Research explorer tool

8 results

An investigation of environmental influence on the benefits of adaptation mechanisms in evolutionary swarm robotics

Conference Proceeding
Steyven, A., Hart, E., & Paechter, B. (2017)
An investigation of environmental influence on the benefits of adaptation mechanisms in evolutionary swarm robotics. In GECCO '17 Proceedings of the Genetic and Evolutionary, (155-162). https://doi.org/10.1145/3071178.3071232
A robotic swarm that is required to operate for long periods in a potentially unknown environment can use both evolution and individual learning methods in order to adapt. How...

The Cost of Communication: Environmental Pressure and Survivability in mEDEA

Conference Proceeding
Steyven, A., Hart, E., & Paechter, B. (2015)
The Cost of Communication: Environmental Pressure and Survivability in mEDEA. In Proceedings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference - GECCO Companion '15, 1239-1240. doi:10.1145/2739482.2768489
We augment the mEDEA algorithm to explicitly account for the costs of communication between robots. Experimental results show that adding a costs for communication exerts envi...

Improving survivability in environment-driven distributed evolutionary algorithms through explicit relative fitness and fitness proportionate communication.

Conference Proceeding
Hart, E., Steyven, A., & Paechter, B. (2015)
Improving survivability in environment-driven distributed evolutionary algorithms through explicit relative fitness and fitness proportionate communication. In Proceedings of the 2015 on Genetic and Evolutionary Computation Conference - GECCO '15, (169-176). https://doi.org/10.1145/2739480.2754688
Ensuring the integrity of a robot swarm in terms of maintaining a stable population of functioning robots over long periods of time is a mandatory prerequisite for building mo...

Understanding Environmental Influence in an Open-Ended Evolutionary Algorithm

Conference Proceeding
Steyven, A., Hart, E., & Paechter, B. (2016)
Understanding Environmental Influence in an Open-Ended Evolutionary Algorithm. In Parallel Problem Solving from Nature – PPSN XIV; Lecture Notes in Computer Science, 921-931. https://doi.org/10.1007/978-3-319-45823-6_86
It is well known that in open-ended evolution, the nature of the environment plays in key role in directing evolution. However, in Evolutionary Robotics, it is often unclear e...

Solving CSPs with evolutionary algorithms using self-adaptive constraint weights.

Conference Proceeding
Eiben, A. E., Jansen, B., Michalewicz, Z., & Paechter, B. (2000)
Solving CSPs with evolutionary algorithms using self-adaptive constraint weights. In D. Whitley (Ed.), GECCO-2000 : proceedings of the genetic and evolutionary computation conference, 128-134
This paper examines evolutionary algorithms (EAs) extended by various penalty-based approaches to solve constraint satisfaction problems (CSPs). In some approaches, the penalt...

A local search for the timetabling problem.

Conference Proceeding
Rossi-Doria, O., Blum, C., Knowles, J., Sampels, M., Socha, K., & Paechter, B. (2001)
A local search for the timetabling problem. In E. Burke, & P. Causmaecker (Eds.), Proceedings of the Conference on the Practice and Theory of Automated Timetabling (PATAT 2002), 124-127
This work is part of the Metaheuristic Network, a European Commission project that seeks to empirically compare the performance of various metaheuristics on different combinat...

A GA evolving instructions for a timetable builder.

Conference Proceeding
Blum, C., Correia, S., Dorigo, M., Paechter, B., Rossi-Doria, O., & Snoek, M. (2001)
A GA evolving instructions for a timetable builder. In E. Burke, & P. Causmaecker (Eds.), Proceedings of the Conference on the Practice and Theory of Automated Timetabling (PATAT 2002), 120-123
In this work we present a Genetic Algorithm for tackling timetabling problems. Our approach uses an indirect solution representation, which denotes a number of instructions fo...

Boosting the Immune System

Conference Proceeding
McEwan, C., Hart, E., & Paechter, B. (2007)
Boosting the Immune System. In Artificial Immune Systems, 316-327. doi:10.1007/978-3-540-85072-4_28
Much of contemporary research in Artificial Immune Systems (AIS) has partitioned into either algorithmic machine learning and optimisation, or modelling biologically plausible...