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Abstract: Fresh leafy produce, such as lettuce and coriander, are subject to post-harvest 14 

microbial contamination and decay. Because of increasing pesticide resistance and consumer 15 

pressures, alternative residue-free treatments, such as ozone, are being actively explored and 16 

encouraged to reduce microbial loads and curb spoilage of crops in storage/transit. However, 17 

several researchers have reported that a component of the bacterial population on leaf surfaces 18 

is resistant to ozone treatment. To investigate the potential reasons for this bacterial survival, 19 

confocal microscopy was used to visualise microbes on leaf surfaces before and after ozone 20 

treatment. Direct observation (live/dead cell staining) of cells after ozone exposure showed that 21 

some cells were still alive; this included cells in small colonies as well as individual cells. We 22 

mailto:shrenrique@gmail.com
mailto:jerry.barnes@ncl.ac.uk
mailto:ian.singleton@ncl.ac.uk


hypothesised that cell (colony) age and prior stress (cold) contributes to, or is responsible for, 23 

the ozone resistance observed. Interestingly, cells derived from older agar-grown colonies (7–24 

12-day-old) and cold stressed cells of a Pseudomonas sp. (isolated from coriander) showed 25 

higher ozone resistance than that of control cells (4-day-old colonies). These findings suggest 26 

that a range of factors are responsible for ozone resistance and further work to improve our 27 

understanding of the mechanisms of ozone resistance may lead to improved methods to reduce 28 

microbial spoilage of fresh produce. 29 

Keywords: fresh produce, ozone resistance, confocal microscopy, Pseudomonas sp., 30 

spoilage, ozone gas 31 
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1.0 Introduction 34 

Over the past decade, there have been increasing concerns about food quality and microbial 35 

safety, especially with regard to leafy salads, herbs, seed and vegetables which may be 36 

minimally processed and are often consumed raw (Losio et al., 2015). It appears that microbial 37 

contamination can occur at any stage from production to consumer handling, and may arise 38 

from animal, environmental or human sources or by simple multiplication of surface biofilms 39 

to create slime and off odours (Olaimat and Holley, 2012). The microbial flora is assumed, 40 

often incorrectly, to be limited to the surface of the healthy produce, whereas the internal tissue 41 

remains sterile (Naito and Takahara, 2006). To prevent potential microbial spoilage, ozone has 42 

been suggested as an alternative sanitizer because of its strong oxidizing capacity (Goncalves, 43 

2009). It has been used as a key disinfectant to treat municipal and drinking water since the 44 

late 19th century, but has lately gained attention in the agrifood sector. The use of ozone is 45 

already permitted in many Asian and European countries, and the gas holds Generally 46 

Recognised as Safe (GRAS) status in USA and was approved by US-FDA as a ‘direct contact 47 

food sanitizing agent’ in 2001 (Palou et al., 2003). One of the major advantages of ozone 48 

treatment is that the gas spontaneously decomposes in to inert products unlike other sanitizers 49 

used in the food processing industry (Mahapatra et al., 2005). However, research shows that 50 

treatment with ozone does not completely inactivate bacteria on fresh produce (Wei et al., 2007; 51 

Srey et al., 2013; Wani et al., 2015). This could be due to a combination of physical protection 52 

of cells in micro-colonies and/or increased ozone resistance induced by parallel factors such as 53 

refrigeration (Finkel, 2006). Epiphytic bacteria i.e. bacteria present on plant surfaces are 54 

exposed to numerous environmental stresses in nature, such as nutrient stress, water stress, 55 

variable weather conditions, and exposure to UV radiation (Capozzi et al., 2009). However, 56 

bacteria are capable of adapting to, and growing, under stressful conditions (Beattie, 1999) and 57 

initiating stress response mechanisms (Capozzi et al., 2009). 58 



In this study, we used confocal scanning laser microscopy (CSLM) to differentiate between 59 

live and dead bacteria on the surface of a range of leafy salads and herbs (spinach, rocket, 60 

watercress, coriander and lettuce) in the presence and absence of ozone treatment. CSLM 61 

allows quick and direct assessment of microbial colonization on leaf surface by producing 62 

sharp, in-focus images from three-dimensional specimens (Ferrando and Spiess, 2000). We 63 

also tested the hypothesis that prior exposure to stress (cold) and increasing cell age would 64 

enhance cell resistance to ozone exposure using a Pseudomonas species isolated from 65 

coriander. Pseudomonas sp. was used as a model in this work as species from this genera are 66 

known to be involved in the microbial proteolytic and pectinolytic activities that cause soft rot 67 

of fresh produce at storage temperatures as low as 0.2°C (Saranraj, 2012). 68 

69 



2.0 Materials and methods 70 

2.1 Bacterial staining and visualisation for cell viability assessment on leafy 71 

produce 72 

Packets of ‘ready-to-eat’ organic baby spinach, Iceberg lettuce, wild rocket, coriander and 73 

watercress were purchased from a local retailer and stored at 4°C until the use-by-date i.e. 74 

‘EOL’ (end of life). The leaves were then aseptically cut into discs measuring 1.13 cm2 using 75 

a sterile cork borer for visualization of cell viability and enumeration of natural flora bacteria. 76 

Cell viability stains (LIVE/DEAD® BacLight™ Viability Kit, Invitrogen/Molecular Probes, 77 

Eugene, Oregon, USA) were prepared separately as per the manufacturer’s instructions. This 78 

protocol utilizes green-fluorescent SYTO®9 stain to label live bacterial cells green, whereas 79 

red-fluorescent propidium iodide stains dead cells red. The staining solutions were prepared in 80 

Mueller Hinton Broth (MHB) and filter-sterilized using a syringe-mounted membrane filter of 81 

0.2 µm pore size prior to use. The BacLight stains were added directly to the leaf surfaces 82 

which were placed onto sterile glass slides in 250 µL aliquots before placing a coverslip on top 83 

of the stain. The stained leaf was then incubated in the dark for 30 min before viewing with a 84 

Confocal Scanning Laser Microscopy (Leica TCS SP2, Leica Microsystems, GMBH, 85 

Heidelberg, Germany). The samples were scanned with a 488 nm Argon laser for the SYTO®9-86 

stained bacteria using emission wavelengths collected at 500–550 nm, whereas a 543 nm 87 

Helium/Neon laser was used for the propidium iodide-stained bacteria using emission 88 

wavelengths collected at 574–714 nm. The microscope was equipped with either 40× HCX 89 

Plan (numerical aperture = 0.85) or 63× oil immersion objective (numerical aperture = 1.32) to 90 

image the leaf surfaces. 91 

2.2 Ozone fumigation system and optimization of ozone exposure levels to treat 92 

leafy salads  93 



Ozone concentration and exposure time were optimized to treat ‘ready-to-eat’ organic baby 94 

spinach, Iceberg lettuce, wild rocket, coriander and watercress. The ozone fumigation system 95 

stainless steel container (35 cm in diameter) placed in a fume hood into which ozone gas was 96 

introduced (produced by an electric discharge ozone generator supplied with oxygen using a 97 

model SGA01 Pacific Ozone Technology Inc., Brentwood, California, USA). Stainless steel 98 

needle valves/gap flow meters were used to manually control the introduction of ozone. 99 

Produce was placed in the treatment chamber which was closed using a Pyrex cover (Wani et 100 

al., 2015). Targeted produce were exposed to 1, 10, 25, 50 µL L−1 ozone or ‘charcoal-filtered 101 

air’ (control) for varying durations (from 1 to 60 min). A photometric analyzer (model 450, 102 

manufactured by Advanced Pollution Instrumentation Division, 9480 Carroll Park Drive, San 103 

Diego, CA 92121-5201) was used to accurately monitor the ozone concentration in the system. 104 

Following targeted ozone exposure, the produce was then placed in a sterile self-seal bag and 105 

maintained at 4°C in the dark to mimic commercial storage conditions. The appearance treated 106 

produce was assessed visually using a 5-point scale (5 being unaffected and 1 being the worst 107 

colour quality) 108 

2.3 Direct enumeration of bacteria on leafy produce after ozone treatment using 109 

confocal microscopy  110 

‘Ready-to-eat’ organic baby spinach, Iceberg lettuce, wild rocket, coriander and watercress 111 

were aseptically cut into discs using a sterile cork borer and placed onto sterile glass slides. 112 

Produce was treated with either 0 (charcoal-filtered air), 1 (spinach, lettuce and watercress) or 113 

10 (rocket and coriander) µL L−1 ozone for 10 min (results obtained from Section 3.2). The 114 

leaf surface bacterial staining procedure as described in Section 2.1 was then performed. 115 

Images were captured at 40× magnification. Three replicates (leaf discs) of each product per 116 

treatment were used for enumeration of viable cells (stained green). Bacteria from 20 117 

microscopic fields were counted on each replicate leaf for each type of fresh produce using 118 



image J software (Selinummi et al., 2005), and results were expressed as average numbers of 119 

bacteria per square centimeter (cm2) of leaf. 120 

2.4 Investigating potential reasons for bacterial survival during ozone treatment 121 

2.4.1 Isolation and identification of Pseudomonas sp. 122 

The effect of stress on ozone resistance was determined on a Pseudomonas isolate from 123 

coriander. Samples (25 g) were stomached in Buffered Peptone Water (BPW) and the total 124 

viable count (TVC) determined after growth on Plate Count Agar (PCA) using standard spread 125 

plate technique. PCA agar plates were incubated at 30°C for 3 days after serial dilution in 126 

minimum recovery diluent (MRD). Discrete colonies of one morphologically dominant 127 

microbial type were subsequently re-cultured for microbial identification using 16S rRNA gene 128 

sequence. The total DNA from agar grown cells was extracted using a QIAGEN kit and 129 

extracted DNA was stored at −20°C. Using the universal prokaryotic primers, (27F) (5′-130 

AGAGTTTGATCMTGGCTCAG-3′) and (1525R) (5′-AAGGAGGTGWTCCARCC-3′), a 131 

segment of the bacterial 16S rRNA gene was amplified using a Hybaid PCR Express thermal 132 

cycler; PCR cycles were performed at 94°C for 3 min, 94°C for 30 s, 55°C for 30 s and 72°C 133 

for 30 s. A total of 30 cycles were performed with a final extension step at 72°C for 5 min. PCR 134 

amplification was performed using reaction mixtures (final volume 10 µL) consisting of 2 ng 135 

template, buffer incubation mix with 1.5 mM MgCl2, 0.2 mM dNTP (Qiagen), 0.5 mM primer 136 

27F, 0.5 mM primer 1525R, and 2.5 U of DreamTaq proof-reading DNA Polymerase 137 

(Fermentas). Amplification of PCR products was confirmed by 1.5% agarose gel 138 

electrophoresis with ethidium bromide staining and visualised using a UV transilluminator. 139 

PCR products were then purified using Exonuclease 1 & Alkaline phosphatase prior to 140 

sequencing (ABI 3730, 96 capillary array sequencer). The sequences were generated using 141 

Sanger sequencing and the sequences were assembled by aligning the forward and reverse 142 



sequences using ABI MicroSeq software to form a consensus sequence. This consensus 143 

sequence was then compared with sequences in the ABI MicroSeq database as well as with 144 

those in the BLAST nucleotide database (NCBI) to allow for genus/species matching. The 145 

nucleotide sequence for the isolate employed in this study has been deposited in GenBank 146 

(NCBI) under the accession number: KR067481. 147 

2.4.2 Effect of temperature on ozone resistance of Pseudomonas sp. in vitro 148 

Confocal microscopy images of ozone-treated leaves revealed that two/three cells often 149 

survived in micro-colonies surrounded by dead cells. Interestingly, individual survivors were 150 

also visible (See Results Section 3.3). This indicated that cells could be physically protected 151 

by other cells when present in small colonies but also that some invidual cells appear to display 152 

some type of inherent resistance to ozone exposure. To find potential reasons for the ozone 153 

resistance observed by individual bacteria, we hypothesised that both previous stress exposure 154 

and cell age contribute to ozone resistance. 155 

To determine the effect of prior cold exposure on ozone resistance in vitro, a colony of 156 

Pseudomonas sp. (isolated from coriander) was sub-cultured on to plates and incubated at 157 

optimum conditions i.e. 25°C for 48 h (control) and 4°C (test) to mimic produce storage 158 

conditions for 7 days. A colony of Pseudomonas sp. from each temperature plate was serially 159 

diluted to a standard concentration of 104 cells per mL (maintaining respective temperature 160 

conditions) in MRD and 100 µL of the cell suspension was spread on to Cephaloridin Fucidin 161 

Centrimide (CFC) agar plates. Each plate (containing either bacteria grown at 4°C or 25°C) 162 

was then treated with either 1 µL L−1 ozone concentration or ‘clean air’ for 10 min. Colony 163 

count was determined after incubating all plates at 25°C for 48 h. 164 

2.4.3 Colony age effects on ozone resistance of Pseudomonas sp. in vitro 165 



To determine whether cell age affected the ozone resistance of bacteria, a colony of the 166 

Pseudomonas sp. (see Section 2.4.1) was sub-cultured on to CFC plates and incubated at 25°C 167 

for up to 12 days. A single colony was isolated on the 2nd, 4th, 7th, 10th and 12th day of incubation 168 

and transferred to MRD. A volume of 104 cells per mL of each cell age was spread (100 µL) 169 

onto sterile CFC plates and these plates were then exposed to either 1 µL L−1 ozone or ‘clean 170 

air’ for 10 min (control). Colony count was determined after incubating CFC plates at 25°C for 171 

48 h. The % survival of Pseudomonas sp. was calculated by comparing the ozone treated 172 

colonies to the control colonies (not ozone treated). 173 

2.5 Statistical analysis 174 

Data were analysed using SPSS (IBM SPSS Statistics 19 64Bit) and graphs were produced 175 

using Microsoft Office Excel 2010 and SigmaPlot 12.5. Normal data distribution was tested 176 

using Normality test and significant differences between mean values were verified using LSD 177 

(P < 0.05) following one-way ANOVA. 178 

179 



3.0 Results  180 

3.1 Confocal microscopy: Visualization of bacteria on leaves 181 

Spinach leaves were observed using confocal scanning laser microscopy together with 182 

LIVE/DEAD® BacLight™ Viability Kit to determine if the bacteria that survived ozone 183 

treatment were typically present in colonies or individual cells. Bacteria were attached mainly 184 

to the leaf epidermal cell margins, observed at 20× magnification, scale bar = 47.6 µm (Fig. 1). 185 

 186 

Figure 1: Confocal microscopy image of a control (not exposed to ozone) baby spinach leaf. 187 

Bacteria appeared to attach preferentially to the epidermal cell margins. Scale bar = 47.6 µm. 188 



3.2 Optimized ozone exposure levels to treat leafy produce 189 

All treated leafy produce showed varying levels of discoloration, whereas non-exposed 190 

controls showed little to no discolouration. Non-exposed controls and all leaves treated with 1 191 

µL L-1ozone for duration time 10 min or less received a value of ‘5’ on the 5-point scoring 192 

scale. All produce scored ‘1 to 4’ with the score reciprocally related to ozone * exposure time. 193 

Only coriander and rocket scored ‘5’ when exposed to 10 µL L−1 ozone for up to 10 min. Table 194 

1 shows maximum ozone exposure levels achievable to score ‘5’ on the 5-point quality scale. 195 

Table 1: Maximum ozone exposure levels of different types of leafy produce (ozone exposure 196 

levels that received a value of ‘5’ on the 5-point quality scale) 197 

Target produce Ozone exposure limit 

Concentration of ozone 
exposure (µL L−1) 

Duration of ozone exposure 
(min) 

Baby spinach 1 10 

Watercress 1 10 

Coriander 10 10 

Lettuce 1 10 

Rocket 10 10 

 198 

 199 

 200 
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3.3 Direct enumeration of bacteria on leafy produce after ozone treatment using 205 

confocal microscopy 206 

Bacterial viability on non-ozone exposed control leaves was nearly 90% (Fig. 2A & 2B), 207 

whereas only 10% of bacteria on ozone-treated leaf surfaces appeared viable. On control leaves, 208 

large aggregations of live cells stained green are visible (see Fig. 2A indicated by the blue 209 

arrow). Micro-colonies and cells in twos/threes, as indicated by the orange arrow (Fig. 2A – 210 

spinach leaf as an example), were frequent. Individual dead cells stained red are visible in Fig. 211 

2A (indicated by a white arrow). Similar bacterial aggregates were also observed on watercress, 212 

coriander, rocket and lettuce leaf surfaces (results not shown). In Fig 2B, yellow arrows 213 

indicate individual bacteria surviving ozone treatment. Similar results were also observed on 214 

watercress, coriander, rocket and lettuce leaf surfaces (results not shown). Enumeration of 215 

bacterial viability after ozone exposure showed at least 1-log reduction in all targeted produce 216 

(Fig. 3). 217 

 218 

 219 

 220 



 221 

Figure 2: Confocal microscopy image of a baby spinach leaf. Bacteria were stained with 222 

green-fluorescent SYTO®9 to label live bacterial cells green and with red-fluorescent 223 

propidium iodide to label dead bacterial cells red. Scale bar = 23.8 µm (A) Non-ozone 224 

exposed leaf (control). Blue arrow indicates large aggregates of live cells, orange arrow 225 

indicates small colonies in two/threes, red arrow indicates bacteria in chains, yellow arrow 226 

indicates individual cells present on a leaf surface and white arrow indicates individual dead 227 

cell (B) Leaf treated with 1 µL L−1 ozone for 10 min. White arrow indicates live cell present 228 

in micro-colony of dead cells and yellow arrows indicate individual live cells surviving ozone 229 

treatment. 230 
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Figure 3: Total viable bacterial counts from the surfaces of spinach, watercress, and lettuce 232 

leaves treated with 1 µL L−1 ozone and coriander and rocket treated with 10 µL L−1 (grey 233 

bars) versus leaves not treated with ozone and maintained in ‘clean air’ for an equivalent 234 

period (black bars) for 10 min. Data derived from microscopic counts of SYTO®9/PI stained 235 

bacteria on leaves. Values represent means (+/−Standard Error) of measurements made on 236 

three separate leaves per treatment. 237 

3.4 Investigating potential reasons for bacterial survival on leaf surfaces after 238 

ozone treatment 239 

3.4.1 Effect of temperature on ozone resistance of Pseudomonas sp. in vitro 240 

Colony numbers (CFU) of Pseudomonas sp. grown in optimum conditions (25°C) in vitro were 241 

significantly (P < 0.05) reduced by ozone treatment (Fig. 4). In contrast, colony numbers of 242 

Pseudomonas sp. maintained in cold conditions (i.e. stored at 4°C) in vitro were not 243 



significantly (P < 0.05) reduced by ozone treatment (Fig. 4) implying that bacteria submitted 244 

to refrigerated conditions show enhanced resistance to ozone. 245 
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Figure 4: Impacts of ozone-exposure on Pseudomonas sp. grown at 25°C and 4°C and 247 

exposed to either 1 µL L−1 ozone concentration (grey bar) or ‘clean’ air (black bar) for 10 248 

min. After the treatment plates were incubated at optimum temperature i.e. 25°C for 48 h. 249 

Values represent means (±Standard Error) of measurements made on three independent plates 250 

per treatment. Bars with different letters are statistically significantly different (P < 0.05). 251 

3.4.2 Effect of age on ozone resistance of the leaf surface bacteria in vitro 252 

Pseudomonas cells derived from 7, 10 and 12 day old colonies showed approximately 40% 253 

greater survival to ozone treatment than those from 2 and 4 day old cells (Fig. 5), suggesting 254 



that cells from older bacterial colonies are more ozone resistant than cells from younger 255 

colonies. The increase in survival was statistically significant (P < 0.05). 256 
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Figure 5: Survival of cells obtained from different colony ages of Pseudomonas sp. exposed 258 

to 1 µL L−1 ozone concentration for 10 min. After ozone exposure, the culture plates were 259 

maintained at 25°C for 12 days. Bars with different letters are statistically significantly 260 

different (P < 0.05). 261 

 262 

263 



4.0 Discussion 264 

Confocal microscopy revealed that bacteria were mainly attached to the epidermal plant cell 265 

margins, consistent with the report by Romantschuk et al. (1996). SYTO®9/PI staining in 266 

conjunction with CSLM allowed in situ observation of bacteria on untreated leaf surfaces 267 

(control) and they appeared to be present as small micro-colonies and as individual cells. 268 

Similar observations were obtained by Carmichael et al. (1999) who used fluorescein 269 

isothiocyanate (FITC) staining together with confocal imaging techniques to observe both 270 

clusters and individual bacteria on the surface of lettuce leaves. 271 

The visual appearance and freshness of leafy produce has been the main judging criteria for 272 

quality distinction at purchase or consumption (Rico et al., 2007). No visual discolouration was 273 

observed when leafy produce was treated with 1 µL L−1 gaseous ozone but higher levels, e.g. 274 

10 µL L−1 for 10 min, caused discolouration to spinach, watercress and lettuce. Similar results 275 

were previously observed on fresh produce like lettuce, spinach, rocket leaves when treated 276 

with different ozone concentrations (Alexopoulos et al., 2013). Only coriander and rocket 277 

leaves retained freshness when exposed to 10 µL L−1 ozone treatment. This may be related to 278 

the difference in the physiology of the produce e.g. stomatal conductance (Jin-Gab Kim, 1998; 279 

Alexopoulos et al., 2013). Discolouration was observed when high ozone dosages were 280 

applied. Bacterial colonization varies between leaves and largely depends on the properties of 281 

the leaf surface e.g. leaf surface morphology, hydrophobicity, waxiness, leaf surface chemistry 282 

etc (Golberg et al., 2011). Confocal microscopy revealed no obvious link between physical 283 

surface morphology and bacterial colonization. 284 

 The data presented here indicate that although ozone treatment significantly reduced bacterial 285 

viable counts on the leaf surface, approximately 10% of the bacterial flora exhibited resistance 286 

to the ozone treatment employed. Confocal images of ozone treated leaves revealed that 287 



two/three live cells survived in micro-colonies (surrounded by dead cells). Micro-colonies and 288 

biofilms are formed on leaf surfaces due to bacterial attachment and production of 289 

exopolymeric substances (Mah, 2001). This motivates microbial cells to stimulate activities 290 

unachievable alone or outside of micro-colonies. The possible effect of micro-colonies or 291 

biofilms on microbial biology and ecology are protection from UV, desiccation and predation, 292 

and biofilms potentially allow genetic exchange, gene transfer and synergistic interaction 293 

between cells (Morris and Monier, 2003). Biofilms allow microbes to remain in close contact 294 

and communicate by quorum sensing, and thus, combat anti-microbial treatments as a 295 

community (Jahid and Ha, 2012). The survival of bacteria to ozone exposure could also be due 296 

to the presence of a small sub-population of persister cells. These cells are invulnerable cells 297 

that neither grow nor die, which may enter a highly-protected state exhibiting intense resistance, 298 

and develop more commonly in micro-colonies or biofilm (Van Houdt and Michiels, 2010; 299 

Bridier et al., 2011). Therefore cells in micro-colonies/biofilms on leaf surfaces may resist 300 

ozone treatment by both physical protection (i.e. surrounding cells are killed but the cells in 301 

the centre of a colony are physically protected) or by the biofilm bacteria having inherent 302 

enhanced resistance mechanisms. 303 

Interestingly, some individual cells on the leaf surface also survived ozone treatment 304 

suggesting that they also have inherent resistance mechanisms. We hypothesised that the 305 

survival of the individual bacteria on the leaf surface after ozone exposure is due to ageing or 306 

prior exposure to cold (Johnson, 2008; Wani et al., 2015). 307 

During growth in the field, the bacteria present on the surface of leaves are continually 308 

subjected to changes in temperature, nutrient availability and osmotic pressure (Lindow, 1995). 309 

In addition, to prevent microbial spoilage and contamination by pathogens, cumulative mild 310 

processing steps are employed during the production of fresh produce increasing chances of 311 



additional stress and potentially developing hardy bacteria that are able to resist any further 312 

applied treatments such as ozone exposure (Capozzi et al., 2009). 313 

A number of stresses have been shown to induce such ‘cross protection’, and in this study, cold 314 

stress was used as a model to determine if prior stress exposure enhanced the ozone resistance 315 

of a typical leaf surface bacterium. Our results suggest that pre-exposure of bacteria 316 

(Pseudomonas sp.) to cold stress enhanced ozone resistance in vitro. Survival of these bacteria 317 

in stressed conditions is a combination of cell responses designed to minimise the lethal effects 318 

or repair damage (Jozefczuk et al., 2010). When repairing damage, the presence of cold shock 319 

proteins in bacteria overcomes growth-limiting effects by either altering redox status or 320 

increasing stability of RNA and DNA secondary structures (Reva et al., 2006). Cold shock 321 

acclimation proteins are produced in high abundance during low temperature and have been 322 

identified in Pseudomonas sp. (Reva et al., 2006). Our results indicate that such stress-related 323 

temperature responses may also help bacteria to survive subsequent ozone exposure. 324 

We also hypothesised that cell age is a factor contributing to the ozone resistance of individual 325 

leaf surface bacteria (Wani et al., 2015). Fresh produce typically takes weeks to grow and any 326 

cells present on the leaf surface could easily have been present and persisting for a prolonged 327 

period. Our results clearly demonstrated that cells derived from older colonies were more 328 

resistant to ozone than cells from younger colonies and this observation is strengthened by 329 

previous work showing that older biofilm cells of Pseudomonas aeruginosa were more 330 

resistant to biocides than younger cells (Bridier et al., 2011) and that the older cells had an 331 

increased expression of RpoS genes. 332 

Therefore, further understanding of the molecular basis of ozone resistance of leaf surface 333 

bacteria is required. A detailed understanding of the resistance mechanisms involved may help 334 

to develop novel methods to control the contamination of fresh produce. 335 



5.0 Conclusions 336 

This work focused on visualising microbes on leaf surfaces after ozone treatment by using 337 

confocal scanning microscopy and investigating potential reasons for ozone resistance in leaf 338 

surface bacteria. Confocal microscopy demonstrated that bacterial cells able to survive ozone 339 

exposure occurred both in micro-colonies and as individuals on the leaf surface. This suggested 340 

that bacterial ozone resistance was likely due to a number of factors e.g. physical protection in 341 

small colonies and inherent resistance of individual cells. Subsequent results suggested that 342 

increasing cell (colony) age and prior exposure to cold stress of a typical leaf surface bacterium 343 

(Pseudomonas sp.) enhances ozone resistance in vitro. Therefore, further investigation on 344 

understanding the mechanisms of ozone resistance in aged and cold stressed cells of 345 

Pseudomonas sp. is required, and this may lead to methods that can overcome resistance. Such 346 

applications could deliver immense potential benefits for commercial use. 347 
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