Introduction
In the last decades, the development of Information and Communication Technologies (ICT) has introduced many important benefits in various areas. In higher educational institutions, ICT has transformed the manner in which university courses are delivered. The integration between ICT and education has produced various advantages. The reason for the adoption of advanced ICT is usually a wish to improve teaching and learning effectiveness. The evolution of ICT in the field of education has produced new concepts such as e-learning, blended learning, virtual classes, web-based classes, online learning, and LMS.

Learning Management Systems (LMS)

- JCC just adopted a LMS, and no usability evaluation has been done on the system.
- LMS experience a lot of usability issues.
- Evaluating the usability of e-learning systems is considered an important task.
- It was reported that in spite of its advantages, SUS has rarely been used in evaluating LMS.

Research Motivation

- ICT is becoming an important factor in education.
- Evaluating the usability of e-learning systems is an important task.
- In spite of its advantages, SUS has rarely been used in evaluating LMS.

Jeddah Community College (JCC)

System Usability Scale (SUS)

1996

Introduced by John Brooke

10- statement Survey

- Participants agree or disagree with the statements based on 5-point Likert scale.

1 2 3 4 5
Strongly Disagree Strongly Agree

- SUS score can be within the range of 0 and 100 for each participant.

Data was analysed using Excel 2016 and SPSS 20

50 responses were received

Participants: All participants of this study were enrolled in IT courses.

Methodology

Demographic Information

Google Forms

Online survey for data collection

Pilot: The survey was sent by email to 5 students.

Findings

SUS Score by Age

- Data is normally distributed.
- There was no statistical significant difference in SUS score between age groups (t(48) = 1.59, p = .119).
- There is no correlation between age and SUS score.

SUS Score Mean by Age

<table>
<thead>
<tr>
<th>Age</th>
<th>20 - 25</th>
<th>> 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUS Score Mean</td>
<td>61.5</td>
<td>70.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>< .05</td>
<td></td>
</tr>
</tbody>
</table>

SUS Score Mean by ICT Skills

- Data is normally distributed.
- There was no statistical significant difference in SUS score between ICT skills groups (t(48) = - .305, p = .762).
- There is no correlation between ICT skills and SUS score.

SUS Score by ICT Skills

<table>
<thead>
<tr>
<th>ICT Skills</th>
<th>Coefficient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>.044</td>
<td>.762</td>
</tr>
<tr>
<td>Advanced</td>
<td>.044</td>
<td>.762</td>
</tr>
</tbody>
</table>

Overall SUS Score

<table>
<thead>
<tr>
<th>Acceptable SUS Score Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unusable</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

SUS Score by Experience with LMS

- Data is statistically different from a normal distribution.
- There was no statistical significance difference in SUS score between experienced and non-experienced students (U = 279, p = .855).

SUS Score Mean by Experience

<table>
<thead>
<tr>
<th>SUS Score Mean by Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>68</td>
</tr>
</tbody>
</table>

SUS Score by LMS Usage Frequency

- There is a statistical significance difference in SUS score between LMS usage frequency groups (X2(2) = 7.376, p = .025).
- LMS usage frequency is positively associated with SUS score, r = .376, n=50, p<.007 .