Research explorer tool

15 results

Algorithm Selection Using Deep Learning

Conference Proceeding
Alissa, M., Sim, K., & Hart, E. (2019)
Algorithm Selection Using Deep Learning. In GECCO '19 Proceedings of the Genetic and Evolutionary Computation Conference, (198-206). https://doi.org/10.1145/3321707.3321845
We propose a novel technique for algorithm-selection which adopts a deep-learning approach, specifically a Recurrent-Neural Network with Long-Short-Term-Memory (RNN-LSTM). In ...

Use of machine learning techniques to model wind damage to forests

Journal Article
Hart, E., Sim, K., Kamimura, K., Meredieu, C., Guyon, D., & Gardiner, B. (2019)
Use of machine learning techniques to model wind damage to forests. Agricultural and forest meteorology, 265, 16-29. https://doi.org/10.1016/j.agrformet.2018.10.022
This paper tested the ability of machine learning techniques, namely artificial neural networks and random forests, to predict the individual trees within a forest most at r...

A hybrid method for feature construction and selection to improve wind-damage prediction in the forestry sector

Conference Proceeding
Hart, E., Sim, K., Gardiner, B., & Kamimura, K. (2017)
A hybrid method for feature construction and selection to improve wind-damage prediction in the forestry sector. In GECCO '17 Proceedings of the Genetic and Evolutionary Computation Conference, (1121-1128). https://doi.org/10.1145/3071178.3071217
Catastrophic damage to forests resulting from major storms has resulted in serious timber and financial losses within the sector across Europe in the recent past. Developing r...

Generating single and multiple cooperative heuristics for the one dimensional bin packing problem using a single node genetic programming island model.

Conference Proceeding
Sim, K., & Hart, E. (2013)
Generating single and multiple cooperative heuristics for the one dimensional bin packing problem using a single node genetic programming island model. In E. Alba (Ed.), Proceedgs of GECCO 2013, (1549-1556). https://doi.org/10.1145/2463372.2463555
Novel deterministic heuristics are generated using Single Node Genetic Programming for application to the One Dimensional Bin Packing Problem. First a single deterministic heu...

An improved immune inspired hyper-heuristic for combinatorial optimisation problems.

Conference Proceeding
Sim, K., & Hart, E. (2014)
An improved immune inspired hyper-heuristic for combinatorial optimisation problems. In C. Igel (Ed.), Proceedings of GECCO 2014 (Genetic and Evolutionary Computation Conference), (121-128). https://doi.org/10.1145/2576768.2598241
The meta-dynamics of an immune-inspired optimisation sys- tem NELLI are considered. NELLI has previously shown to exhibit good performance when applied to a large set of optim...

A Novel Heuristic Generator for JSSP Using a Tree-Based Representation of Dispatching Rules

Conference Proceeding
Sim, K., & Hart, E. (2015)
A Novel Heuristic Generator for JSSP Using a Tree-Based Representation of Dispatching Rules. In GECCO Companion '15 Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, (1485-1486). https://doi.org/10.1145/2739482.2764697
A previously described hyper-heuristic framework named NELLI is adapted for the classic Job Shop Scheduling Problem (JSSP) and used to find ensembles of reusable heuristics th...

A Hyper-Heuristic classifier for one dimensional bin packing problems: Improving classification accuracy by attribute evolution.

Conference Proceeding
Sim, K., Hart, E., & Paechter, B. (2012)
A Hyper-Heuristic classifier for one dimensional bin packing problems: Improving classification accuracy by attribute evolution. In Parallel Problem Solving from Nature: PPSN XII, (348-357). https://doi.org/10.1007/978-3-642-32964-7_35
A hyper-heuristic for the one dimensional bin packing problem is presented that uses an Evolutionary Algorithm (EA) to evolve a set of attributes that characterise a problem i...

On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system.

Conference Proceeding
Hart, E., & Sim, K. (2014)
On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system. In Proceedings of PPSN, 13th International Conference on Parallel problem Solving from Nature, (282-291). https://doi.org/10.1007/978-3-319-10762-2_28
Real-world applications of optimisation techniques place more importance on finding approaches that result in acceptable quality solutions in a short time-frame and can provid...

On Constructing Ensembles for Combinatorial Optimisation

Journal Article
Hart, E., & Sim, K. (2018)
On Constructing Ensembles for Combinatorial Optimisation. Evolutionary Computation, 26(1), 67-87. https://doi.org/10.1162/evco_a_00203
Although the use of ensemble methods in machine-learning is ubiquitous due to their proven ability to outperform their constituent algorithms, ensembles of optimisation algori...

Learning to solve bin packing problems with an immune inspired hyper-heuristic.

Conference Proceeding
Sim, K., Hart, E., & Paechter, B. (2013)
Learning to solve bin packing problems with an immune inspired hyper-heuristic. In P. Liò, O. Miglino, G. Nicosia, S. Nolfi, & M. Pavone (Eds.), Advances in Artificial Life, ECAL 2013, 856-863. https://doi.org/10.7551/978-0-262-31709-2-ch126
Motivated by the natural immune system's ability to defend the body by generating and maintaining a repertoire of antibodies that collectively cover the potential pathogen spa...