A topological insight into restricted Boltzmann machines
Journal Article
Mocanu, D. C., Mocanu, E., Nguyen, P. H., Gibescu, M., & Liotta, A. (2016)
A topological insight into restricted Boltzmann machines. Machine Learning, 104(2-3), 243-270. https://doi.org/10.1007/s10994-016-5570-z
Restricted Boltzmann Machines (RBMs) and models derived from them have been successfully used as basic building blocks in deep artificial neural networks for automatic feature...
On-Line Building Energy Optimization Using Deep Reinforcement Learning
Journal Article
Mocanu, E., Mocanu, D. C., Nguyen, P. H., Liotta, A., Webber, M. E., Gibescu, M., & Slootweg, J. G. (2019)
On-Line Building Energy Optimization Using Deep Reinforcement Learning. IEEE Transactions on Smart Grid, 10(4), 3698-3708. https://doi.org/10.1109/tsg.2018.2834219
Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the ...
Spatial anomaly detection in sensor networks using neighborhood information
Journal Article
Bosman, H. H., Iacca, G., Tejada, A., Wörtche, H. J., & Liotta, A. (2017)
Spatial anomaly detection in sensor networks using neighborhood information. Information Fusion, 33, 41-56. https://doi.org/10.1016/j.inffus.2016.04.007
The field of wireless sensor networks (WSNs), embedded systems with sensing and networking capability, has now matured after a decade-long research effort and technological ad...
A Review of Predictive Quality of Experience Management in Video Streaming Services
Journal Article
Torres Vega, M., Perra, C., De Turck, F., & Liotta, A. (2018)
A Review of Predictive Quality of Experience Management in Video Streaming Services. IEEE Transactions on Broadcasting, 64(2), 432-445. https://doi.org/10.1109/tbc.2018.2822869
Satisfying the requirements of devices and users of online video streaming services is a challenging task. It requires not only managing the network quality of service but als...
A Chain Topology for Efficient Monitoring of Food Grain Storage using Smart Sensors
Conference Proceeding
Kumar Mishra, A., Kumar Tripathy, A., Obaidat, M. S., Tan, Z., Prasad, M., Sadoun, B., & Puthal, D. (2018)
A Chain Topology for Efficient Monitoring of Food Grain Storage using Smart Sensors. In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications, (89-98). https://doi.org/10.5220/0006850602550264
Due to lack of an efficient monitoring system to periodically record environmental parameters for food grain storage, a huge loss of food grains in storage is reported every y...
An AI approach to Collecting and Analyzing Human Interactions with Urban Environments
Journal Article
Ferrara, E., Fragale, L., Fortino, G., Song, W., Perra, C., di Mauro, M., & Liotta, A. (2019)
An AI approach to Collecting and Analyzing Human Interactions with Urban Environments. IEEE Access, 7, 141476-141486. https://doi.org/10.1109/access.2019.2943845
Thanks to advances in Internet of Things and crowd-sensing, it is possible to collect vast amounts of urban data, to better understand how citizens interact with cities and, i...
Statistical Assessment of IP Multimedia Subsystem in a Softwarized Environment: a Queueing Networks Approach
Journal Article
Di Mauro, M., & Liotta, A. (2019)
Statistical Assessment of IP Multimedia Subsystem in a Softwarized Environment: a Queueing Networks Approach. IEEE Transactions on Network and Service Management, 16(4), 1493-1506. https://doi.org/10.1109/tnsm.2019.2943776
The Next Generation 5G Networks can greatly benefit from the synergy between virtualization paradigms, such as the Network Function Virtualization (NFV), and service provision...
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
Journal Article
Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., & Liotta, A. (2018)
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature Communications, 9(1), 1-12. https://doi.org/10.1038/s41467-018-04316-3
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from ...
Decentralized dynamic understanding of hidden relations in complex networks
Journal Article
Mocanu, D. C., Exarchakos, G., & Liotta, A. (2018)
Decentralized dynamic understanding of hidden relations in complex networks. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-19356-4
Almost all the natural or human made systems can be understood and controlled using complex networks. This is a difficult problem due to the very large number of elements in s...
Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks
Journal Article
Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019)
Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks. IEEE Access, 7, 29355-29364. https://doi.org/10.1109/access.2019.2902371
High-density communications in wireless sensor networks (WSNs) demand for new approaches to meet stringent energy and spectrum requirements. We turn to reinforcement learning,...