Research Output
Decoupling density from tallness in analysing the life cycle greenhouse gas emissions of cities
  The UN estimate 2.5 billion new urban residents by 2050, thus further increasing global greenhouse gases (GHG) emissions and energy demand, and the environmental impacts caused by the built environment. Achieving optimal use of space and maximal efficiency in buildings is therefore fundamental for sustainable urbanisation. There is a growing belief that building taller and denser is better. However, urban environmental design often neglects life cycle GHG emissions. Here we offer a novel method that decouples density and tallness in urban environments and allows each to be analysed individually. We test this novel method on case studies of real neighbourhoods and show that taller urban environments significantly increase life cycle GHG emissions (+154%) and low-density urban environments significantly increase land use (+142%). However, increasing urban density without increasing urban height reduces life cycle GHG emissions while maximising the population capacity. These results contend the claim that building taller is the most efficient way to meet growing demand for urban space and instead show that denser urban environments do not significantly increase life cycle GHG emissions and require less land.

  • Type:

    Article

  • Date:

    05 July 2021

  • Publication Status:

    Published

  • DOI:

    10.1038/s42949-021-00034-w

  • Cross Ref:

    10.1038/s42949-021-00034-w

  • Funders:

    Royal Academy of Engineering; EPSRC Engineering and Physical Sciences Research Council; Edinburgh Napier Funded

Citation

Pomponi, F., Saint, R., Arehart, J. H., Gharavi, N., & D'Amico, B. (2021). Decoupling density from tallness in analysing the life cycle greenhouse gas emissions of cities. npj Urban Sustainability, 1(1), Article 33. https://doi.org/10.1038/s42949-021-00034-w

Authors

Keywords

whole life carbon; urban density; urban form; tall buildings; embodied carbon

Monthly Views:

Linked Projects

Available Documents