Date


School

Download Available

47 results

Machine Learning for Health and Social Care Demographics in Scotland

Presentation / Conference
Buchanan, W. J., Smales, A., Lawson, A., & Chute, C. (2019, November)
Machine Learning for Health and Social Care Demographics in Scotland. Paper presented at HEALTHINFO 2019, Valencia, Spain
This paper outlines an extensive study of applying machine learning to the analysis of publicly available health and social care data within Scotland, with a focus on learning...

An AI approach to Collecting and Analyzing Human Interactions with Urban Environments

Journal Article
Ferrara, E., Fragale, L., Fortino, G., Song, W., Perra, C., di Mauro, M., & Liotta, A. (2019)
An AI approach to Collecting and Analyzing Human Interactions with Urban Environments. IEEE Access, 7, 141476-141486. https://doi.org/10.1109/access.2019.2943845
Thanks to advances in Internet of Things and crowd-sensing, it is possible to collect vast amounts of urban data, to better understand how citizens interact with cities and, i...

Statistical Assessment of IP Multimedia Subsystem in a Softwarized Environment: a Queueing Networks Approach

Journal Article
Di Mauro, M., & Liotta, A. (2019)
Statistical Assessment of IP Multimedia Subsystem in a Softwarized Environment: a Queueing Networks Approach. IEEE Transactions on Network and Service Management, 16(4), 1493-1506. https://doi.org/10.1109/tnsm.2019.2943776
The Next Generation 5G Networks can greatly benefit from the synergy between virtualization paradigms, such as the Network Function Virtualization (NFV), and service provision...

Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks

Journal Article
Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019)
Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks. IEEE Access, 7, 29355-29364. https://doi.org/10.1109/access.2019.2902371
High-density communications in wireless sensor networks (WSNs) demand for new approaches to meet stringent energy and spectrum requirements. We turn to reinforcement learning,...

Analyzing Objective and Subjective Data in Social Sciences: Implications for Smart Cities

Journal Article
Erhan, L., Ndubuaku, M., Ferrara, E., Richardson, M., Sheffield, D., Ferguson, F. J., …Liotta, A. (2019)
Analyzing Objective and Subjective Data in Social Sciences: Implications for Smart Cities. IEEE Access, 7, 19890-19906. https://doi.org/10.1109/access.2019.2897217
The ease of deployment of digital technologies and the Internet of Things gives us the opportunity to carry out large-scale social studies and to collect vast amounts of data ...

Interference graphs to monitor and control schedules in low-power WPAN

Journal Article
van der Lee, T., Liotta, A., & Exarchakos, G. (2019)
Interference graphs to monitor and control schedules in low-power WPAN. Future Generation Computer Systems, 93, 111-120. https://doi.org/10.1016/j.future.2018.10.014
Highlights • This study presents the complete and slotted interference graph model. • The service uses the complete interference graph to evaluate the network. • Slotted int...

A framework for exploring intelligent artificial personhood.

Book Chapter
Kane, T. (2018)
A framework for exploring intelligent artificial personhood. In V. C. Müller (Ed.), Philosophy and theory of artificial intelligence 2017, 255-258. Springer Verlag
The paper presents a framework for examining the human use of, and the activities of, artificial persons. This paper applies Hobbesian methodology to ascribe artificial person...

Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science

Journal Article
Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., & Liotta, A. (2018)
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature Communications, 9(1), 1-12. https://doi.org/10.1038/s41467-018-04316-3
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from ...

An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0

Journal Article
Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., & Liotta, A. (2019)
An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0. IEEE Transactions on Industrial Informatics, 15(1), 481-489. https://doi.org/10.1109/tii.2018.2843169
Edge computing paradigm has attracted many interests in the last few years as a valid alternative to the standard cloud-based approaches to reduce the interaction timing and t...

On-Line Building Energy Optimization Using Deep Reinforcement Learning

Journal Article
Mocanu, E., Mocanu, D. C., Nguyen, P. H., Liotta, A., Webber, M. E., Gibescu, M., & Slootweg, J. G. (2019)
On-Line Building Energy Optimization Using Deep Reinforcement Learning. IEEE Transactions on Smart Grid, 10(4), 3698-3708. https://doi.org/10.1109/tsg.2018.2834219
Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the ...