Research explorer tool

Date


School

Output Type

Download Available

85 results

Augmenting Novelty Search with a Surrogate Model to Engineer Meta-Diversity in Ensembles of Classifiers

Conference Proceeding
Cardoso, R. P., Hart, E., Burth Kurka, D., & Pitt, J. (2022)
Augmenting Novelty Search with a Surrogate Model to Engineer Meta-Diversity in Ensembles of Classifiers. In Applications of Evolutionary Computation: EvoApplications 2022 (418-434). https://doi.org/10.1007/978-3-031-02462-7_27
Using Neuroevolution combined with Novelty Search to promote behavioural diversity is capable of constructing high-performing ensembles for classification. However, using grad...

On the challenges of jointly optimising robot morphology and control using a hierarchical optimisation scheme

Conference Proceeding
Goff, L. K. L., & Hart, E. (2021)
On the challenges of jointly optimising robot morphology and control using a hierarchical optimisation scheme. In GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference Companion (1498-1502). https://doi.org/10.1145/3449726.3463156
We investigate a hierarchical scheme for the joint optimisation of robot bodies and controllers in a complex morphological space. An evolutionary algorithm optimises body-plan...

WILDA: Wide Learning of Diverse Architectures for Classification of Large Datasets

Conference Proceeding
Pitt, J., Burth Kurka, D., Hart, E., & Cardoso, R. P. (2021)
WILDA: Wide Learning of Diverse Architectures for Classification of Large Datasets. In Applications of Evolutionary Computation: EvoApplications 2021 Proceedings. , (649-664). https://doi.org/10.1007/978-3-030-72699-7_41
In order to address scalability issues, which can be a challenge for Deep Learning methods, we propose Wide Learning of Diverse Architectures-a model that scales horizontally ...

Evolution of Diverse, Manufacturable Robot Body Plans

Conference Proceeding
Buchanan, E., Le Goff, L., Hart, E., Eiben, A. E., De Carlo, M., Li, W., …Tyrrell, A. M. (2020)
Evolution of Diverse, Manufacturable Robot Body Plans. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (2132-2139). https://doi.org/10.1109/SSCI47803.2020.9308434
Advances in rapid prototyping have opened up new avenues of research within Evolutionary Robotics in which not only controllers but also the body plans (morphologies) of robot...

Commonsense-enhanced Natural Language Generation for Human-Robot Interaction

Conference Proceeding
Gkatzia, D. (in press)
Commonsense-enhanced Natural Language Generation for Human-Robot Interaction
Commonsense is vital for human communication, as it allows us to make inferences without explicitly mentioning the context. Equipping robots with commonsense knowledge would l...

The ARE Robot Fabricator: How to (Re)produce Robots that Can Evolve in the Real World

Conference Proceeding
Hale, M. F., Buchanan, E., Winfield, A. F., Timmis, J., Hart, E., Eiben, A. E., …Tyrrell, A. M. (2019)
The ARE Robot Fabricator: How to (Re)produce Robots that Can Evolve in the Real World. In ALIFE 2019: The 2019 Conference on Artificial Life, 95-102. https://doi.org/10.1162/isal_a_00147
The long term vision of the Autonomous Robot Evolution (ARE) project is to create an ecosystem of both virtual and physical robots with evolving brains and bodies. One of the ...

Evolving robust policies for community energy system management

Conference Proceeding
Cardoso, R., Hart, E., & Pitt, J. (2019)
Evolving robust policies for community energy system management. In GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference Companion. , (1120-1128). https://doi.org/10.1145/3321707.3321763
Community energy systems (CESs) are shared energy systems in which multiple communities generate and consume energy from renewable resources. At regular time intervals, each p...

Algorithm selection using deep learning without feature extraction

Conference Proceeding
Alissa, M., Sim, K., & Hart, E. (2019)
Algorithm selection using deep learning without feature extraction. In GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference Companion. , (198-206). https://doi.org/10.1145/3321707.3321845
We propose a novel technique for algorithm-selection which adopts a deep-learning approach, specifically a Recurrent-Neural Network with Long-Short-Term-Memory (RNN-LSTM). In ...

Simulating Dynamic Vehicle Routing Problems with Athos

Conference Proceeding
Hoffman, B., Guckert, M., Chalmers, K., & Urquhart, N. (2019)
Simulating Dynamic Vehicle Routing Problems with Athos. In Proceedings of the 33rd International ECMS Conference on Modelling and Simulation ECMS 2019, (296-302). https://doi.org/10.7148/2019-0296
Complex routing problems, such as vehicle routing problems with additional constraints, are both hard to solve and hard to express in a form that is accessible to the human ex...

Finding Fair Negotiation Algorithms to Reduce Peak Electricity Consumption in Micro Grids

Conference Proceeding
Powers, S. T., Meanwell, O., & Cai, Z. (2019)
Finding Fair Negotiation Algorithms to Reduce Peak Electricity Consumption in Micro Grids. In PAAMS 2019: Advances in Practical Applications of Survivable Agents and Multi-Agent Systems: The PAAMS Collection, 269-272. https://doi.org/10.1007/978-3-030-24209-1_28
Reducing peak electricity consumption is important to maximise use of renewable energy sources, and reduce the total amount of capacity required on a grid. Most approaches use...