On-Line Building Energy Optimization Using Deep Reinforcement Learning
Journal Article
Mocanu, E., Mocanu, D. C., Nguyen, P. H., Liotta, A., Webber, M. E., Gibescu, M., & Slootweg, J. G. (2019)
On-Line Building Energy Optimization Using Deep Reinforcement Learning. IEEE Transactions on Smart Grid, 10(4), 3698-3708. https://doi.org/10.1109/tsg.2018.2834219
Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the ...
Spatial anomaly detection in sensor networks using neighborhood information
Journal Article
Bosman, H. H., Iacca, G., Tejada, A., Wörtche, H. J., & Liotta, A. (2017)
Spatial anomaly detection in sensor networks using neighborhood information. Information Fusion, 33, 41-56. https://doi.org/10.1016/j.inffus.2016.04.007
The field of wireless sensor networks (WSNs), embedded systems with sensing and networking capability, has now matured after a decade-long research effort and technological ad...
A Review of Predictive Quality of Experience Management in Video Streaming Services
Journal Article
Torres Vega, M., Perra, C., De Turck, F., & Liotta, A. (2018)
A Review of Predictive Quality of Experience Management in Video Streaming Services. IEEE Transactions on Broadcasting, 64(2), 432-445. https://doi.org/10.1109/tbc.2018.2822869
Satisfying the requirements of devices and users of online video streaming services is a challenging task. It requires not only managing the network quality of service but als...
Performance of Cognitive Radio Sensor Networks Using Hybrid Automatic Repeat ReQuest: Stop-and-Wait
Journal Article
Khan, F., ur Rehman, A., Usman, M., Tan, Z., & Puthal, D. (2018)
Performance of Cognitive Radio Sensor Networks Using Hybrid Automatic Repeat ReQuest: Stop-and-Wait. Mobile Networks and Applications, https://doi.org/10.1007/s11036-018-1020-4
The enormous developments in the field of wireless communication technologies have made the unlicensed spectrum bands crowded, resulting uncontrolled interference to the tradi...
Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks
Journal Article
Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019)
Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks. IEEE Access, 7, 29355-29364. https://doi.org/10.1109/access.2019.2902371
High-density communications in wireless sensor networks (WSNs) demand for new approaches to meet stringent energy and spectrum requirements. We turn to reinforcement learning,...
Analyzing Objective and Subjective Data in Social Sciences: Implications for Smart Cities
Journal Article
Erhan, L., Ndubuaku, M., Ferrara, E., Richardson, M., Sheffield, D., Ferguson, F. J., …Liotta, A. (2019)
Analyzing Objective and Subjective Data in Social Sciences: Implications for Smart Cities. IEEE Access, 7, 19890-19906. https://doi.org/10.1109/access.2019.2897217
The ease of deployment of digital technologies and the Internet of Things gives us the opportunity to carry out large-scale social studies and to collect vast amounts of data ...
Self-Learning Power Control in Wireless Sensor Networks
Journal Article
Chincoli, M., & Liotta, A. (2018)
Self-Learning Power Control in Wireless Sensor Networks. Sensors, 18(2), 1-29. https://doi.org/10.3390/s18020375
Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This...
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
Journal Article
Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., & Liotta, A. (2018)
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature Communications, 9(1), 1-12. https://doi.org/10.1038/s41467-018-04316-3
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from ...
Fast Millimeter Wave Assisted Beam-Steering for Passive Indoor Optical Wireless Networks
Journal Article
Torres Vega, M., Koonen, A. M. J., Liotta, A., & Famaey, J. (2018)
Fast Millimeter Wave Assisted Beam-Steering for Passive Indoor Optical Wireless Networks. IEEE Wireless Communications Letters, 7(2), 278-281. https://doi.org/10.1109/lwc.2017.2771771
In light of the extreme radio congestion, the time has come to consider the upper parts of the electromagnetic spectrum. Optical beam-steered wireless communications offer gre...
Interference graphs to monitor and control schedules in low-power WPAN
Journal Article
van der Lee, T., Liotta, A., & Exarchakos, G. (2019)
Interference graphs to monitor and control schedules in low-power WPAN. Future Generation Computer Systems, 93, 111-120. https://doi.org/10.1016/j.future.2018.10.014
Highlights
• This study presents the complete and slotted interference graph model.
• The service uses the complete interference graph to evaluate the network.
• Slotted int...