18 results

Spatial anomaly detection in sensor networks using neighborhood information

Journal Article
Bosman, H. H., Iacca, G., Tejada, A., Wörtche, H. J., & Liotta, A. (2017)
Spatial anomaly detection in sensor networks using neighborhood information. Information Fusion, 33, 41-56. https://doi.org/10.1016/j.inffus.2016.04.007
The field of wireless sensor networks (WSNs), embedded systems with sensing and networking capability, has now matured after a decade-long research effort and technological ad...

A Review of Predictive Quality of Experience Management in Video Streaming Services

Journal Article
Torres Vega, M., Perra, C., De Turck, F., & Liotta, A. (2018)
A Review of Predictive Quality of Experience Management in Video Streaming Services. IEEE Transactions on Broadcasting, 64(2), 432-445. https://doi.org/10.1109/tbc.2018.2822869
Satisfying the requirements of devices and users of online video streaming services is a challenging task. It requires not only managing the network quality of service but als...

Self-Learning Power Control in Wireless Sensor Networks

Journal Article
Chincoli, M., & Liotta, A. (2018)
Self-Learning Power Control in Wireless Sensor Networks. Sensors, 18(2), 1-29. https://doi.org/10.3390/s18020375
Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This...

Analyzing Objective and Subjective Data in Social Sciences: Implications for Smart Cities

Journal Article
Erhan, L., Ndubuaku, M., Ferrara, E., Richardson, M., Sheffield, D., Ferguson, F. J., …Liotta, A. (2019)
Analyzing Objective and Subjective Data in Social Sciences: Implications for Smart Cities. IEEE Access, 7, 19890-19906. https://doi.org/10.1109/access.2019.2897217
The ease of deployment of digital technologies and the Internet of Things gives us the opportunity to carry out large-scale social studies and to collect vast amounts of data ...

An AI approach to Collecting and Analyzing Human Interactions with Urban Environments

Journal Article
Ferrara, E., Fragale, L., Fortino, G., Song, W., Perra, C., di Mauro, M., & Liotta, A. (2019)
An AI approach to Collecting and Analyzing Human Interactions with Urban Environments. IEEE Access, 7, 141476-141486. https://doi.org/10.1109/access.2019.2943845
Thanks to advances in Internet of Things and crowd-sensing, it is possible to collect vast amounts of urban data, to better understand how citizens interact with cities and, i...

Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science

Journal Article
Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., & Liotta, A. (2018)
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature Communications, 9(1), 1-12. https://doi.org/10.1038/s41467-018-04316-3
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from ...

Interference graphs to monitor and control schedules in low-power WPAN

Journal Article
van der Lee, T., Liotta, A., & Exarchakos, G. (2019)
Interference graphs to monitor and control schedules in low-power WPAN. Future Generation Computer Systems, 93, 111-120. https://doi.org/10.1016/j.future.2018.10.014
Highlights • This study presents the complete and slotted interference graph model. • The service uses the complete interference graph to evaluate the network. • Slotted int...

Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks

Journal Article
Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019)
Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks. IEEE Access, 7, 29355-29364. https://doi.org/10.1109/access.2019.2902371
High-density communications in wireless sensor networks (WSNs) demand for new approaches to meet stringent energy and spectrum requirements. We turn to reinforcement learning,...