Increasing mt using the non-zero 

overhead is a way to force energy-saving by offloading, despite performance 

compromise. In other words increasing mt by a percentage (using the 

overhead) is a way to prioritise offloading for the purpose of mobile energy 

savings, with performance trade-off (of the % of overhead). 

Line 27 of Algorithm 4.1 implements the failover modelled in Fig 3. This is 

useful in case of a situation where the offload encounters an error. In such 

situation, the Callee is executed on the mobile tier. Note that lines 21 to 28 of 

Algorithm 4.1 is a simplified version of Algorithm 4.3 – which presents the 

complete algorithm for runOnMobile. 

Also important; the adapt function in the Context component can be used to 

reset the ContextDB mode back to mobile execution mode; which refreshes 

the optimisation logic. Resetting can be useful for updating the values of the 

modes to most recent environmental condition for better accuracy in the 

optimisation logic. Thus the purpose of line 29 in Algorithm 4.1. As shown in 

line 29, the control is handed to the user. In other words, the user can refresh 

the logic at any point in time. 

4.4.4 Service (and Shared Context) 

Services are cloud implementations of Callee; for which execution is based 

on the shared context. Services receive parameters from the offload request 

from the Task component, handle the remote execution of the Callee and 

sends a response back to the Task component. Two key software qualities 

implemented for the cloud tier, as shown in the Caller-Callee model, are 

software availability and resource-efficiency. The term Shared Context is used 

here to denote the fact that the cloud tier qualities are shared for effective 

integration of the qualities – i.e. to minimise overhead on the application 

performance. Context sharing for the cloud tier quality attribute is either  

 between cloud tier services (i.e. Service and Service) or 
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 between the cloud tier (Service) and mobile tier (Task) 

Service to Service Context Sharing: Cloud qualities can be integrated into an 

MCA by implementing the cloud qualities (within a Service) to collaborate with 

another Service. In other words, the Service acts as a surrogate to the cloud 

tier Service which originally handles offload requests. This is exemplified by 

line 4 of Algorithm 4.2 which redirects the execution of the Callee to an 

alternate Service in a situation where the CPU is overworked – for resource 

Algorithm 4.2   Shared Context for Cloud tier, Service 
Let:   x   represent available CPU in % 
          y   represent CPU Threshold in % 
          z   represent Time Threshold in ms 
 
 1:   result = null 
 2:   Thread t: 
 3:        if x < y then 
 4:             result = alt Service //Service to Service 
                 //do nothing, for Service to Task 
 5:        else 
 6:             result = execute Callee 
 7:        end if 
 8:   end 
 9:   t.start() 
10:  t.join(z) 
11:  if t.isAlive() then 
12:       t.interrupt()          //Service to Task 
13:  end if 
14:  send result to mobile 

 

Algorithm 4.3   Shared Context for Mobile tier, Task 
Let:   z   represent Time Threshold in ms 
 
 1:   runOnCloud 
 2:        try 
 3:             t1 = start time 
 4:             result = null 
 5:             Socket s = new Socket(host, port) 
 6:             s.setSoTimeout(z) 
 7:             write Callee params through socket 
 8:             result = read result from cloud 
 9:             t2 = finish time 
10:            ct ← t2 - t1  //ct is cloud elapsed time 
11:            if result == null then 
12:                 runOnMobile 
13:            end if 
14:       catch: runOnMobile 
15:  end 
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efficiency. The CPU threshold represent the minimum available CPU on the 

cloud tier which can process the Callee request with minimal overhead. The 

alternate service implements a version of the Callee, however does not 

require redirection logic (and quality implementation), it only acts as a server 

surrogate to the main Service and returns the result to the main Service. 

Service to Task Context Sharing: Cloud qualities can be integrated into an 

MCA by implementing the cloud qualities (within Service) to collaborate with 

the mobile tier (Task). In this type of context sharing, the Task component 

provides complementary features to enforce the cloud tier qualities. These 

complementary features are implemented within the method which handles 

the offload (i.e. runOnCloud) in the Task. For example; Algorithm 4.2 provides 

the snippet for context sharing in the cloud tier, which implements the resource 

efficiency and availability qualities. 

According to Bass et al. [23], availability is the probability that a system will be 

operational when it is needed. In other words, availability is concerned with 

the consequences of a system failure. In Algorithm 4.2, a time threshold (z) is 

used to specify the maximum expected elapsed time for the cloud tier to 

complete execution of the Callee. The time threshold is therefore used to 

determine availability in the cloud tier. Consequently exceeding the time 

threshold (which is maximum elapsed time) signifies unavailability – which can 

be due to any number of reasons such as high demand of the software, 

intensive resource use/over-utilization or system failure. The performance of 

the Callee can also be affected by network (bandwidth and latency) which may 

not be manageable by the availability feature within the cloud tier (since 

network is external factor to the cloud processing resource). Consequently, 

the mobile tier acts as a surrogate to ensure availability and performance 

using the socket timeout (line 6) – in which case an exception is thrown to the 

catch clause, which runs the Callee on the mobile tier – as shown in line 14 of 

Algorithm 4.3. 

As shown in Algorithm 4.2, the Callee execution is implemented within a 

thread, so as to use the thread join(z) and interrupt() methods to implement 
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availability. The join method waits at most z milliseconds for the thread to 

complete. While the interrupt method implemented after the join call ends the 

process of the thread (see lines 11-13) if not completed within the time, z 

specified by join (in line 10). If the thread is terminated prior to completion, the 

result sent to the mobile (on line 14 of Algorithm 4.2) is null. The mobile 

complements the cloud tier Callee availability quality by executing the mobile 

Callee node if the result is null (as shown in lines 11-13 of Algorithm 4.3). 

Similarly, the mobile tier can also be used as a surrogate for cloud resource-

efficiency quality, by not redirecting to alternate Service when the cloud CPU 

is overworked (i.e. highlighted line 4 of Algorithm 4.2), in which case a null 

response is sent to the mobile; and consequently, Callee execution is handled 

by the mobile. 

4.5 Quality Verification 

Quality Verification (Figure 4.6) is an evaluation process which is used to 

determine if an identified offloadable component (Callee) will certainly yield 

benefits when offloaded. The purpose of performing the quality verification 

after the architecture phase is to include the optimisation logics of the Mango 

architecture in the verification process. Consequently, phase 3 of Mango 

approach ensures that the remote execution time including the decision 

overhead within the Mango architecture, does not compromise the 

performance of the mobile application – at least in normal environmental 

conditions. Furthermore, quality verification is performed dynamically (i.e. at 

runtime), further details are presented in Mosaic (Chapter 5). 

 

 
Figure 4.6 Quality Verification 
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4.6 Behaviour-driven Full-tier Green Evaluation 

The evaluation approach used in Mango is called Beftigre (details presented 

in Chapter 6). Beftigre (abbreviation, for behaviour-driven full-tier green 

evaluation) provides an evaluation for MCA by taking into account the full-tier 

qualities attributes of the architecture, as shown in Figure 4.7. The challenges 

and difficulties of the mobile-centric architecture scenario approach fall into 

the category of (green13) software testing/evaluation [23], [34]. In response to 

the identified challenges (see Chapter 3), Beftigre is proposed, which adopts 

the behaviour-driven technique to address challenges 1 and 2. Furthermore, 

the thesis treats challenge 3 as a testing granularity problem, consequently 

resolved by fine-grained testing of mobile tier and cloud tier (i.e. full-tier). 

The behaviour-driven (BDD) concept is achieved at the Comparator 

component as annotations: with the purpose of presenting the factors 

surrounding MCA test in a comparable and communicable manner. 

Consequently BDD terms such as Given, When and Then are used. Platform 

monitors are useful for monitoring the platform for target metrics whereas the 

Metrics Collector computes the gathered data. For instance, at the mobile tier, 

power and performance monitors and collectors are used for gathering metrics 

                                            

13 Green is the term used for software optimisation and testing based on the energy-efficiency and 
performance metrics [10], [18]. Since offloading schemes target energy-efficiency of mobile devices, 
similarly scenario based comparison is within the green software testing category. 

 
Figure 4.7 Behaviour-driven Full-tier Green Evaluation 
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for energy and performance computation. And for the cloud-tier resource 

monitors and collectors are used for CPU and memory metrics. Thus full-tier 

qualities (or attributes) are analysed at the evaluation phase. Details of the 

Beftigre approach and how the identified research gaps have been addressed 

are presented in Chapter 6 and Section 7.7. 

4.7 Summary 

Table 4.4  Summary of Mango Architecture 

Tiers ACTS Design Pattern Caller-Callee Model 

Mobile Aspect Caller 

Context - 

Task Callee 

Cloud Service (with Shared Context) Callee 

 

 
 

Class 
Aspect 

Collaborators 
 Task 

Responsibility 
 Intercepts Caller 

calls to Callee. 
 Routes execution to 

Task. 
 Returns results and 

execution to Caller. 

Class 
Task 

Collaborators 
 Aspect 
 Context 
 Service 

Responsibility 
 Receives Callee 

parameters from 
Aspect. 

 Implements the 
optimisation logic on 
the Callee. 

 Dispatches Callee 
execution to mobile 
or cloud tier. 

 Adapts context 

 

 
 

Class 
Context 

Collaborators 
 Task 

Responsibility 
 Provides logic for 

persisting context to 
storage. 

 Implements logic for 
adapting context. 

Class 
Service 

Collaborators 
 Task 
 Service Responsibility 

 Receives Callee 
parameters from 
Task. 

 Implements the 
optimisation logic on 
the Callee. 

 Dispatches Callee 
execution to mobile 
or cloud tier. 

 Provides shared 
attributes to 
alternate Service. 

Figure 4.8 Class Responsibility of ACTS 

This chapter presented the Mango Architecture as a model-driven architecture 

which is defined by a Caller-Callee model and an ACTS design pattern (as 
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summarised by Table 4.4). The architecture aims at integrating software 

quality attributes (SQAs) at the mobile and cloud tier. The SQAs explored by 

the architecture are performance and energy-efficiency; for the mobile tier, 

and resource efficiency and software availability; for the cloud tier. Although 

four SQAs has been proposed, more SQAs can be implemented following the 

Mango architectural style. The Caller-Callee model is used to integrate the 

specified SQAs with identified offloadable component (Callee) at mobile and 

cloud tier. 

The greyed out cells in Table 4.4 also shows the connection between the 

Caller-Callee Model nodes and ACTS components. ACTS stands for Aspect-

Context-Task-Services pattern. Figure 4.8 presents a summary of the 

responsibilities of ACTS components using the Class Responsibility 

Collaborator (CRC) model [110]. In Figure 4.8 the Class is the ACTS 

component, the Responsibility is something that the class knows or does, and 

the Collaborators are other classes that the class interacts with to fulfil its 

responsibilities. 

The purpose of the design pattern is to implement the Caller-Callee model; 

thus actualising the Mango architecture in a code base for mobile and cloud 

tiers. The decision making in Mango architecture is based on execution 

contexts (at mobile and cloud tier) and assisted by a Time Threshold at both 

tiers (Algorithms 4.2 and 4.3). The Time threshold ensures that the 

architecture is robust enough to absorb any stresses on the mobile 

performance due to unpredictable adverse environmental conditions. 

Other benefits of Mango architecture are as follows; 

 Reduced development complexity. The implementation process – 

involving identification of CI tasks and implementation of their 

optimisation code, is simplified through modelling. The Mosaic 

framework assists in modelling. 

 Unobtrusive optimisation for legacy systems. The approach is also 

suitable for optimisation of legacy systems as the Mango components 
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are loosely coupled to (or decoupled from) the base system though 

Aspects. As shown in the case study, no significant changes are 

required to be made to the existing legacy code in order to optimise the 

application for mobile-cloud offloading. 

 Controlled over-head, improved efficiency. The approach makes use of 

adaptive time based decision making to ensure improved efficiency at 

runtime (as opposed to multiple environmental factors). 

 Flexible full-tier quality integration. The approach supports seamless 

integration of SQAs for both mobile and cloud tiers, as a way to drive 

efficiency at both tiers. E.g. mobile performance and energy efficiency, 

cloud resource efficiency and availability. 

 Extensive reusability support. The approach highly promotes 

reusability through a templating process. The Mosaic framework 

implements ACTS as templates which can be adapted to suit any 

specific domain requirement. 

 Taxonomy robustness. The approach is efficient with different 

application taxonomies in such a way that it can adapt to accommodate 

non-computation intensive applications with insignificant overhead. 

This benefit has been verified with data intensive applications – in 

Chapter 7. 
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Chapter 5. Mosaic Modelling Approach 

A Modeller and Analyser for MCA 

5.1 Introduction 

This chapter introduces the Mosaic framework, which is a model-based 

selective approach for identification of Callees (i.e. offloadable or computation 

intensive tasks in mobile applications). The framework is composed of three 

key parts – Selective analyser, Caller-Callee modeller and Quality Verifier as 

shown in Figure 5.1. The aforementioned Mosaic features fulfil the CRAC 

phases (presented in Chapter 4), as presented in the following bullet points. 

This chapter is grouped based on the three Mosaic components; 

 Selective Analyser: is used for identifying offloadable tasks by applying 

rules to static analysis process. The output is a call-graph (.mcg). This 

feature fulfils Phases 1 and 2 of CRAC process (see Chapter 4). 

 Caller-Callee Modeller: is used to model Caller-Callee nodes with 

SQAs useful for MCA optimisation. And also used for generating the 

ACTS pattern code following the Caller-Callee model. This feature 

fulfils Phase 3 of CRAC process (see Chapter 4) – which is phase 1 

and 2 of Mango approach. 

 
Figure 5.1  MOSAIC Framework 
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 Quality Verifier: is a form of architecture validator, which is used to 

ensure that the Mango architecture will yield performance benefits. This 

feature fulfils Phase 3 of Mango approach (see Chapter 4). 

The three aforementioned features of Mosaic are provided as an Android 

library, and the modelling feature is also provided as a GUI tool. 

A benefit of the Mosaic (alongside others presented in Chapter 4) over its 

counterparts [4], [8], is that it supports seamless modifiability of code (through 

the modeller tool) while in development (i.e. forward and backward-

engineering of code) as opposed to existing counterparts which are not as 

robust. Also Mosaic possesses a better performance in identification of 

Callees. The core objective of Mosaic is to provide the MDE set of tools for 

realising the Mango approach from design to verification (phase 1 to 3 of 

Figure 4.2). 

 

Figure 5.2 Selective Analysis Approach 
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5.2 Selective Analyser 

To identify offloadable tasks, Mosaic first adopts the static analysis approach, 

adopted elsewhere [8] – which is based on analysing the classes of an 

application to produce a call-graph. Rules are applied to the static analysis 

process to enhance the identification of offloadable components – in this 

research this approach is referred to as a selective analysis approach. Thus; 

the purpose of the Selective Analyser is to achieve finer granularity in static 

analysis through the use of rules for identification of offloadable tasks. Since 

static analysis is incapable of identifying computation intensive components 

at finer-granularity, the selective approach is proposed to achieve finer 

granularity by applying rules (Algorithm 5.1) to the static analysis process. The 

analysis process produces a final call-graph which specifies the offload 

candidates in form of Caller-Callee mapping; however the most important 

component is the Callee – since the pointcut of AOP Aspect is used to 

intercept any occurrences of the Callee. Selective analysis (Figure 5.2) is 

based on three kinds of rules; inclusion, exclusion and default rules. 

Algorithm 5.1   Selective Analysis within Mosaic 
Let: r  represent the rule repository 
 
 1:   if r.hasInclusion() then 
 2:        use inclusions as call-graph 
 3:   else 
 4:        x ← compile classes into jar 
 5:        while x has call do 
 6:             if nonR(call)  &&  nonExclusion(call)  &&  nonLang(call)  &&   
                     nonGenerated(call)  &&  nonConstructor(call) 
                 then 
 7:                  add call to call-graph 
 8:             end if 
 9:             next call 
10:       end while 
11:  end if 
12:  save call-graph to file 

 

 
Figure 5.3 Rules Repository illustrating Inclusion and Exclusion rules 

1:  android.app.Activity  findViewById

2:  android.widget.BaseAdapter  *

3:  in  package.Class:callee
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5.2.1 Inclusion Rules 

From Algorithm 5.1, the Selective Analyser first checks the existence of any 

inclusion rules (line 1); and specifies offload candidates based on these rules 

if they exist (line 2). Inclusion rules are rules added to the repository for the 

purpose of specifying Callees/offloadable candidates allowed in the program. 

They are beneficial for explicitly specifying distinct offloadable candidates for 

evaluation and can be specified by appending the word ‘in’ before the full 

Callee specification – i.e. package name, class name and method name, as 

shown by line 3 of Figure 5.3. 

As mentioned earlier, the key achievement of the selective approach is the 

identification of offloadable tasks at a finer granularity. With the selective 

analyser, rules can be added to the analysis process until finer results are 

achieved. Also, the results of the dynamic analysis can be used to formulate 

rules (as inclusion rules) to achieve finer granularity of call-graph; thus 

allowing for flexibility in the software development process. 

5.2.2 Exclusion Rules 

Exclusion rules are rules added to the repository for the purpose of specifying 

call properties which are to be excluded from the program as offloadable 

candidates. During static analysis, project classes are scanned and the calls 

made within the class are derived. Each call consists of various properties as 

presented in Table 5.1. The call properties used for an exclusion rule are “sa 

callee” or “sa *” as shown in lines 1 and 2 respectively of Figure 5.3. 

Table 5.1  Call properties used in selective static analysis 

Symbol Description 

caller The Caller, which is a method 

a Class of caller 

sa Super class of caller 

callee The Callee, which is a method 

b Class of callee 
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“sa callee” excludes a call if the super class of the caller and its callee are 

specified in the exclusion rule. For example, from line 1 of Figure 5.3, if a call 

has its caller superclass as Android Activity, and the called method (i.e. the 

callee) is findViewById, then the callee is not an offloadable candidate. This is 

because findViewById is an Android’s Activity native method – i.e. tied to the 

view of the mobile device, and therefore cannot be offloaded. Therefore the 

exclusion rules are useful for excluding device/sensor-centric call properties. 

“sa *” is similar to “sa callee”, but the * is used as a wildcard character to 

exclude all methods (callees) associated with the specified sa. 

The reverse of the exclusion rules must be met by a call in order to be 

considered as an offloadable candidate, i.e. nonExclusion(call), as shown in 

line 6 of Algorithm 5.1. 

5.2.3 Default Rules 

Default rules, like exclusion rules, specify call properties to be excluded from 

the program as offloadable candidates. The difference between exclusion and 

default rules is that exclusion rules are specified within the repository, and 

therefore with custom exclusion rules can be added to tailor the analyser for 

a program. Default rules, however, are standard exclusion rules which cannot 

be modified as they are provided by the system. These rules are useful to 

exclude calls which are generally mobile device or platform specific. Like the 

exclusion rules, the reverse of the default rules must be met by a call in order 

to be considered as an offloadable candidate (see line 6 of Algorithm 5.1). The 

constituents of the default rules are presented below; 

 nonR(call) 

The rule is used to exclude a call if the class of the Caller is R. R is an Android 

generated resource class – used for assets such as widgets and layouts. It is 

mobile device specific, and thus cannot be offloaded to the cloud. 

 nonLang(call) 

The rule is used to exclude a call if the class of the Callee is a Java or Android 

language class. This is determined by checking if the package name of the 
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class (of the Callee) begins with ‘android’ or ‘java’ before the first period (i.e. 

android. or java.). The java.lang and android platform classes are defined by 

the JVM and DVM runtimes and thus cannot be offloaded. 

 nonGenerated(call) 

The rule is used to exclude a call-graph item if the Caller or Callee is a 

constructor. This is determined by checking if the Caller or Callee is <init>. 

<init> in Java signifies that a method is a constructor. A constructor alone 

cannot be offloaded as they are required for object creation, moreover, it is 

impractical to offload a constructor without their dependencies. 

 nonConstructor(call) 

The rule is used to exclude a call-graph item if the Caller, the Callee, the class 

of the Caller, or the class of the Callee are generated by the Java platform. 

This is determined by checking if the class or method names contains the 

dollar $ sign. In Java, $ is used to annotate the names of inner classes (e.g. 

$class_name) or anonymous inner classes (e.g. $number); and their methods 

(e.g. $number). By convention, these forms of classes are used to implement 

platform specific methods e.g. ActionListener and actionPerformed used in 

swing programming. Thus they are not appropriate offload candidates. 

5.3 Caller-Callee Modeller 

Caller-Callee Modeller is used to model Caller-Callee nodes with SQAs useful 

for MCA optimisation. The Caller-Callee model is introduced in Chapter 4. This 

section presents the modeller to actualise/validate the model introduced in 

Chapter 4. The Caller-Callee modeller is provided in two forms; 

 A modelling tool: The modelling tool (or Modeller, for short) is a GUI 

– built on the JGraphX14 swing API [111]; used to independently 

model offloadable components like any independent MDE tool (e.g. 

                                            

14 JGraphX User Manual is useful for extending the modelling layer and is located at 
https://jgraph.github.io/mxgraph/docs/manual_javavis.html 
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MySQL Workbench). The tool generates two forms of output; first 

the model diagram (.mod file), and the transformed model (ACTS 

classes). The tool is useful for the design process of new systems 

as it separates the model diagram from the transformed model. 

Appendix C shows a screenshot of the Modeller and sample model 

diagram (.mod) file. 

 A library feature: In this case, the modeller is integrated with the 

Mosaic library (.jar) file which can be loaded into the IDE during 

development. The output of the modeller in the library is the 

transformed model (ACTS classes). The library is useful for legacy 

systems (and for continuous integration), as it is loaded within the 

development environment. 

The modeller uses Caller and Callee as nodes (obtained from earlier 

presented call-graph) to create the model – while specifying the SQAs for the 

model, as shown in steps 1 and 2 of the Modeller process (Figure 5.4). The 

modeller process is completed by generating ACTS classes (i.e. step 3) which 

is an implementation of the model diagram. 

 

 

 

 

Figure 5.4 Modeller process 
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5.3.1 Model Creation 

As shown in Figure 5.5, the Modeller defines four nodes (as presented in rule 

r, in Algorithm 5.2) and four attributes (as presented in rule sr, in Algorithm 

5.2). The nodes are; Mobile, Cloud, Caller and Callee node. The attributes 

are; mobile performance (p), mobile energy (e), cloud resource (r), and 

software availability (a). 

The Caller-Callee model is a graph of nodes (or vertices), connectors (or 

edges), and attributes (i.e. SQAs). Algorithm 5.2 presents the process for 

validating nodes – Lines 1-8, connectors – Lines 9-17, and the model as a 

whole (nodes, connectors and attributes) – Lines 18-24. 

5.3.1.1 Node Validation 

Node validation is used to validate the model when a node is added to the 

model, during the model creation. The node validation algorithm (Lines 1-8) is 

implemented as an event listener for a drag and drop event on the node. The 

condition in Line 3 ensures that for any model; there is only one instance of 

all nodes except Callee node, for which the condition ensures there are only 

 
Figure 5.5 A valid Caller-Callee model diagram from Modeller 
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two instances of it. The reason for two instances of a Callee is that it is required 

to be implemented on the mobile and cloud tiers. 

5.3.1.2 Connector Validation 

Connector validation is used to validate the model when a connector is added 

to the model, during the model creation. The connector validation algorithm 

(Lines 9-17) is implemented as an event listener for a drag and drop event on 

the connector. The modeller defines Connectioln rule (r) used to validate 

Algorithm 5.2   Model validation algorithm 
Require:  Model in view as m 
                 Connection rule as r ←  { (Caller,  Mobile,  1,   1),  (Mobile,  Callee,  1,   1), 
                                                              (Caller,  Cloud,   1,   1),  (Cloud,    Callee,  1,   1) } 
                 SQA rule as sr            ←  { (Mobile, Callee, "p, e"),  (Cloud,   Callee,  "r, a") } 
                 m.size(a)                      ←  return the number of a nodes in m 
                 r.isValid(a, b)              ←  return true if a links to b in r 
                 m.validate(rule)         ←  validates connections in m against rule 
 

//(A,B,1,1)   in r  means A links to B in 1 to 1 bi-directional relationship 
//(A,B,"x,y") in sr means B in A can only have x and/or y SQA 
 

Let:           a         represent action performed 
                  e         represent drag event 
 
 1:   if  e is on node  then 
 2:        n  ←  get the node dropped in model 
 3:        if  m.size(n) == 0  ||  ( n is Callee  &&  m.size(n) < 2 )  then 
 4:             add node 
 5:        else 
 6:             ignore node 
 7:        end if 
 8:   end if 
 
 9:   if  e is on connector  then 
10:       s  ←  get the source node of the connector 
11:       t  ←  get the target node of the connector 
12:       if  r.isValid(s, t)  then 
13:            connect  s to t 
14:       else 
15:            ignore connection 
16:       end if 
17:  end if 
 
18:  if  a is validate action  then 
19:       if  m.validate(r)  &&  m.validate(sr)  then 
20:            'The model is valid' 
21:       else 
22:            'The model is invalid' 
23:       end if   
24:  end if 
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connectors. The connection rule (r, presented in Algorithm 5.2) is used to 

define the relationship between nodes, thus specifying the kind of connections 

(source/target) allowed for a node. The condition in Line 12 ensures that the 

source and target nodes of a connector comply to r. 

5.3.1.3 Model Validation 

Model validation is used to validate the model as a whole, after the model 

creation is completed, prior to model transformation. The model validation 

algorithm (Lines 18-24) is implemented as an action, thus can be executed 

any time during or after the model creation. It is however required for verifying 

that the model complies with the defined rules. Two set of rules are defined 

for model validation, they are; Connection rules (r) and SQA rules (sr). While 

the Connection rules define the connections between nodes as mentioned 

earlier, the SQA rules define the software qualities allowed for a connection. 

As shown in sr in Algorithm 5.2, performance and energy SQAs are applicable 

to connections from Mobile to Callee node as they are mobile tier SQAs. 

Furthermore, resource and availability SQAs are applicable to connections 

from Cloud to Callee node as they are cloud tier SQAs. These SQAs have 

been detailed in Chapter 4. Line 19 validates the model by validating the 

nodes, connectors and attributes. 

 Validating the connection (nodes and connectors) 

m.validate(r) is used to validate the connections (i.e. connectors and nodes) 

in the model m against the connection rule r.  

Connectors are validated by verifying that all the connectors in the model 

comply with the connection rule. E.g. Caller must be connected to Mobile, 

Mobile must be connected to Callee, etc. as defined by r. 

Whereas nodes are validated by verifying that all the rules in r were 

implemented by a connection. E.g. connections; Caller to Mobile, Mobile to 

Callee, Caller to Cloud and Cloud to Callee must exist in a 1 to 1 relationship 
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in the model. This would result in one Mobile node, one Cloud node, one Caller 

node and two Callee nodes (one for the mobile tier and one for the cloud tier). 

 Validating the attributes 

m.validate(sr) is used to validate attributes of the connections (i.e. connectors 

and nodes) in the model m against the SQA rule sr. 

The attributes of connectors in the modeller specify priority attributes used for 

execution (presented in Chapter 4). Priority attributes apply to the mobile 

qualities; thus, m.validate(sr) verifies that the priority attributes on the 

connectors comply to sr. E.g. the attribute of the connector must be either ‘p’ 

or ‘e’. 

The attributes of the nodes specify all SQAs to be implemented in a tier 

(mobile or cloud). m.validate(sr) also verifies that the attributes on the nodes 

comply to sr. The nodes of interest are the Callee nodes. Thus m.validate(sr) 

verifies that the Callee node with Mobile parent has ‘p’ or/and ‘e’ and the 

Callee node with Cloud parent has ‘r’ or/and ‘a’ as SQAs. 

A valid Caller-Callee model (e.g. Figure 5.5) is utilised by the modeller to 

engineer MCA application based on the ACTS design pattern (i.e. model 

generation for Mango architecture). By adopting a standardised modeller (built 

on JGraphX), a created Caller-Callee model diagram can be easily modified 

and reused in different applications. Thus the mosaic framework supports 

modifiability and reuse of artefacts during development. 

5.3.2 Model Transformation 

The modeller also fulfils the model transformation process in Mosaic 

framework which uses templates to transform a model into an application 

code-base compliant to the mango architectural style. Templates are .tmp files 

implementing the ACTS design pattern described in Chapter 4. Furthermore, 

templates constitute valid code bodies with placeholders – which are 
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substituted with appropriate values during transformation and tags – which 

are integrated as SQAs. 

5.3.2.1 Code bodies 

Table 5.2 presents the code bodies (or targets) of the templates. The Aspect 

template is based on AspectJ Aspect class – and it makes use of the 

annotation style AspectJ as shown in Figure 5.6. The Task template is based 

on Android Tasks; hence a subclass of the Android Task class. Context and 

Service templates are both plain Java classes. All generated code have .java 

extensions, in other words, they are Java classes. 

5.3.2.2 Placeholders for Callee Properties 

Placeholders are specified with square brackets within the .tmp file as shown 

in the Aspect template presented in Figure 5.6. Appendix D presents the 

complete ACTS templates used in the modeller process. The placeholders in 

templates are of two types: i) meta-model placeholders; which are 

Table 5.2  Template targets 

ACTS Templates (*.tmp) Description Tiers 

Aspect AspectJ Aspect Mobile tier 

Context Plain Class 

Task Android Task 

Service Plain Class Cloud tier 

 
Figure 5.6 Aspect Template 
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placeholders derived from call-graph meta-model. They are [Callee], 

[Arguments], [ArgumentIDs], [CastedArguments] and [Return] placeholders. 

And ii) custom placeholders; which are placeholders independent of the meta-

model but added to expedite development. They are [Host] and [Port] 

placeholders.  

[Callee] placeholders are substituted with the actual class name during 

transformation. Although the Caller is presented in the model, in the actual 

implementation, the Caller class is not required, as Aspect pointcut is used to 

intercept the program at any point where the Callee is called. [Callee] 

placeholders are used within Aspect and Task templates. 

[Arguments] placeholders specify the argument types and identifiers of the 

Callee. [Arguments] placeholders are used in Aspect template. Within the 

Aspect class, they are applied at the method declarations of the pointcut and 

advice, as shown in Lines 11 and 15 of Figure 5.6 respectively. These are 

useful for obtaining the arguments of the Callee when the call is intercepted. 

[ArgumentIDs] placeholders are substituted with identifiers of the arguments. 

While the [Arguments] placeholder consists of argument types and identifiers, 

the [ArgumentIDs] only specifies the identifiers. These are useful in the Aspect 

class for passing the arguments to the Task to launch the execution, as shown 

in Line 16 of Figure 5.6. They are also used in the pointcut and advice code 

of the Aspect class for specifying the argument identifiers of the Callee, as 

shown in Lines 10 and 14 of Figure 5.6 respectively. 

[CastedArguments] placeholders are [ArgumentIDs] which are casted with the 

argument types from [Arguments]. [CastedArguments] are used as arguments 

for [Callee] in order to make a call to the offloadable task. [CastedArguments] 

are used in the Task and Service classes of ACTS when calling the offloadable 

task. 

[Return] placeholders are substituted with the return type of the Callee. 

[Return] placeholders are used in Aspect template as shown in Line 15 of 

Figure 5.6. They are also used in Task template. 
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[Host] placeholders are used to specify the host IP address of the cloud. They 

are used in the Task template. 

[Port] placeholders are used to specify the port number which the cloud server 

is listening to. They are used in the Task and Service templates. 

A demonstration of the transformation of ACTS by Mosaic framework is 

presented in the Case studies (Chapter 7). 

5.3.2.3 Tags for Quality Attributes 

Four quality attribute (SQA) types are provided by the Mango architecture as 

presented in the Model’s SQA rule (sr in Algorithm 5.2). These are; 

performance and energy-efficiency for the mobile tier; resource-efficiency and 

software availability for the cloud tier. 

Within the Modeller (as shown in Figure 5.5), the attributes for tiers are 

specified on the mobile tier (i.e. Mobile → Callee node) and cloud tier (i.e. 

Cloud → Callee node). And the priority attribute (e.g. p) is specified on the 

connector. Quality attributes are mapped to sections of the templates using 

tags. In order words, tag sections are used to wrap the implementation of a 

quality attribute, for a given template. 

During model transformation, the quality attributes specified on the tiers are 

mapped to sections of the template as described below. sr in a tag denotes 

 
Figure 5.7 Mobile tier tags at Task Template 

<sr:p>
private static final int OVERHEAD = 0;

</sr:p>

<sr:e>
private static final int OVERHEAD = /*Value ms*/;

</sr:e>

<sr:pe>
private static char pa = /*get priority attribute from UI*/;

private static int overhead(){
if(pa=='e'){

return /*Value ms*/;
}
return 0;

}
</sr:pe>
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SQA rule, p denotes performance, e denotes energy-efficiency, r denotes 

resource-efficiency and a denotes availability. Notice that the sr tag attributes 

(i.e. p, e, a, r) match those defined in the Modeller in Algorithm 5.2. The Mosaic 

framework recognises pre-defined tags and associates them to a model 

diagram (.mod). In creating quality attribute sections in templates the sr tags 

must be used in an open and close format, similar to HTML tags convention. 

Mobile tier qualities (shown in Figure 5.7) are implemented within the Task 

template. The mobile tier qualities currently implemented in Mango are 

performance (sr:p, lines 1-3) and energy-efficiency (sr:e, lines 5-7). These are 

presented in using the sr tags, notice that qualities can be combined at the 

mobile tier (e.g. sr:pe for performance and energy-efficiency combined, lines 

 
Figure 5.8 Cloud tier tags at Service Template 

<sr:a>
public static void dispatcher(Object[] params) {

thread = new Thread(new Runnable() {
@Override
public void run() {

result = [Callee]([CastedArguments]); //Callee on this server
}

});
thread.start();
try {

thread.join(TIME_THRESHOLD);
if (thread.isAlive()) thread.interrupt();

} catch (InterruptedException ex) {  }
}

</sr:a>

<sr:r>
public static void dispatcher(Object[] params) {

if (availableCPU() < CPU_THRESHOLD) {
result = /*reference to the Callee on an alternate server*/

} else {
result = [Callee]([CastedArguments]); //Callee on this server

}
}

</sr:r>

<sr:ar>
public static void dispatcher(Object[] params) {

thread = new Thread(new Runnable() {
@Override
public void run() {

if (availableCPU() < CPU_THRESHOLD) {
result = /*reference to the Callee on an alternate server*/

} else {
result = [Callee]([CastedArguments]); //Callee on this server

}
}

});
thread.start();
try {

thread.join(TIME_THRESHOLD);
if (thread.isAlive()) thread.interrupt();

} catch (InterruptedException ex) {  }
}

</sr:ar>
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9-18).  Using the format presented in Figure 5.7, more software quality 

attributes can be integrated into the mobile tier of Mango architecture. 

Furthermore, Cloud tier qualities (shown in Figure 5.8) are implemented within 

the Service template. The cloud tier qualities currently implemented in Mango 

are availability (sr:a, lines 1-15) and resource-efficiency (sr:r, lines 17-25). 

These are presented using the sr tags. Notice that qualities can be combined 

at the mobile tier (e.g. sr:ar for performance and energy-efficiency combined, 

lines 27-45).  Using the format presented in Figure 5.8, more software quality 

attributes can be integrated into the cloud tier of Mango architecture. 

5.4 Quality Verifier 

The Quality Verifier is used to validate the Mango architecture. In Mosaic 

framework a Profiler Aspect class is the implementation of the Quality Verifier 

Algorithm 5.3   Profiler Aspect 
Require: callee from call-graph, 
         scenario from Profiler DB 
//By default scenario is set to local 
 
 1:   before callee: 
 2:        t1 = start time 
 3:   end 
 
 4:   after callee: 
 5:        t2 = finish time 
 6:        t  = t2 - t1 
 7:        if scenario == 'local' then 
 8:             lt ← t 
 9:             scenario ← 'mobile' 
10:       else if scenario == 'mobile' then 
11:            print 'mobile overhead is ' + (t - lt) 
12:            scenario ← 'cloud' 
13:       else if scenario == 'cloud' then 
14:            cs ← lt - t 
15:            print 'cloud saving is ' + cs 
16:            scenario ← 'decider' 
17:       else if scenario == 'decider' then 
18:            if cs > 0 then 
19:                 print 'decider saving is ' + (lt - t) 
20:            end if 
21:            reset Context DB 
22:            scenario ← 'mobile' 
23:       end if 
24:  end 
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which handles the architecture validation. The Profiler Aspect (Algorithm 5.3) 

is an AOP Aspect class used to evaluate an identified offloadable candidate 

to determine if it could yield benefits when offloaded. The Profiler Aspect is 

composed of a before and after pointcut (lines 1-3 and 4-24) which marks the 

points before and after the Callee execution using timestamps (lines 2 and 5) 

– so as to calculate the elapsed time of execution. The use of AOP for 

component evaluation is explored in greater detail in [84]. 

The Profiler Aspect is firstly generated by Mosaic for an offload candidate (or 

Callee) and is used for the evaluation of Callee performance in local execution 

and Mango execution scenarios (Figure 5.9). 

The Profiler Aspect (Algorithm 5.3) adopts a similar flow of execution as the 

decision maker within the Task component (Algorithm 4.1). In other words, the 

scenarios within the Profiler Aspect are congruent to the modes in the 

decision-maker and stored within the Profiler DB for the purpose of 

administering evaluation for all execution modes. The default scenario is the 

local scenario, as it is executed before Mango scenarios. 

5.4.1 Measuring Local Execution of Callee 

After a Callee is identified and the Profiler Aspect generated, the mobile app 

is then executed to measure the elapsed time for the local execution scenario. 

The elapsed time for local is stored in profiler DB (which is an Android shared 

 
Figure 5.9 Profiler Aspect for Architecture Verification 
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preferences storage) – line 8. And the scenario is then set to mobile, for the 

purpose of evaluating the first Mango mode (which is mobile by default – 

Algorithm 4.1) 

5.4.2 Measuring Mango Execution of Callee 

After the generation of ACTS components, the application can be executed 

with the Profiler Aspect to measure the Mango implementation of the 

offloadable candidate (based on best possible environmental scenario15). 

Repeating execution of the Mango optimised application will evaluate the 

mobile, cloud and decider modes of Mango – thus capturing all modes. 

Lines 21 and 22 reset the Context DB (i.e. the mode becomes set to default 

mobile), while setting the scenario back to mobile. This is to allow the 

repetition of the evaluation for the best possible environmental scenario. The 

purpose of using the best possible Mango execution scenario is to determine 

if the offload candidate will most certainly yield benefits – i.e. given any 

arbitrary environmental condition from best to adverse. 

5.4.3 Comparing Execution Scenarios 

The mobile overhead, the cloud saving and the decider saving are estimated 

by the Profiler Aspect for various execution scenarios.  

The mobile overhead (line 11) is a comparison between the execution time of 

Mango’s mobile scenario and that of the local scenario. This is used to 

estimate the possible overhead contributed by Mango to the execution of the 

Callee when it is not offloaded. 

The cloud saving (lines 14-15) is a comparison between the execution time of 

the local scenario and that of Mango’s cloud scenario. If the cloud saving is 

                                            

15 Best possible environmental scenario means that the mango execution can be repeated to obtain 
lowest elapsed times for mango execution – stored in profiler repository. 
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a positive value, then the offload candidate will yield benefits, otherwise it will 

not. 

The decider saving (lines 18-20) is obtained if the cloud saving is positive. And 

it is used to estimate the savings when the decision maker is executed prior 

to offload. 

Chapter 7 presents an evaluation of Mosaic using Case Studies (with Section 

7.4 demonstrating, in particular, the effectiveness of the Profiler Aspect). 

5.5 Mosaic Library Usage 

The Mosaic library and modeller are the key tools that make up the framework. 

The modeller as presented in section 5.3 is used for creating or modifying the 

Caller-Callee model diagram. The mosaic library, however, implements all the 

features of the framework – which includes selective analyser, modeller and 

 
Figure 5.10 Project Build Gradle for Mosaic 

 

 
Figure 5.11 App Build Gradle for Mosaic 
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quality verifier; apart from the diagramming interface of the modeller. 

Therefore, as the library is not GUI-based, it provides an interface (presented 

in section 5.5.2) for specifying SQAs in order to transform model for ACTS 

classes. The library has been tested using Android studio, and the formats 

presented below are associated with Android studio. 

5.5.1 Library Dependencies 

The Mosaic library is a jar file which can be loaded into the mobile application 

being developed, via the Gradle script of the application. To setup the mosaic 

library in the project; 

 Add the annotation style Android plugin as a classpath dependency of 

the project as shown in Line 8 of 10. The Aspect code generated by the 

library is dependent on AspectJ annotation-style library. Furthermore; 

apply the AspectJ plugin within the app build.gradle and add the library 

as compile dependency as shown in Lines 2 and 7 respectively of 

Figure 5.11. 

 Add the mosaic jar as a compile dependency in the app build.gradle as 

shown in Line 8 of Figure 5.11. 

 Setup the arguments for the mosaic library within the app build.gradle 

as shown in Lines 11-21 of Figure 5.11. 

 An application must specify the INTERNET Android permission in the 

manifest file in order to use the Mango architecture; as shown in line 7 

of Figure 5.12. The INTERNET permission is used for connecting to 

the cloud via the Task class (of ACTS pattern). Note that the Context 

class (of ACTS pattern) uses Shared Preferences for storing context 

 
Figure 5.12 Android Permission for Mango 
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information and therefore does not require permission via the Manifest 

file. 

5.5.2 Library Arguments 

The Mosaic library supports seven arguments as presented in Figure 5.11, 

Lines 14-20. 

The first argument is the project home (Line 14). This is the directory that holds 

all the project files. It can be referenced from Gradle using file('..') or by 

providing the absolute path e.g. 'C:\\AndroidProjects\\Sample' where Sample 

is the home folder created by Android studio to hold the Sample project. 

The second argument is the Android SDK directory (Line 15). This is the 

directory where the Android SDK was installed to. It can be referenced from 

Gradle using android.getSdkDirectory().getAbsolutePath() or by providing the 

absolute path e.g. 'C:\\Users\\Chinenyeze\\AppData\\Local\\Android\\sdk'. 

The third argument is the compile SDK version used by the project (Line 16) 

and the support version if applicable. If the project uses a support SDK, it is 

appended to the compile SDK argument, separating the two with a colon. If a 

project uses support SDK it is indicated in the dependencies of the app 

Gradle.build. E.g. compile 'com.android.support:support-v4:23.0.0' would be 

part of the dependencies in Figure 5.11, to use a version 4 support SDK. The 

compile SDK version can be referenced from Gradle using 

android.compileSdkVersion or by providing the string explicitly, e.g. 'android-

23'. The support SDK version can be provided by appending a colon and the 

support SDK version to the compile SDK version. E.g. 'android-23:4' would 

refer to compile SDK version 23 and support SDK version 4. Using Gradle 

variable format, the sample argument would look like 

android.compileSdkVersion+':4'. A compile SDK is required for the third 

argument, the support SDK is only required if applied to a project.  

The fourth argument is the core package(s) of the application (Line 17). The 

specified package(s) must be the packages of interest for analysis. The 
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default package of the application can be referenced from Gradle using 

android.defaultConfig.applicationId or explicitly e.g. 'com.sample.mypackage'. 

To reference more than one package, the argument can be provided as a 

comma-separated string of packages, e.g. 'com.sample.one, com.sample.two'. 

The fifth argument is the rules repository (Line 18). This is an optional 

argument. If not provided the analyser would use the default exclusion rules 

(see section 5.2) to generate a call-graph. If provided, the argument must be 

the absolute path to the rules repository, e.g. 

'C:\\AndroidProjects\\rules.mrl'. The granularity of default exclusion rules in 

identifying offload candidates is evaluated in section 5.6. 

The sixth argument is the jars used (Line 19). This is an optional argument. 

However if any external or third-party jar(s) were referenced by the project, 

they are provided in this argument, e.g. 'MyJar.jar'. The jar(s) are required 

by the analyser to analyse the project. If more than one jar apply they are 

separated by a comma, e.g. 'JarOne.jar, JarTwo.jar'. The jar names are 

required and not the absolute path, as the analyser references the jar from the 

lib directory of the project. 

The seventh argument is the specification of SQAs for the model (Line 20). 

This argument is required for the model transformation. SQAs are specified 

using character symbols (as presented in SQA rule, sr in Algorithm 5.2). As 

shown in line 20, the first set of SQAs are for the mobile tier, followed by the 

cloud tier SQA and subsequently the priority attribute. 

The fifth and sixth arguments can be replaced with a 0 (as used in Line 19) in 

order to skip any of the arguments. 

5.5.3 Code Refactoring 

The framework generates the code-base to be used for development. 

However, a few refactoring processes are required (as demonstrated in the 

Case Studies – Chapter 7), as the code-base is only a scaffold based on the 

generic template. 
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 Mobile tier requires Android Activity 

Aspect requires an Android activity to launch/initialise the Task and Context 

class. An activity can be exposed by any Android Activity class (e.g. the 

Activity class on which the Caller is implemented) and then used within the 

Aspect class. 

 Mobile tier requires socket connection and permission 

The Task class at the mobile tier uses Java socket to connect to the cloud, in 

order to execute the Callee remotely, the host and IP address has to be 

supplied to the socket. Also, the parameters sent to the cloud and the result 

must be cross-checked to be appropriate to the Callee. Furthermore, the 

Android internet permission must be provided in the Android manifest file, to 

allow for the remote communication. 

 Mobile tier requires Service in Manifest 

The Service class of the mobile tier are Android services, and consequently; 

they are required to be specified in the Android manifest file. 

 Cloud tier requires Callee implementation 

The analyser only provides a method of the Callee for the cloud tier template. 

Consequently, the Callee implementation is required for the Callee method 

within the Task class of the cloud tier. 

5.6 Performance Evaluation 

The performance evaluation was performed for Mosaic library on Windows 10 

x64 PC, with Intel i7 2.20GHz CPU and 8GB memory, using four Android 

applications as case studies – Linpack, MatCalc, MathDroid and NQueen. 

Furthermore, the average of 20 test samples in each app was used to 

investigate the performance of the library by comparing its Mosaic build time 
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with that of Default. The build time16 is used as a basis for evaluation as this 

is when the Mosaic library is executed. The build time is measured using 

Android Studio’s build functionality. 

 Default scenario is the build time without the Mosaic library. 

 Mosaic scenario is the build time which uses the Mosaic library, and 

also performs the selective analysis and generation process. 

                                            

16 Build time is the time to (re)build the modules and libraries of a project. Mosaic library is executed at 
build time. 

Table 5.3  Mosaic file extensions 

Apps Dependent Libraries Call-graph Items 

Jar Size (KB) Total Default Rule Custom Rule 

Linpack - - 249 2 1 

MatCalc Jama-1.0.2.jar  33 1280 30 1 

MathDroid Calc.jar 233 2666 31 1 

NQueen achartengine1.0.0.jar 99 2077 24 1 

 
Key: Total Total call-graph items 

 Default Rule Final call-graph items identified using Mosaic default rule 

 Custom Rule Final call-graph offloadable item identified using Mosaic custom rule 

 
Figure 5.13 Mosaic vs. Default Build Time 

4.0991

5.2012 5.3527
4.5038

6.3581

8.138

9.2555

7.6521

LINPACK MATCALC MATHDROID NQUEEN

Bu
ild

 T
im

e 
(s

)

Mosaic vs. Default Build Time

Default Mosaic



113 
 

Based on the results in Figure 5.13, Linpack, MatCalc, MathDroid and 

NQueen shows a 55.11%, 56.46%, 72.91% and 69.9% increase respectively 

resulted by the Mosaic analysis at build time. Consequently showing an 

overhead of 55-73% increase in build time. 

Although the results (as illustrated by Figure 5.13) shows that Mosaic incurs 

some overhead (55-73% overhead) to the build time of an application, some 

of the applications (e.g. MathDroid and NQueen) portray higher overhead than 

the others (e.g. Linpack and MatCalc). The increased overhead in Mosaic 

scenario is affected by three key factors (summarised in Table 5.3): 

 Total call-graph items. The more the number of call-graph items the 

higher the build time. As shown in Figure 5.13 and Table 5.3, Linpack 

has the most minimal total number of call-graph items (249), whereas 

MathDroid has the highest (2666). Consequently, the Mosaic overhead 

in Linpack is the least (55.11%), and that of MathDroid is the highest 

(72.91%) of the case studies.  

 Existence of Jar dependencies. Mosaic library loads dependencies 

into the classpath when analysing an application, (without the 

dependencies in the classpath, the analysis will be unsuccessful as 

classes which reference the dependent jars will break the analysis 

process). Since the jars are loaded into the classpath, their classes are 

also subjects of the analysis process. Consequently, an application 

which has no dependency will have lesser build time compared to an 

application with dependency. E.g. Linpack app which has no jar 

dependencies (and therefore lesser number of call-graph items), has 

much lesser build time in comparison to other apps which has jars (as 

shown in Table 5.3). 

 Size of Dependency Jar files. Jars can be of different sizes, a jar with 

larger size means that more classes are implemented in the jar – thus 

increasing the total call-graph items. And consequently, requiring more 

time for analysis. 
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Despite the 55-73% increase in build time, the total build times are less than 

10s (MathDroid being the maximum, at 9.2555s). Similar frameworks, which 

however is useful for only analysis (for identification of offloadable tasks) such 

as Elicit [8], records an average analysis time of 30-40s, which is in fact 233-

344% increase on the Mosaic elapsed (build) time. Considering that the 

mosaic build time includes the full features of the framework using default 

model, and not only analysis process, the Mosaic framework saves 

development time, with an absolute accuracy when the custom rule is used 

(see sections 5.2.1 and 5.2.2). 

What is meant by absolute accuracy? This is in comparison with the existing 

counterpart analysis tool – Elicit. Hassan et al. [8] uses similar applications 

presented in Figure 5.13 (i.e. MatCalc, MathDroid and NQueen) to evaluate 

the performance of Elicit, which results to 30-40s on average. Furthermore, 

the effectiveness of Elicit for identification of offloadable items is investigated; 

and the items identified as offloading candidates for MatCalc, MathDroid and 

NQueen are 1, 5, and 2 in number. Using the Mosaic framework, rules are 

applied to identify the same and specific offloading candidates, as shown in 

Table 5.4. Thus templates can be generated for specific identified candidates. 

Note that; an application build time can be sped up by commenting out the 

Mosaic execution command (i.e. javaexec in Gradle in Figure 5.11) after 

offloading candidate (Callee) have been identified, and templates generated. 

5.7 Summary 

This chapter presented the Mosaic Framework as an MDE tool for Mango 

architecture to address the challenges (see Related Work, Chapter 3 for 

Table 5.4  Offloading Candidates 

App Offloading Candidates (Callees) 

Linpack rs.pedjaapps.Linpack.Linpack class 

MatCalc times(Matrix B) method of Matrix class 

MathDroid computeAnswer(String query) method of Mathdroid class 

NQueen nQueenCount(int input) method of NQueen class 
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details) of the existing MCA optimisation approaches – most especially 

addressing the gap of development and performance inefficiency (i.e. the key 

aims of Mosaic). The framework was developed to drive the Mango 

architecture. As a model-based framework, Mosaic generates application 

code, by use of a model from Modeller, for identified offloadable components 

(identified by the Selective Analyser). Table 5.5 summarises the files used 

within the framework. 

The model (.mod) is created using the Caller-Callee Modeller (or can be 

obtained from the Transformer; for default model). It is the file that specifies 

the SQAs used for the mobile and cloud tiers and the defined contexts used 

within the application. In Mosaic, the model makes it easy to reuse SQAs in a 

MCA application, by abstracting the SQA logic as models, decoupled from the 

actual Caller-Callee definitions within the call-graph. 

The ACTS templates (.tmp) implement the ACTS design pattern presented in 

Chapter 4, and are used as the code-bodies for scaffolding the Mango derived 

MCA application. The model transformation process uses templates to 

generate the ACTS classes (which are Java classes) implementing the Mango 

architecture. A benefit of the Mango architecture is that; as a model-driven 

approach, no significant changes are required to be made in order to adapt 

legacy systems for mobile-cloud optimisation. Thus, it is development 

efficient. Also Mosaic is performance efficient, in the sense that it validates the 

architectures of the application prior to deployment to ensure that the use of 

Table 5.5  Mosaic file extensions 

Mosaic file extensions Description 

Mosaic rule repository .mrl Used for selective analysis 

Mosaic call-graph .mcg Output of selective analysis 

Used for model creation 

Caller-Callee Model .mod Output of model creation 

Used for model transformation 

Mosaic template .tmp Used for model transformation 

ACTS classes .java Output of model transformation 
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Mango architecture within an application will most certainly yield benefits – 

this is achieved by the Quality Verifier. 

Finally, an evaluation of the Mosaic framework was conducted, to investigate 

its overhead in development. Compared to existing counterpart the library is 

more efficient – incurring lesser development/build time, compared to the 

added 233-344% increased overhead of the counterpart. 
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Chapter 6. Beftigre Evaluation Approach 

An Approach for MCA Evaluation and Comparison 

6.1 Introduction 

This section presents a framework – known as Beftigre17, for evaluating 

mobile cloud applications. Beftigre stands for behaviour-driven full-tier green 

evaluation. The novelty of the approach is to use formalised software 

engineering concepts/methodology to assist in testing and comparing 

between offloading schemes applied in MCAs. Although Beftigre is presented 

in the Mango approach, it can also be used for evaluating existing MCA and 

their offloading schemes. Unlike existing evaluation approach adopted in the 

literature, Beftigre can present a full-tier consistent result for the MCA 

offloading scheme being evaluated. 

Methodology: 

Behaviour-driven: Behaviour-driven development (BDD) is a design approach 

to aid collaboration between non-technical contributors (such as business 

analysts, or users) and software engineers. Consequently, BDD gears 

towards more verifiable and collaborative test process by being able to 

compare expected behaviours with actual results, following standard 

simplified scenarios – constructed by simple language clauses, GIVEN, 

WHEN and THEN [108]. Beftigre adopts the BDD concept and simple clause 

approach, to simplify the comparison and evaluation of offloading schemes, 

and thus; simplifying software design decisions. 

Full-tier: the approach adopts the concept of fine-grained software testing to 

present the implications of an offloading scheme on the mobile tier as well as 

on the cloud tier. By evaluating the system as a whole the approach can detect 

whether an offloading scheme is aware of both mobile and cloud resource 

                                            

17 Beftigre is pronounced /biːf ˈtaɪ.ɡər/ as in beef-tiger. 
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consumption. The full-tier objective of the approach is also assisted by the 

BDD concept. 

Glossary of Terms: 

 Actual: This is the test results of the application under test. 

 Expected: This is the test results of an application with which is the 

basis of comparison against an application under test. These values 

are provided in Beftigre annotations (@Given, @When and @Then). 

 Evaluation vs. Comparison: Evaluation involves performing a test 

without comparison (i.e. expected values), while Comparison involves 

the use of expected values (in other words, there is an expectation of 

the outcome). 

Appendix E to H presents the implementation specific details on the Beftigre 

evaluation approach. Also the source code implementation of the framework 

and further technical guide is provided in the Beftigre documentation 

website18. 

6.2 The Beftigre Approach 

The challenges and difficulties of the mobile-centric architecture scenario 

approach fall into the category of (green19) software testing/evaluation [23], 

[34]. In response to the identified challenges (see Section 3.3.1 of Related 

Work), the thesis proposes an evaluation approach known as Beftigre, which 

adopts the behaviour-driven technique to address challenge 1 and 2. 

Furthermore, the thesis treats challenge 3 as a testing granularity problem, 

consequently resolved by fine-grained testing of the mobile tier and the cloud 

tier (i.e. full-tier). In particular, the approach makes the following novel 

contributions: 

                                            

18 Beftigre documentation: http://beftigre-mca.appspot.com  
19 Green is the term used for software optimisation and testing based on the energy-efficiency and 
performance metrics [10], [18]. Since offloading schemes target energy-efficiency of mobile devices, 
similarly scenario based comparison is within the green software testing category. 
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1) Behaviour-driven Comparison – as single scenario 

Beftigre adopts BDD concept. BDD simplifies software testing by using 

clauses which can easily be communicated across development team to 

construct a scenario for testing [112]. Similarly, Beftigre’s Comparator (Figure 

6.1) uses these clauses in form of annotations to specify the expected (THEN) 

MCA system behaviour, given a set of conditions (GIVEN and WHEN). The 

annotations can be applied to a test function (TFn; which is a method to test 

the mobile component – as shown in Figure 6.1), and the information supplied 

through the annotations is then used (by Full-tier Analyser) to evaluate or 

compare against the actual test results. Thus, the behaviour-driven 

comparison process acts as a single scenario replacing varying architecture 

scenarios, and alleviating inconsistency of architecture scenarios; therefore a 

solution to challenge 1 and 2. Furthermore, the annotations are used to 

implement full-tier comparison (to address challenge 3) by using @Given and 

@When annotations to specify mobile and server expected preconditions 

respectively, for comparison on Then clauses. 

Markers are objects for counter-based instrumentation which has attributes 

that can be written to file for processing. The purpose of Markers is to integrate 
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instrumentation counters with annotation information (of comparator 

component) for efficient single scenario comparison. The start and finish 

counters in Markers component are vital to calculating actual values of THEN 

clause (mobile energy and time, server CPU and memory used) which are 

used to compare against expected values of @Then annotation. Thus, Marker 

interface contributes to the behaviour-driven solution to challenge 2 and 

contributes a foundation for full-tier analysis (i.e. based on THEN clauses). 

2) Full-tier Analysis – results from mobile and cloud perspective 

Beftigre evaluates a MCA from mobile (power usage and performance) and 

cloud (resource usage) perspective to produce full-tier actual test results. The 

analysis is accomplished by Full-tier Analyser (details presented later in 

Algorithm 1 and 2). The aim is that by full-tier analysis (as opposed to mobile-

centric testing) an offloading technique can be finely evaluated in terms of its 

impact on the system as a whole. [34], shows that a fine-grained approach to 

energy measurement (using counters) can reveal specific energy usage 

points. Similarly, to identify specific energy points, Beftigre adopts fine-grained 

measuring distributed across the mobile tier (using Markers) and cloud tier 

(using Metrics Collector). Consequently, by revealing the mobile to cloud 

resource consumption implications of a MCA application, the full-tier analysis 

objective addresses challenge 3. 

3) Unified Monitoring – for facilitation of full-tier results 

The required data for full-tier analysis is collected by Power Monitor and 

Markers for mobile energy and performance respectively; by Metrics Collector 

for cloud resource usage; and by Resource Simulator for determining cloud 

resource availability and network. By unified monitoring of mobile and cloud 

tiers, the aforementioned components contribute to the full-tier evaluation. 

Specifically, these components (Figure 2) contributes to the research 

objectives as follows;  

Power Monitor is achieved by PowerTutor model via an API for seamless 

integration with the BDD objective of Beftigre. The power monitor generates 
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PowerLog, which (in conjunction with counters from Marker component) is 

used to compute actual mobile energy usage which is used to compare 

against the expected used energy attribute of @Then annotation. This is a 

step which contributes to the mobile-tier of the full-tier evaluation, using 

behaviour-driven concept. 

Server Monitor provides the logic for monitoring and serving the cloud tier 

metrics useful for the behaviour driven full-tier evaluation. It uses PerfMon 

Server Agent to compute metrics for actual cloud-tier values of Then clause 

(i.e. percentage CPU and memory usage), and socket server programs to 

compute metrics for actual values of Where clause (i.e. available percentage 

CPU and memory). 

Resource Simulator makes it possible to evaluate the MCA scheme based on 

different set environmental conditions. Furthermore, it provides the capability 

for introducing controlled rigour (i.e. experimental replication) to the evaluation 

process (as shown later in section 5). In the implementation section, the 

simulator is provisioned with the server monitor. 

Metrics Collector provides the logic (client programs) for saving the cloud-tier 

metrics received from the server monitor component. The metrics collector 

persists the actual values for When clause and cloud-tier values of Then 

clause. By generating evaluation data for cloud-tier, the metrics collector 

contributes to the full-tier solution to challenge 3. 

The aforementioned components focus on monitoring: power and 

performance for the mobile tier, and resource usage for cloud tier, because 

they are the popularly investigated green metrics for MCA domain [4], [7], [46], 

[113], [114]. Mobile energy is increasingly gaining research interest due to the 

resource-constrained nature of mobile devices and the increasing demand for 

rich mobile applications. Resource usage (specifically CPU and memory) is a 

commonly investigated metric when monitoring workload impact on the cloud 

[46], [115]. In the current Beftigre approach, the scope of the energy 

measurement is at the application level, i.e. the overall energy consumption 
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of the mobile execution. The overall mobile energy is measured using the 

power tutor model and applies to all network types (including WLAN and 3G). 

6.3 Design Details 

6.3.1 Behaviour-driven Comparison 

Behaviour-driven comparison is achieved by the Comparator interface. The 

comparator is implemented as a method named getBaseStatus() which 

calculates actual mobile CPU and memory availability, consequently; 

contributing to the single scenario and behaviour-driven objective, by 

providing actual values for Given clause. It is made as the last API call (as 

seen on Line 29 Figure 6.2a), to ensure the process does not add any 

overhead to the power and performance readings; furthermore, it is designed 

as an android alarm monitor service, to ensure the process completes even 

after the test is terminated (i.e. tearDown() method on line 30). 

 
Figure 6.2 BAND Template 

import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.annotations.*;
public class SampleTest extends...{
    private Band band;
    private Marker m = new Marker("Label");
    public SampleTest(){
        super(SampleActivity.class);
    }
    @Override
    protected void setUp() throws Exception{
        super.setUp();
        band = new Band(getActivity(), this);
        band.startPowerMonitoring();
        band.registerMarkers(m);
    }
    @Given(mobileCPU=97, mobileMemory=26)
    @When (bandwidth=4387, latency=31,
           cloudCPU=42, cloudMemory=20)
    @Then (mElapsedTime=21832, mUsedEnergy=721.3,
           cUsedCPU=58, cUsedMemory=30)
    public void testMethod() throws Exception{
        m.start();
        /*do test*/
        m.finish();
    }
    @Override
    protected void tearDown() throws Exception{
        band.saveMarkers();
        band.stopPowerMonitoring();
        band.getBaseStatus();
        super.tearDown();
    }
}
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import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.exceptions.*;
public class SampleActivity extends...{
    private Band band = new Band();
    private Marker m1 = new Marker("Label1");
    private Marker mN = new Marker("LabelN");
    @Override
    protected void onCreate(Bundle...)(){
        super.onCreate(savedInstanceState);
        //start power monitor from test class
        try{
            band.registerMarkers(m1, mN);
        }catch(DuplicateLabelException d){...}
        /*app code*/
    }
    public void appMethod1() throws Exception{
        m1.start();
        /*app code*/
        m1.finish();
    }
    public void appMethodN() throws Exception{
        mN.start();
        /*app code*/
        mN.finish();
    }
    //save markers within test class
}
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The annotations: @Given, @When, and @Then are the basis on which 

offloading schemes are evaluated or compared. @Given annotation specifies 

the expected percentage CPU and memory availability of the mobile device, 

both of which are integer typed. Recall, the actual value for Given clause is 

obtained from getBaseStatus(). @When annotation specifies the expected 

bandwidth (bps), latency (ms), and server percentage CPU and memory 

availability, all of which are integer typed. The actual value for the When 

clause is obtained from the server monitors. @Then annotation specifies the 

expected mobile elapsed time (ms) and used energy (mJ), and cloud 

percentage used CPU and memory, during the period of the test. All 

parameters are integer typed except used energy which is double typed. 

 @Given is a precondition for the mobile end, while @When is the 

precondition for the server end. @Then annotation is the postcondition with 

elements specifying values to be asserted or compared against. Both the pre 

and post conditions are based on the full-tier concept (i.e. mobile and cloud 

involved). 

6.3.2 Platform Monitoring and Control 

Full-tier Platform Monitoring is achieved by power monitor and server monitor 

interfaces for the mobile and cloud tiers respectively. 

6.3.2.1 Power Monitor 

Power monitoring in Beftigre is achieved using the PowerTutor [50] model. 

Although the PowerTutor monitor is widely adopted in the research for mobile 

power monitoring, it is worth noting that the PowerTutor seems to produce 

accurate energy measurement for specific brands and models of mobile 

devices and rough estimates for others [50]. However, as exact 

measurements may not be necessary for relative comparisons, this thesis 

adopts the widely used PowerTutor model, leveraging the core logic of the 

monitor for Beftigre API. Furthermore, two methods are exposed to start and 
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stop the monitor. In Beftigre API, the PowerTutor20 based monitor is not a UI-

based application but a service which runs at the background to monitor the 

application power usage. startPowerMonitoring() launches PowerTutor, while 

stopPowerMonitoring() stops and saves power data to PowerLog. 

The purpose of adapting the monitor as an API is for seamless integration with 

the mobile test package; consequently, allowing for ease of control of the 

monitoring process from the code. Furthermore, as a background process, the 

monitor does not interfere with the application being tested. As shown in lines 

14 and 28 of Figure 6.2a, the monitor is started and stopped right before and 

after the call to register and save marker objects within setup and teardown 

methods of the Android test framework, respectively. This is to ensure that the 

monitor captures all test execution process. 

6.3.2.2 Server Monitor and Simulator 

The server monitor interface is used to orchestrate three monitoring processes 

and two resource simulation processes on the server. For server monitoring: 

PerfMon Server Agent monitors the percentage CPU and memory usage. 

CPUMemoryAvail computes percentage CPU and memory availability using 

                                            

20 PowerTutor; https://github.com/msg555/PowerTutor [01-Jul-2016]. 
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SIGAR API21. And BandwidthLatency is used for obtaining bandwidth and 

latency. The last two monitors are java socket server programs. For resource 

simulation: the Traffic Control Utility is used to simulate different network 

conditions (using the parameters: bandwidth and latency)22, the Stress Utility 

is used to simulate CPU and memory load (using the parameters: CPU load 

and memory load). TC and Stress are both Linux utilities, and along with 

SIGAR API, they are popularly adopted for server resource monitoring and 

simulations. To start the monitoring the aforementioned simulation 

parameters are passed to the Server Monitor Interface (as shown in Figure 

6.3). 

6.3.3 Metrics Collection 

Full-tier Metrics Collection is achieved by Marker and Metrics Collector 

interfaces for the mobile and cloud tiers respectively. 

6.3.3.1 Marker 

Markers are objects for counter-based instrumentation (line 6, Figure 6.2a) 

which has attributes that can be written to file for processing. A marker object 

takes a label attribute as a parameter which is used to associate counters with 

test functions. After markers have been created, registerMarkers() is used to 

validate and assign a unique identifier to all marker objects to be used in the 

test, while saveMarkers() is used to save and write the attributes of registered 

Marker objects to MarkerLog. A marker object (Mn, n is an integer typed 

unique identifier) consists of the following attributes: Mn_start, Mn_finish, 

Mn_label and Mn_anno. Mn_start and Mn_finish are references to the 

timestamps in ms used to identify the execution block for the test section. 

Mn_label is the reference to the label assigned during marker creation. And 

                                            

21 SIGAR API; https://support.hyperic.com/display/SIGAR [01-Jul-2016]. 
22 Slow: simulates low bandwidth, high-latency; https://gist.github.com/obscurerichard/3740206 [01-Jul-
2016]. 
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Mn_anno is a reference to the annotations assigned to the test function (i.e. 

lines 17 to 19, Figure 6.2a). 

Beftigre carries out four types of exception handling associated with Marker 

objects: DuplicateLabelException is thrown if two or more markers were 

registered with the same label. Labels are used to create a unique identifier 

for markers, no two markers can have the same label. 

DuplicateStartMarkerException and DuplicateFinishMarkerException are 

thrown from the Marker class. The former is thrown when the API identifies 

that start() was called more than once on a registered marker while the latter 

is thrown when finish() is called more than once on a registered marker. 

UnevenMarkerException is caused if a marker set was incomplete. For 

example when a marker is started by calling the start() method, and not 

finished. All registered markers must have a complete set. A marker is said to 

have a complete set if it calls a start() and a finish() method. 

With the Beftigre API, one test method can be created within a test project to 

test the overall application – this includes only a marker object and 

annotations (see Figure 6.2a). Multiple markers can be applied within the 

application project; however, annotations are not applicable in this scope (see 

Figure 6.2b) because the annotations of the main test method (in Figure 6.2a) 

covers any markers used within the application project (in Figure 6.2b). 

Furthermore, service-based API features (such as start and stop power 

monitoring, and base status service) are only declared once from the test 

projects, as the call from test project captures the application module 

execution. 

6.3.3.2 Metrics Collector 

Following the start of server monitors and simulators, is the launch of metrics 

collectors. The Metrics Collector Interface is composed of three metrics 

collector processes within the orchestrator (as shown in Figure 6.3). 

CPUMemoryAvailClient records the percentage CPU and memory availability 

obtained from CPUMemoryAvail monitor. BandwidthLatencyClient records 
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bandwidth and latency, which is measured by sending packets to and from 

the BandwidthLatency monitor. CPUMemoryAvailClient and 

BandwidthLatencyClient collectors execute only once (i.e. when metrics 

collectors are launched) and then terminates. PerfMon Metrics Collector runs 

continually for a scheduled time, recording server CPU and memory usage at 

intervals using Apache JMeter binaries. Furthermore, PerfMon Metrics 

Collector is launched as a listener, based on HTTP request sampling, within 

JMeter test plan. The test plan implements a loop controller to ensure that 

metrics recording process is continuous until a scheduled duration is elapsed. 

The duration is any speculated time, in seconds, which covers the evaluation 

process. 

Network and resource availability metrics from Socket clients are first logged 

into MetricsLog, followed by the Resource usage metrics from PerfMon 

Metrics Collector. The purpose of using PerfMon Metrics Collector for 

continuous recording of resource usage at intervals is so that the average 

percentage resource usage (of the MCA scheme being evaluated) can be 

computed after the test is done. See Algorithm 6.1 for further details. 

6.3.4 Full-tier Analysis and Control 

Full-tier analysis and control is achieved by the Full-tier Analyser interface. 

Completing the test on the mobile and server tier generates three logs: 

MarkerLog and PowerLog from the mobile; and MetricsLog from the server. 

The full-tier analyser interface (analyser for short) analyses data stored in the 

logs both from mobile and cloud tier to produce full-tier results. The analyser 

also references the behaviour-driven annotation from the test for comparison. 

Algorithm 6.1   Evaluate function, to produce actual values of Then clause 
Require:   TS and TF, PS and PF, CS and CF, MS and MF, which represent start and finish 
range for mobile time, mobile power, cloud CPU usage and cloud memory usage values 
from Map. 
 
 1:   a_mElapsedTime ← TF - TS 
 2:   a_mUsedEnergy  ← (sum( PS : PF ) / count( PS : PF )) × a_mElapsedTime 
 3:   a_cUsedCPU       ←  sum( CS : CF ) / count( CS : CF ) 
 3:   a_cUsedMemory ←  sum( MS : MF ) / count( MS : MF ) 
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The analyser contributes the final solution to the challenges in Section 3.3.1 

by consolidating the contributions of all the Beftigre components. 

Algorithms 6.1 and 6.2 presents the Evaluate and Assert functions of the full-

tier analyser respectively, used to compute the results of the MCA test.  

Evaluate presents the algorithm useful for evaluating an offloading scheme 

(self-evaluation) which gives a full-tier result (mobile performance and energy, 

with cloud CPU and memory used) that is, the actual values of Then clause. 

Assert presents the algorithm useful for comparing between offloading 

schemes. Assert extends the Evaluate function in order to determine the 

relationship between the schemes using the behaviour driven annotations, by 

asserting which scheme is more efficient based on the given and where 

conditions or whether the expected and actual values are from the 

Algorithm 6.2   Assert function, to produce assertion of comparison 
Require:    actual values of Then clause from Evaluate. 
inRange(a, b)                : return true; if a is in ± 5% range of b 
lessOrMore(a)              : return a . "% more"; if a is positive else a . "% less" 
isCongruent(a, b, c, d) : return true; if any three of a, b, c, d is within ± 1% 
/* e_... are expected values, a_... are actual values */ 
 
 1:   Set variables for all the expected values from annotation attributes: 
              e_mobileCPU, e_mobileMemory, 
              e_cloudCPU, e_cloudMemory, e_bandwidth, e_latency, 
              e_mElapsedTime, e_mUsedEnergy, e_cUsedCPU, e_cUsedMemory 
 2:   Set variables for the actual values of Given and When clauses: 
              a_mobileCPU, a_mobileMemory, 
              a_cloudCPU, a_cloudMemory, a_bandwidth, a_latency 
 3:   if (inRange(a_mobileCPU, e_mobileCPU)  &  inRange(a_mobileMemory, e_mobileMemory) 
         &  inRange(a_cloudCPU, e_cloudCPU)  &  inRange(a_cloudMemory, e_cloudMemory) 
         &  inRange(a_bandwidth, e_bandwidth)  &  inRange(a_latency, e_latency)) 
       then 
 4:        assert_mElapsedTime ← (a_mElapsedTime – e_mElapsedTime) × 100 / e_mElapsedTime 
 5:        assert_mUsedEnergy  ← (a_mUsedEnergy – e_mUsedEnergy)  × 100 / e_mUsedEnergy 
 6:        assert_cUsedCPU      ← (a_cUsedCPU – cUsedCPU) × 100 / e_cUsedCPU 
 7:        assert_cUsedMemory ← (a_cUsedMemory – e_cUsedMemory) × 100 / e_cUsedMemory 
 8:        result ← lessOrMore(assert_mElapsedTime) . lessOrMore(assert_mUsedEnergy) . 
                            lessOrMore(assert_cUsedCPU) . lessOrMore(assert_cUsedMemory) 
 9:        if (isCongruent(assert_mElapsedTime, assert_mUsedEnergy,  
                 assert_cUsedCPU, assert_cUsedMemory)) 
            then 
10:            "The compared systems are similar" 
11:       end if 
12:  end if 
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same/similar system/offloading scheme. The functions which make up the 

analyser are presented below in the order of execution; 

 ExtractExpected extracts the expected value of all attributes of 

annotations from MarkerLog. 

 ExtractActual extracts the actual (or measured) values of Given and 

When clause, i.e. mobile CPU and memory availability from PowerLog; 

and cloud CPU and memory availability, bandwidth and latency from 

MetricsLog (used in line 2 of Algorithm 6.2). 

 Map obtains the start timestamp (TS) and finish timestamp (TF) from 

MarkerLog, and matches them to that of the PowerLog and MetricsLog 

in order to obtain the exact mobile power (PS to PF), cloud CPU (CS 

to CF) and cloud memory (MS to MF) used by the MCA during the 

evaluation. 

 Evaluate (Algorithm 6.1) firstly computes the elapsed time (ms), used 

energy (mJ), average CPU usage (%) and average memory usage (%) 

using the data from Map function. 

 Assert (Algorithm 6.2) compares Then clause actual values from 

Evaluate function with the @Then annotation expected values from 

ExtractExpected function to assert a result following some condition. 

Assert is achieved in two stages below; 

Stage 1 Assertion: 

Result – The assertion result (lines 4-8, Algorithm 6.2) gives the 

percentage increase or decrease23 between expected scheme and 

actual scheme at a full-tier scale (i.e. mobile elapsed time, mobile used 

energy, cloud CPU usage and cloud memory usage). 

                                            

23 Percentage increase (in actual value compared to expected value) means increased or more resource 
demand, while percentage decrease means decreased or less resource demand. 
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Condition – The assertion is performed if the Given and When values 

(from Evaluate and annotation) are within ± 5% range24 (meaning 

schemes are comparable). 
 

Final Assertion: 

Result – asserts that the expected and actual schemes are of the same 

or similar system (lines 9-11, Algorithm 6.2). 

Condition – the assertion is true if any three values of Then clauses of 

Stage 1 Assertion are within ± 1%. In other words if after comparing 

actual and expected of Then clause, and any three of its attributes (i.e. 

any three of mobile time, mobile energy, cloud CPU and cloud memory) 

has percentage increase or decrease within the range of ± 1%, then 

the actual and expected schemes are similar or the same. 

After the above analysis process is completed, a CSV file containing the 

computed values/summary of analysis is generated for reporting purpose. 

6.4 Performance Evaluation 

The performance evaluation was performed for BAND API on Windows 10 

x64 PC, with Intel i7 2.20GHz CPU and 8GB memory. Furthermore, the mean 

value of 30 test samples (on local execution) was used to investigate the 

performance (overhead) of the API on mobile testing by comparing the build, 

setup and execution time of Default test setup against Beftigre setup (Figure 

6.4). The Default setup, is the conventional android test setup with Robotium 

API for UI test, while Beftigre setup adds the BAND API to the default setup. 

Build time; measured using Android Studio’s build functionality; is the time to 

(re)build the modules and libraries of the project. Setup and execution time 

are measured using Java timestamp utility. Setup time is the time it takes to 

                                            

24 Existing experimental research e.g. [117], uses 5% range as acceptable range of comparison 
between expected and actual power readings (for power meters vs power models, respectively). ±5% 
range is therefore applied to green metrics in this thesis. 
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initialise all test library objects used (i.e. Lines 11-16 of Figure 3a). Execution 

time is the time from setup to test completion. 

From Figure 6.4, less than 0.3% increase is observed in the execution time, 

which implies no overhead is caused by the test API to the application build 

time. This is because the libraries which contribute to the build-time overhead 

are those used within the application module (and not the test module), such 

as Mosaic library – presented in Chapter 5. Also, as the power monitor runs 

as a different android service (and as a different process) to the test process, 

its execution has no significant effect on the test; this is similar to executing 

PowerTutor app external to the application under test. Consequently, the 

results of the evaluation show that BAND API has no significant overhead to 

the android test process. And also since the API integrates with the test 

process/project, the API does not interfere with the actual execution of the 

application under test. 

6.5 Summary 

This chapter presented the Beftigre evaluation approach as a solution to the 

challenges of mobile-centric architecture scenarios approach to MCA 

evaluation – challenges presented in the Methodology (Chapter 3) in details. 

The objective of the approach is i) full-tier evaluation: which is to achieve 
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evaluation at a fine granularity for MCA by taking the metrics of both mobile 

and cloud tiers into consideration, ii) comparability: which makes it possible to 

evaluate MCA comparing between counterpart techniques, and iii) 

reproducibility: which makes it possible to repeat tests for a given MCA and 

arrive at the same conclusion. This is achieved by controlling the 

environmental factors of MCA. Control is administered through the server 

simulator and full-tier analyser.  

Table 6.1 presents a summary of the Beftigre framework and the coordination 

between the two APIs. From Table 6.1 the preconditions (Given and When) 

and post conditions (Then) of the test process, are full-tier, in other words, 

they span through the mobile and cloud tier. Furthermore, at each tier, logs 

are generated to provide data for computing metrics that reveal the 

implications of a test process at each tier. The evaluation and demonstration 

of effectiveness for Beftigre approach has been achieved using real world 

applications and presented in the Case Studies (Chapter 7). 

  

Table 6.1  Summary of Beftigre components (of Band and Befor APIs) 

Clauses Metrics Source Beftigre Component/Interface 

Expected Actual Both 

Given  Mobile % CPU availability 

 Mobile % Memory availability 

Comparator’s 

Annotations 

Comparator’s 

BaseService 

F
u

ll-
tie

r 
A

na
ly

se
r 

When  Bandwidth (bps) 

 Latency (s) 

 Cloud % CPU availability 

 Cloud % Memory availability 

Comparator’s 

Annotations 

Socket Clients, with 

Socket Servers. 

Then  Mobile Elapsed Time (ms) 

 Mobile Used Energy (mJ) 

Comparator’s 

Annotations 

Marker 

F
u

ll-
tie

r 
A

na
ly

se
r 

Power Monitor 

 Cloud % CPU usage 

 Cloud % Memory usage 

Perfmon Metrics 

Collector, with 

Server Agent 
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Chapter 7. Case Studies 

Using Real-life Applications to Critically Analyse Mango 

7.1 Introduction 

This chapter uses four different android applications as case studies to 

evaluate the proposed Mango approach. Table 7.1 describes the applications 

and their functionalities. These applications are chosen based on their unique 

characteristics/taxonomy: Linpack25 and NQueen26 are computation intensive, 

MatCalc27 and MathDroid28 are data intensive. The use of a case study with a 

sample size of four taxonomy unique applications in the thesis is because it is 

the popularly adopted sample size and sampling technique for MCA 

experiments in the literature, e.g. [7], [8], [52]. Furthermore, these applications 

have also been evaluated by previous studies [7], [8], [52]. Details of the 

selection criteria are presented in Appendix B. 

The objectives of the experiments in this section are as follows: 

 To evaluate the effectiveness of the Mosaic framework in identifying 

Callees based on Quality Verification (phase 3 of Mango approach). 

                                            

25 Linpack: https://github.com/pedja1/Linpack  
26 NQueen: https://github.com/acelan/NQueen  
27 MatCalc: https://github.com/kc1212/matcalc  
28 MathDroid: https://code.google.com/archive/p/enh/source  

Table 7.1  Characteristics of the case studies 

Application Offloading candidates CI DI Description 

(Android apps) 

Linpack run() method of Linpack class   Linear algebra 

benchmark app 

MatCalc times(Matrix B) method of Matrix class   Matrix calculator app 

MathDroid computeAnswer(String query) method of 

Mathdroid class 

  Calculator app 

NQueen nQueenCount(int input) method of NQueen 

class 

  NQueen computation 

app 

Key: CI – computation intensive, DI – data intensive. 
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Recall that quality verification determines whether an identified 

offloadable candidates (Callees) will most certainly yield benefits when 

adopting the Mango architectural approach. (See Section 7.5 for 

evaluation). 

 To evaluate the proposed Mango architecture in terms of the earlier 

stated benefits: suboptimal awareness, variability (context) awareness, 

and full-tier awareness for SQAs. Recall that SQAs considered in 

Mango are: performance and energy-efficiency for the mobile, and 

resource-efficiency and availability for the cloud. (See Section 7.6 for 

evaluation). 

 To evaluate the proposed Beftigre approach in terms of the earlier 

stated benefits: full-tier effectiveness, robustness of test, reproducibility 

of test. (See Section 7.7 for evaluation). 

A benefit of Mango architecture is that; as a model-driven approach, no 

significant changes are required to be made in order to adapt legacy systems 

for mobile-cloud optimisation (the model-based framework, Mosaic aids with 

the adaptation). In this chapter, the required changes made to the base code 

– in order to make it suitable for Mango architecture – have been presented 

in the ‘Legacy Adaptation’ section (7.4). 

7.2 Experimental Settings 

7.2.1 Experimental Variables 

Table 7.2 presents the experimental variables used with the case studies. 

Table 7.2  Experimental Variables 

Dependent Independent Control (factors) 

- Green metrics: 

Mobile Performance 

Mobile Energy usage 

Cloud CPU usage 

Cloud Memory usage 

- Other quality attributes: 

Application availability 

- Architecture scenarios: 

Local 

Optimal 

Offloading scheme/Architecture 

Mobile CPU availability 

Mobile memory availability 

Cloud CPU availability 

Cloud memory availability 

Bandwidth 

Latency 

Size of transferred data 
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The dependent variables are the events being studied, and expected to 

change whenever the independent variable is altered. As shown in Table 7.2, 

the events studied are green metrics for mobile and cloud tiers. Also, quality 

attributes are investigated. 

The independent variables: for the experiment are Local, Optimal and 

Offloading architecture scenarios. Table 7.3 presents the criteria for selecting 

the independent variables – which is based on recurrent scenarios in the 

literature (i.e. the summary column of Table 7.3). Beftigre framework is a MCA 

evaluation (and comparison) approach contributed/proposed by this research 

as an improvement on the architecture scenario evaluation approach. 

Following an investigation into the scenarios used in the evaluation of the 

selected offloading techniques, a summary is presented in Table 7.3. The 

summary column uses a common term to present the recurrent scenarios, as 

follows: 

 Local: the original app runs entirely on the phone [4], [7], [52], [116]. 

[52] also specifies Offload-Local which is a scenario where the 

optimised application runs entirely on the phone. In the experiment, 

Local is used since it is recurrent of the two. 

 Server: all identified offloadable components are executed on the cloud 

[4], [7], [52]. 

Table 7.3  Selection of Independent Variables 

Summary Techniques (and distinct scenarios used) 

POMAC  TB-CP  DPartner 

Local OnDevice Smart phone only Phone 

Offload(Local) 

Server OnServer Offload(All) Offload(All) 

Optimal Optimal Offload(only Assessed) Offload(only Monitored) diff. 

RTT 

Offloading- 

scheme 

POMAC Offload(+adapted) 

Offload w/Threshold 

On-Demand Offload 
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 Optimal: only offloadable components that are assessed as 

computation intensive (or data intensive) are executed on the cloud [4], 

[7], [52]. 

 Offloading scheme: is the scenario comprising the proposed offloading 

scheme [4], [7], [52], [116], e.g. POMAC, TB-CP, DPartner, (and in this 

research; MANGO). 

The control variables: also has an effect on the dependent variables, so they 

are also monitored in the system. For the experiment, these include 

bandwidth, latency and size of data being transmitted. Although the control 

variables are naturally challenging to control, the Beftigre framework presents 

a technique to effectively monitor these variables for a comparison process. 

The technique is behaviour-driven and uses a full-tier evaluation technique – 

details presented in Chapter 6. Note that: some or all (depending on the 

scheme) of the control variables are adopted in offloading schemes to predict 

optimal behaviour or make offload decisions.  

7.2.2 Metrics, Tools & Platform 

As a green software research, the key metrics being measured in this 

research are Green metrics for mobile and cloud tier. These are energy usage 

and elapsed time (performance) for mobile, and resource usage (i.e. CPU and 

memory usage) for cloud (see Table 7.4). The case studies evaluate the 

approach based on three green metrics – energy usage, resource usage and 

performance. 

Table 7.4  Metrics, Tools & Platforms for Case Studies 

Green metrics Measuring Tools Domain/Platform 

Energy usage Power Tutor model – computes mobile power 

usage. 

Mobile: Android 

Samsung galaxy S3 

Performance Java timestamp utility – computes total 

execution time. 

Resource 

usage 

PerfMon Server Agent & Metrics Collector – 

computes % CPU and memory usage. 

Cloud: Amazon EC2 

Ubuntu instance 
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The mobile device used is Samsung Galaxy S3 Neo running Android 4.4.2 

(KitKat) on Quad-core 1.4 GHz, with 1.5GB memory. While the cloud 

configuration is an Amazon EC2 m3 instance running Linux Ubuntu 14.04 64 

bit, with Intel Ivy Bridge 2.5GHz CPU and 3.75GB memory. Furthermore, Java 

JDK 1.8 was used for implementing the case studies – mobile and cloud tier. 

The minimum SDK version was set as 15 for the android applications, with 

compile SDK from version 22 upwards. The selected case studies have been 

tested on the new Android Studio 2.0, thus; the contributions and results of 

this research are up-to-date with current development tools and consequently 

relevant for current software practice. 

Power Tutor was used for measuring the power usage of the mobile 

application. It is chosen because it is the most popular power model adopted 

in the literature [4], [7], [52] – and has also been used in evaluating the 

selected offloading schemes. Energy-efficiency (EE) metric [34] was gotten 

as a derived metric by computing energy usage based on the power logs of 

power tutor. Similarly, resource efficiency was determined from the CPU and 

memory usage logs from the server. These logs are obtained through PerfMon 

ServerAgent and PerfMon Metrics Collector (more on the evaluation tools 

presented in Chapter 6). Furthermore, the measuring tools presented in Table 

7.4 are all open sourced and also components of the Beftigre framework 

presented in Chapter 6. 

 

 
 

Figure 7.1 Experimental Process 
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7.2.3 Experimental Process 

The experiment on each case study (Table 7.1), combined the architecture 

scenario evaluation with Beftigre full-tier evaluation for full-tier qualities, 

involved three key tasks/processes. As shown in Figure 7.1 these are; 1) 

designing scenarios, 2) designing and launching tests, and 3) measuring full-

tier qualities; i.e. metrics for both the mobile and cloud tier. 

Firstly, for each case study three architecture scenarios (i.e. the independent 

variables – Local, Server & Mango) are designed. Based on these architecture 

scenarios in combination with the applications used in the literature, Mango 

approach is compared against counterpart techniques. Secondly, an android 

test project is designed for each case study, which is irrespective of the 

architecture scenario. In other words, the same test is used for all architecture 

scenarios of a case study app. And thirdly, green metrics are measured for 

the application under test. For the mobile-centric architecture scenario 

evaluation approach, the metrics measured are mobile energy used and 

mobile elapsed time. In the Beftigre evaluation option, only the offloading 

scheme is evaluated, other architecture scenarios are not necessary. The test 

is then annotated with Beftigre annotations for comparison or evaluation, then 

the green metrics are collected based on a full-tier evaluation (i.e. mobile and 

cloud tier). The mobile tier metrics being elapsed time and used energy, and 

the cloud tier metrics being used CPU and memory, as presented in Table 

7.2. 

Two adaptive optimisation techniques have been selected to evaluate the 

Beftigre evaluation approach. The techniques of comparison are POMAC (a 

machine learning approach) [7], [8] and TB-CP (a threshold-based 

checkpointing approach) [4]. 

7.3 Test Classes 

In order to accurately measure the effect of Mango architectural approach to 

MCA optimisation on the application, the test is written to capture the exact 

execution of the offloadable (CI) task – i.e. the Callee. This is achieved by 
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implementing the finish marker (of the Band API) immediately after the Callee 

is completed. 

To execute the finish marker immediately after the Callee is completed entails 

capturing a predictable or set Callee output – using Robotium29 

solo.waitForText(String text) rather than solo.waitForActivity(String activity). 

The difference is that the former returns true immediately a passed text is 

found on display, whereas the latter returns true after all processes in a 

passed activity is completed – thus incurring more waiting time. (Appendix I 

presents the Test Classes for the case studies and screenshots of test output). 

 A Predictable Callee Output 

The predictable Callee output is the result of the Callee that is known before 

execution and thus can be passed to solo.waitForText(String text) prior to the 

test execution. The test assertions for MatCalc, MathDroid and NQueen case 

studies are based on the results of the Callee, as they are predictable outputs 

(see Appendix I.2, I.3 and I.4 respectively, for the classes).  

The mathematical results for Callee of MatCalc and MathDroid (given a set of 

inputs) can be predicted/obtained without execution. For example; 

MatCalc app has its Callee as the matrix multiplication task. Therefore given 

two matrix A and B then the result A.B can be predicted as shown below. 

If Matrix A is 1 2 3
4 5 6
7 8 0

 
and Matrix B 

is 

0.5
2
8

 
Then A.B = 28.5

60
19.5

 

Thus the test assertion is implemented based on the predicted results (i.e. A.B 

above), as; solo.waitForText("28.5\n60\n19.5"). 

MathDroid app has its Callee as the number multiplication task. Therefore 

given two numbers 3 and 7, the product is 21. Thus the test assertion is 

implemented based on the product as; solo.waitForText("21"). 

                                            

29 Robotium [119] is an Android UI testing API. 
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NQueen app has its Callee as the counter functionality of game – which gives 

the total number of possible queens in an x square game. Given an input (x) 

of 14, the total number of possible queens are 365596. Thus the test assertion 

is implemented based on the expected result as; solo.waitForText("365596"). 

 A Set Callee Output 

The set Callee Output is a notification string used to indicate when the Callee 

execution is completed. This is achieved by implementing an Android toast 

with the notification string, after the Callee implementation, as shown below; 

Toast.makeText(getApplicationContext(), "Callee completed.", Toast.LENGTH_SHORT).show(); 

This approach is used for the case studies comprising Callee outputs that 

cannot be clearly predicted prior to execution, e.g. Linpack (see Appendix I.1 

for the test class). Within the test class, the set Callee output is referenced as 

the notification string, as; solo.waitForText("Callee completed."). 

7.4 Legacy Adaptation 

As shown in Table 7.5, code scaffolding was achieved in two ways; Mosaic 

automated refactoring, and manual refactoring. The Mosaic automated 

refactoring is the generation of the ACTS classes by the Mosaic framework – 

Table 7.5  Legacy Adaptation 

Place holders 

/refactor 

Linpack MatCalc MathDroid NQueen 

Mosaic automated refactoring 

[Callee] …MainActivity 

.runLinpack 

…MainActivity 

.times 

…Mathdroid 

.computeAnswer 

…NQueen 

.nQueenCount 

[Arguments] Class clazz Matrix A, 

Matrix b 

String query int input 

[References] clazz A, b query input 

[Return] Result Matrix Node Integer 

Manual refactoring /implementations 

Activity MainActivity 

.activity 

MainActivity 

.activity 

Mathdroid 

.activity 

NQueen.activity 

Serialisation Required - (In Legacy) - (In Legacy) - 

Cloud tier Required Required Required Required 
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which replaces all placeholders (in templates) with actual values (from the call-

graph model). The manual refactoring entails further changes and 

implementation that was required to fully adapt the application to the Mango 

architecture (or as a MCA application – e.g. Cloud tier implementation).  

Furthermore, the source code screenshots used for explanation of the legacy 

adaptation process are obtained only for Linpack application, for the purpose 

of demonstration. However, the snippets of the ACTS classes for the four case 

studies are presented in Appendix J. 

7.4.1 Mosaic automated refactoring 

The highlighted segments in Figure 7.3 and Figure 7.2 shows the adaptation 

on the Aspect and Task templates made by Mosaic, to generate the Aspect 

and Task classes, respectively. To demonstrate Mosaic automated 

refactoring the code screenshot have only been presented for Aspect and 

Task classes as they show all Mosaic placeholders. 

The Mosaic call-graph, mcg (Table 7.6) is the model for the generation of the 

actual values of the Mosaic placeholders. This is the identified offloadable 

callee for MCA optimisation. As noted in the Mosaic framework (Chapter 5), 

the mcg (Table 7.6) specifies the superclass of the Caller, the Caller, the 

Callee, its return type and its argument types – which are relevant for model 

transformation into ACTS classes. 

Table 7.6  Mosaic Call-graph (mcg) 

For Linpack 
android.app.Activity  rs.pedjaapps.Linpack.MainActivity:run 

rs.pedjaapps.Linpack.MainActivity:runLinpack  rs.pedjaapps.Linpack.Result  java.lang.Class 

For MatCalc 
android.app.Activity  com.android.matcalc.MainActivity:customTimes  

Jama.Matrix:times  Jama.Matrix  Jama.Matrix 

For MathDroid 
android.app.Activity  org.jessies.mathdroid.Mathdroid:exe 

org.jessies.mathdroid.Mathdroid:computeAnswer  org.jessies.calc.Node  java.lang.String 

For NQueen 
android.app.Activity  com.mango.queens.NQueen:computeNQueen 

com.mango.queens.NQueen:nQueenCount  int  int 
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As shown in Table 7.5 and Figure 7.3 (Line 8) Mosaic replaces the [Callee] 

placeholder with appropriate rs.pedjaapps.Linpack.MainActivity.runLinpack 

from the mcg (Table 7.6). Similarly the [Arguments], [ArgumentIDs] and 

[Return] placeholders are transformed to appropriate values as shown in 

Figure 7.3, Aspect class (Lines 11 and 15 for [Arguments] as Class arg_0, 

Lines 10, 14 and 16 for [ArgumentIDs] as arg_0 and Line 15 for [Return] as 

Result). This transformation is also achieved for other ACTS classes.  

For example, for the Task class the [Callee] and [CastedArguments] 

placeholders for referencing the offloadable method has been transformed 

 
Figure 7.2 Task Class for Linpack 

 
Figure 7.3 Aspect Class for Linpack 

package mango;

import ...
import rs.pedjaapps.Linpack.MainActivity;
import rs.pedjaapps.Linpack.Result;

public class Task extends AsyncTask<Object, Integer, Result> {
private static Result result = null;
...
private static final int TIMEOUT = 5000;
private static final int OVERHEAD = 2542; //25% OVERHEAD

@Override
protected Result doInBackground(final Object[] params) {

...
}

private void runOnMobile(Object[] params) {
result = MainActivity.runLinpack((Class)params[0]);

}

private void runOnCloud(Object[] params) {
try {

Socket socket = new Socket("46.137.91.122", 3);
...
result = (Result) inputStream.readObject(); //read
...

} ...
}
...

}
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appropriately as shown in Line 19 of Figure 7.2, with [CastedArguments] 

replaced by (Class)params[0]. Furthermore, the [Return] placeholder which 

holds the return type of the Callee is replaced by Result object as shown in 

Lines 7, 8, 14 and 26 of Figure 7.2 Task class. 

Also as shown in Table 7.5, the Mosaic transformation was also performed for 

MatCalc, MathDroid and NQueen applications. Table 7.5 shows that, like 

Linpack (used for demonstration), Mosaic also transformed placeholders for 

these applications into appropriate ACTS classes with actual values derived 

from mcg (Table 7.6). 

7.4.2 Exposing and Referencing an Activity 

The Context class (of ACTS) requires an activity to create shared preferences 

used in the decision-making at the mobile tier. The activity to be referenced 

by the Context class is therefore needed to be exposed from an android 

activity class – by initialising an Android activity as a public static variable. The 

initialisation of the exposed activity static variable is performed within the 

onCreate(…) method of the Android activity, to ensure that the activity (static 

variable) is initialised immediately the Android activity is created. To ensure 

that the variable is always set when the application is launched the 

main/launcher activity of the application is used to initialise the static activity 

variable used by Context class (i.e. the launcher activity is the activity that 

starts the app). 

 
Figure 7.4 Launcher Activity of Linpack 

package mango;
import ...

public class MainActivity extends Activity implements Runnable {
    ...
    public static Activity activity;

    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);

        activity = MainActivity.this;

        ...
    }
}
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Exposing and referencing the activity are achieved manually, as shown by the 

highlighted sections of Figure 7.4 and Figure 7.5. Exposing the activity 

requires two lines of code as shown in Figure 7.4 – which involves declaring 

the static variable of Activity type (Line 6) and initialising the variable with the 

launcher activity (Line 13). Whereas referencing the activity only requires two 

lines of code as shown in Figure 7.5 – which involves importing the activity 

(Line 3) and calling the activity (Line 6). 

Furthermore, as shown in Table 7.5, activities are also manually exposed and 

referenced for the MatCalc, MathDroid and NQueen applications; with their 

respective launcher activities as MainActivity, Mathdroid and NQueen classes 

respectively. 

7.4.3 Serialising Objects 

By convention, as with distributed systems, objects passed across the 

network, have to be serializable. In Java, this is achieved by implementing 

java.io.Serializable interface (to allow communication across the network). As 

shown in Table 7.5, objects are required for the Callees of Linpack, MatCalc 

and MathDroid applications.  

For the Linpack application, to execute the Callee (i.e. runLinpack method), 

java.lang.Class is required as an argument – which is a generic Java class. 

However, the execution of the Callee returns a Result object – which means 

that the result class is required to be serialised in order to execute the Linpack 

Callee remotely. The legacy Result class does not implement Serializable 

interface, therefore it was refactored by implementing java Serializable 

interface to allow for the object to be transmitted across the network. 

 
Figure 7.5 Context Class for Linpack 

package mango;
import ...;
import rs.pedjaapps.Linpack.MainActivity;

public class Context {
    private static Activity activity = MainActivity.activity;
    ...
}

1
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3
4
5
6
7
8
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For the MatCalc application, to execute the Callee (i.e. times method), Matrix 

objects are required as arguments, moreover, the Callee also returns a Matrix 

object. Thus the Matrix class has to be serializable in order to allow for remote 

execution of MatCalc’s identified Callee. As indicated in Table 7.5, the legacy 

MatCalc application already defines the Matrix class as serializable, thus 

refactoring was not necessary. Similarly, the Node class of legacy Mathdroid 

application was already defined as serializable and was not refactored. 

7.4.4 Implementing the Cloud tier 

Unlike the mobile tier which already consists of the implementation of the 

Callee, the cloud tier always requires the Callee to be implemented (as shown 

in Table 7.5). The implementation of Callee on the cloud tier is not achieved 

by Mosaic; as there may be libraries (Table 7.7) required by the Callee during 

execution. Thus Callees are implemented manually on the cloud tier and 

integrated or called within the generated Service class of ACTS pattern. 

Table 7.7 shows the libraries and classes required for implementing the Callee 

on the cloud tier. For MatCalc, the identified offloadable Callee (i.e. times 

method from Table 7.1) is within the library, whereas that of other case study 

apps are within classes. All the aforementioned dependencies presented in 

Table 7.7 are deployed in the cloud alongside their respective Service class 

(of ACTS pattern), which together make up the cloud tier of the Mango MCA 

architecture. Mosaic placeholders found within the Service template are 

transformed by Mosaic while transforming other ACTS components – as 

Table 7.7  Cloud tier Callee dependencies 

Apps Cloud tier Callee dependencies 

Libraries Classes 

Linpack - rs.pedjaapps.Linpack.Linpack.java       (Callee) 

rs.pedjaapps.Linpack.Result.java 

MatCalc Jama-1.0.2.jar   (Callee) com.android.matcalc.MatrixParser.java 

MathDroid Calc.jar org.jessies.mathdroid.Mathdroid.java   (Callee) 

NQueen - com.queens.nQueenLib.java                (Callee) 

Key: (Callee) signifies the location of the implementation of the Callee method. 
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presented earlier. Moreover, the CPU threshold and Time threshold of the 

Service class can be set manually. 

For the case studies; CPU threshold was set as 30% – an arbitrary value to 

signify the minimum CPU availability of the cloud to process any request. Time 

threshold was set to correspond to the approximate tolerable local execution 

time to the nearest 1000ms. For example, the average local execution time of 

Linpack is 4733ms, the Time threshold at the cloud tier is set to 5000ms. The 

screenshot for the code base of the Service classes for the case studies are 

presented in Appendix J.  

7.5 Critical Analysis of Mosaic Approach 

Table 7.1 presents the initially identified offloadable candidates for each of the 

applications. The initially identified offloadable candidates are based on the 

selective analysis presented in Algorithm 5.1. To enhance the initial 

identification, inclusion rules were applied for Callees based on the identified 

offloadable candidates in the literature [8], [52] – thus Table 7.1 outcome. 

To further determine the efficacy to yield offload benefits, Algorithm 5.3 

(Profiler Aspect) is applied to the initially identified Callees of Table 7.1. The 

result of Profiler Aspect is presented in Figure 7.6, based on 10 experiments. 

 

Figure 7.6 Mosaic (Profiler Aspect) evaluation of offload candidates 
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Mobile overhead: Recall that mobile overhead compares Mango mobile 

scenario to the local execution scenario. The results show that Mango does 

not contribute significant overhead when executing the Callee on the mobile, 

as shown in MatCalc, and Mathdroid. The mobile overhead for Linpack yields 

a negative value due to differences in environmental states, naturally, this is 

not supposed to be so. However, environmental states are unpredictable, thus 

comprising outliers. Such outliers show that Mango mobile scenario in Linpack 

comprised of more favourable environmental factors compared to the local 

scenario. The reverse being the case for NQueen. 

Cloud saving: Recall that cloud saving compares Mango cloud scenario with 

the local execution scenario, and negative value of cloud saving means no 

offload benefits, and therefore not recommended for MCA optimisation. From 

the results of Fig. 8 the Profiler Aspect evaluation shows that offloading the 

offload candidates for MatCalc and MathDroid does not yield benefits, with 

MatCalc having a significant lower bound – significantly inefficient. Hassan et 

al. [8] also evaluates MathDroid and MatCalc based on the identified 

offloadable candidates in Table 7.1, and these applications are found to not 

yield offload benefits after optimisation. The literature asserts that this is due 

to the application being data intensive. Moreover the evaluation in the related 

work[8] does not focus on the Callee, but rather the entire optimised 

application – thus the results of the evaluation (in [8]) seem to portray a 

closeness between local execution and MCA optimisation (and a possibility 

for savings) – i.e. for MatCalc and MathDroid, however, this is not the case as 

shown by the negative cloud saving of the aforementioned apps in Fig. 8. 

Using Profiler Aspect provides a finer granularity of evaluation by using 

pointcuts to point to the exact call to the Callee and using before and after 

advices to measure the exact execution time of the Callee of concern. 

In the Mango evaluation section, the Mango architecture was applied to 

MatCalc and MathDroid, to demonstrate that the evaluation of the application 

as a whole is significantly different from the Callee evaluation (fulfilled by 

Aspect Profiler). This sheds light on the reason why the local (or on-device) 
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execution of app is interpreted as being close to the MCA optimised scenario 

by related work [8]. 

7.6 Critical Analysis of Mango Architecture  

In this section, the proposed architecture is evaluated by comparing three 

scenarios; Local, Server and Mango scenarios. The local scenario executes 

the Callee on the mobile device, the server scenario executes the Callee 

remotely in the cloud, while the Mango scenario executes using the proposed 

architecture. For the server and Mango scenarios, 10 experiments are 

conducted by simulating fog settings (which has higher bandwidth and low 

latency) and cloud settings (which is based on adverse network conditions). 

In Fog setting (denoted by F, in the graph) the following was used: 100Mbps 

bandwidth, 20ms latency, 2 CPU and 2 memory worker threads. In Cloud 

setting (denoted by C, in the graph) the following was used: 50kbps 

bandwidth, 1s latency, 6 CPU and 4 memory worker threads. Note: the worker 

threads are used (by Stress Utility) to stress the server CPU and memory. 

The results of the experiments (and Mango benefits/efficiencies) are 

discussed based on observed behaviours – classified in three sections; 

suboptimal awareness, variability awareness and full-tier awareness. 

7.6.1 Suboptimal awareness 

Recall from the Profiler Aspect evaluation, that the MatCalc and MathDroid 

applications do not yield offloading benefits. Similarly, as shown in Figure 7.7 

the server scenario (which executes the Callee on the server) is significantly 

inefficient (both performance and energy wise) compared to local execution. 

Mango architecture captures the aforementioned concern during decision-

making and does not offload subsequent executions of the Callee – thus 

avoiding the overhead of offloading without actual benefits. Consequently, 

compared to the server scenario, Mango is more efficient. However, in 

comparison to the local scenario, some overhead – although not significant 

(5.33%) – is incurred  by the  decision-making process.  Thus  reemphasizing  
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Figure 7.7 Performance and Energy Results of the Mobile tier 



150 
 

 
Figure 7.8 Cloud tier Results for Resource Efficiency and Availability 
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the importance of the fine-grained evaluation by Profiler Aspect (Quality 

Verifier) at the earlier stages of identification of offloading candidates – a proof 

of hypothesis H1. 

Hypothesis H1 in Chapter 3 presented that Offloading any task which 

compromises the condition where combined overhead of all MCA components 

is always lesser than local, will always compromise performance, even if the 

remote execution time of offloadable component is less than that of local. 

Suboptimal awareness refers to the capability of the Mango approach in 

avoiding such situations where offloading does not yield benefits. The Mosaic 

framework (of Mango approach) provides a Selective Analyser which selects 

offloadable components by applying the rules in the rules repository. The rules 

repository is composed of both exclusion and inclusion rules that are applied 

during the process of identification of offloadable tasks. Such suboptimal tasks 

are added to the rules repository for exclusion during identification process. 

This means that the final transformed MCA will exclude such tasks not yielding 

offloadable benefits (in other words, completely avoiding the 5.33% overhead 

mentioned above), and thus avoiding the overhead resulting in improper 

identification of offloadable tasks (a solution to Problem I of Chapter 3). 

7.6.2 Variability awareness 

Variability awareness refers to the capability of the Mango architecture to 

adapt (or make decisions) in varying environmental conditions with minimal 

overhead, whether normal or adverse conditions, in order to achieve software 

target qualities. Figure 7.7 presents the result for favourable conditions as F 

(i.e. fog settings), and for adverse conditions (i.e. adverse cloud settings). 

For Linpack and NQueen offloading, (Server F) yields performance and 

energy benefits, this is also achieved by Mango (F), see Figure 7.7. However, 

as shown by the case studies, always offloading in adverse conditions (Server 

C) may compromise performance, Mango (Mango C) is aware of such 

variability in environmental conditions – achieving at least 30%  performance 

improvement in adverse conditions compared to the always offloading 
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scenario. And also achieving energy and performance improvements (from 

10-30% performance improvement on normal cloud conditions, and from 72% 

energy savings for normal cloud conditions – all compared to local execution 

scenario). Conclusively, Mango approach is aware of both favourable and 

adverse environmental conditions to achieve mobile energy and performance 

efficiency. Thus, time based context-aware decision making in mango is used 

to achieve accuracy in decision making, without the overhead of multiple 

parameter monitoring (solution to Problem II of Chapter 3). 

7.6.3 Full-tier awareness 

Figure 7.8 presents the resource usage results for adverse cloud conditions 

(i.e. Server C and Mango C). Furthermore, the results of Figure 7.8 are 

focused on Linpack and NQueen, as it has been established in earlier sections 

(6.1 and 6.2.1) that MatCalc and MathDroid does not meet the effective 

offloading criteria and that as a consequence; offloading to the cloud would 

result in a mobile performance overhead, as well as unnecessary cloud 

resource usage. 

To investigate the cloud resource usage (Figure 7.8), the CPU and memory 

are monitored. The highlighted section of the graphs (in Figure 7.8) shows the 

execution of the Callee on the cloud. Recall from the Mango algorithm that 

Time Threshold is applied in the cloud and mobile tier (Algorithms 4.2 and 4.3 

respectively) as a way to ensure that the application’s performance is not 

compromised by adverse environmental conditions of offloading. 

Consequently, in adverse cloud conditions, a better performance is achieved 

at the mobile tier by using the proposed architecture (Mango C) compared to 

always offloading (Server C), as shown in Figure 7.7, and mentioned earlier 

in 6.2.2. Simultaneously, at the server, the Time Threshold achieves resource 

savings during adverse conditions, with Mango (Mango C) compared to 

always offloading (Server C) as shown in Figure 7.8. For example with 

Linpack, the elapsed cloud tier execution time for the Server scenario is 

approximately 16.4s, however, this is cut down to 5s with the Time Threshold 

of Mango, and for both scenarios the resource usage is approximately 60% 
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and 22% for CPU and memory respectively. Thus; the CPU was in more busy 

states for the Server C than Mango C for an extra 11s time period; similarly 

with the Memory. Thus Mango (Mango C) is more resource efficient for cloud 

in adverse conditions. Note: the Time Threshold in Mango was set by using 

the approximate average response time of the Server in normal condition. 

Conclusively, Mango approach is aware of both the mobile tier and the cloud 

tier in achieving software qualities (for improving the efficiency of the 

application) – a justification for hypothesis H2. 

7.7 Critical Analysis of Beftigre Approach 

To evaluate Beftigre approach, it is compared against the conventional Non-

BDD approach using the case study applications. Thus the focal scenarios 

are; 

 Beftigre: the proposed behaviour-driven full-tier approach, and  

 Non-BDD: the mobile-centric architecture scenario approach (using 

Local, Server and Scheme scenarios) – see Chapter 3 for details. 

Sample Compared Schemes: 

For each approach (Beftigre and Non-BDD) two offloading schemes are 

compared:  

 Scheme1 is based on threshold-based policy, similar to [4]. 

In threshold-based offloading scheme [4], a method is offloaded only when its 

parameter data size is greater than a predefined threshold value. The scheme 

in [4] is implemented based on runtime checkpointing which incurs a 

transmission overhead due to varying offload data size, hence the use of data 

size for thresholding. The experiment omits runtime checkpointing, thus 

making the offload data size fixed for all the applications used in the 

experiment. Consequently, a predefined threshold is used based on the 

network rather than data size. Therefore, the criteria for offloading in Scheme1 

is when bandwidth is greater than 500bps and latency is greater than 150ms. 
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The bandwidth and latency values are obtained by sending packets to and 

from the server. The premise behind the effectiveness of static thresholds – 

such as Scheme1 – is that the local execution time of the application for the 

threshold used is always greater than the remote execution time; therefore, 

using the threshold would amount for time or energy savings [4]. Within the 

Simulation Parameters section, the WLAN offload favourable condition 

simulates an environment favourable for the static threshold of Scheme1. 

 Scheme2 is based on perceptron algorithm, similar to [7]. 

Scheme2 uses multiple criteria for offloading – based on learned data (as 

opposed to a predefined static threshold). Offload criteria are bandwidth, 

latency, server and mobile CPU and memory availabilities. The adapted 

perceptron algorithm used in the experiment is open sourced30. To extract 

learning data for Scheme2, a special version of the application is 

implemented, which has the offloadable component execute remotely 

(LearnRemote) and locally (LearnLocal). LearnRemote and LearnLocal are 

instrumented with random simulation parameters (including WLAN, Outlier 

and 3G) to generate the following metrics; mobile CPU and memory available, 

server CPU and memory available, bandwidth, latency, and elapsed time. The 

generated data is then used to build the training dataset classified for remote 

or local execution. A data subset is classified as a remote data if the remote 

execution time is greater than local execution time, otherwise, it is classified 

as local data. 

Simulation Parameters: 

Stress and TC utility (also utilised by Beftigre’s Resource Simulator) are used 

to provide parameters which simulate different environmental conditions to 

test the schemes. The simulation parameters presented below are used to 

maintain the same level of rigour for both Beftigre and Non-BDD approaches, 

and also used to discuss the results (see Table 7.8 and Table 7.9). 

                                            

30 Perceptron Algorithm in Java; https://github.com/nsadawi/perceptron [01-Jul-2016]. 
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 WLAN: consists of 30mbps bandwidth, 20ms latency, 2 CPU worker 

loads and 2 memory worker loads. With these parameters, local 

execution time is greater than remote execution time, which is 

appropriate for offload. 

 Outlier: consists of 20mbps bandwidth, 200ms latency, 2 CPU worker 

loads and 2 memory worker loads. These parameters are used to verify 

the offloading schemes. 

 3G: consists of 500kbps bandwidth, 200ms latency, 5 CPU worker 

loads and 5 memory worker loads. With these parameters, local 

execution time is less than remote execution time. 

The settings used in WLAN, Outlier and 3G are found to be commonly used 

in experiments [7], [8]. The results of the experiment have been presented in 

the tables (Table 7.8 and Table 7.9) and figures (Figure 7.9, Figure 7.10 and 

Figure 7.11), and discussed in the following three sub-sections. Following the 

full-tier and behaviour-driven objective of Beftigre, the approach has been 

evaluated against the earlier described mobile-centric architecture scenario 

approach (Non-BDD). 

 

 

 
Figure 7.9 Bandwidth and Latency 
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7.7.1 Inconsistency challenge to Non-BDD 

The Non-BDD approach (Table 7.8) presents the elapsed time and used 

energy of the mobile device during the period of the experiment. Since the 

same level of rigour was applied on all experiment, sample population of 9 (3 

samples from each simulation parameters – 3G, WLAN, and Outlier) was 

used. Table 7.8 further specifies three architecture scenarios: Local, Server 

and the scheme being evaluated. Local and server results are the same for 

both schemes and are consequently used as a basis for evaluating the 

schemes (using % difference), and subsequently used for comparison in the 

 

   Figure 7.10 Cloud CPU and Memory availability 

 

Figure 7.11 Mobile CPU and Memory availability 
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Non-BDD scenario. However, following the Beftigre approach to also 

investigate other environmental conditions, the results show inconsistencies 

and complex correlation between scenarios. For example, the Local scenario 

(which is affected by less environmental inconsistencies – only mobile CPU 

and memory availability – Figure 7.11), begins with its first sample as 90% 

and 14%, whereas Scheme1 and Scheme2 are 98% and 18%, 85% and 17% 

for  CPU and memory availability respectively. This inconsistency follows 

through the samples, and also occurs in the Server scenario. Even more, the 

Server scenario inconsistencies are more profound as it also involves network 

and server resources – Figure 7.9 and Figure 7.10. 

Conclusively, Non-BDD is not very effective for the comparison of schemes 

as each sample that make up the mean of the experiments are affected by 

different conditions – which are unrelated to the scheme. With Non-BDD, 

however, generalised conclusions can be made, such as; scheme1 is more 

energy efficient compared to scheme2 on the basis of local and server 

scenarios - this  would  be  based  on  the  assumption  that  a  more  rigorous  

Table 7.8  Non-BDD Evaluation and Comparison 

Architecture 
Scenarios 

Scheme1 (3G, WLAN, Outlier) Scheme2 (3G and WLAN, Outlier) 
Elapsed Time 
(ms) 

Used Energy 
(mJ) 

Elapsed Time 
(ms) 

Used Energy (mJ) 

Linpack 
Local 21952.50 3168.23 21952.50 3168.23 
Server 21948.67 2539.87 21948.67 2539.87 
Schemes: 21953.33 2206.08 21945.33 3102.39 
Local % diff. -0.0038 35.8055 0.0327 2.1 
Server % diff. -0.0212 14.0663 0.0152 -19.9395 
 

MatCalc 
Local 6313.22 492.48 6313.22 492.48 
Server 8340.03 711.17 8340.03 711.17 
Schemes: 6403.33 517.07 7009.98 583.10 
Local % diff. -1.42 -4.87 -10.46 -16.85 
Server % diff. 26.27 31.61 17.33 19.79 
 

NQueen 
Local 17123.02 2702.13 17123.02 2702.13 
Server 16980.88 2009.89 16980.88 2009.89 
Schemes: 15707.00 2609.05 15689.52 1898.99 
Local % diff. 8.63 3.51 8.74 34.91 
Server % diff. 7.79 25.94 7.91 5.67 
Note: Local % diff. and Server % diff. is the percentage difference of the scheme in comparison to 
Local and Server scenarios respectively. A negative value is used to signify a loss in energy 
savings or performance. 

Non-BDD Evaluation and Comparison above is based on mean values of samples similarly adopted by existing works 

[4], [7]. 
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experiment would span different environmental conditions, as 35.8mJ to 2.1J 

ratio is a significant saving on Scheme1. The significant saving is due to the 

simulation parameters used which seemed to favour Scheme1 as the 

robustness of Scheme2 in adverse conditions seemed to be compromised by 

its energy intensive decision making – especially if the adverse conditions are 

not extreme – further explained in the next point. Having extracted a 

conclusive result using Non-BDD approach, it is difficult to tell the behaviour 

Table 7.9  Beftigre Evaluation and Comparison/Assertion 

Label @Given: 
mobile 

@When: cloud/network @Then: mobile @Then: cloud Final 
Assert 

CPU Mem. CPU Mem Bandw. Lat. Time Energy CPU Mem. 
Linpack Evaluation 
Scheme1 93 18 41 67 560 243 22208 3008 58 28 - 
Scheme2 81 41 41 62 557 247 21887 3181.08 60 32 - 
Linpack Compare: Scheme2 expected on Scheme1 actual 
Expected 81 41 41 62 557 247 21887 3181.08 60 32 - 
Actual 92 17 41 68 559 241 22304 3029.44 58 29 - 
Assert - - - - - - 1.91% 

more 
4.77% 
less 

3.33% 
less 

9.38% 
less 

Different 

Linpack Compare: Scheme1 expected on Scheme1 actual 
Expected 93 18 41 67 560 243 22208 3008 58 28 - 
Actual 92 16 41 68 563 240 22233 3031 58 29 - 
Assert - - - - - - 0.11% 

more 
0.76% 
more 

0% 3.57% 
more 

Similar 
system 

 

MatCalc Evaluation 
Scheme1 90 23 38 56 505 211 7033 613.41 55 26 - 
Scheme2 92 22 38 56 512 224 6442 537.07 55 26 - 
MatCalc Compare: Scheme2 expected on Scheme1 actual 
Expected 92 22 38 56 512 224 6442 537.07 55 26 - 
Actual 94 21 38 58 507 209 7075 625.12 55 26 - 
Assert - - - - - - 9.37% 

more 
15.15% 
more 

0% 0% Different 

MatCalc Compare: Scheme1 expected on Scheme1 actual 
Expected 90 23 38 56 505 211 7033 613.41 55 24 - 
Actual 91 22 38 56 501 217 7085 609.91 55 24 - 
Assert - - - - - - 0.75 

more 
0.57% 
less 

0% 0% Similar 
system 

 

NQueen Evaluation 
Scheme1 84 25 43 67 552 246 16344 2810.11 59 29 - 
Scheme2 89 25 42 65 540 244 15702 1908.09 59 30 - 
NQueen Compare: Scheme2 expected on Scheme1 actual 
Expected 86 25 42 65 540 244 15702 1908.09 59 30 - 
Actual 85 25 42 68 553 241 16289 2797.42 59 30 - 
Assert - - - - - - 3.67% 

more 
37.80% 
more 

0% 0% Different 

NQueen Compare: Scheme1 expected on Scheme1 actual 
Expected 84 25 43 67 552 246 16344 2810.11 59 29 - 
Actual 85 25 43 68 553 243 16302 2785.90 59 30 - 
Assert - - - - - - 0.26% 

less 
0.87% 
less 

0% 3.39% 
more 

Similar 
system 

Full-tier Results (i.e. Then clauses) are presented above based on a comparison between Scheme1 vs. Scheme2 –
Outlier simulation parameters used. 
 
Key: Given: mobile CPU and memory availability (%), When: cloud CPU and memory availability (%), bandwidth 
(bps) and latency (ms), Then: mobile elapsed time (ms), mobile used energy (mJ), cloud used CPU (%) and cloud 
used memory (%). 
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of the scheme, for instance, given a specific (or category of) environmental 

condition. 

Also notice that for MatCalc application which is data-intensive, Non-BDD 

(Table 7.9) shows Scheme1 to be 31.61% more energy-efficient compared to 

Server whereas Scheme2 is only 19.79% more efficient. Beftigre approach 

(Table 7.9) shows the reverse to be the case. This is understandable because 

Scheme2 is based on trained data and is aware that the application is data-

intensive, and therefore stops subsequent offload. The misconception of 

results associated with the Non-BDD approach is due to the randomisation of 

samples – in which case there is more presence of favourable conditions 

(such as WLAN) than unfavourable (such as 3G). Also with NQueen 

application, the same inconsistency issue reoccurs in Non-BDD (Table 7.9) 

where Scheme1 and Scheme2 are presented with very close results for 

elapsed time, i.e. 8.63% and 8.74% respectively, which is however clarified 

by Beftigre approach (Table 7.9). Also, there is no consistency across 

applications with the Non-BDD approach (Table 7.9), for example; Scheme 1 

is more energy-efficient in Linpack application (using Local scenario) 

compared to Scheme 2, but in NQueen the reverse is the case. Beftigre, 

however, maintains consistency across applications. 

7.7.2 Beftigre Full-tier Effectiveness 

Table 7.9 presents the results of a sample evaluation and comparison using 

the Beftigre approach. First, the schemes are self-evaluated using the outlier 

simulation parameter (20mbps bandwidth, 200ms latency, 2 CPU loads and 2 

memory loads), these are provided through the Orchestrator’s Server Monitor 

Interface. Evaluation of Scheme1 gives 22208ms and 3008mJ, and Scheme2; 

21887ms and 3181mJ for mobile tier green metrics (elapsed time and used 

energy). Furthermore, the cloud CPU and memory usage during the process 

are obtained – as 58% and 28% for Scheme1, 60% and 32% for Scheme2. 

From Table 7.9 evaluation, a prediction can be made; from the CPU and 

memory usage of both schemes; that Scheme1 was executed locally and did 

not offload whereas Scheme2 did. 
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Recall that in Scheme1, the criteria for offload is set to be as bandwidth >= 

500bps and the latency <= 150ms, as a result, using the outlier, Scheme1 was 

not offloaded – thus consuming more time and energy. This means that 

Scheme1 is not robust enough to be aware of conditions beyond the 

parameters of its criteria constraints. Conversely, Scheme2 which learns from 

trained data is not only aware of adverse, environmental conditions but also 

incurs training overhead – which in this case is more energy consequential 

than time. The overhead is caused by the decision-making process; 

communication to and from the server to calculate cloud CPU and memory 

availability, as well as mobile resource availability and network states, prior to 

deciding to offload. Inspecting the full-tier analysis, it can be deduced that, 

based the outlier parameters Scheme2 is both inefficient in mobile and cloud 

tier. However, since it is aware of the environment, its benefits would be more 

appreciated in adverse conditions (which may include mobile devices with 

very low computing capacities). 

7.7.3 Robustness of Beftigre Assertion 

As well as deducing the behaviour of a scheme using the full-tier analysis. By 

adopting BDD concepts, Beftigre makes it easy to communicate expected 

goal of offload schemes within software teams; from business analyst to 

software engineers. For example, Table 7.9 also shows the comparison of the 

schemes based on the earlier evaluated simulation parameters. By re-

executing Scheme1 changes in the actual experimental values can be 

observed, however, these changes are within ± 1% of the percentage increase 

or decrease between the expected of Scheme1 and actual of Scheme1 (to 

satisfy Line 9 of Algorithm 6.2). The reverse is the case when Scheme1 is 

compared against Scheme2, the percentage increase/decrease are beyond ± 

1%. 
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Consequently, by developing a test plan (using simulation parameters) earlier, 

and a sample application, schemes can be better evaluated, compared and 

communicated between the development team – thus adopting the wider 

software engineering objective of BDD. Furthermore by adopting Beftigre, one 

can avoid inconsistencies, and the difficulty of variability of architecture 

scenarios through the use of guided annotations, while providing a finer 

granularity of results through full-tier analysis/evaluation. 

7.7.4 Reproducibility Effectiveness of Beftigre 

Table 7.10 uses the statistical method (of standard deviation) to verify the 

effectiveness of Beftigre for repeatability or reproducibility of its test results. 

The verification is achieved using: mean (on five samples for each Scheme 

run with Outlier parameters), standard deviation and 5% range criteria. Recall 

that in Beftigre approach, 5% range criterion is the basis on which two 

schemes are compared. In other words: two schemes are comparable if the 

preconditions (@Given and @When) of the expected scheme are within ± 5% 

range of the actual preconditions – as shown by inRange(a, b) method of 

Algorithm 2. The 5% range criterion is popularly explored in research [117] 

and in a similar context to Beftigre (i.e. for comparison). The purpose for which 

Table 7.10 Replication capability of Beftigre Evaluation  

 @Given: mobile @When: cloud/network 
CPU Mem. CPU Mem. Bandw. Lat. 

Linpack 
Scheme1 Mean 92.54 18.50 41.30 67.30 560.12 243.03 
Scheme1 Deviation 1.13 0.84 0.65 1.30 11.25 5.43 
Scheme1 5% range 4.63 0.93 2.03 3.37 28.01 12.15 
Scheme2 Mean 84.25 42.01 41.50 63.40 558.31 247.80 
Scheme2 Deviation 1.25 1.03 0.55 1.44 9.96 4.04 
Scheme2 5% range 4.21 2.10 2.08 3.17 27.92 12.39 
 

MatCalc 
Scheme1 Mean 92.91 23.20 38.06 56.85 506.45 217.00 
Scheme1 Deviation 1.21 0.77 0.71 0.82 5.00 2.01 
Scheme1 5% range 4.65 1.16 1.90 2.84 25.32 10.85 
Scheme2 Mean 91.44 22.31 38.42 56.10 517.66 220.60 
Scheme2 Deviation 2.22 0.90 0.74 1.31 4.02 6.03 
Scheme2 5% range 4.57 1.12 1.92 2.81 25.88 11.03 
 

NQueen 
Scheme1 Mean 84.60 24.84 43.44 68.70 550.98 245.31 
Scheme1 Deviation 1.01 1.09 0.58 2.77 9.03 3.93 
Scheme1 5% range 4.23 1.24 2.17 3.44 27.55 12.27 
Scheme2 Mean 86.08 25.06 42.02 65.22 548.40 249.16 
Scheme2 Deviation 2.30 1.02 0.99 2.40 7.72 3.20 
Scheme2 5% range 4.30 1.25 2.10 3.26 27.42 12.91 

N.B. The replication data above was verified using the Outlier parameters. 
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the range criteria was applied in Beftigre approach is in consideration of the 

unpredictable and varying nature of the MCA environment. The difficulty to 

predict MCA environments is a challenge which in practice contributes to the 

inconsistencies of existing MCA evaluation approach (as discussed in Section 

3.3.1). To achieve a solution with a better consistency of results, Beftigre 

applies environmental control and scoping. Control is orchestrated by the 

Resource Simulator while the range criteria (of Full tier analyser) provides 

scope for comparison. Together the aforementioned features achieve 

reproducibility as shown in Table 7.10. 

For example, from Table 7.10 varying samples have been executed using the 

Outlier parameter settings, and the deviation gives the varying range of the 

samples – demonstrating natural inconsistencies in MCA. However, despite 

the inconsistencies there are mostly overlaps in the values of the 

environmental metrics (i.e. CPU, memory, etc.) for the schemes (Scheme1 

and Scheme2). Furthermore, the deviations are also within the ± 5% range 

criteria (not more or less), thus validating the scoping effectiveness of the Full-

tier analyser (achieved by inRange) for comparison of schemes. Therefore the 

extent to which replication can be achieved in our evaluation approach is by 

using range criteria and applying an element of control to the environment. 

7.8 Summary 

By applying four case studies (of varying taxonomies – data and compute 

intensities) in the evaluation of Mango architecture this chapter has 

demonstrated that the architecture is effective in; achieving full-tier efficiency 

(i.e. savings for mobile and cloud tier), awareness of varying environmental 

conditions (i.e. adapting to normal and adverse conditions), and suboptimal 

awareness (i.e. awareness of situations where offloading does not yield 

benefits). Furthermore, Mosaic framework was also evaluated and proves to 

be effective in the identification of offloadable candidates at a finer granularity 

– through the use of AOP technique. By fine-grained evaluation of offload 

candidates, Mosaic is capable of determining offloadable candidates that can 

yield benefits at an earlier stage of development. Furthermore, the framework 
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is useful for scaffolding MCA code from templates implementing the proposed 

ACTS design pattern of Mango, so as to automate the refactoring process in 

legacy systems. Furthermore, by comparing the Beftigre evaluation approach 

against existing evaluation approaches, it has been proven to be effective in 

the full-tier evaluation of MCAs. Also, the Beftigre evaluation approach 

presents better accuracy and granularity in the comparison between systems 

through the use of annotations, making it possible to use appropriate software 

engineering and testing concepts such as BDD (assertions) in the evaluation 

of MCAs. 
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Chapter 8.  Conclusions 

8.1 Introduction 

The research undertaken for this thesis has enabled the development of a 

novel approach for green MCA software systems. The approach involves a 

model-driven architecture, a model-driven framework which realises the 

architecture, and a testing framework suitable for the architectural objectives 

(summarised in Figure 8.1). Together they serve to provide an efficient Mobile 

Cloud Application (MCA) development and testing process useful for 

developers; moreover providing improved mobile and cloud optimisation (or 

savings) useful for users and service providers. These research outcomes 

involve both traditional and latest theory support (such as surrounding; AOP, 

MDE and MCA offloading), and are backed by up-to-date technologies (such 

as Android Gradle compatibility for proposed frameworks, JGraphX for 

modelling based on XMI, Gradle Android AspectJ plugin for AOP). 

 

Figure 8.1 Conclusions of the Thesis 

This chapter discusses the above research outcomes in terms of how well 

they achieve the research objectives defined previously and fulfil the different 

individual requirements involved. Next, the conclusions are reached and the 
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contributions are presented. Finally, the future research directions are 

outlined. 

8.2 Conclusions and Contributions 

Despite the variety of efforts made towards mobile application optimisation 

using the cloud as surrogate – i.e. MCAs, the challenges of these approaches 

in delivering efficient solutions applicable to the development process, 

continues to be a major factor hindering their adoption in MCA development. 

Most specifically these existing approaches are challenged by optimisation 

overhead, development inefficiency, overall inefficiency in qualities and 

inadequate testing. While literature on MCA were reviewed, the study was 

also based on literature pertaining to MDE for mobile development; as MDE 

is a prominent technique in achieving development efficiency among several 

other benefits. The research showed that existing mobile MDE approaches 

have not explored the MCA domain and moreover they cannot be directly 

applied to the MCA domain due to the multi-tier (mobile and cloud) nature of 

MCAs. Consequently, the motivation to apply MDE in the MCA domain to 

eliminate the challenges in existing MCA optimisation approaches – mostly 

caused due to the use of custom runtimes in MCAs. Also existing MCA 

testing/evaluation approach is not robust to support the evaluation of mobile 

tier as well as cloud tier of MCA; consequently a need for a full-tier evaluation 

approach. Thus the concerns of MCA are generally associated with the SDLC 

of MCA; in terms of development and testing. 

The thesis aims towards an efficient MCA development approach which takes 

into consideration the mobile and cloud tier during optimisation – and 

consequently improves full-tier qualities (mobile energy and performance; 

cloud resource and availability). The approach applies the MDE concept in 

MCA order to facilitate development efficiency. Furthermore; an efficient 

testing approach is achieved for effective full-tier evaluation of MCAs. The key 

contributions are summarised below; 
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8.2.1 Contribution I: Mango Approach 

This thesis presented a novel architecture and process for MCA development 

named Mango. It owns the following main features; 1) it introduces a process 

for MCA analysis which is based on identification of offloadable tasks, 2) it 

employs MDE; thus proposing meta-modelling in MCA called the Caller-Callee 

model which handles full-tier specification of qualities, and 3) it reveals an 

optimisation approach based on a design pattern for MCA called ACTS; which 

facilitates reuse. In Mango, optimisation logic is implemented as an ACTS 

design pattern. 

The benefit of the Mango architecture is in achieving a model-driven approach 

to MCA development which drives development efficiency – realised by the 

meta-modelling concept. Also by integrating full-tier qualities, i.e. qualities for 

both mobile and cloud tiers, into the MCA, the architecture achieves better 

overall efficiency for the MCA (realised as better mobile performance and 

energy usage and better cloud resource usage and awareness of software 

availability). 

 

8.2.2 Contribution II: Context-aware Green Architecture 

The Mango architecture was proposed in the thesis as a context-aware 

architecture. Optimisation in the architecture is based on awareness of two 

kinds of context, which are user context and environmental context. 

Consequently, due to the finer granularity of context-awareness the 

architecture achieves mobile performance and energy savings even in 

adverse environment conditions – as shown in the experiments (section 

7.6.2). Also as an architecture which targets full-tier qualities, the 

consequence of context-aware decision making in Mango also yields resource 

savings in the cloud tier. This has also been demonstrated in the experiments 

(section 7.6.2). 
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8.2.3 Contribution III: Mosaic Approach 

This thesis presented a novel MDE framework named Mosaic for realising the 

proposed Mango architecture objective. A key novelty of Mosaic is its 

seamless integration with the mobile development environment as an API – 

via the Gradle console. Its novelty contribution is based on the following main 

features; 1) Selective Analyser for identification of offloadable tasks, 2) an API 

interface for specifying quality attributes for underlying meta-model, 3) a 

transformation engine which uses meta-model and ACTS templates to 

generate application code. Mosaic optimisation logic is defined in the 

templates implementing ACTS pattern; thus facilitating reuse. And 4) Profiler 

Aspect; a profiling system for architecture evaluation to ensure that an 

optimisation process for an identified offloadable task will most certainly yield 

benefits – thus avoiding optimisation overhead. Mosaic is model-driven, and 

the benefit is to achieve a platform-independent design of the Mango solution 

for MCA. Using the Model, quality attributes can be specified for the mobile 

and cloud tier of the application while modelling offloadable components. The 

modeller is a graph-based modelling tool which generates information in XMI 

format. This makes it highly interoperable; as transformation code can be 

written for any platform (based on ACTS pattern) to consume the model.  

 

8.2.4 Contribution IV: Beftigre Evaluation Approach 

This thesis presented Beftigre approach for evaluation of MCA. An important 

achievement of Beftigre is in the full-tier evaluation capability and behaviour-

driven concept. Full-tier evaluation makes it possible to evaluate the MCA at 

a finer granularity which takes into consideration metrics from both mobile and 

cloud tiers. Behaviour-driven evaluation makes it possible to provide a 

consistent and reliable comparison between other approaches or counterpart 

techniques. (See Chapter 6 for details). Experiments have shown in 

comparison to the approach adopted in the literature, that Beftigre is more 

reliable providing results at a fine granularity and reproducibility. 
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8.3 Future Work 

Considering future research directions on mobile development, the future 

work will target extending the proposed frameworks for multiple platforms as 

an extended MDE feature. For example; although Mango is model-driven, the 

Mosaic transformation tool which realises the architecture has been explored 

in the context of Android platform. Therefore for future development, Mosaic 

should be extended to support other popularly used mobile platforms (such as 

Windows Phone and iPhone) – this can be done by implementing the ACTS 

design pattern for the respective platforms and transformation code to 

transform meta-model based on the pattern. The aforementioned cross-

platform transformation feature will further enhance the adoption of Mango 

approach in MCAs. 

Also, the current MCA meta-model proposed by this thesis was focused on 

MCA offloadable tasks, future work can integrate the MCA meta-model with 

the generic meta-model for a mobile application. This can be achieved by 

extending the proposed MCA meta-model of this thesis to incorporate any of 

the existing reviewed mobile modelling frameworks (in the literature review 

chapter). Similarly, the APIs which have been implemented based on the 

proposed Beftigre test framework can be extended to target more platforms. 

Unlike Mango and Mosaic, Beftigre is not model-driven but rather language-

specific. Consequently, implementing Beftigre for different platforms will 

involve re-implementing the entire system. This would also involve 

implementing for different OS platforms in the cloud as well as mobile 

platforms. Therefore research will have to properly investigate ways to 

achieve this, and any third party libraries that may assist (for example; libraries 

to assist in monitoring a Windows cloud environment, and power monitoring 

for windows phone). 
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Appendix A  Abbreviations and Acronyms 

All the abbreviations and acronyms used in this thesis are defined below. 

Abbreviation 

/Acronyms 

Description 

ACTS Aspect Context Task Service design pattern 

AMEE Aspect-oriented Model for Energy-Efficiency at server layer 

AOP Aspect Oriented Programming 

BDD Behaviour-Driven Development 

BEFTIGRE Behaviour-driven Full-tier Green Evaluation 

CRAC Context-driven Requirements Analysis for Caller-Callee model 

DEEPC Dynamic Energy Profiling of Components 

DVM Dalvik Virtual Machine 

DSL Domain Specific Language 

EE Energy-efficiency 

GUI Graphical User Interface 

IaaS Infrastructure as a Service 

I/O Input/output 

IDE Integrated Development Environment 

JVM Java Virtual Machine 

MANGO Model-driven Architecture for integration of software quality with Green Optimisation 

in MCAs 

MCA Mobile Cloud Applications 

MCC Mobile Cloud Computing 

MDD Model-Driven Development 

MDE Model-Driven Engineering 

MOSAIC Model-based Selective Approach for Identification of Computation intensive tasks 

OOP Object-Oriented Programming 

PaaS Platform as a Service 

PIM Platform Independent Model 

PSM Platform Specific Model 

SaaS Software as a Service 

SDLC Software Development Life Cycle 

SDP Software Development Process 

VM Virtual Machine 

*Italicised are contributed from this research: ACTS, AMEE, BEFTIGRE, CRAC, DEEPC, 

MANGO, and MOSAIC. 

  



178 
 

Appendix B  Selection Criteria for Case Studies 
The case studies used to evaluate Mango, are chosen from the pool of applications used to 

evaluate the offloading schemes/approaches in the research. A complete listing of the case 

studies used in the literatures are given in Table 1 (which gives 12 apps in total). 

Table 1: List of case studies used in the literature 

S/N Apps31 Tax Sample Offloading Schemes Description 

POMAC/Elicit  EFDM DPartner  

1 Picaso [71] D    Face recognition 
app 

2 MatCalc [72] D    Matrix calculator 

3 MathDroid [73] D    Calculator 

4 NQueen [69] C    NQueen game 

5 Droidslator [75] CD    Translation app 

6 Mezzofanti [70] C    OCR app 

7 ZXing [74] D    Bar code reader 

8 JJIL [76] C    Face recognition 
app 

9 OsmAnd [77] C    Street map 

10 Andgoid [52] CD    Chess game 

11 Linpack [78] C    Linear algebra 
benchmark app 

12 XRace [79] CD    Car racing game 

Key. Tax: Application taxonomy. C: Computation intensive.  D: Data intensive. 

Notice that each literature uses both computation and data -intensive applications to evaluate 

the schemes. Similarly, for this research, two computation intensive and two data intensive 

applications have been chosen. 

The criteria for selection of the case study applications are code accessibility, application 

correctness and network robustness (Table 2). 

 Code Accessibility: the source code for a selected app must be accessible, not just 

the android application package (APK installer). This is important to be able to 

perform static analysis and offload refactoring. Note that other offload techniques 

which optimise at bytecode level or at runtime, may not need/require the source code 

for experimentation, hence obsolete apps were feasible case studies for such 

research, however Mango approach requires source code access. 

                                            

31 The Apps are the source code required for experimentation. Note that the references appended to 
the Apps links to the source code or google play app.  
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 App Correctness: a selected application must be able to execute with no errors – i.e. 

having the relevant features in performing as expected. The correctness of the app 

is important as error-composed/buggy application can impact experimental results of 

the research. Moreover, applications which are not functionally correct may even 

compromise offloading decision – if these segments are the computation intensive 

components of the app. e.g. Mezzofanti, which is missing a language pack. 

 Network Robustness: a selected app has to be able to run their key features with or 

without an internet connection. This criteria guarantees that all key requirements of 

the app are as well available in the local execution scenario. 

Criteria values: ‘Yes’ means the condition is satisfied, ‘No’ means the condition was not 

satisfied. ‘-’ means the condition was not determined as the code was not accessible. Note 

that; for code accessibility, if only APK file is found but no source code found, ‘No’ is marked. 

In a situation where all conditions/criteria are satisfied, the app is selected as a case study. 

Table 2: Case studies matching the selection criteria. 

S/N Apps32 Code Accessibility App Correctness Network Robustness 

1 Picaso [71] Yes No Yes 

2 MatCalc [72] Yes Yes Yes 

3 MathDroid [73] Yes Yes Yes 

4 NQueen [69] Yes Yes Yes 

5 Droidslator [75] Yes No No 

6 Mezzofanti [70] Yes No No 

7 ZXing [74] Yes Yes Yes 

8 JJIL [76] No - - 

9 OsmAnd [77] Yes Yes No 

10 Andgoid [52] No - - 

11 Linpack [78] Yes Yes Yes 

12 XRace [79] Yes No No 

OsmAnd was found to contain build errors which could not be resolved due to some 

inaccessible modules. After refactoring, the refined app was found to be tightly coupled to 

remote services, consequently, it was not selected as a case study.  Similarly Droidslator, 

Mezzofanti and XRace failed the network robustness selection criteria. Some other apps 

such as NQueen, JJIL and Andgoid could not be determined as the source code of the 

                                            

32 The Apps are the source code required for experimentation. Note that the references appended to 
the Apps links to the source code or google play app.  
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applications could not be found. Picaso was missing core face database, and thus could not 

be used. Out of the 12 samples presented in Table 2, four passed the criteria for selection – 

as shown in Table 3. The selected case studies are; Linpack, MatCalc, MathDroid and 

NQueen. 

Table 3: Selected Case Studies. 

Apps Computation intensive Data intensive 

Linpack [78]   

MatCalc [72]   

MathDroid [73]   

NQueen [69]   

As shown in the analysis of case studies above, the kind of taxonomies predominant in the 

literatures are computation intensive and data intensive applications. Consequently, the 

experiments for MANGO aims to demonstrate that the model is efficient in these taxonomy of 

applications. 
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Appendix C  Mosaic Modeller 

C.1  Modeller showing sample Caller-Callee model diagram 

 

C.2  Mosaic Model File (.mod) 

<?xml version="1.0" encoding="UTF-8"?> 
<mxGraphModel> 
  <root> 
    <mxCell id="0" /> 
    <mxCell id="1" parent="0" /> 
    <caller id="2" name="Caller"> 
      <mxCell parent="1" style="caller" vertex="1"> 
        <mxGeometry as="geometry" height="150" width="150" x="120" y="250" /> 
      </mxCell> 
    </caller> 
    <callerprop id="21" name="Caller Name"> 
      <mxCell parent="2" style="label;image=/images/p_caller.png" vertex="1"> 
        <mxGeometry as="geometry" height="20" width="120" x="10" y="40" /> 
      </mxCell> 
    </callerprop> 
    <calleeprop id="22" name="Caller Name"> 
      <mxCell parent="2" style="label;image=/images/p_callee.png" vertex="1"> 
        <mxGeometry as="geometry" height="23" width="130" x="10" y="69" /> 
      </mxCell> 
    </calleeprop> 
    <mobile id="3" name="Mobile"> 
      <mxCell parent="1" style="image;image=/images/mobile.png" vertex="1"> 
        <mxGeometry as="geometry" height="100" width="80" x="370" y="380" /> 
      </mxCell>    </mobile> 
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    <cloud id="4" name="Cloud"> 
      <mxCell parent="1" style="image;image=/images/cloud.png" vertex="1"> 
        <mxGeometry as="geometry" height="75" width="80" x="380" y="190" /> 
      </mxCell> 
    </cloud> 
    <mxCell edge="1" id="5" parent="1" source="2" style="" target="3" value=""> 
      <mxGeometry as="geometry" relative="1"> 
        <mxPoint as="sourcePoint" x="410.0" y="230.0" /> 
        <mxPoint as="targetPoint" x="250.0" y="480.0" /> 
      </mxGeometry> 
    </mxCell> 
    <mxCell edge="1" id="6" parent="1" source="2" style="" target="4" value=""> 
      <mxGeometry as="geometry" relative="1"> 
        <mxPoint as="sourcePoint" x="410.0" y="230.0" /> 
        <mxPoint as="targetPoint" x="620.0" y="490.0" /> 
      </mxGeometry> 
    </mxCell> 
    <callee id="11" name="Callee"> 
      <mxCell parent="1" style="callee" vertex="1"> 
        <mxGeometry as="geometry" height="140" width="150" x="560" y="360" /> 
      </mxCell> 
    </callee> 
    <performance id="17" name="Performance"> 
      <mxCell parent="11" style="label;image=/images/m_perform.png" vertex="1"> 
        <mxGeometry as="geometry" height="23" width="130" x="10.0" y="30" /> 
      </mxCell> 
    </performance> 
    <energy id="18" name="Energy"> 
      <mxCell parent="11" style="label;image=/images/m_energy.png" vertex="1"> 
        <mxGeometry as="geometry" height="23" width="130" x="10" y="60" /> 
      </mxCell> 
    </energy> 
    <callee id="12" name="Callee"> 
      <mxCell parent="1" style="callee" vertex="1"> 
        <mxGeometry as="geometry" height="140" width="150" x="560" y="160" /> 
      </mxCell> 
    </callee> 
    <availability id="19" name="Availability"> 
      <mxCell parent="12" style="label;image=/images/m_avail.png" vertex="1"> 
        <mxGeometry as="geometry" height="23" width="130" x="10" y="60" /> 
      </mxCell> 
    </availability> 
    <resource id="20" name="Resource"> 
      <mxCell parent="12" style="label;image=/images/m_resrc.png" vertex="1"> 
        <mxGeometry as="geometry" height="23" width="130" x="10" y="30" /> 
      </mxCell> 
    </resource> 
    <mxCell edge="1" id="15" parent="1" source="3" 
style="edgeStyle=mxEdgeStyle.EntityRelation;fontSize=18" target="11" value="p"> 
      <mxGeometry as="geometry" relative="1"> 
        <mxPoint as="sourcePoint" x="220.0" y="430.0" /> 
        <mxPoint as="targetPoint" x="230.0" y="730.0" /> 
      </mxGeometry> 
    </mxCell> 
    <mxCell edge="1" id="16" parent="1" source="4" style="fontSize=18" 
target="12" value="r"> 
      <mxGeometry as="geometry" relative="1"> 
        <mxPoint as="sourcePoint" x="620.0" y="450.0" /> 
        <mxPoint as="targetPoint" x="660.0" y="720.0" /> 
      </mxGeometry> 
    </mxCell> 
  </root> 
</mxGraphModel> 
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Appendix D  Mosaic Templates for ACTS 

D.1  Aspect Template 

 

D.2  Context Template 

 

package mango;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Pointcut;

@org.aspectj.lang.annotation.Aspect
public class Aspect {

@Pointcut("call(* [Callee](..)) && args([ArgumentIDs])")
public static void offloadMethod([Arguments]) {
}

@Around("offloadMethod([ArgumentIDs]) && !within(Aspect) && !within(Task)")
public [Return] aroundOffloadMethodCall(ProceedingJoinPoint jp, [Arguments]) throws Throwable {

return new Task().execute(new Object[]{[ArgumentIDs]}).get();
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

package mango;

import android.app.Activity;
import android.content.SharedPreferences;
/*Import an Activity*/;

public class Context {
    private static Activity activity = /*activity*/;
    public static boolean refresh    = false;

    private static final String PREFERENCES = "mangoPreferences";
    private static SharedPreferences settings = activity.getSharedPreferences(PREFERENCES, 0);
    private static SharedPreferences.Editor editor = settings.edit();
    
    public static long getCloudTime() {
        return settings.getLong("cloudTime", 0);
    }

    public static void setCloudTime(long cloudTime) {
        editor.putLong("cloudTime", cloudTime);
        editor.commit();
    }

    public static long getMobileTime() {
        return settings.getLong("mobileTime", 0);
    }

    public static void setMobileTime(long mobileTime) {
        editor.putLong("mobileTime", mobileTime);
        editor.commit();
    }
    
    public static String getMode() {
        if (refresh) {
            refresh = false;
            return "mobile";
        }
        return settings.getString("mode", "mobile");
    }

    public static void setMode(String mode) {
        editor.putString("mode", mode);
        editor.commit();
    }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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D.3  Task Template 

 

package mango;

import android.os.AsyncTask;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.Socket;

public class Task extends AsyncTask<Object, Integer, [Return]> {
private static [Return] result = null;
private static String mode; //execution mode
private static final String MOBILE  = "mobile";
private static final String CLOUD   = "cloud";
private static final String DECIDER = "decider";
private static final int TIMEOUT  = /*Value ms*/;

<sr:p>
private static final int OVERHEAD = 0;

</sr:p>
<sr:e>

private static final int OVERHEAD = /*Value ms*/;
</sr:e>
<sr:pe>

private static char pa = /*get priority attribute from UI*/;

private static int overhead(){
if(pa=='e'){

return /*Value ms*/;
}
return 0;

}
</sr:pe>

@Override
protected [Return] doInBackground(final Object[] params) {

dispatcher();

switch (mode) {
case MOBILE:

long mobileStart = System.currentTimeMillis();
runOnMobile(params);
long mobileTime = System.currentTimeMillis() - mobileStart;
Context.setMobileTime(mobileTime);
break;

case CLOUD:
long cloudStart = System.currentTimeMillis();
runOnCloud(params);
long cloudTime = System.currentTimeMillis() - cloudStart;
Context.setCloudTime(cloudTime);
break;

}

return result;
}

private void dispatcher() {
switch (Context.getMode()) {

case DECIDER:
if ((Context.getMobileTime() + OVERHEAD) > Context.getCloudTime()) {//or overhead()

mode = CLOUD;
} else {

mode = MOBILE;
}
break;

case MOBILE:
mode = MOBILE;
Context.setMode(CLOUD);
break;

case CLOUD:
mode = CLOUD;
Context.setMode(DECIDER);
break;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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49
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51
52
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54
55
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57
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59
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62
63
64
65
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67
68
69
70
71
72
73
74
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D.4  Service Template 
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<sr:r>
public static void dispatcher(Object[] params) {

if (availableCPU() < CPU_THRESHOLD) {
result = /*reference to the Callee on an alternate server*/

} else {
result = [Callee]([CastedArguments]); //Callee on this server

}
}

</sr:r>
<sr:ar>

public static void dispatcher(Object[] params) {
thread = new Thread(new Runnable() {

@Override
public void run() {

if (availableCPU() < CPU_THRESHOLD) {
result = /*reference to the Callee on an alternate server*/

} else {
result = [Callee]([CastedArguments]); //Callee on this server

}
}

});
thread.start();
try {

thread.join(TIME_THRESHOLD);
if (thread.isAlive()) thread.interrupt();

} catch (InterruptedException ex) {  }
}

</sr:ar>

public static int availableCPU() {
int usedcpu = 0;
try {

Sigar sigar = new Sigar();
usedcpu = (int) Math.round(sigar.getCpuPerc().getCombined() * 100);

} catch (SigarException ex) {  }
return 100 - usedcpu;

}
}
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Appendix E  Beftigre BAND API Screenshots 

E.1  Band API Setup method 

Required imports are com.beftigre.band.Band, com.beftigre.band.Marker and 

com.beftigre.band.annotations.*. During setup; (i) Band is initialised with activity (i.e. 

getActivity(), necessary for the test process) and test object (i.e. ‘this’, used to get 

annotations), (ii) power monitor is started and (iii) markers are registered. 

 

E.2  Band API Test method 

Notice that @Given annotation attributes are set to 0, this is for evaluation. For the case of 

comparison all annotations attributes will require a real value assigned to them. 

Marker start and finish methods are called before and after the execution of the test, so as to 

capture the test process. 
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E.3  Band API TearDown method 

At teardown markers are saved, power monitor is stopped and the BaseService is started to 

obtain % CPU and memory availability of the mobile device. 

 

E.4  Band API BaseService logcat output 

After the test is passed/completed the BaseService runs (to compute % CPU and memory 

availability of the mobile device) until the count value (i.e. second argument) specified in 

getBaseStatus API call is completed. Note the first argument of getBaseStatus is interleave 

or interval – in seconds. A toast message is also sent by the API to the mobile when the 

BaseService is completed. 
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Appendix F   Beftigre BEFOR Tool Screenshots 

F.1  EC2 Ubuntu instance setup 

Beftigre has been tested on EC2. Notice the case-one key pair (pem) file, this is used to 

connect to Befor API. 

 

F.2  EC2 Security groups 

Notice that ports 22, 8080, 4848, 1, 2, and 3 have been added in the security group for Beftigre 

test. These are the default ports for Beftigre test. 
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F.3  Connection and Test Parameter settings 

Notice case-one.pem file from EC2 setup, and ports 22, 1 and 2 already opened in security 

groups. Also achieved by params API command. 

 

F.4  Install setup files 

Below is the output highlighting the six files/programs used to setup the server for Beftigre 

test, as mentioned in Section 6.4.4.3. Also achieved by setup API command. 

Output Terminal 
--------------- 
BandwidthLatencyServer port: 1 
CPUMemoryServer port: 2 
files\BandwidthLatencyServer.java created.  
files\CPUMemoryAvailServer.java created.  
BandwidthLatencyServer.java, CPUMemoryAvailServer.java and sigar.zip copied to 
server. 
Archive:  sigar.zip 
   creating: sigar/ 
  inflating: sigar/.sigar_shellrc     
  inflating: sigar/libsigar-amd64-freebsd-6.so   
  inflating: sigar/libsigar-amd64-linux.so   
  inflating: sigar/libsigar-amd64-solaris.so   
  inflating: sigar/libsigar-ia64-hpux-11.sl   
  inflating: sigar/libsigar-ia64-linux.so   
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  inflating: sigar/libsigar-pa-hpux-11.sl   
  inflating: sigar/libsigar-ppc-aix-5.so   
  inflating: sigar/libsigar-ppc-linux.so   
  inflating: sigar/libsigar-ppc64-aix-5.so   
  inflating: sigar/libsigar-ppc64-linux.so     
  inflating: sigar/libsigar-s390x-linux.so   
  inflating: sigar/libsigar-sparc-solaris.so 
  inflating: sigar/libsigar-sparc64-solaris.so   
  inflating: sigar/libsigar-universal-macosx.dylib 
  inflating: sigar/libsigar-x86-freebsd-5.so   
  inflating: sigar/libsigar-x86-freebsd-6.so   
  inflating: sigar/libsigar-x86-linux.so   
  inflating: sigar/libsigar-x86-solaris.so   
  inflating: sigar/log4j.jar          
  inflating: sigar/sigar-amd64-winnt.dll   
  inflating: sigar/sigar-x86-winnt.dll   
  inflating: sigar/sigar-x86-winnt.lib   
  inflating: sigar/sigar.jar          
exit-status: 0 
SIGAR API setup completed. 
exit-status: 0 
BandwidthLatencyServer and CPUMemoryAvailServer setup completed. 
Remember to set up your offloadable component from the terminal. 
Reading package lists... 
Building dependency tree... 
Reading state information... 
unzip is already the newest version. 
0 upgraded, 0 newly installed, 0 to remove and 171 not upgraded. 
Archive:  ServerAgent-2.2.1.zip 
  inflating: startAgent.sh            
  inflating: startAgent.bat           
   creating: lib/ 
  inflating: lib/libsigar-x86-freebsd-6.so   
  inflating: lib/libsigar-pa-hpux-11.sl   
 extracting: lib/sigar.jar            
  inflating: lib/libsigar-s390x-linux.so   
  inflating: lib/libsigar-x86-solaris.so   
  inflating: lib/libsigar-ppc-aix-5.so   
  inflating: lib/libsigar-ia64-hpux-11.sl   
  inflating: lib/sigar-amd64-winnt.dll   
  inflating: lib/libsigar-ppc64-aix-5.so   
  inflating: lib/libsigar-ppc-linux.so   
  inflating: lib/libsigar-universal-macosx.dylib   
  inflating: lib/libsigar-amd64-solaris.so   
  inflating: lib/libsigar-ppc64-linux.so   
  inflating: lib/libsigar-sparc64-solaris.so   
  inflating: lib/sigar-x86-winnt.dll   
  inflating: lib/libsigar-ia64-linux.so   
  inflating: lib/sigar-x86-winnt.lib   
  inflating: lib/libsigar-x86-linux.so   
  inflating: lib/libsigar-sparc-solaris.so   
  inflating: lib/libsigar-amd64-linux.so   
  inflating: lib/libsigar-x86-freebsd-5.so   
 extracting: lib/log4j.jar            
  inflating: lib/libsigar-universal64-macosx.dylib   
  inflating: lib/libsigar-amd64-freebsd-6.so   
 extracting: lib/cmdrunner-1.0.1.jar   
 extracting: lib/jorphan-2.6.jar      
 extracting: lib/logkit-2.0.jar       
 extracting: lib/sigar-1.6.4.jar      
 extracting: lib/avalon-framework-4.1.5.jar   
 extracting: ServerAgent.jar          
extracting: CMDRunner.jar            
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F.5  Setup offload components 

Using Linpack android app as an example, the .class files of the offloadable compute-

intensice component (rs.pedjaapps.Linpack.Linpack) has been zipped into rs.zip, alongside 

its dependency files (in this case rs.pedjaapps.Linpack.Result). The main method to start the 

program is within rs.pedjaapps.Linpack.Linpack. Thus, the offload setup is as shown in the 

screenshot below; 

 

When start is clicked the following output is displayed: showing that the zip has been extracted 

on the server, and the program has been launched using the start command entered. Also 

achieved by offload API command. Note: exit-status: 0 shown in the output signifies that 

the process or command was successfully executed at the server. 

  inflating: LICENSE  
Monitor setup completed. 
exit-status: 0 
Network Throttler (slow) setup completed. 
Reading package lists... 
Building dependency tree... 
Reading state information... 
The following NEW packages will be installed: 
  stress 
0 upgraded, 1 newly installed, 0 to remove and 171 not upgraded. 
Need to get 0 B/17.0 kB of archives. 
After this operation, 73.7 kB of additional disk space will be used. 
Selecting previously unselected package stress. 
(Reading database ... 52190 files and directories currently installed.) 
Preparing to unpack .../stress_1.0.1-1ubuntu1_amd64.deb ... 
Unpacking stress (1.0.1-1ubuntu1) ... 
Processing triggers for install-info (5.2.0.dfsg.1-2) ... 
Processing triggers for man-db (2.6.7.1-1ubuntu1) ... 
Setting up stress (1.0.1-1ubuntu1) ... 
Stress setup completed. 
exit-status: 0 
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Note that when server monitor is stopped the offload components are also stopped – this is 

because stopping server monitoring process kills all java processes. To start the offload 

components again during a test, just enter only the start command without a zip (as the zip 

has already been uploaded the first time). Note: there could be a likely case where starting 

an application requires a library in the class path (used to compile), in that case, ensure that 

the library’s jar(s) is/are uploaded in the zip alongside the classes, then run the application as 

follows: -cp .:path/to/lib.jar mainclass i.e. including class path in the start command. 

F.6  Set simulation params 

The screenshot below shows simulation parameters of 20mbps bandwidth, 200ms latency, 2 

CPU and memory loads with 130s timeout. The parameters are saved in SimLog. Also 

achieved by simulate API command.  

 

Output Terminal 
--------------- 
Uploading... 
C:\Users\Chinenyeze\App\files\rs.zip selected. 
Uploading... 
Components successfully setup. 
Archive:  rs.zip 
   creating: rs/ 
   creating: rs/pedjaapps/ 
   creating: rs/pedjaapps/Linpack/ 
  inflating: rs/pedjaapps/Linpack/Linpack.class   
  inflating: rs/pedjaapps/Linpack/Result.class 
exit-status: 0 
Starting... 
exit-status: 0 
Start command successfully issued. 



194 
 

F.7  Start server monitors 

The output below highlights the (three) server monitors started alongside stress and throttle 

utilities for simulations. Also achieved by start API command. 

 

F.8  Edit .jmx test plan 

This launches a text editor with the generated test plan template. Also achieved by editplan 

API command. The important aspect to edit in the test plan are presented below. Notice port 

8080 is being used, and already opened in the security group. The server argument is same 

as the IP address used to connect Befor API. Users and rampup value can be left as 1. Refer 

to http://jmeter.apache.org/usermanual/test_plan.html for understanding terms in testplan. 

Another important argument is the path, which refers to any hosted html file or resource, which 

can be publicly accessed by jmeter for the test. 

 

Output Terminal 
--------------- 
Throttle type:custom bandwidth:20mbps latency:200ms 
Stress: cpu, mem, time: 2 2 130 
CPU and Memory stress started. 
Stress will stop automatically after timeout 
exit-status: 0 
ServerAgent monitor started. 
CPUMemoryAvailServer monitor started. 
BandwidthLatencyServer monitor started. 
Remember to start your offloadable component from the terminal. 
param 20mbps 
param 200ms 
command=slow 
bandwidth=20mbps 
latency=200ms 
Adding new queuing discipline 
Throttler started. 
exit-status: 0 
SimLog created. 
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F.9  Start metrics collector 

This begins metrics collection for the amount of time in seconds, specified by the duration 

argument within the test plan. Thus, metrics collection automatically stops after the time 

elapses – after which it is then adequate to stop the server monitor if wished to. The collected 

metrics are saved in MetricsLog.  Also achieved by collect API command. 

Notice from the output below that the Socket clients (BandwidthLatencyClient & 

CPUMemoryClient) are first used to retrieve the bandwidth, latency, %CPU and memory 

availability from the server, prior to the jmeter test – which then begins metrics collection 

based on %CPU and memory usage. 

 

F.10  Stop server monitor 

This stops the ServerAgent monitor, Socket monitors (i.e. BandwidthLatencyServer and 

CPUMemoryAvailServer), and throttle utility. The stress utility is automatically stopped after 

the specified timeout (as shown in Set simulation params section). Also achieved by stop 

API command. 

Output Terminal 
--------------- 
BandwidthLatencyClient port: 1 
CPUMemoryClient port: 2 
MetricsLog created. 
Bandwidth and Latency received. 
%CPU and %Memory avail. received. 
Test started. 
Test finished. 
You could stop the Monitor if you wish. 

Output Terminal 
--------------- 
ServerAgent monitor stopped. 
param clear 
command=clear 
bandwidth=100kbps 
latency=350ms 
resetting queueing discipline 
Throttler stopped. 
Socket monitors stopped 
exit-status: 0 
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F.11  Extract results 

This extracts results (dat and csv files) from logs. Also achieved by extract API command. 

First MarkerLog, MetricsLog and PowerLog have to be selected, as below 

 

When the right required logs are selected and opened, the checkboxes for the ‘Required Logs’ 

panel are checked, as below; 

 

When the ‘Extract results’ button is clicked, the data files (CPULog.dat, MarkerLog.dat, 

MemLog.dat and PowerLog.dat) and results summary file (summary.csv) are extracted into 

results directory. 

 

Note that SimLog is not required for computing results, it only used to know which simulation 

parameters achieved a result, for repeatability of test. 
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F.12  Plot 

This plots graph from extracted (data) files. Also achieved by plot API command. Clicking 

‘Plot’ prompts to select the data files to plot. 

 

Then, click OK to plot. 

 

The sample graph above shows the plotting for distinct used power (i.e. power at different 

timestamp, from PowerLog.dat file) and the elapsed time (i.e. start and finish timestamp, from 

MarkerLog.dat) of the test. 
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Appendix G  Beftigre BEFOR API Commands 
This appendix presents a list of all Befor API commands and how they are used. Within the 

API, this information can be obtained using help command. 

 
 

The commands without argument are presented in the table below. 

Command Function of the command 
clear Clears the Befor console. 
collect Begins collection of server metrics once the server monitor is launched. 
editplan Provides UI useful to edit the jMeter testplan prior to 'collect' command. 
exit Exits the Befor console. 
setup Installs and copies all necessary files for the test unto the server. 
start Starts the server monitors. 
stop Stops the server monitors. 
help Provides Help information for all Befor commands, or for a specific Befor 

command when passed as argument. E.g. help setup 
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 auto Command 

Automates the Beftigre full-tier testing of mobile (Band) and cloud (Befor) tiers. The command 

usage have been presented in section . Presented below is the output from auto command 

execution; 

Befor started. 
logs directory found. results\plot directory found. files directory found. 
files\slow already exist. files\TestPlan.jmx already exist. files\sigar.zip 
already exist.  
Befor:~$ auto "C:\Users\Chinenyeze\App\files\script.auto" 
"C:\Users\Chinenyeze\AppData\Local\Android\sdk\platform-tools" 1 40 
The auto script file was not found. 
Befor:~$ auto 
"C:\Users\Chinenyeze\Documents\NetBeansProjects\BEFtigreOR\files\script.auto" 
"C:\Users\Chinenyeze\AppData\Local\Android\sdk\platform-tools" 1 40 
params initialised. 
offload initialised. 
simulate added to list. 
am initialised. 
 
***Automated test started. 
params command completed. 
exit-status: 0 
offload command completed. 
SimLog created. 
simulate command completed. 
CPU and Memory stress started. 
Stress will stop automatically after timeout 
exit-status: 0 
ServerAgent monitor started. 
CPUMemoryAvailServer monitor started. 
BandwidthLatencyServer monitor started. 
Remember to start your offloadable component from the terminal. 
param 200mbps 
param 180ms 
command=slow 
bandwidth=200mbps 
latency=180ms 
Adding new queuing discipline 
Throttler started. 
exit-status: 0 
start command completed. 
621 219 
ServerCPU:41 ServerMem:74 
MetricsLog created. 
collect command completed. 
WARN    2016-04-09 16:17:04.948 [jmeter.u] (): Unexpected value set for boolean 
property:'server.exitaftertest', defaulting to:false 
WARN    2016-04-09 16:17:04.995 [jmeter.u] (): Unexpected value set for boolean 
property:'jmeterengine.startlistenerslater', defaulting to:true 
INFO    2016-04-09 16:17:04.995 [jmeter.e] (): Listeners will be started after 
enabling running version 
INFO    2016-04-09 16:17:04.995 [jmeter.e] (): To revert to the earlier behaviour, 
define jmeterengine.startlistenerslater=false 
WARN    2016-04-09 16:17:04.995 [jmeter.u] (): Unexpected value set for boolean 
property:'jmeterengine.remote.system.exit', defaulting to:false 
WARN    2016-04-09 16:17:04.995 [jmeter.u] (): Unexpected value set for boolean 
property:'jmeterengine.stopfail.system.exit', defaulting to:true 
WARN    2016-04-09 16:17:04.995 [jmeter.u] (): Unexpected value set for boolean 
property:'jmeterengine.force.system.exit', defaulting to:false 
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 cleanup Command 

Uninstalls all setup files if no argument is supplied, or deletes the third argument from the 

server based on the second argument d or f. 

cleanup cleanup -d directory cleanup -f file 
 

-d directory – the directory to be deleted from the server. 

-f file   – the file with extension to be deleted from the server, e.g. Sample.java. 

 extract Command 

Extracts the test results from logs as .dat files. 

extract markerLog powerLog metricsLog 
 

markerLog – the absolute file name of MarkerLog_123.log, e.g. "C:\App\logs\MarkerLog_123.log" 

powerLog  – the absolute file name of PowerLog_123.log, e.g. "C:\App\logs\PowerLog_123.log" 

metricsLog – the absolute file name of MetricsLog_123.log, e.g. "C:\App\logs\MetricsLog_123.log" 

The .log files are generated with timestamps appended to their file names. 123 above represents the 

timestamp. 

 offload Command 

Uploads and/or starts offloadable components based on any of three options; u, s or us. 

offload -u zipfile offload -s mainclass offload -us zipfile mainclass 
 

-u   – signifies an upload, expecting the following argument to be a zip file. 

-s   – signifies a start, expecting the following argument to be a start command. 

-us  – combines the functionality of -u and -s. 

zipfile  – the zip file to upload, which gets extracted at the server, e.g. "C:\App\zipfile.zip" 

mainclass – the class name used to start an offloaded component by java interpreter; this must include 

the name of the package too, as per standard programming convention. 

Note: there could be a likely case where starting an application requires a library in the class path (used 

to compile), in that case, ensure that the library’s jar(s) is/are uploaded in the zip alongside the classes, 

JMeter test started for Metrics collector. 
rs.pedjaapps.Linpack.LinpackTest:. 
Test results for InstrumentationTestRunner=. 
Time: 23.475 
OK (1 test) 
am command completed. 
ServerAgent monitor stopped. 
param clear 
command=clear 
bandwidth=100kbps 
latency=350ms 
resetting queueing discipline 
Throttler stopped. 
Socket monitors stopped 
exit-status: 0 
stop command completed. 
***Automated test completed. 
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then run the application as follows; i.e. including class path in the start command and putting the start 

command in quotes: 

offload -s "-cp .:path/to/lib.jar mainclass" 
offload -us zipfile "-cp .:path/to/lib.jar mainclass" 

 params Command 

Sets up parameters for prior connection to the server. It is a required command, and takes 7 

arguments in the specified order. 

params pemfile ip port user jmeter blport cmport 
 

pemfile – the .pem file from EC2 server setup. 

ip   – the ip address of the server. 

port  – the port number for the server connection. 

user  – the server registered user. 

jmeter  – the absolute path of Apache JMeter home directory, e.g. " C:\App\jmeter" 

blport  – the port number for BandwidthLatencyServer and Client. 

cmport  – the port number for CPUMemoryServer and Client. 

 plot Command 

Plots graph using the extracted .dat files, it takes one to three logs as arguments in any order. 

plot PowerLog plot PowerLog AppLog plot PowerLog AppLog CPULog MemLog 
 

PowerLog – the absolute file name of PowerLog.dat, e.g. "C:\App\results\PowerLog.dat" 

AppLog – the absolute file name of AppLog.dat, e.g. "C:\App\results\AppLog.dat" 

CPULog – the absolute file name of CPULog.dat, e.g. "C:\App\results\CPULog.dat" 

MemLog  – the absolute file name of MemLog.dat, e.g. "C:\App\results\MemLog.dat" 

 simulate Command 

Sets up parameters for the simulation of resource stress and network throttle. 

simulate bandwidth bandwidthType latency cpuload memload timeout 
 

bandwidth   – an integer representing the bandwidth. 

bandwidthType – the bandwidth unit type, e.g. bps, kbps or mbps. 

latency   – an integer representing the latency in ms. 

cpuload   – an integer representing the cpu load. 

memload   – an integer representing the memory load. 

timeout   – an integer representing the timeout in s for cpu and memory load. 

 auto: Automating the Full-tier Test 

auto is the Beftigre framework’s test automation command which is used to automate the 

Beftigre full-tier testing of mobile (Band) and cloud (Befor) tiers. This makes it easy to repeat 

experiments on the Beftigre Framework (The output logs and data files from Beftigre are 

presented in Appendix H). As shown in the snippet below, the test automation is initiated by 
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calling the auto command of Befor API with the following three required arguments, and an 

optional fourth; 

auto auto_script adb_dir reruns interleave 
auto "C:\script.auto" "C:\path\to\Android\sdk\platform-tools" 4 40 

 first argument: the auto script file (.auto) 

 second argument: the full path to adb.exe (i.e. Android Debug Bridge) 

 third argument: the number of reruns of the experiment 

 fourth argument: the interleave (in seconds) between reruns 

The purpose of the interleave argument is to allow the BaseService of Band API to complete 

execution – as this is necessary for full-tier evaluation. 

An auto script file must specify commands useful for full-tier test. The format is given below; 

(See Appendix G for details on Befor API commands). Since the file is for full-tier test, the 

auto command only supports five Befor commands relevant for testing the cloud tier; params, 

offload, simulate, start, collect, and stop. The am command is used with the adb.exe 

to launch the test on the mobile tier. 

1 params pemfile ip port user jmeter blport cmport 
2 offload -s mainclass 
3 simulate bandwidth bandwidthType latency cpuload memload timeout 
4 simulate bandwidth bandwidthType latency cpuload memload timeout 
5 simulate bandwidth bandwidthType latency cpuload memload timeout 
6 start 
7 collect 
8 am instrument -w -e class rs.pedjaapps.Linpack.LinpackTest 

rs.pedjaapps.Linpack.test/android.test.InstrumentationTestRunner 
9 stop 

 

Figure 6.2 auto Script File 

The required commands for constructing the script file to execute auto command are params, 

offload, simulate and am. One or more lines of simulate can be provided. start, 

collect, and stop are optional. As they do not require any argument they are automatically 

handled by auto command in Befor API. 
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Algorithm auto execution algorithm 
Require: auto_script, adb_dir, reruns and interleave 
 1:   read auto_script file 
 2:   list   ← load simulate commands into array list 
 3:   run params command 
 4:   if  no interleave or interleave < 30 or interleave > 180  then 
 5:        interleave = 30 
 6:   endif 
 7:   counter = 0 
 8:   for  i=0; i < reruns; i++  do 
 9:        run offload start command 
10:       run list.get(counter) 
11:       run start command 
12:       wait (10) 
13:       run collect command 
14:       run am command using adb.exe at adb_dir 
15:       wait (10) 
16:        run stop command 
17:        wait (interleave) 
18:        counter++ 
19:        if  counter >= list.size( )  then 
20:            counter = 0 
21:        endif 
22:   endfor 

Algorithm 6.3 presents the execution procedure of auto command. Notice from the sample 

script file (Figure 6.2) that simulate command is parsed thrice (Lines 3-5 of Figure 6.2), this 

implies that the reruns of the experiment will be performed based on the given simulate 

commands. This is achieved (within Befor API) by sequentially looping through a list of 

simulate commands for each run (Line 10 of Algorithm 6.3). When all simulate commands are 

looped through but reruns are not completed then the system will restart simulation from the 

top of the list (Line 20 of Algorithm 6.3). The offload start command (Line 2 of Figure 6.2) is 

required in auto script to launch the offloadable component at the server. auto script, can be 

killed at any point using Ctrl+C. The interleave argument of auto command is optional, and 

defaults to 30 seconds. Also 30 seconds interleave is used if the provided interleave is below 

the default or above 180 max set threshold (Lines 4-6 of Algorithm 6.3). The 10 seconds wait 

at Lines 12 and 15 (in Algorithm 6.3) are used to ensure that the start and am commands are 

completed before the metrics collection and stop command respectively. The first wait (Line 

12) is important as the collect command runs the socket clients, which requires socket server 

monitors to be already running and listening (on specified ports in params command). 

Similarly, the second wait (Line 15) ensures that the metrics collection does not overlap the 

mobile device test (am command) during completion – to ensure accuracy of readings. 
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How to obtain the right am command: 

auto requires that the test project is already installed on the target devices prior to running 

the test. This is a prerequisite for executing android test command line. 

The application project and test project can be installed on first execution from Android studio 

(command line option alternatives here []). To check that a device is connected use adb 

devices command. Ensure that the command line directory is changed to the adb location 

first, e.g. 

cd C:\Users\Chinenyeze\AppData\Local\Android\sdk\platform-tools 

Then enter 

adb shell pm list instrumentation 
 

the above command gives a directive of the test projects installed on the connected device, 

in the format below; 

instrumentation:rs.pedjaapps.Linpack.test/android.test.InstrumentationTe
stRunner  
(target= rs.pedjaapps.Linpack) 

From the above output the instrumentation points to <test package>/<runner class> and the 

target specifies the <application package> of the installed app to be evaluated. [118] provides 

further useful adb documetation. 

Given that the class of the test code is rs.pedjaapps.Linpack.LinpackTest, then the am 

command for auto script in Befor API can be constructed as follows; 

am instrument -w -e class <test code class> <test package>/<runner 
class> 
am instrument -w -e class rs.pedjaapps.Linpack.LinpackTest 
rs.pedjaapps.Linpack.test/android.test.InstrumentationTestRunner 
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Appendix H  Beftigre Logs and Data Files 

H.1  MarkerLog_123.log 

The first part gives the package name of the application under test. The second part gives the 

values of marker objects. The third part gives the values for the BaseService process. 

 

 
H.2  PowerLog_123.log 

The first part gives a listing of the mobile device settings. The second part gives the process 

IDs of the running applications – which is used to identify the resources used by a process. 

The third part gives the consumption values of the resources used by different processes. 

 

 

app rs.pedjaapps.Linpack

M1_label Linpack
M1_start 1459029740369
M1_finish 1459029762226
M1_anno na

mobileCPU 96.7659
mobileMemory 20.849531

1

3

2

phone-service in-service
phone-network HSDPA
batt_temp 29.5
batt_charge 8.28
LCD-brightness 255
...

associate 10061 rs.pedjaapps.Linpack@3
associate 10065 com.google.android.music@2513
...

begin 1 1459029741736
total-power 1086
LCD-10356 900
CPU-freq 1134.0
CPU-10061 221
CPU-10029 0
...

begin 2 1459029742802
total-power 1152
LCD-10356 900
CPU-freq 1728.0
CPU-10061 232
CPU-10029 0
...

begin n [timestamp]
...

1

2

3
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H.3  MetricsLog_123.log 

The first part gives the bandwidth, latency and % cloud CPU and memory availability – actual 

values for Where clause. The second part gives the % cloud CPU and memory usage, 

collected by PerfMon Metrics Collector from PerfMon Server Agent, this is the actual values 

for the cloud tier of Then clause. 

 

 
H.4  SimLog_123.log 

This is the log of the simulation parameters. The log is to inform the parameters that generated 

a particular results – for reproducibility of test. 

 

 
H.5  MarkerLog.dat 

This is the data file obtained from MarkerLog.log and gives the mobile start and finish 

timestamp of the test – used to calculate the mobile elapsed time. 

 
H.6  PowerLog.dat 

This is the data file obtained from an analysis on PowerLog.log and MarkerLog.log. It gives 

the mobile start and finish timestamp and the trailing power readings associated between 

these timestamps – used to calculate the mobile used energy. 

bandwidth 571
latency 238
cloudCPU 43
cloudMemory 73

2016/03/26 22:01:58.334,26145,46.137.91.122 Memory,,,,,true,0,0,0,0
2016/03/26 22:01:58.351,57142,46.137.91.122 CPU,,,,,true,0,0,0,0
2016/03/26 22:01:59.353,18973,46.137.91.122 Memory,,,,,true,0,0,0,0
2016/03/26 22:01:59.354,58333,46.137.91.122 CPU,,,,,true,0,0,0,0
...

1

2

bandwidth 20mbps
latency 200ms
cpuload 2
memoryload 2

# Timestamp   Power 
1459029740369 0.0 
1459029742802 28.378378378378375 
... 
1459029761713 14.594594594594595 
1459029762226 0.0 

# Label   Start         Finish 
Linpack 1459029740369 1459029762226 
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H.7  CPULog.dat 

This is the data file obtained from an analysis on MetricsLog.log and MarkerLog.log. It gives 

the mobile start and finish timestamp and the trailing cloud CPU usage readings associated 

between these timestamps – used to calculate the cloud used CPU. 

 

H.8  MemLog.dat 

This is the data file obtained from an analysis on MetricsLog.log and MarkerLog.log. It gives 

the mobile start and finish timestamp and the trailing cloud memory usage readings 

associated between these timestamps – used to calculate the cloud used Memory. 

 

H.9  Summary.csv 

This is a summary file computed from all data files. The sample below gives the result for 

evaluation (not comparison). Comparison output has been presented with case studies. 
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S1-F1 Linpack 97 21 571 238 43 73 21857 2899.46 58 21 - 
 

*The .log files are generated with timestamps appended to their file names. 123 appended to 

the filenames of .log files represents timestamps.  

# Timestamp   Memory 
1459029740369 0 
1459029741369 26 
1459029742369 16 
... 
1459029760384 26 
1459029761384 18 
1459029762226 0 

# Timestamp   CPU 
1459029740369 0 
1459029741369 58 
1459029742369 58 
... 
1459029760384 60 
1459029761384 57 
1459029762226 0 
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Appendix I     Case Studies Test Classes 

I.1  Linpack Test 

 

 

  

package rs.pedjaapps.Linpack;

import android.test.ActivityInstrumentationTestCase2;
import android.widget.Button;
import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.annotations.Given;
import com.robotium.solo.Solo;

public class LinpackTest extends ActivityInstrumentationTestCase2 {
    private Solo solo;
    private Band band;
    private Marker m = new Marker("Linpack");

    public LinpackTest() {
        super(MainActivity.class);
    }

    @Override
    protected void setUp() throws Exception {
        super.setUp();
        solo = new Solo(getInstrumentation(), getActivity());
        band = new Band(getActivity(), this);
        band.startPowerMonitoring();
        band.registerMarkers(m);
    }

    @Given(mobileCPU = 0, mobileMemory = 0)
    public void testLinpack() throws Exception {
        m.start();
        solo.clickOnView((Button) solo.getButton("Run Linpack"));
        boolean result = solo.waitForText("Callee completed.");
        assertEquals(true, result);
        m.finish();
    }

    @Override
    protected void tearDown() throws Exception {
        band.saveMarkers();
        band.stopPowerMonitoring();
        band.getBaseStatus(5, 6); //interleave and count
        solo.finishOpenedActivities();
        super.tearDown();
    }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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I.2  MatCalc Test 

 

 

  

package com.android.matcalc;

import android.test.ActivityInstrumentationTestCase2;
import android.widget.EditText;
import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.annotations.Given;
import com.cong89.matcalc.R;
import com.robotium.solo.Solo;

public class MatCalcTest extends ActivityInstrumentationTestCase2 {
    private Solo solo;
    private Band band;
    private Marker m = new Marker("MatCalc");

    public MatCalcTest() {
        super(MainActivity.class);
    }

    @Override
    protected void setUp() throws Exception {
        super.setUp();
        solo = new Solo(getInstrumentation(), getActivity());
        band = new Band(getActivity(), this);
        band.startPowerMonitoring();
        band.registerMarkers(m);
    }

    @Given(mobileCPU = 0, mobileMemory = 0)
    public void testMatCalc() throws Exception {
        m.start();
        solo.enterText((EditText) solo.getView(R.id.matrixA), "1,2,3\n4,5,6\n7,8,0");
        solo.enterText((EditText) solo.getView(R.id.matrixB), "0.5\n2\n8");
        solo.clickOnButton("AB");
        boolean result = solo.waitForText("28.5\n60\n19.5");
        assertEquals(true, result);
        m.finish();
    }

    @Override
    protected void tearDown() throws Exception {
        band.saveMarkers();
        band.stopPowerMonitoring();
        band.getBaseStatus(5, 6); //interleave and count
        solo.finishOpenedActivities();
        super.tearDown();
    }
}
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I.3  MathDroid Test 

 

 

  

package org.jessies.mathdroid;

import android.test.ActivityInstrumentationTestCase2;
import android.widget.Button;
import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.annotations.Given;
import com.robotium.solo.Solo;

public class MathdroidTest extends ActivityInstrumentationTestCase2 {
    private Solo solo;
    private Band band;
    private Marker m = new Marker("Mathdroid");

    public MathdroidTest() {
        super(Mathdroid.class);
    }

    @Override
    protected void setUp() throws Exception {
        super.setUp();
        solo = new Solo(getInstrumentation(), getActivity());
        band = new Band(getActivity(), this);
        band.startPowerMonitoring();
        band.registerMarkers(m);
    }

    @Given(mobileCPU = 0, mobileMemory = 0)
    public void testMathdroid() throws Exception {
        m.start();
        solo.clickOnView(solo.getView(R.id.menu_clear));
        solo.clickOnView((Button) solo.getButton("3"));
        solo.clickOnView((Button) solo.getView(R.id.times));
        solo.clickOnView((Button) solo.getButton("7"));
        solo.clickOnView((Button) solo.getView(R.id.exe));
        boolean result = solo.waitForText("21");
        assertEquals(true, result);
        m.finish();
    }

    @Override
    protected void tearDown() throws Exception {
        band.saveMarkers();
        band.stopPowerMonitoring();
        band.getBaseStatus(5, 6); //interleave and count
        solo.finishOpenedActivities();
        super.tearDown();
    }
}
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I.4  NQueen Test 

 

 

  

package com.mango.queens;

import android.test.ActivityInstrumentationTestCase2;
import android.widget.EditText;
import com.beftigre.band.Band;
import com.beftigre.band.Marker;
import com.beftigre.band.annotations.Given;
import com.robotium.solo.Solo;

public class NQueenTest extends ActivityInstrumentationTestCase2 {
    private Solo solo;
    private Band band;
    private Marker m = new Marker("NQueen");

    public NQueenTest() {
        super(NQueen.class);
    }

    @Override
    protected void setUp() throws Exception {
        super.setUp();
        solo = new Solo(getInstrumentation(), getActivity());
        band = new Band(getActivity(), this);
        band.startPowerMonitoring();
        band.registerMarkers(m);
    }

    @Given(mobileCPU = 0, mobileMemory = 0)
    public void testMathdroid() throws Exception {
        m.start();
        solo.enterText((EditText) solo.getView(R.id.nqEdit), "14");
        solo.clickOnView(solo.getView(R.id.nqBtn));
        boolean result = solo.waitForText("365596");
        assertEquals(true, result);
        m.finish();
    }

    @Override
    protected void tearDown() throws Exception {
        band.saveMarkers();
        band.stopPowerMonitoring();
        band.getBaseStatus(5, 6); //interleave and count
        solo.finishOpenedActivities();
        super.tearDown();
    }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46



212 
 

I.5  Screenshots of Test 

Linpack: before test Linpack: after test MatCalc: before test 

   
   
MatCalc: after test MathDroid: before test Mathdroid: after test 
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NQueen: before test NQueen: after test 
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Appendix J     Case Studies ACTS Snippets 
Note: Appendix J only shows the mosaic generated (and manually refactored) sections of the 

source code for the ACTS classes of the case studies. The underlined code segments in the 

figures are manually added while the rest of the class body are generated by Mosaic. The 

highlighted code segments show the placeholders transformed by Mosaic for the specific case 

study app. Only part of the template has been shown here, as emphasis are on the 

transformed placeholders and refactored sections. For complete generic template structure 

of ACTS components see Appendix D. 

 

J.1  Linpack Aspect 

 

J.2  Linpack Context 
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J.3  Linpack Task 

 

J.4  Linpack Service 
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J.5  MatCalc Aspect 

 

J.6  MatCalc Context 

 

J.7  MatCalc Task 

 

 

package mango;

import ...

@org.aspectj.lang.annotation.Aspect
public class Aspect {

@Pointcut("call(* com.android.matcalc.MainActivity.customTimes(..)) && args(arg_0, arg_1)")
public static void offloadMethod(Matrix arg_0, Matrix arg_1) {
}

@Around("offloadMethod(arg_0, arg_1) && !within(Aspect) && !within(Task)")
public Matrix aroundOffloadMethodCall(ProceedingJoinPoint jp, Matrix arg_0, Matrix arg_1) throws Throwable {

return new Task().execute(new Object[]{arg_0, arg_1}).get();
}

}

1
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16

package mango;

import ...
import com.android.matcalc.MainActivity;

public class Context {
private static Activity activity = MainActivity.activity;
...

}
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J.8  MatCalc Service 

 

J.9  MathDroid Aspect 

 

J.10  MathDroid Context 

 

 

 

package com.android.matcalc;

import ...
import org.hyperic.sigar.*;
import java.io.*;
import java.net.*;

public class Service {
private static Matrix result = null;
private static final int CPU_THRESHOLD  = 32; //%
private static final int TIME_THRESHOLD = 5500; //ms
...

public static void main(String[] args) {
try {

ServerSocket serverSocket = new ServerSocket(3);
...

} catch (Exception ex) {  }
}

public static void dispatcher(Object[] params) {
...
result = MainActivity.customTimes((Matrix)params[0], (Matrix)params[1]);
...

}
...

}
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package mango;

import ...

@org.aspectj.lang.annotation.Aspect
public class Aspect {

@Pointcut("call(* org.jessies.mathdroid.Mathdroid.computeAnswer(..)) && args(arg_0)")
public static void offloadMethod(String arg_0) {
}

@Around("offloadMethod(arg_0) && !within(Aspect) && !within(Task)")
public Node aroundOffloadMethodCall(ProceedingJoinPoint jp, String arg_0) throws Throwable {

return new Task().execute(new Object[]{arg_0}).get();
}

}
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J.11  MathDroid Task 

 

J.12  MathDroid Service 
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J.13  NQueen Aspect 

 

J.14  NQueen Context 

 

J.15  NQueen Task 

 

 

package mango;

import ...
import com.mango.queens.NQueen;

public class Context {
private static Activity activity = NQueen.activity;
...

}
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J.16  NQueen Service 

 

 

 


