Research explorer tool

Date


School

Themes

Output Type

Download Available

29 results

Heaven and Hell: visions for pervasive adaptation

Journal Article
Paechter, B., Pitt, J., Serbedzija, N., Michael, K., Willies, J., & Helgason, I. (2011)
Heaven and Hell: visions for pervasive adaptation. Procedia computer science, 7, 81-82. https://doi.org/10.1016/j.procs.2011.12.025
With everyday objects becoming increasingly smart and the “info-sphere” being enriched with nano-sensors and networked to computationally-enabled devices and services, the way...

Application areas of AIS: The past, the present and the future

Journal Article
Hart, E., & Timmis, J. (2008)
Application areas of AIS: The past, the present and the future. Applied Soft Computing, 8(1), 191-201. doi:10.1016/j.asoc.2006.12.004
After a decade of research into the area of artificial immune systems, it is worthwhile to take a step back and reflect on the contributions that the paradigm has brought to t...

A Lifelong Learning Hyper-heuristic Method for Bin Packing.

Journal Article
Hart, E., Sim, K., & Paechter, B. (2015)
A Lifelong Learning Hyper-heuristic Method for Bin Packing. Evolutionary Computation, 23(1), 37-67. https://doi.org/10.1162/EVCO_a_00121
We describe a novel Hyper-heuristic system which continuously learns over time to solve a combinatorial optimisation problem. The system continuously generates new heuristics ...

A hyper-heuristic ensemble method for static job-shop scheduling.

Journal Article
Hart, E., & Sim, K. (2016)
A hyper-heuristic ensemble method for static job-shop scheduling. Evolutionary Computation, 24(4), 609-635. https://doi.org/10.1162/EVCO_a_00183
We describe a new hyper-heuristic method NELLI-GP for solving job-shop scheduling problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a divide-and-conq...

Techniques for Auditing the ICT Carbon Footprint of an Organisation

Journal Article
Mouchet, C., Urquhart, N., & Kemmer, R. (2014)
Techniques for Auditing the ICT Carbon Footprint of an Organisation. International Journal of Green Computing, 5(1), 44-61. https://doi.org/10.4018/ijgc.2014010104
This article has presents an extensive survey of the state of the art in Green IT/S. The findings of the survey suggest that there is scope for a reliable carbon footprint aud...

On artificial immune systems and swarm intelligence

Journal Article
Timmis, J., Andrews, P., & Hart, E. (2010)
On artificial immune systems and swarm intelligence. Swarm Intelligence, 4(4), 247-273. https://doi.org/10.1007/s11721-010-0045-5
This position paper explores the nature and role of two bio-inspired paradigms, namely Artificial Immune Systems (AIS) and Swarm Intelligence (SI). We argue that there are man...

On the performance of the hybridisation between migrating birds optimisation variants and differential evolution for large scale continuous problems

Journal Article
Voß, S., Segredo, E., Lalla-Ruiz, E., Hart, E., & Voss, S. (2018)
On the performance of the hybridisation between migrating birds optimisation variants and differential evolution for large scale continuous problems. Expert Systems with Applications, 102, 126-142. https://doi.org/10.1016/j.eswa.2018.02.024
Migrating Birds Optimisation (mbo) is a nature-inspired approach which has been shown to be very effective when solving a variety of combinatorial optimisation problems. More ...

Representation in the (Artificial) Immune System

Journal Article
McEwan, C., & Hart, E. (2009)
Representation in the (Artificial) Immune System. Journal of Mathematical Modelling and Algorithms, 8, 125-149. https://doi.org/10.1007/s10852-009-9104-6
Much of contemporary research in Artificial Immune Systems (AIS) has partitioned into either algorithmic machine learning and optimisation, or, modelling biologically plausibl...

On Constructing Ensembles for Combinatorial Optimisation

Journal Article
Hart, E., & Sim, K. (2018)
On Constructing Ensembles for Combinatorial Optimisation. Evolutionary Computation, 26(1), 67-87. https://doi.org/10.1162/evco_a_00203
Although the use of ensemble methods in machine-learning is ubiquitous due to their proven ability to outperform their constituent algorithms, ensembles of optimisation algori...

Selection methods and diversity preservation in many-objective evolutionary algorithms

Journal Article
Martí, L., Segredo, E., Sánchez-Pi, N., & Hart, E. (2018)
Selection methods and diversity preservation in many-objective evolutionary algorithms. Data Technologies and Applications, https://doi.org/10.1108/dta-01-2018-0009
Purpose – One of the main components of multi-objective, and therefore, many-objective evolutionary algorithms is the selection mechanism. It is responsible for performing two...