Research explorer tool

39 results

Algorithm selection using deep learning without feature extraction

Conference Proceeding
Alissa, M., Sim, K., & Hart, E. (2019)
Algorithm selection using deep learning without feature extraction. In GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference Companion. , (198-206). https://doi.org/10.1145/3321707.3321845
We propose a novel technique for algorithm-selection which adopts a deep-learning approach, specifically a Recurrent-Neural Network with Long-Short-Term-Memory (RNN-LSTM). In ...

A research agenda for metaheuristic standardization.

Presentation / Conference
Hart, E., & Sim, K. (2015, June)
A research agenda for metaheuristic standardization. Paper presented at 11th Metaheuristics International Conference, Agadir, Morocco
We propose that the development of standardized, explicit, machine-readable descriptions of metaheuris- tics will greatly advance scientific progress in the field. In particul...

Emergence of hierarchy from the evolution of individual influence in an agent-based model

Conference Proceeding
Perret, C., Powers, S. T., & Hart, E. (2017)
Emergence of hierarchy from the evolution of individual influence in an agent-based model. In Proceedings of the 14th European Conference on Artificial Life 2017, (348-355
The sudden transition from egalitarian groups to hierarchical societies that occurred with the origin of agriculture is one of the most striking features of the evolution of h...

A novel similarity-based mutant vector generation strategy for differential evolution

Conference Proceeding
Segredo, E., Lalla-Ruiz, E., & Hart, E. (2018)
A novel similarity-based mutant vector generation strategy for differential evolution. In H. Aguirre (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference 2018https://doi.org/10.1145/3205455.3205628
The mutant vector generation strategy is an essential component of Differential Evolution (DE), introduced to promote diversity, resulting in exploration of novel areas of the...

On the performance of the hybridisation between migrating birds optimisation variants and differential evolution for large scale continuous problems

Journal Article
Voß, S., Segredo, E., Lalla-Ruiz, E., Hart, E., & Voss, S. (2018)
On the performance of the hybridisation between migrating birds optimisation variants and differential evolution for large scale continuous problems. Expert Systems with Applications, 102, 126-142. https://doi.org/10.1016/j.eswa.2018.02.024
Migrating Birds Optimisation (mbo) is a nature-inspired approach which has been shown to be very effective when solving a variety of combinatorial optimisation problems. More ...

A hybrid method for feature construction and selection to improve wind-damage prediction in the forestry sector

Conference Proceeding
Hart, E., Sim, K., Gardiner, B., & Kamimura, K. (2017)
A hybrid method for feature construction and selection to improve wind-damage prediction in the forestry sector. In GECCO '17 Proceedings of the Genetic and Evolutionary Computation Conference. , (1121-1128). https://doi.org/10.1145/3071178.3071217
Catastrophic damage to forests resulting from major storms has resulted in serious timber and financial losses within the sector across Europe in the recent past. Developing r...

Improving survivability in environment-driven distributed evolutionary algorithms through explicit relative fitness and fitness proportionate communication.

Conference Proceeding
Hart, E., Steyven, A., & Paechter, B. (2015)
Improving survivability in environment-driven distributed evolutionary algorithms through explicit relative fitness and fitness proportionate communication. In Proceedings of the 2015 on Genetic and Evolutionary Computation Conference - GECCO '15, (169-176). https://doi.org/10.1145/2739480.2754688
Ensuring the integrity of a robot swarm in terms of maintaining a stable population of functioning robots over long periods of time is a mandatory prerequisite for building mo...

On Constructing Ensembles for Combinatorial Optimisation

Journal Article
Hart, E., & Sim, K. (2018)
On Constructing Ensembles for Combinatorial Optimisation. Evolutionary Computation, 26(1), 67-87. https://doi.org/10.1162/evco_a_00203
Although the use of ensemble methods in machine-learning is ubiquitous due to their proven ability to outperform their constituent algorithms, ensembles of optimisation algori...

Impact of selection methods on the diversity of many-objective Pareto set approximations

Journal Article
Martí, L., Segredo, E., Sánchez-Pi, N., & Hart, E. (2017)
Impact of selection methods on the diversity of many-objective Pareto set approximations. Procedia Computer Science, 112, (844-853). ISSN 1877-0509
Selection methods are a key component of all multi-objective and, consequently, many-objective optimisation evolutionary algorithms. They must perform two main tasks simultane...

Hybrid parameter control approach applied to a diversity-based multi-objective Memetic Algorithm for frequency assignment problems

Conference Proceeding
Segredo, E., Paechter, B., Hart, E., & Gonz´alez-Vila, C. I. (2016)
Hybrid parameter control approach applied to a diversity-based multi-objective Memetic Algorithm for frequency assignment problems. In 2016 IEEE Congress on Evolutionary Computation (CEC)https://doi.org/10.1109/CEC.2016.7743969
In order to address the difficult issue of parameter setting within a diversity-based Multi-objective Evolutionary Algorithm (MOEA), we recently proposed a hybrid control sche...