Explore our research

20 results

Understanding Environmental Influence in an Open-Ended Evolutionary Algorithm

Conference Proceeding
Steyven, A., Hart, E., & Paechter, B. (2016)
Understanding Environmental Influence in an Open-Ended Evolutionary Algorithm. In Parallel Problem Solving from Nature – PPSN XIV; Lecture Notes in Computer Science, 921-931. https://doi.org/10.1007/978-3-319-45823-6_86
It is well known that in open-ended evolution, the nature of the environment plays in key role in directing evolution. However, in Evolutionary Robotics, it is often unclear e...

Exploiting the analogy between immunology and sparse distributed memory.

Conference Proceeding
Hart, E., & Ross, P. (2001)
Exploiting the analogy between immunology and sparse distributed memory. In J. Timmis, & P. J. Bentley (Eds.), ICARIS 2002 : 1st International Conference on Artificial Immune Systems, 59-67
The relationship between immunological memory and a class of associative memories known as sparse distributed memories (SDM) is well known. This paper proposes a new model for...

Idiotypic networks for evolutionary controllers in virtual creatures.

Conference Proceeding
Capodieci, N., Hart, E., & Cabri, G. (2014)
Idiotypic networks for evolutionary controllers in virtual creatures. In H. Sayama, J. Rieffel, S. Risi, R. Doursat, & H. Lipson (Eds.), Artificial Life 14: Proceedings of ALife, 14th International Conference on the Synthesis and Simulation of Living Systems, (192-199). https://doi.org/10.7551/978-0-262-32621-6-ch032
We propose a novel method for evolving adaptive locomotive strategies for virtual limbless creatures that addresses both functional and non-functional requirements, respective...

An immune system approach to scheduling in changing environments.

Conference Proceeding
Hart, E., & Ross, P. (1998)
An immune system approach to scheduling in changing environments. In W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), GECCO-99 : proceedings of the genetic and evolutionary computation conference. Volume 2, 1559-1566
This paper describes the application of an artificial immune system, (AIS), model to a scheduling application, in which sudden changes in the scheduling environment require th...

Artificial Immune System driven evolution in Swarm Chemistry.

Conference Proceeding
Capodieci, N., Hart, E., & Cabri, G. (2014)
Artificial Immune System driven evolution in Swarm Chemistry. In Proceedings of IEEE SASO 2014, (40-49). https://doi.org/10.1109/SASO.2014.16
Morphogenetic engineering represents an interesting field in which models, frameworks and algorithms can be tested in order to study how self-* properties and emergent behavio...

A role for immunology in 'next generation' robots.

Conference Proceeding
Hart, E., Ross, P., Webb, A., & Lawson, A. (2003)
A role for immunology in 'next generation' robots. In J. Timmis, P. Bentley, & E. Hart (Eds.), Artificial Immune Systems. ICARIS 2003, 46-56. https://doi.org/10.1007/978-3-540-45192-1_5
Much of current robot research is about learning tasks in which the task to be achieved is pre-specified, a suitable technology for the task is chosen and the learning process...

Clustering Moving Data with a Modified Immune Algorithm

Conference Proceeding
Hart, E., & Ross, P. (2001)
Clustering Moving Data with a Modified Immune Algorithm. In E. Boers (Ed.), Applications of Evolutionary Computing, 394-403. https://doi.org/10.1007/3-540-45365-2_41
In this paper we present a prototype of a new model for performing clustering in large, non-static databases. Although many machine learning algorithms for data clustering hav...

Evolution of a Functionally Diverse Swarm via a Novel Decentralised Quality-Diversity Algorithm

Conference Proceeding
Hart, E., Steyven, A. S. W., & Paechter, B. (2018)
Evolution of a Functionally Diverse Swarm via a Novel Decentralised Quality-Diversity Algorithm. In GECCO '18 Proceedings of the Genetic and Evolutionary Computation Conference, (101-108). https://doi.org/10.1145/3205455.3205481
The presence of functionality diversity within a group has been demonstrated to lead to greater robustness, higher performance and increased problem-solving ability in a broad...

Selection methods and diversity preservation in many-objective evolutionary algorithms

Journal Article
Martí, L., Segredo, E., Sánchez-Pi, N., & Hart, E. (2018)
Selection methods and diversity preservation in many-objective evolutionary algorithms. Data Technologies and Applications, https://doi.org/10.1108/dta-01-2018-0009
Purpose – One of the main components of multi-objective, and therefore, many-objective evolutionary algorithms is the selection mechanism. It is responsible for performing two...

Use of machine learning techniques to model wind damage to forests

Journal Article
Hart, E., Sim, K., Kamimura, K., Meredieu, C., Guyon, D., & Gardiner, B. (2019)
Use of machine learning techniques to model wind damage to forests. Agricultural and forest meteorology, 265, 16-29. https://doi.org/10.1016/j.agrformet.2018.10.022
This paper tested the ability of machine learning techniques, namely artificial neural networks and random forests, to predict the individual trees within a forest most at r...