Research Output
Energy demand prediction through novel random neural network predictor for large non-domestic buildings
  Buildings are among the largest consumers of energy in the world. In developed countries, buildings currently consumes 40% of the total energy and 51% of total electricity consumption. Energy prediction is a key factor in reducing energy wastage. This paper presents and evaluates a novel RNN technique which is capable to predict energy utilization for a non-domestic large building comprising of 562 rooms. Initially, a model for the 562 rooms is developed using Integrated Environment Solutions Virtual Environment (IES-VE) software. The IES-VE model is simulated for one year and 10 essential data inputs i.e., air temperature, dry resultant temperature, internal gain, heating set point, cooling set point, plant profile, relative humidity, moisture content, heating plant sensible load, internal gain and number of people are measured. Datasets are generated from the measured data. RNN model is trained with this datasets for the energy demand prediction. Experiments are used to identify the accuracy of prediction. The results show that the proposed RNN based energy model achieves 0.00001 Mean Square Error (MSE) in just 86 epochs via Gradient Decent (GD) algorithm.

  • Date:

    30 April 2017

  • Publication Status:

    Published

  • Publisher

    IEEE

  • DOI:

    10.1109/syscon.2017.7934803

  • Library of Congress:

    QA75 Electronic computers. Computer science

  • Dewey Decimal Classification:

    004 Data processing & computer science

  • Funders:

    Historic Funder (pre-Worktribe)

Citation

Ahmad, J., Larijani, H., Emmanuel, R., Mannion, M., Javed, A., & Phillipson, M. (2017). Energy demand prediction through novel random neural network predictor for large non-domestic buildings. In 2017 Annual IEEE International Systems Conference (SysCon)https://doi.org/10.1109/syscon.2017.7934803

Authors

Keywords

Non-domestic building, energy demand prediction, optimizations, Random Neural Network, IES-VE and building simulation

Monthly Views:

Available Documents