Research explorer tool

19 results

Interference graphs to monitor and control schedules in low-power WPAN

Journal Article
van der Lee, T., Liotta, A., & Exarchakos, G. (2019)
Interference graphs to monitor and control schedules in low-power WPAN. Future Generation Computer Systems, 93, 111-120. https://doi.org/10.1016/j.future.2018.10.014
Highlights • This study presents the complete and slotted interference graph model. • The service uses the complete interference graph to evaluate the network. • Slotted int...

An AI approach to Collecting and Analyzing Human Interactions with Urban Environments

Journal Article
Ferrara, E., Fragale, L., Fortino, G., Song, W., Perra, C., di Mauro, M., & Liotta, A. (2019)
An AI approach to Collecting and Analyzing Human Interactions with Urban Environments. IEEE Access, 7, 141476-141486. https://doi.org/10.1109/access.2019.2943845
Thanks to advances in Internet of Things and crowd-sensing, it is possible to collect vast amounts of urban data, to better understand how citizens interact with cities and, i...

Statistical Assessment of IP Multimedia Subsystem in a Softwarized Environment: a Queueing Networks Approach

Journal Article
Di Mauro, M., & Liotta, A. (2019)
Statistical Assessment of IP Multimedia Subsystem in a Softwarized Environment: a Queueing Networks Approach. IEEE Transactions on Network and Service Management, 16(4), 1493-1506. https://doi.org/10.1109/tnsm.2019.2943776
The Next Generation 5G Networks can greatly benefit from the synergy between virtualization paradigms, such as the Network Function Virtualization (NFV), and service provision...

Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science

Journal Article
Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., & Liotta, A. (2018)
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature Communications, 9(1), 1-12. https://doi.org/10.1038/s41467-018-04316-3
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from ...

Performance of Cognitive Radio Sensor Networks Using Hybrid Automatic Repeat ReQuest: Stop-and-Wait

Journal Article
Khan, F., ur Rehman, A., Usman, M., Tan, Z., & Puthal, D. (2018)
Performance of Cognitive Radio Sensor Networks Using Hybrid Automatic Repeat ReQuest: Stop-and-Wait. Mobile Networks and Applications, https://doi.org/10.1007/s11036-018-1020-4
The enormous developments in the field of wireless communication technologies have made the unlicensed spectrum bands crowded, resulting uncontrolled interference to the tradi...

Estimating 3D trajectories from 2D projections via disjunctive factored four-way conditional restricted Boltzmann machines

Journal Article
Mocanu, D. C., Bou Ammar, H., Puig, L., Eaton, E., & Liotta, A. (2017)
Estimating 3D trajectories from 2D projections via disjunctive factored four-way conditional restricted Boltzmann machines. Pattern Recognition, 69, 325-335. https://doi.org/10.1016/j.patcog.2017.04.017
Estimation, recognition, and near-future prediction of 3D trajectories based on their two dimensional projections available from one camera source is an exceptionally difficul...

A Chain Topology for Efficient Monitoring of Food Grain Storage using Smart Sensors

Conference Proceeding
Kumar Mishra, A., Kumar Tripathy, A., Obaidat, M. S., Tan, Z., Prasad, M., Sadoun, B., & Puthal, D. (2018)
A Chain Topology for Efficient Monitoring of Food Grain Storage using Smart Sensors. In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications, (89-98). https://doi.org/10.5220/0006850602550264
Due to lack of an efficient monitoring system to periodically record environmental parameters for food grain storage, a huge loss of food grains in storage is reported every y...

A topological insight into restricted Boltzmann machines

Journal Article
Mocanu, D. C., Mocanu, E., Nguyen, P. H., Gibescu, M., & Liotta, A. (2016)
A topological insight into restricted Boltzmann machines. Machine Learning, 104(2-3), 243-270. https://doi.org/10.1007/s10994-016-5570-z
Restricted Boltzmann Machines (RBMs) and models derived from them have been successfully used as basic building blocks in deep artificial neural networks for automatic feature...

Fast Millimeter Wave Assisted Beam-Steering for Passive Indoor Optical Wireless Networks

Journal Article
Torres Vega, M., Koonen, A. M. J., Liotta, A., & Famaey, J. (2018)
Fast Millimeter Wave Assisted Beam-Steering for Passive Indoor Optical Wireless Networks. IEEE Wireless Communications Letters, 7(2), 278-281. https://doi.org/10.1109/lwc.2017.2771771
In light of the extreme radio congestion, the time has come to consider the upper parts of the electromagnetic spectrum. Optical beam-steered wireless communications offer gre...

Decentralized dynamic understanding of hidden relations in complex networks

Journal Article
Mocanu, D. C., Exarchakos, G., & Liotta, A. (2018)
Decentralized dynamic understanding of hidden relations in complex networks. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-19356-4
Almost all the natural or human made systems can be understood and controlled using complex networks. This is a difficult problem due to the very large number of elements in s...