Research Output

A pattern-driven corpus to predictive analytics in mitigating SQL injection attack.

  The back-end database provides accessible and structured storage for each web application’s big data internet web traffic exchanges stemming from cloud-hosted web applications to the Internet of Things (IoT) smart devices in emerging computing. Structured Query Language Injection Attack (SQLIA) remains an intruder’s exploit of choice to steal confidential information from the database of vulnerable front-end web applications with potentially damaging security ramifications.
Existing solutions to SQLIA still follows the on-premise web applications server hosting concept which were primarily developed before the recent challenges of the big data mining and as such lack the functionality and ability to cope with new attack signatures concealed in a large volume of web requests. Also, most organisations’ databases and services infrastructure no longer reside on-premise as internet cloud-hosted applications and services are increasingly used which limit existing Structured Query Language Injection (SQLI) detection and prevention approaches that rely on source code scanning. A bio-inspired approach such as Machine Learning (ML) predictive analytics provides functional and scalable mining for big data in the detection and prevention of SQLI in intercepting large volumes of web requests. Unfortunately, lack of availability of robust ready-made data set with patterns and historical data items to train a classifier are issues well known in SQLIA research applying ML in the field of Artificial Intelligence (AI). The purpose-built competition-driven test case data sets are antiquated and not pattern-driven to train a classifier for real-world application. Also, the web application types are so diverse to have an all-purpose generic data set for ML SQLIA mitigation.
This thesis addresses the lack of pattern-driven data set by deriving one to predict SQLIA of any size and proposing a technique to obtain a data set on the fly and break the circle of relying on few outdated competitions-driven data sets which exist are not meant to benchmark real-world SQLIA mitigation. The thesis in its contributions derived pattern-driven data set of related member strings that are used in training a supervised learning model with validation through Receiver Operating Characteristic (ROC) curve and Confusion Matrix (CM) with results of low false positives and negatives. We further the evaluations with cross-validation to have obtained a low variance in accuracy that indicates of a successful trained model using the derived pattern-driven data set capable of generalisation of unknown data in the real-world with reduced biases. Also, we demonstrated a proof of concept with a test application by implementing an ML Predictive Analytics to SQLIA detection and prevention using this pattern-driven data set in a test web application. We observed in the experiments carried out in the course of this thesis, a data set of related member strings can be generated from a web expected input data and SQL tokens, including known SQLI signatures. The data set extraction ontology proposed in this thesis for applied ML in SQLIA mitigation in the context of emerging computing of big data internet, and cloud-hosted services set our proposal apart from existing approaches that were mostly on-premise source code scanning and queries structure comparisons of some sort.

  • Type:

    Thesis

  • Date:

    01 November 2018

  • Publication Status:

    Unpublished

  • Library of Congress:

    QA75 Electronic computers. Computer science

  • Dewey Decimal Classification:

    000 Computer science, information & general works

  • Funders:

    Edinburgh Napier Funded

Citation

Uwagbole, S. A pattern-driven corpus to predictive analytics in mitigating SQL injection attack. (Thesis). Edinburgh Napier University. Retrieved from http://researchrepository.napier.ac.uk/Output/1538260

Authors

Contributors

Keywords

Structured Query Language Injection Attack (SQLIA), Pattern-Driven Data,

Monthly Views:

Available Documents