Research explorer tool

Date


School

Download Available

61 results

Resilience of Video Streaming Services to Network Impairments

Journal Article
Torres Vega, M., Perra, C., & Liotta, A. (2018)
Resilience of Video Streaming Services to Network Impairments. IEEE Transactions on Broadcasting, 64(2), 220-234. https://doi.org/10.1109/tbc.2017.2781125
When dealing with networks, performance management through conventional quality of service (QoS)-based methods becomes difficult and is often ineffective. In fact, quality eme...

Decentralized dynamic understanding of hidden relations in complex networks

Journal Article
Mocanu, D. C., Exarchakos, G., & Liotta, A. (2018)
Decentralized dynamic understanding of hidden relations in complex networks. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-19356-4
Almost all the natural or human made systems can be understood and controlled using complex networks. This is a difficult problem due to the very large number of elements in s...

Self-Learning Power Control in Wireless Sensor Networks

Journal Article
Chincoli, M., & Liotta, A. (2018)
Self-Learning Power Control in Wireless Sensor Networks. Sensors, 18(2), 1-29. https://doi.org/10.3390/s18020375
Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This...

A Review of Predictive Quality of Experience Management in Video Streaming Services

Journal Article
Torres Vega, M., Perra, C., De Turck, F., & Liotta, A. (2018)
A Review of Predictive Quality of Experience Management in Video Streaming Services. IEEE Transactions on Broadcasting, 64(2), 432-445. https://doi.org/10.1109/tbc.2018.2822869
Satisfying the requirements of devices and users of online video streaming services is a challenging task. It requires not only managing the network quality of service but als...

On-Line Building Energy Optimization Using Deep Reinforcement Learning

Journal Article
Mocanu, E., Mocanu, D. C., Nguyen, P. H., Liotta, A., Webber, M. E., Gibescu, M., & Slootweg, J. G. (2019)
On-Line Building Energy Optimization Using Deep Reinforcement Learning. IEEE Transactions on Smart Grid, 10(4), 3698-3708. https://doi.org/10.1109/tsg.2018.2834219
Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the ...

An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0

Journal Article
Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., & Liotta, A. (2019)
An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0. IEEE Transactions on Industrial Informatics, 15(1), 481-489. https://doi.org/10.1109/tii.2018.2843169
Edge computing paradigm has attracted many interests in the last few years as a valid alternative to the standard cloud-based approaches to reduce the interaction timing and t...

Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science

Journal Article
Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., & Liotta, A. (2018)
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature Communications, 9(1), 1-12. https://doi.org/10.1038/s41467-018-04316-3
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from ...

Interference graphs to monitor and control schedules in low-power WPAN

Journal Article
van der Lee, T., Liotta, A., & Exarchakos, G. (2019)
Interference graphs to monitor and control schedules in low-power WPAN. Future Generation Computer Systems, 93, 111-120. https://doi.org/10.1016/j.future.2018.10.014
Highlights • This study presents the complete and slotted interference graph model. • The service uses the complete interference graph to evaluate the network. • Slotted int...

Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks

Journal Article
Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019)
Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks. IEEE Access, 7, 29355-29364. https://doi.org/10.1109/access.2019.2902371
High-density communications in wireless sensor networks (WSNs) demand for new approaches to meet stringent energy and spectrum requirements. We turn to reinforcement learning,...

Analyzing Objective and Subjective Data in Social Sciences: Implications for Smart Cities

Journal Article
Erhan, L., Ndubuaku, M., Ferrara, E., Richardson, M., Sheffield, D., Ferguson, F. J., …Liotta, A. (2019)
Analyzing Objective and Subjective Data in Social Sciences: Implications for Smart Cities. IEEE Access, 7, 19890-19906. https://doi.org/10.1109/access.2019.2897217
The ease of deployment of digital technologies and the Internet of Things gives us the opportunity to carry out large-scale social studies and to collect vast amounts of data ...