EFFECT OF WOOD STRUCTURE ON THE CELLULASE HYDROLYSIS

Ivo Valchev, Stoyko Petrin, Nikolay Yavorov

Department of Pulp, Paper and Printing Arts
University of Chemical Technology and Metallurgy
8, Kliment Ochridski Blvd., Sofia 1756, Bulgaria
BACKGROUND

Biomass from plantations of fast growing tree species represents large renewable resources for lignocellulosic bioconversion.

One of the most popular fast growing trees are willow, poplar, eucalyptus, paulownia, etc.

The susceptibility of lignocellulosic substrates to cellulase depends on the structural features of the substrate including the cellulose crystallinity, the degree of cellulose polymerization, the surface area, and the lignin content.
The aim of this study is to investigate the role of the wood structure on the efficiency of the cellulase hydrolysis of steam-exploded fast growing tree species.
The object of this investigation is to establish the suitability of fast growing hardwood species cultivated in Bulgaria as a potential sources of fermentable sugars for bioethanol production:

- *Populus alba*;
- *Salix viminalis rubra*;
- *Paulownia tomentose*;
- *Paulownia elongate*.

COST FP1105 Thessaloniki, November 11-12, 2014
Experimental Stations for Fast-Growing Forest Species in Svishtov and Pazardjik

Paulownia elongate (cultivated in the southern regions close to Greek and Turkish border)
Methods

The tree species were analysed for cellulose (Kurschner et al. 1933), lignin (TAPPI standard T222 om-11), pentosans (T 223 cm-10), and ash (TAPPI standard T211 om-12).

The steam explosion pretreatment of wood chips was performed in 2 dm3 stainless steel laboratory installation at hydromodul ratio 1:10; an initial temperature of 100°C; a maximum temperature of 190 and 200°C; heating time of 60 min followed by additional 10 min at the maximum temperature.
Methods

The cellulase complex NS 22086 and β-glucosidase NS 22118 were used in a ratio of 10:1 for the enzymatic hydrolysis. The enzymatic treatment was carried out at 50 °C, pH 5.0 – 5.6, 5% enzyme charge and reaction time 72 h.

The glucose content was analyzed by a Dionex HPLC system in accordance with the NREL standard biomass analytical procedure.
Experimental

Table 1. Chemical composition, density and glucose yield

<table>
<thead>
<tr>
<th></th>
<th>Lignin, %</th>
<th>Cellulose, %</th>
<th>Pentosans, %</th>
<th>Ash, %</th>
<th>ρ, kg/m3</th>
<th>Cellulose to glucose conversion, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paulownia elongata</td>
<td>21.9</td>
<td>44.0</td>
<td>18.2</td>
<td>1.0</td>
<td>280</td>
<td>71</td>
</tr>
<tr>
<td>Paulownia tomentosa</td>
<td>20.2</td>
<td>39.2</td>
<td>23.8</td>
<td>1.4</td>
<td>290</td>
<td>66.6</td>
</tr>
<tr>
<td>Salix viminalis rubra</td>
<td>24.7</td>
<td>46.4</td>
<td>20.4</td>
<td>1.6</td>
<td>420</td>
<td>40.5</td>
</tr>
<tr>
<td>Populus alba</td>
<td>25.3</td>
<td>49.7</td>
<td>20.6</td>
<td>1.6</td>
<td>400</td>
<td>41.1</td>
</tr>
</tbody>
</table>

Correlations between chemical composition and cellulose to glucose conversion are not observed.
Experimental

Table 1. Chemical composition, density and glucose yield

<table>
<thead>
<tr>
<th></th>
<th>Lignin, %</th>
<th>Cellulose, %</th>
<th>Pentosans, %</th>
<th>Ash, %</th>
<th>ρ, kg/m3</th>
<th>Cellulose to glucose conversion, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paulownia elongata</td>
<td>21.9</td>
<td>44.0</td>
<td>18.2</td>
<td>1.0</td>
<td>280</td>
<td>71</td>
</tr>
<tr>
<td>Paulownia tomentosa</td>
<td>20.2</td>
<td>39.2</td>
<td>23.8</td>
<td>1.4</td>
<td>290</td>
<td>66.6</td>
</tr>
<tr>
<td>Salix viminalis rubra</td>
<td>24.7</td>
<td>46.4</td>
<td>20.4</td>
<td>1.6</td>
<td>420</td>
<td>40.5</td>
</tr>
<tr>
<td>Populus alba</td>
<td>25.3</td>
<td>49.7</td>
<td>20.6</td>
<td>1.6</td>
<td>400</td>
<td>41.1</td>
</tr>
</tbody>
</table>

The enzymatic efficiency depends in the great extent on the wood density.
Experimental

Fig. 1. Dependence between wood density and cellulose to glucose conversion

The enzymatic efficiency depends in the great extent on the wood density.
Experimental

In all cases, the cellulase hydrolysis is described by the topochemical kinetic equation of Prout-Tompkins.

\[\frac{\alpha}{1 - \alpha} = (k_1 \cdot t)^\chi \]

Linear dependencies are obtained for the correlations between the wood density and the kinetic characteristics of the hydrolysis process (rate constants \(\ln k_1 \) and power factors \(\chi \), that characterizes the system).
Experimental

Fig. 2. Dependence between wood density and power factors χ

$$\frac{\alpha}{1 - \alpha} = (k_1 \cdot t)^{\chi}$$
Experimental

Fig. 3. Dependence between wood density and lnk₁

\[
\frac{\alpha}{1-\alpha} = (k₁t)^z
\]
CONCLUSIONS

The carried out investigation shows the significant effect of the wood structure and especially the wood density on the enzyme hydrolysis.

The chemical composition does not have a determining influence on the efficiency of the enzymatic process.

Due to the specific structure and lowest density Paulownia elongata is the perfect source for bioethanol production.
Tank you for your attention!