
A Learning-based Neural Network Model for the

Detection and Classification of SQL Injection Attacks

*Naghmeh Moradpoor Sheykhkanloo

School of Computing (SoC), Edinburgh Napier University

Edinburgh, United Kingdom

n.moradpoor@napier.ac.uk

Abstract— Structured Query Language injection (SQLi)

attack is a code injection technique where hackers inject SQL

commands into a database via a vulnerable web application.

Injected SQL commands can modify the back-end SQL database

and thus compromise the security of a web application. In the

previous publications, the author has proposed a Neural Network

(NN)-based model for detections and classifications of the SQLi

attacks. The proposed model was built from three elements: 1) a

Uniform Resource Locator (URL) generator, 2) a URL classifier,

and 3) a NN model. The proposed model was successful to: 1)

detect each generated URL as either a benign URL or a malicious,

and 2) identify the type of SQLi attack for each malicious URL.

The published results proved the effectiveness of the proposal. In

this paper, the author re-evaluates the performance of the

proposal through two scenarios using controversial data sets. The

results of the experiments are presented in order to demonstrate

the effectiveness of the proposed model in terms of accuracy, true-

positive rate as well as false-positive rate.

Keywords— Intrusion Detection, SQL injection attacks, machine

learning, Artificial Intelligence, Neural Networks, Web Attacks,

Databases

I. INTRODUCTION

SQL is a programming language designed for handling data
in a Relational Database Management System (RDBMS) [17].
SQLi attack is a technology weakness that comes from dynamic
script language such as PHP: Hypertext Processor (PHP), Active
Server Pages (ASP), Java Server pages (JSP) and Common
Gateway Interface (CGI). It takes advantages of inappropriate
and/or poor coding of web applications that allows hackers to
inject malformed SQL commands in order to gain un-authorised
access to data resides in the related back-end database.

For any organisation, data contains important and
confidential information that can be related to them, their
customers, and their business partners. This information can
range from personal or less sensitive information such as: first
name and last name to more sensitive information such as:
username, password, pin code, and credit card information. If
inputs from a user-side are not properly sanitised, a hacker can
generate crafted SQL commands and can inject them into a
database in order to pass say a login barrier and see what exists
behind it. This leads to sever damages on a given database such
as: disclosing, modifying, and/or removing data or in a worse-
case scenario wiping the entire database. Therefore, it is
important for any organisation to protect their databases in order
to prevent any loss to themselves, their customers, and their
business partners.

SQLi attack has been ranked as the most harmful danger,
A1-Injections, in top 10 security threats for web applications in
Open Web Application Security Project (OWASP) [13]. An A1-
Injection attack includes injection flaws such as: SQL, OS, and
LDAP injections. This occurs when unsafe and/or untrusted data
is sent to an interpreter as part of a command or query tricking it
into executing unintended commands or accessing data without
a proper authorisation.

CIA triad, which stands for: Confidentiality, Integrity, and
Availability, is a well-known security model that can be used to
develop a security policy for any organisation. If a given
database is attacked, CIA elements can be violated. For instance,
the data in the database can be revealed to unauthorised users,
which is a failure in Confidentiality element of the CIA triad.
The data can be altered, which is a failure in Integrity element of
the CIA triad. In a worst-case scenario, the data can be
completely wiped out from the database which is a failure in
Availability element of the CIA triad.

In the previous work [14], the author proposed a NN-based
model for SQLi attack detections which built from three
elements: a URL generator, a URL classifier, and a NN model.
Addressing the published results, the previous proposal was
successful to detect the malicious URLs from the benign URLs.
The author then extended the proposal to a pattern recognition
NN-based model for the detection and classification of the SQLi
attacks [15]. Addressing the published results, the proposed
model was successful to not only detect the malicious URLs
from the benign URLs, but also classify the malicious URLs into
the popular SQLi attack categories. Finally, in the most recent
work [16], the author stress tested the previous proposals where
the model demonstrated a good performance in terms of
accuracy. In this paper, the author further investigates the
performance of the previous proposal [14-16] by implementing
two different test beds and scenarios. This includes employing
different sets of data for the developed NN-based model in order
to demonstrate the effectiveness of the proposed technique.

The remainder of this paper is organised as follows. In
Sections II, the author reviews the related work for the

TABLE 1 SQL INJECTION ATTACK TYPES, SIGNATURES, AND PREVENTIONS [15]

Type of SQLi attack Signature Prevention on a user side Prevention on a database side

Tautologies

(Type1)

‘, OR, =, like, select -Strictly validating user inputs -Blocking queries containing tautological

condition WHERE clauses

Illegal/logically
incorrect queries

(Type2)

invalid conversions
(CONVERT (TYPE)),

incorrect logics, AND,

ORDERBY, ‘

-Strictly validating user inputs

-Stopping and/or sanitising generated error
messages (e.g. logical errors, type errors and

syntax errors) from a given database

Piggy-backed query
(Type3)

; -Strictly validating user inputs

-Avoiding multiple statement executions on a
database by scanning all queries for delimiter

“;”

Union queries
(Type4)

UNION, UNION SELECT -Strictly validating user inputs

-Blocking multiple query executions in a single
statement

Stored procedures

(Type5)

;, Stored procedure

keywords (SHUTDOWN,

exec, xp_cmdshell(),
sp_execwebtask())

-Strictly validating user inputs

-Giving proper roles and privileges to stored

procedures being used in a web application

-Using a low privileged account to run a

database

-Executing stored procedures with a safe
interface

Inference SQLi attack

(Type6)

;, AND, IF ELSE,

WAITFOR

-Strictly validating user inputs

-Carefully crafting error messages return from

databases
-Patching/hardening databases

Alternate encoding

(Type7)

;, exec (), Char (), ASCII (),

BIN (), HEX (), UNHEX (),

BASE64 (), DEC (),
ROT13 ()

-Strictly validating user inputs, for instance

prohibiting any usage of meta-characters e.g.

“Char ()”

-Treating all meta-characters as normal

characters

detections and preventions of the SQLi attacks. The
author’s previous proposal [14-16] and the related
implementations are discussed in Sections III & IV,
respectively. Sections V and VI include two different
scenarios along with the related results using three sets of
data. This is followed by conclusions of the work in Section
VII, acknowledgments, and references.

II. RELATED WORK FOR SQL INJECTION

ATTACKS

In this section, existing work related to the SQLi attack
detection and prevention techniques are addressed as
follows.

Authors in paper [2] proposed an algorithm based on
Support Vector Machine (SVM) in order to detect and
classify SQLi attacks. Addressing their captured results,
their proposed algorithm presented 96.47% accuracy for
SQLi attack detections.

Authors in paper [3] proposed a static analysis tool for
checking Java Database Connectivity (JDBC) to verify the
correctness of dynamically generated SQL queries.
Addressing their captured results, their proposed JDBC
checker flags potential errors or verify their absence in
dynamically generated SQL queries with low false positive
rate.

In order to detect SQLi attacks, authors in paper [4]
proposed a query tokenisation algorithm where
QueryParser was employed. They have assumed that there
is no way someone can perform a SQLi attack without
inserting space, single quote, and/or double dashes in a
query. Therefore, they designed two arrays: one for the
original queries and one for the injected queries where each
element is a token obtained from the related query. At the
end, they obtained the length of each resulting array and
compared them. Henceforth, if two arrays have different
length there is a SQLi attack.

In order to prevent SQLi attacks, authors in paper [5]
proposed a Random4 encryption algorithm based on

randomisation where user input values, e.g. usernames and
passwords are converted into cipher text using a

lookup table. The encrypted key can then be stored in a
database and compared with the user inputs received during
the login time. In order to evaluate the performance of their
proposed algorithm they employed techniques such as:
brute force attack and dictionary attacks in order to crack
the related keys stored in the database. They also compared
their proposal with existing algorithms such as: AMNESIA
[8], SQL rand [10], SQL DOM [9], WAVES [11], and SQL
check [12] in terms of encoding, detection, and prevention.

Authors in paper [6] proposed a Service Based SQL
Injection Detection (SBSQLID) algorithm which is
positioned between a given application server and the
related database. SBSQLID includes three elements: input
validator, query analyser, and error service. The input
validator retrieves user inputs from a web application and
passes them into a set of injection characters for pattern
matching. Thus, if pattern matching returns false, the user
will be able to work with the web application otherwise
he/she will be disallowed. After validating the user inputs,
they will be passed into the query analyser for syntactic and
semantic structure verifications. The last element of their
proposal is an error service where any error messages
produced by the database server will be generalised and
then sent back to the application server. This is done in
order to stop attackers for receiving any Meta-data
information from a back-end database.

Authors in paper [7] proposed a translation and
validation-based solution for SQLi attacks, TransSQL,
where SQL requests are automatically translated to
Lightweight Directory Access Protocol (LDAP)-
equivalent requests. SQL and LDAP-equivalent queries are
then executed on SQL database and LDAP database,
respectively. At the end, TransSQL checks the difference
in responses from both databases in order to detect and then
block any SQLi attempts.

Authors in paper [8] proposed AMNESIA stands for
Analysis and Monitoring for NEutralising SQL Injection

Attacks. AMNESIA was proposed in order to detect and
prevent SQLi attacks by combining static analysis and
runtime monitoring. The static analysis was used in order
to analyse the entire codes in a web application and
automatically build a model for legitimate queries that a
given web application can generate. The runtime
monitoring was then employed in order to monitor all
dynamically generated queries and check whether they are
different from the static generated model. At the end,
queries that violate the static model were classified as SQLi
attacks and prevented from any access to the database.

Authors in paper [9] proposed SQL Domain Object
Model (DOM) for compile time checking instead of
runtime checking of dynamic SQL statements. Using SQL
DOM, application developers are able to build dynamic
SQL statements through manipulation of objects, which are
strongly typed to the database, without the need for string
manipulations.

In order to detect and prevent SQLi attacks, authors in
paper [10] proposed a randomised SQL query language,
SQLrand, where the standard keywords in SQL were
manipulated by attaching a randomised and a hard to guess
integer to them. To achieve probability and security, their
proposed SQLrand includes a proxy server that sits
between a client and a database in order to receive
randomised SQL quires from a client and de-randomised
them before passing them to the back-end database.
Addressing their captured results, the latency overhead that
imposed on each query by using SQLrand is negligible thus
it does not sacrifice the performance.

Authors in paper [11] proposed a Web Application
Vulnerability and Error Scanner (WAVES) as a security
assessment tool in order to identify poor coding practices
that render web applications vulnerable to attacks such as
SQLi and cross-site scripting attacks. A number of
software testing techniques such as: dynamic analysis,
black-box testing, fault injection, and behaviour
monitoring was described and took into account in their
implementations. At the end, WAVES was compared with
other vulnerability scanner tools where it has been proven
as a feasible platform for assessing web application
security.

Authors in paper [12] proposed SQLCHECK as a
runtime checking algorithm to prevent SQLi attacks. Their
proposed algorithm was evaluated in real-world web
applications with real-world attack data as inputs where
SQLCHECK produces no false negative and no false
positive. Addressing their captured results, SQLCHECK
also has low run-time overhead and can be applied
straightforwardly to web applications written in different
languages.

After studying the exiting work related to the SQLi
attack detection and prevention techniques, the author has
noticed a huge lack of employing Artificial Intelligence
(AI) in this filed. AI has been successfully used in a wide
range of fields including: medical diagnosis, stock trading,
robot control, law, remote sensing, scientific discovery, and
toys. AI studies how to create computers and computer
software that are capable of intelligent behaviour just like
human beings. Artificial neural Networks (NNs) is one of
the popular AI algorithms which has been employed in
various fields in order to perform complex functions that

are difficult for conventional computers or human beings.
For instance: pattern recognition, identification,
classification, speech, vision, and control systems. This
motivates us to bring the SQLi attack detection and
prevention problem into the AI filed and particularly into
the application of the NN. Our ultimate research objective
is to provide a NN-based Intrusion Detection and
Prevention (ID&IP) tool that can be easily extended from
SQL-IDS to any application level attacks e.g. Deny of
Service (DoS), drive-by downloads, phishing email, and
Man-In-The-Middle (MIMT) attacks.

In author’s previous work [14], she proposed a NN
model for the detection of SQLi attacks. Her proposed
technique was successful to classify a given URL as either
a benign URL or a malicious URL. This has been done by
taking into account the popular SQLi attack keywords and
URL patterns. The author then improved this initial
proposal in [15] by adding another level of intelligence
where her proposed model was successful to not only detect
the malicious URLs from the benign URLs but also to
detect the type of SQLi attacks, Table 1 [15], for the
malicious URLs and classify them accordingly. In the
author’s most recent work [16], our previous work from
[14] and [15] has been tested in order to demonstrate the
effectiveness of our proposed technique. In this paper, we
re-evaluate the performance of our previous proposal in
terms of accuracy, true-positive rate, and false positive-rate
through two scenarios. This includes using different sets of
URLs for the URL generator that leads to different
classifications made by the URL classifier and different
decisions made by the NN model. The author’s previous
proposal from [14-16] is discussed in the next section.

III. PROPSOED MODEL

In this section, we explain three elements of our
previous proposal [14-16] which includes: the URL
generator, the URL classifier, and the NN model as
follows, Figure 1[15].

A. The URL Generator
The URL generator has two components: “Benign

URLs” and “Malicious URLs”. The “Benign URLs”
includes the real URL addresses that exit in the world and
have/have not SQLi attack signature(s). These URLs have
been captured from [18]. The Google search engine [19]
has been employed in order to find the URL addresses
which are benign but have SQLi attack signature(s). The
“Malicious URLs” includes the malevolent and harmful
URL addresses that have SQLi attack signature(s). These
URLs have been generated by adding the SQLi attack
signature(s) to the most popular URL addresses in the
world [18] using the PHP scripting language [20].

B. The URL Classifier
The URL classifier is responsible for: 1) identifying a

given URL as a benign URL or as a malicious URL, and 2)
detecting the type of SQLi attack for the malicious URLs.
Basically, the URL classifier deals with the URL addresses
which are presented/generated by the URL generator. The
author has mathematically defined the URL classifier’s
functionalities as follows.

 Let a URL characteristic ri is defined by a random
variable Ri as follows:

Figure 1. Components of the proposed neural network-based model [15]

𝑅𝑖=

{
1, if discovered by the SQLi signature detectors

0, if not discovered by the SQLi signature detector

Let C be a random variable indicating the URL’s class
which can be either malicious or benign:

Cϵ {malicious, benign}

Each URL (malicious/benign) is assigned with a vector
defined by r− = (r1, r2, , … , rn) with ri being the result of the
i-th random variable Ri.

Let a malicious URL characteristic ti is defined by a
random variable Ti:

𝑇𝑖=

{
1, if discovered by the SQLi attack type detectors

0, if not discovered by the SQLi atatck type detector

Let D be a random variable representing the type of the
malicious URLs, which can be: “Tautologies”,
“Illegal/logically incorrect queries”, “Piggy-backed query”,
“Union queries”, “Stored procedures”, “Inference SQLi
attack”, or “Alternate encoding”, Table 1[15]:

D𝜖 {Tautologies, Illegal/logically incorrect queries,
Piggy-backed query, Union queries, stored procedures,
Inference SQLi attack, Alternate encoding}

Each malicious URL is assigned with a vector defined
byt− = (t1, t2, , … , tn), with ti being the result of the t-th
random variable Ri.

C. The Neural Network (NN) Model
The NN model deals with the URL addresses that have

already been classified into either benign or malicious. It also
has knowledge about the type of SQLi attack for malicious
URLs. The NN model receives this information from the URL
classifier and takes it into account for three phases of: training,
validating and testing with distribution rates of 70%, 15%, and
15%, all respectively.

The NN model includes x inputs and y outputs which are
connected through n hidden layers/neurons via directed
arrows, Figure 2 [15]. Each directed arrow can have different
value. The value called connection weigh or simply weight.

In order to learn the weights, the author has employed a
popular NN-based algorithm called backpropagation which is
an abbreviation for backward propagation algorithm. The
algorithm starts with a set of inputs (a set of random weights)
and a set of desire outputs. By using the inputs and the random
weights, the author first let the network calculate some
outputs. Obviously, as the weights are selected randomly,
there will be differences between the calculated outputs and
the desire outputs. Thus, the calculated outputs will be
compared with the desire outputs and the differences will be
measured. The differences between these two sets called
network errors. Now, the network knows about the errors, it
tries to adjust the weights in order to produce the outputs
which are closer to the desire outputs and thus have smaller
errors.

The author has mathematically defined the
backpropagation algorithm as follows.

Let the weight for the i-th node defined by a random
variable 𝑊𝑗,𝑖 (left side of the arrow below); where 𝑊𝑗,𝑖 (right

side of the arrow below) is the node’s old weight, α is the
learning rate, 𝑎𝑗 is the node’s input value, and Ϫ𝑖 is the

network error. Therefore, the new weight is calculated and
then adjusted as follows.

𝑊𝑗,𝑖 𝑊𝑗,𝑖 + α x 𝑎𝑗 x Ϫ𝑖

The error for the i-th node (Ϫi) is calculated as follows.

Ϫ𝑖 = (𝑇𝑖 – 𝑂𝑖) x g’ (∑ 𝑊𝑗,𝑖𝑗 𝑎𝑗)

For simplicity, the author puts together the three
components of the NN model in two groups as follows.

1) Training Elements

The Training Elements include three components as
follows.

 “Input Matrix”: this matrix contains all the URLs

(malicious and benign) that the NN model uses in

training stage. These URLs have been

generated/presented by the URL generator.

 “Target Matrix”: this matrix includes all the decisions

(malicious or benign) for all the URLs as well as the type

of SQLi attacks for malicious URLs. These decisions

cover each URL stored in the ‘Input’ matrix.

Figure 2. An artificial neural network model [15]

 “Fitness Network”: this is the NN model with n layers

with x inputs and y outputs where the data from ‘Input’

and ‘Target’ matrixes are used for training, validating,

and testing, respectively.

2) Validating/Testing Elements

The Validating/Testing Elements of the NN model
include two components as follows.

 “Sample Matrix”: this matrix contains sample data from

the “Input Matrix”. The trained NN model uses the data

in the “Sample Matrix” as inputs during the validation

phase.

 “Output Matrix”: this matrix contains output data for the

data in the “Sample Matrix”. The trained NN model

predicts the output values for the “Sample Matrix” and

stores them in the “Output Matrix”.

The implementation of the proposed NN model is

discussed in the next section.

IV. IMPLEMENTATIONS

The implementation of the proposed NN model is
discussed as follow.

A. The URL Generator
The two elements of the URL generator, Benign URLs and

Malicious URLs, are implemented as follows.

1) The “Benign URLs”
The “Benign URLs” holds the real URL addresses and

includes two separate lists: List1 and List2. List1 contains a
list of the real URL addresses which are benign with
absolutely no SQLi attack signature. List2 includes a list of
the real URLs which are also benign but with SQLi attack
signature(s). The author has considered 6,250 real URL
addresses for List1 and List2. Therefore, the benign URL
addresses come to 12,500 in total. As an example URL for
List1, consider the Google’s URL address in the UK [19]. This
is a benign/real URL address with absolutely no SQLi attack
signature(s). As an example URL for List2, consider the
European Union’s URL address in Wikipedia [21]. This is
also a benign/real URL address but has a SQLi attack keyword
of “union”. As a result of this, the proposed NN model can
falsely detect the European Union’s URL as a malicious URL
and thus classify it as a “Union queries” SQLi attack. This is
called false positive. Furthermore, the author divides List2

into five sub-lists: List2.1, List2.2, List 2.3, List2.4, and List
2.5, where 20% (1,250 URLs), 40% (2,500 URLs), 60%
(3,750 URLs), 80% (5,000 URLs), and 100% (6,250 URLs)
of the URLs has this issue. For instance, in List 2.1, only 10%
of the benign URLs have SQLi attack signature(s) whereas in
List 2.5 100% of the URLs has this issue. This comes to 6,250
URLs for List2 in total. The reason to employ different data
sets in this paper is to re-evaluate the effectiveness and the
performance of the author’s previous proposal [14-16] in
terms of: accuracy, false-positive, and false-negative rates.

2) The “Malicious URLs”
In this paper, the author generated the malicious URLs by

simply adding SQLi attack signature(s), Table 1[15], to the
benign URLs using a PHP script. For instance, addressing the
“Piggy-backed query” SQLi attack signatures, a generated
malicious URL can be a benign URL that has delimiter “;”.
Likewise, adding “;, SHUTDOWN, exec” signatures to a
benign URL, generates a malicious URL which can be
identified as a “Stored procedures” SQLi attack. The total
malicious URLs come to 12,500.

B. The URL Classifier
The URL classifier is accountable for: 1) identifying

whether a given URL is a benign URL or a malicious URL,
and 2) identifying the type of SQLi attack for a given
malicious URL. Given that 1 represents true/malicious and 0
represents false/benign in this paper, the author encoded these
two tasks using string of logic for each URL. This has been
done by allocating two vectors: r− and t− to each URL where
r− has 32 features (r− = (r0, r1, , … , r31)) and t− has 8
features (t− = (t0, t1, , … , t7)). For instance, if a URL
includes: “ ; ”, “AND”, “IF”, “ELSE” and “WAITFOR”
keywords, it will be classified as a malicious URL with
“00000000000101000000111000000000” value for r−
where: r11 represents “ AND ”, r13 represents “;”, r20
represents “IF”, r21 represents “ELSE”, and r22 represents
“WAITFOR”. Moreover, given that this is an “Inference SQLi
attack”, which is the attack type6 in this paper, the value for
t− vector is “00000010”. The r− and t− components are
shown in Table 2 [15] and Table 3 [15], respectively.

C. The Neural Network (NN) Model
The NN model employs 70% of the total URLs for

“Training phase”, 15% for “Validating phase”, and 10% for
“Testing phase”. Given that the author has implemented two
scenarios to re-evaluate the effectiveness of our previous
proposal, and that each scenario has different NN
configurations, the author identifies the NN elements
independently for each scenario. Therefore, the two
implemented scenarios (SCENARIO1 and SCENARIO2) are
designed as follows.

V. SCENARIO1: DETECTION AND STRESS TEST

In SCENARIO1, which is called DETECTION AND
STRESS TEST, the author focuses on responsibility number
one for the NN model: identifying the malicious URLs from
the benign URLs. This scenario has been taken into account
in order to re-evaluate the performance of the previous
proposal [14-16] in terms of: accuracy, true-positive rate, and
false positive-rate with different and controversial data sets.
The data sets are controversial as there is a great chance for

the NN model to falsely detect the malicious URLs as benign
and vice versa. For each category of benign and malicious
URLs, the author has taken into account the equal number of
12,500 URL addresses with the following specifications.

The URL addresses in benign category are grouped in two
lists: List1 and List2 each list carries 6,250 URLs, Table 4. In
order to make the decision making (benign/malicious) harder,
List2 is further divided into five sub-lists: List2.1,

TABLE 2. ASSIGNED VECTORS FOR SQLI ATTACK

SIGNATURES [15]

Vectors SQLi attack signatures

r0 ‘

r1 or

r2 =

r3 like

r4 select

r5 convert

r6 int

r7 char

r8 varchar

r9 nvarchar

r10 incorrect logics

r11 and

r12 orderby

r13 ;

r14 union

r15 union select

r16 shutdown

r17 exec

r18 xp_cmdshell()

r19 sp_execwebtask()

r20 if

r21 else

r22 waitfor

r23 --

r24 ascii()

r25 bin()

r26 hex()

r27 unhex()

r28 base64()

r29 dec()

r30 rot13()

r31 *

List2.2, List 2.3, List 2.4, and List 2.5, where 20% (1,250
URLs), 40% (2,500 URLs), 60% (3,750 URLs), 80% (5,000

URLs), and 100% (6,250 URLs) of the URLs has the issue of
being benign but having SQLi attack signature(s). The total
number of the URLs in each sub-list is 6,250. The URL
addresses in malicious category are the malicious URL
addresses which carries the SQLi attack signature(s). The total
number of the URLs in this category is 12,500 with
distribution rate of: 1,800 URLs for Type1 to Type 6 and
1,700 URL addresses for Type 7 SQLi attack, Table 4.

In Scenario1, all the malicious and benign URLs, which
are 12,500 URLs in each category that gives 25,000 URLs in
total, are classified by the URL classifier to either benign or
malicious. This task has been done by developing: 1) one PHP
script to convert all 25,000 URL addresses to strings of logics
(zeros and ones), and 2) one PHP script to identify each URL
either as benign or malicious. In both scripts, 1 represents
true/malicious and 0 represents false/benign. This gives us
two matrices that act as inputs to our proposed NN model:
Input Matrix and Target Matrix. They are named as Training
Elements.

TABLE 3. ASSIGNED VECTORS FOR SQLI ATTACK TYPE

[15]

Vectors SQLi attack type

t0 Benign

t1 Tautologies

t2 Illegal/logically incorrect queries

t3 Piggy-backed query

t4 Union queries

t5 Stored procedures

t6 Inference SQLi attack

t7 Alternate encoding

TABLE 4. BENIGN AND MALICIOUS URLS FOR SCENARIO 1 & 2

Benign URLs Malicious URLs

Total:

12,500 URLs
Total:

12,500 URLs

List1 List2

T
y

p
e
 1

T
y

p
e
 2

T
y

p
e
 3

T
y

p
e
 4

T
y

p
e
 5

T
y

p
e
 6

T
y

p
e
 7

Total:

6,250
URLs

Total:

6,250 URLs

L
is

t
2

.1

L
is

t
2

.2

L
is

t
2

.3

L
is

t
2

.4

L
is

t
2

.5

5
0
0

2
,5

0
0

5
0
0

1
,0

0
0

1
,5

0
0

2
,5

0
0

4
,0

0
0

1
,2

5
0

 +
 5

,0
0
0

2
,5

0
0

 +
 3

,7
5
0

3
,7

5
0

 +
 2

,5
0
0

5
,0

0
0

 +
 1

,2
5
0

6
,2

5
0

Total: 25,000 URLs

Figure 3. Network Architecture for the Neural Network component of the proposed model (Scenario1)

There are two other matrices that act as output to the
proposed NN model: Sample Matrix and Output Matrix. They
are named as Testing/Validating Elements. For simplicity, the
author has merged the validating and testing elements together
with the following specifications for Scanrio1.

1) Scenario1: Training Elements

 “Input Matrix”: this matrix is a logical 25,000 x 32

matrix where the URLs are represented in strings of

logics, 0s (benign) and 1s (malicious). It is a matrix with

25,000 rows and 32 columns. 25,000 represent the

number of the URLs in this scenario, which is 12,500 for

benign URLs and 12,500 for malicious URLs precisely.

The 32 represents the size of the assigned vectors to the

SQLi attack.

 “Target Matrix”: this matrix is a logical 25,000 x 1

matrix where the URLs are represented in string of

logics, 0s (benign) and 1s (malicious). It is a matrix with

25,000 rows and 1 column. 25,000 represent the number

of the URLs while 1 represents the size of the assigned

decision vector to each URL which is either benign (0)

or malicious (1).

 Fitness network: this is our NN model with 10 hidden

nodes or 10 layers/neurons where 70%, 15%, and 15%

of the data from ‘Input’ and ‘Target’ matrices are used

for training, validating, and testing, all respectively.

2) Scenario1:Validating/Testing Elements

 “Sample Matrix”: this matrix is a logical n x 32 matrix

contains n sample data from the “Input Matrix”.

 “Output Matrix”: this matrix is a logical n x 1 matrix

contains output data for the URLs represented in

“Sample Matrix”. The trained NN model predicts the

output value, in terms of a URL being benign or

malicious, for each URL in the “Sample Matrix”. These

predictions will be stored in the “Output Matrix”.

The whole data set, which includes 25,000 URLs and
25,000 decisions (malicious/benign), will be used in order to
train (by 70% of data), validate (by 15% of data), and test (by
15% of data). The Scenario has been implemented in
MATLAB [22]. The NN model has 10 hidden layers, 32 input
features, 1 output layer, and 1 output features, Figure 3. For
Scenario1, the results have been captured, represented, and

analyzed in two groups of: confusion matrix and Receiver
Operating Characteristic as follows.

The confusion matrices for all three phases of training,
validating, and testing are depicted in Figure 4 to Figure 8.
Each figure shows different results with different sets of date.
For instance, Figure 4 shows the output results when the input
data includes 12,500 benign URLs (6,250 URLs from List 1
and 6,250 URLs from List 2.1) and 12,500 malicious URLs
while Figure 8 shows the output results when the input data
comes from List1, List 2.5, and malicious URLs. This gives
the total of 25,000 URLs for each experiment.

As it is depicted in Figure 4 to Figure 8 and based on the
implementations, there are two output classes and two target
classes: class 0 which represents benign URLs and class 1
which represents malicious URLs. For each class, the number
of the correct responses is shown in a green square and the
number of the incorrect responses is shown in red square. The
grey square illustrates the percentages of the accuracies (upper
numbers) and inaccuracies (bottom numbers) for output and
target classes. The blue square shows the overall percentages
of the accuracies (upper numbers) and inaccuracies (bottom
numbers) for each experiment.

For instance in Figure 4, three phases of training,
validating and testing receive 25,000 URLs (11,749 + 501 +
751 + 11,999). This includes 12,250 benign URLs (11,749 +
501), which are in class 0, and 12,250 malicious URLs (751 +
11,999) which are in class 1. The former is 49.0% (47.0% +
2.0%) and the latter is 51.0% (3.0% + 48.0%) of the total
URLs used in this phase. For the benign URLs, which are in
class 0, the percentage of correct responses is 95.9% while the
percentage of the incorrect responses is 4.1%. These
percentages are 94.1% and 5.9% for malicious URLs, which
are in class 1, all respectively. This gives the total percentage
of 95.0% accuracies and 5.0% of inaccuracies.

Moving from Figure 4 to Figure 8, as it was expected, the
author realises that the total percentage of accuracies are
reduced and the total percentage of inaccuracies are increased
for each set of experiment gradually by 5.0%. For instance, in
Figure 5, in which the author employs URLs from List 2.2
where 40.0% of the URLs (total of 2,500) have the issue of
being benign but having SQLi attack signature(s), the
percentage of accuracies is 90.0% and inaccuracies is 10.0%.
However, these percentages reach 75.0% and 25.0%
correspondingly in Figure 8, in which the

Figure 4. Confusion matrix for three phases in Scenario1
(URLs from: List1 & List 2.1 & Malicious URLS)

Figure 5. Confusion matrix for three phases in Scenario1
(URLs from: List1 & List 2.2 & Malicious URLS)

Figure 6. Confusion matrix for three phases in Scenario1
(URLs from: List1 & List 2.3 & Malicious URLS)

Figure 7. Confusion matrix for three phases in Scenario1
(URLs from: List1 & List 2.4 & Malicious URLS)

Figure 8. Confusion matrix for three phases in Scenario1
(URLs from: List1 & List 2.5 & Malicious URLS)

author employs URLs from List 2.5 where 100.0% of URLs
(total of 6,250 URLs) have the issue of being benign but
having the SQLi attack signature(s).

The network performance for all three phases (training,
validating, and testing) and for all five sets of experiments in
Scenario1 are captured in Figure 9 to Figure 11. This has been
measured in terms of mean squared error and has been shown
in log scale. The mean squared error is the difference between
output and target. Thus the lower values are better and zero
means there is no error in the network. Moving from Figure 9
to Figure 11, the author notices that, as it was expected, the
network performance is gradually reduced by almost 0.03ms
from 0.02ms in Figure 9 to 0.13ms in Figure 11. This is
because of the different data set that the author employed in
each set of experiments which makes it more difficult for the
network to reach its best performance when gradually got
from Figure 9 to Figure 11. This means the network takes
longer to get its best performance. For instance, the network
performance is better in Figure 10 (i.e.

Figure 9. Network performance for Scenario1 (URLs from:
List1 & List 2.1 & Malicious URLS)

Figure 10. Network performance for Scenario1 (URLs
from: List1 & List 2.3 & Malicious URLS)

Figure 11. Network performance for Scenario1 (URLs
from: List1 & List 2.5 & Malicious URLS)

almost 0.10ms) than Figure 11 (i.e. almost 0.13ms). It means
the network reaches to its best point faster when 60% of data
have the issue of being benign but having the SQLi attack
signature(s). The best validation performance occurs by
iteration 44, 43, 36 in Figure 9 to Figure 11 all respectively.
The network performance in Scenario1is reasonable because
of the following considerations: the final mean square error is
small and the test set error and the validation set error have
similar characteristics.

The author has also capture the Mean Squared Error
(MSE), which is the difference between outputs and targets,
and Percentage Error (%E), which is the fraction of the
samples which are misclassified, for five sets of experiments
in Table5. In Table 5, value 0 means no error for MSE and no
misclassifications for %E.

VI. SCENARIO 2: DETECTION, CLASSIFICATION,

AND STRESS TEST

In SCENARIO2, which is called DETECTION,
CLASSIFICATION, and STRESS TEST, the author focuses
on responsibility number two of the proposed NN-based
model: identifying the type of SQLi attack for malicious
URLs. The SCENARIO2 has also been implemented with
controversial data sets. The data sets called controversial as
there is a great chance of having false detections i.e. to falsely
classify the malicious URLs. To achieve this, the author has
considered the same data sets of 25,000 URLs from
SCENARIO1, Table 4. For Scenario2, the training and
testing/validating elements of the NN model are defined as
follows.

1) Scenario2: Training Elements

 “Input Matrix”: this matrix is a logical 25,000 x 32

matrix where 25,000 represent the total number of the

URLs in Scenario2 and 32 represents the size of the

assigned vectors to the SQLi attack.

 TABLE5. (MSE) AND (%E) IN SCENARIO 1

Phase Samples MSE %E

URLs from: List1 & List 2.1 & Malicious URLS
Training 17500 2.85060e-2 4.97142e-0

Validating 3750 2.77257e-2 5.33333e-0

Testing 3750 2.64664e-2 4.85333e-0

URLs from: List1 & List 2.2 & Malicious URLS
Training 17500 5.37746e-2 10.01714e-0

Validating 3750 5.27890e-2 9.35999e-0

Testing 3750 5.32295e-2 10.58666e-0

URLs from: List1 & List 2.3 & Malicious URLS
Training 17500 8.35546e-2 14.94857e-0

Validating 3750 8.34291e-2 15.19999e-0

Testing 3750 8.47232e-2 15.09333e-0

URLs from: List1 & List 2.4 & Malicious URLS
Training 17500 1.04517e-1 19.67999e-0

Validating 3750 1.05754e-1 19.94666e-0

Testing 3750 1.08780e-1 21.60000e-0

URLs from: List1 & List 2.5 & Malicious URLS
Training 17500 1.33045e-1 24.84571e-0

Validating 3750 1.32979e-1 24.95999e-0

Testing 3750 1.35371e-1 25.78666e-0

Figure 12. Network Architecture for the Neural Network component of the proposed model (Scenario2)

 “Target Matrix”: this matrix is a logical 25,000 x 8

matrix where 25,000 represent the total number of the

URLs in Scenario2 and 8 represent the type of the SQLi

attack.

 Fitness network: this is the NN model with 10 hidden

layers where 70%, 15%, and 15% of the data from

‘Input’ and ‘Target’ matrices are employed for training,

validating and testing, all respectively.

2) Scenario2:Validating/Testing Elements

 “Sample Matrix”: this matrix is a logical n x 32 matrix

contains sample n data from the “Input Matrix”.

 “Output Matrix”: this matrix is a logical n x 8 matrix

contains output data for the data represented in “Sample

Matrix”. The trained NN model predicts the output

value, which is the SQLi attack type, for each URL in the

“Sample Matrix”. These predictions will be stored in the

“Output Matrix”.

In Scenario2, the NN model has 10 hidden layers, 32 input
features, 8 output layer, and 8 output features, Figure 12. For
Scenario2, the results have been captured, represented, and
analyzed as follows.

The confusion matrices of Scenario2 for all three phases
are captured in Figure 13 to Figure 17. Moving from Figure
13 to Figure 17, as it was expected before, the author notices
that the overall percentage of the accuracies is gradually
reduced from 48.0% to 42.0% and the overall percentage of
inaccuracies is gradually increased from 52.0% to 58.0%, both
respectively. The gradual decrement in the overall percentage
of accuracies and the gradual decrement in the overall
percentage of the inaccuracies are due to the nature of the data
in each set of experiments. This means the more difficult set
of data, for instance when there is 100% benign URLs with
SQLi attack signature(s), will produce the lowest accuracies
and the highest inaccuracies in the decision making process,
Figure 17.

The network performance for three phases in the five sets
of experiments for Scneario2 is captured in Figure 18 to
Figure 20. Moving from Figure 18 to Figure 20, as it was
expected, the author notices that the network performance in
Scenario2 is gradually decreased from 0.006ms in Figure 18
to 0.022ms in Figure 20 by almost 0.002ms. Obviously, this
is because of the nature of the data that regularly gets tougher
which means the network takes longer to reach its best

performance. The best validation performance occurs by
iteration 150, 78, 82 for Figure 18 to Figure 20 all
respectively. The network performance in Figure 18 to Figure
20 is reasonable for each set of experiment because of the
following considerations: the final mean square error is

Figure 13. Confusion matrix for three phases (URLs from:
List1 & List 2.1 & Malicious URLS in Scenario2)

Figure 14. Confusion matrix for three phases (URLs from:
List1 & List 2.2 & Malicious URLS in Scenario2)

Figure 15. Confusion matrix for three phases (URLs from:
List1 & List 2.3 & Malicious URLS in Scenario2)

Figure 16. Confusion matrix for three phases (URLs from:
List1 & List 2.4 & Malicious URLS in Scenario2)

Figure 17. Confusion matrix for three phases (URLs from:
List1 & List 2.5 & Malicious URLS in Scenario2)

Figure 18. Network performance (URLs from: List1 & List
2.1 & Malicious URLS in Scenario2)

Figure 19. Network performance (URLs from: List1 & List
2.3 & Malicious URLS in Scenario2)

Figure 20. Network performance (URLs from: List1 & List
2.5 & Malicious URLS in Scenario2)

Table6. (MSE) and (%E) in Scenario 2

Phase Samples MSE %E

URLs from: List1 & List 2.1 & Malicious URLS
Training 17500 7.33524e-3 26.82285e-0

Validating 3750 6.87468e-3 27.58666e-0

Testing 3750 7.57969e-3 27.23999e-0

URLs from: List1 & List 2.2 & Malicious URLS
Training 17500 8.26756e-3 26.88857e-0

Validating 3750 8.52256e-3 27.40000e-0

Testing 3750 8.83980e-3 27.20000e-0

URLs from: List1 & List 2.3 & Malicious URLS
Training 17500 1.54859e-2 28.99999e-0

Validating 3750 1.58143e-2 29.08000e-0

Testing 3750 1.48089e-2 28.89333e-0

URLs from: List1 & List 2.4 & Malicious URLS
Training 17500 2.51881e-2 36.82571e-0

Validating 3750 2.49600e-2 37.65333e-0

Testing 3750 2.46622e-2 37.15999e-0

URLs from: List1 & List 2.5 & Malicious URLS
Training 17500 2.18843e-2 33.04857e-0

Validating 3750 2.22466e-2 32.30666e-0

Testing 3750 2.25724e-2 33.46666e-0

small and the test set error and the validation set error have
similar characteristics.

The MSE and %E for five sets of experiments has been
also captured for Scenario2 in Table6.

VII. CONCLUSION

In this paper, we further investigated the performance of
our previous proposal from [14-16]. We measured the
effectiveness of our previous proposal in terms of accuracy,
true-positive rate, and false positive-rate through two
scenarios: Scenario1 and Scenario2. In both scenarios, we
took into account controversial data sets as there was a great
chance for the previous proposal to provide false detections.
For instance, it was a great chance to falsely detect the
malicious URLs as benign and vice versa in Scenario1 and
falsely classify the malicious URLs. For both scenarios, the
results were captured, represented, and analyzed in two
groups of: confusion matrix and network performance.
Addressing the captured results the proposed neural network
model for detection and classification of the SQLi attack
showed a good performance in terms of accuracy, true-
positive rate as well as false-positive rate.

ACKNOWLEDGMENT

The author would wish to acknowledge the support of the
Edinburgh Napier University for funding this work.

REFERENCES

[1] Halfond, W. G., Viegas, J., & Orso, A. (2006, March). A classification
of SQL-injection attacks and countermeasures. In Proceedings of the
IEEE International Symposium on Secure Software Engineering (Vol.
1, pp. 13-15). IEEE.

[2] Rawat, R., & Raghuwanshi, S. (2012). SQL injection attack Detection
using SVM. International Journal of Computer Applications, 42(13),
1-4.

[3] Gould, C., Su, Z., & Devanbu, P. (2004, May). JDBC checker: A static
analysis tool for SQL/JDBC applications. In Proceedings of the 26th
International Conference on Software Engineering (pp. 697-698).
IEEE Computer Society.

[4] Lambert, N., & Lin, K. S. (2010, July). Use of Query Tokenization to
detect and prevent SQL Injection Attacks. In Computer Science and
Information Technology (ICCSIT), 2010 3rd IEEE International
Conference on (Vol. 2, pp. 438-440). IEEE.

[5] Avireddy, S., Perumal, V., Gowraj, N., Kannan, R. S., Thinakaran, P.,
Ganapthi, S., ... & Prabhu, S. (2012, June). Random4: an application
specific randomized encryption algorithm to prevent SQL injection.
In Trust, Security and Privacy in Computing and Communications
(TrustCom), 2012 IEEE 11th International Conference on (pp. 1327-
1333). IEEE.

[6] Shanmughaneethi, S. V., Shyni, S. C. E., & Swamynathan, S. (2009,
December). SBSQLID: securing web applications with service based
SQL injection detection. In 2009 International Conference on
Advances in Computing, Control, and Telecommunication
Technologies (pp. 702-704). IEEE.

[7] Zhang, K. X., Lin, C. J., Chen, S. J., Hwang, Y., Huang, H. L., & Hsu,
F. H. (2011, November). TransSQL: a translation and validation-based
solution for SQL-injection attacks. In Robot, Vision and Signal
Processing (RVSP), 2011 First International Conference on (pp. 248-
251). IEEE.

[8] Halfond, W. G., & Orso, A. (2005, November). AMNESIA: analysis
and monitoring for NEutralizing SQL-injection attacks. In Proceedings
of the 20th IEEE/ACM international Conference on Automated
software engineering (pp. 174-183). ACM.

[9] McClure, R. A., & Krüger, I. H. (2005, May). SQL DOM: compile
time checking of dynamic SQL statements. In Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference on (pp.
88-96). IEEE.

[10] Boyd, S. W., & Keromytis, A. D. (2004, June). SQLrand: Preventing
SQL injection attacks. In Applied Cryptography and Network
Security (pp. 292-302). Springer Berlin Heidelberg.

[11] Huang, Y. W., Huang, S. K., Lin, T. P., & Tsai, C. H. (2003, May).
Web application security assessment by fault injection and behavior
monitoring. In Proceedings of the 12th international conference on
World Wide Web (pp. 148-159). ACM.

[12] Su, Z., & Wassermann, G. (2006, January). The essence of command
injection attacks in web applications. In ACM SIGPLAN Notices (Vol.
41, No. 1, pp. 372-382). ACM.

[13] Top 10 2013-Top 10. (2013, October). Retrieved June 17, 2016, from
https://www.owasp.org/index.php/Top_10_2013-Top_10

[14] Moradpoor, N. (2014). Employing Neural Networks for the detection
of SQL injection attack. In Proceedings of the 7th International
Conference on Security of Information and Networks, September 9-11,
Glasgow, UK. ACM.

[15] Moradpoor, N. (2015). A Pattern Recognition Neural Network Model
for Detection and Classification of SQL Injection Attacks. World
Academy of Science, Engineering and Technology, International
Journal of Computer, Electrical, Automation, Control and Information
Engineering, 9(6), 1355-1365.

[16] Moradpoor, N. (2015, September). SQL-IDS: evaluation of SQLi
attack detection and classification based on machine learning
techniques. InProceedings of the 8th International Conference on
Security of Information and Networks (pp. 258-266). ACM

[17] SQL introduction. Retrieved June 17, 2016, from
http://www.w3schools.com/sql/sql_intro.asp

[18] Internet, A. Top sites for countries. Retrieved June 17, 2016, from
http://www.alexa.com/topsites/countries

[19] Google. Retrieved June 17, 2016, from http://www.google.co.uk

[20] Group, T. P. (2016, June 9). PHP 7.1.0 alpha 1 released. Retrieved June
17, 2016, from http://www.php.net

[21] Retrieved June 17, 2016, from
http://www.www.en.wikipedia.org/wiki/European_union

[22] MathWorks, T. (1994). MathWorks – makers of MATLAB and
Simulink - MathWorks United Kingdom. Retrieved June 17, 2016,
from http://www.mathworks.co.uk

