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Abstract— Structured Query Language injection (SQLi) 

attack is a code injection technique where hackers inject SQL 

commands into a database via a vulnerable web application. 

Injected SQL commands can modify the back-end SQL database 

and thus compromise the security of a web application. In the 

previous publications, the author has proposed a Neural Network 

(NN)-based model for detections and classifications of the SQLi 

attacks. The proposed model was built from three elements: 1) a 

Uniform Resource Locator (URL) generator, 2) a URL classifier, 

and 3) a NN model. The proposed model was successful to: 1) 

detect each generated URL as either a benign URL or a malicious, 

and 2) identify the type of SQLi attack for each malicious URL. 

The published results proved the effectiveness of the proposal. In 

this paper, the author re-evaluates the performance of the 

proposal through two scenarios using controversial data sets. The 

results of the experiments are presented in order to demonstrate 

the effectiveness of the proposed model in terms of accuracy, true-

positive rate as well as false-positive rate. 

Keywords— Intrusion Detection, SQL injection attacks, machine 

learning, Artificial Intelligence, Neural Networks, Web Attacks, 

Databases  

I. INTRODUCTION  

SQL is a programming language designed for handling data 
in a Relational Database Management System (RDBMS) [17]. 
SQLi attack is a technology weakness that comes from dynamic 
script language such as PHP: Hypertext Processor (PHP), Active 
Server Pages (ASP), Java Server pages (JSP) and Common 
Gateway Interface (CGI). It takes advantages of inappropriate 
and/or poor coding of web applications that allows hackers to 
inject malformed SQL commands in order to gain un-authorised 
access to data resides in the related back-end database.  

For any organisation, data contains important and 
confidential information that can be related to them, their 
customers, and their business partners. This information can 
range from personal or less sensitive information such as: first 
name and last name to more sensitive information such as: 
username, password, pin code, and credit card information. If 
inputs from a user-side are not properly sanitised, a hacker can 
generate crafted SQL commands and can inject them into a 
database in order to pass say a login barrier and see what exists 
behind it. This leads to sever damages on a given database such 
as: disclosing, modifying, and/or removing data or in a worse-
case scenario wiping the entire database. Therefore, it is 
important for any organisation to protect their databases in order 
to prevent any loss to themselves, their customers, and their 
business partners.  

SQLi attack has been ranked as the most harmful danger, 
A1-Injections, in top 10 security threats for web applications in 
Open Web Application Security Project (OWASP) [13]. An A1-
Injection attack includes injection flaws such as: SQL, OS, and 
LDAP injections. This occurs when unsafe and/or untrusted data 
is sent to an interpreter as part of a command or query tricking it 
into executing unintended commands or accessing data without 
a proper authorisation.  

CIA triad, which stands for: Confidentiality, Integrity, and 
Availability, is a well-known security model that can be used to 
develop a security policy for any organisation. If a given 
database is attacked, CIA elements can be violated. For instance, 
the data in the database can be revealed to unauthorised users, 
which is a failure in Confidentiality element of the CIA triad. 
The data can be altered, which is a failure in Integrity element of 
the CIA triad. In a worst-case scenario, the data can be 
completely wiped out from the database which is a failure in 
Availability element of the CIA triad.  

In the previous work [14], the author proposed a NN-based 
model for SQLi attack detections which built from three 
elements: a URL generator, a URL classifier, and a NN model. 
Addressing the published results, the previous proposal was 
successful to detect the malicious URLs from the benign URLs. 
The author then extended the proposal to a pattern recognition 
NN-based model for the detection and classification of the SQLi 
attacks [15]. Addressing the published results, the proposed 
model was successful to not only detect the malicious URLs 
from the benign URLs, but also classify the malicious URLs into 
the popular SQLi attack categories. Finally, in the most recent 
work [16], the author stress tested the previous proposals where 
the model demonstrated a good performance in terms of 
accuracy. In this paper, the author further investigates the 
performance of the previous proposal [14-16] by implementing 
two different test beds and scenarios. This includes employing 
different sets of data for the developed NN-based model in order 
to demonstrate the effectiveness of the proposed technique.   

The remainder of this paper is organised as follows. In 
Sections II, the author reviews the related work for the 



TABLE 1 SQL INJECTION ATTACK TYPES, SIGNATURES, AND PREVENTIONS [15] 

Type of SQLi attack  Signature Prevention on a user side  Prevention on a database side  

Tautologies  

(Type1) 

‘, OR, =, like, select -Strictly validating user inputs  -Blocking queries containing tautological 

condition WHERE clauses  

Illegal/logically 
incorrect queries 

(Type2) 

invalid conversions 
(CONVERT (TYPE)), 

incorrect logics, AND, 

ORDERBY, ‘ 

-Strictly validating user inputs  
 

-Stopping and/or sanitising generated error 
messages (e.g. logical errors, type errors and 

syntax errors) from a given database 

Piggy-backed query 
(Type3) 

; -Strictly validating user inputs  
 

-Avoiding multiple statement executions on a 
database by scanning all queries for delimiter 

“;” 

Union queries  
(Type4) 

UNION, UNION SELECT -Strictly validating user inputs  
 

-Blocking multiple query executions in a single 
statement  

Stored procedures 

(Type5) 

;, Stored procedure 

keywords  (SHUTDOWN, 

exec, xp_cmdshell(), 
sp_execwebtask()) 

-Strictly validating user inputs  

-Giving proper roles and privileges to stored 

procedures being used in a web application  

-Using a low privileged account to run a 

database  

-Executing stored procedures with a safe 
interface  

Inference SQLi attack 

(Type6) 

;, AND, IF ELSE, 

WAITFOR 

-Strictly validating user inputs  

  

-Carefully crafting error messages return from 

databases 
-Patching/hardening databases 

Alternate encoding 

(Type7) 

;, exec (), Char (), ASCII (),  

BIN (), HEX (), UNHEX (), 

BASE64 (), DEC (), 
ROT13 () 

-Strictly validating user inputs, for instance 

prohibiting any usage of meta-characters e.g. 

“Char ()”  
 

-Treating all meta-characters as normal 

characters 

detections and preventions of the SQLi attacks. The 
author’s previous proposal [14-16] and the related 
implementations are discussed in Sections III & IV, 
respectively. Sections V and VI include two different 
scenarios along with the related results using three sets of 
data. This is followed by conclusions of the work in Section 
VII, acknowledgments, and references. 

II. RELATED WORK FOR SQL INJECTION 

ATTACKS 

In this section, existing work related to the SQLi attack 
detection and prevention techniques are addressed as 
follows.  

Authors in paper [2] proposed an algorithm based on 
Support Vector Machine (SVM) in order to detect and 
classify SQLi attacks. Addressing their captured results, 
their proposed algorithm presented 96.47% accuracy for 
SQLi attack detections. 

Authors in paper [3] proposed a static analysis tool for 
checking Java Database Connectivity (JDBC) to verify the 
correctness of dynamically generated SQL queries. 
Addressing their captured results, their proposed JDBC 
checker flags potential errors or verify their absence in 
dynamically generated SQL queries with low false positive 
rate.  

In order to detect SQLi attacks, authors in paper [4] 
proposed a query tokenisation algorithm where 
QueryParser was employed. They have assumed that there 
is no way someone can perform a SQLi attack without 
inserting space, single quote, and/or double dashes in a 
query. Therefore, they designed two arrays: one for the 
original queries and one for the injected queries where each 
element is a token obtained from the related query.  At the 
end, they obtained the length of each resulting array and 
compared them. Henceforth, if two arrays have different 
length there is a SQLi attack.         

In order to prevent SQLi attacks, authors in paper [5] 
proposed a Random4 encryption algorithm based on 

randomisation where user input values, e.g. usernames and 
passwords are converted into cipher text using a  

lookup table. The encrypted key can then be stored in a 
database and compared with the user inputs received during 
the login time. In order to evaluate the performance of their 
proposed algorithm they employed techniques such as: 
brute force attack and dictionary attacks in order to crack 
the related keys stored in the database. They also compared 
their proposal with existing algorithms such as: AMNESIA 
[8], SQL rand [10], SQL DOM [9], WAVES [11], and SQL 
check [12] in terms of encoding, detection, and prevention.  

Authors in paper [6] proposed a Service Based SQL 
Injection Detection (SBSQLID) algorithm which is 
positioned between a given application server and the 
related database. SBSQLID includes three elements: input 
validator, query analyser, and error service. The input 
validator retrieves user inputs from a web application and 
passes them into a set of injection characters for pattern 
matching. Thus, if pattern matching returns false, the user 
will be able to work with the web application otherwise 
he/she will be disallowed. After validating the user inputs, 
they will be passed into the query analyser for syntactic and 
semantic structure verifications. The last element of their 
proposal is an error service where any error messages 
produced by the database server will be generalised and 
then sent back to the application server. This is done in 
order to stop attackers for receiving any Meta-data 
information from a back-end database. 

Authors in paper [7] proposed a translation and 
validation-based solution for SQLi attacks, TransSQL, 
where SQL requests are automatically translated to 
Lightweight Directory Access Protocol (LDAP)-
equivalent requests. SQL and LDAP-equivalent queries are 
then executed on SQL database and LDAP database, 
respectively. At the end, TransSQL checks the difference 
in responses from both databases in order to detect and then 
block any SQLi attempts.    

Authors in paper [8] proposed AMNESIA stands for 
Analysis and Monitoring for NEutralising SQL Injection 



Attacks. AMNESIA was proposed in order to detect and 
prevent SQLi attacks by combining static analysis and 
runtime monitoring. The static analysis was used in order 
to analyse the entire codes in a web application and 
automatically build a model for legitimate queries that a 
given web application can generate. The runtime 
monitoring was then employed in order to monitor all 
dynamically generated queries and check whether they are 
different from the static generated model. At the end, 
queries that violate the static model were classified as SQLi 
attacks and prevented from any access to the database.       

Authors in paper [9] proposed SQL Domain Object 
Model (DOM) for compile time checking instead of 
runtime checking of dynamic SQL statements. Using SQL 
DOM, application developers are able to build dynamic 
SQL statements through manipulation of objects, which are 
strongly typed to the database, without the need for string 
manipulations.  

In order to detect and prevent SQLi attacks, authors in 
paper [10] proposed a randomised SQL query language, 
SQLrand, where the standard keywords in SQL were 
manipulated by attaching a randomised and a hard to guess 
integer to them. To achieve probability and security, their 
proposed SQLrand includes a proxy server that sits 
between a client and a database in order to receive 
randomised SQL quires from a client and de-randomised 
them before passing them to the back-end database. 
Addressing their captured results, the latency overhead that 
imposed on each query by using SQLrand is negligible thus 
it does not sacrifice the performance. 

Authors in paper [11] proposed a Web Application 
Vulnerability and Error Scanner (WAVES) as a security 
assessment tool in order to identify poor coding practices 
that render web applications vulnerable to attacks such as 
SQLi and cross-site scripting attacks. A number of 
software testing techniques such as: dynamic analysis, 
black-box testing, fault injection, and behaviour 
monitoring was described and took into account in their 
implementations. At the end, WAVES was compared with 
other vulnerability scanner tools where it has been proven 
as a feasible platform for assessing web application 
security.  

Authors in paper [12] proposed SQLCHECK as a 
runtime checking algorithm to prevent SQLi attacks. Their 
proposed algorithm was evaluated in real-world web 
applications with real-world attack data as inputs where 
SQLCHECK produces no false negative and no false 
positive. Addressing their captured results, SQLCHECK 
also has low run-time overhead and can be applied 
straightforwardly to web applications written in different 
languages. 

After studying the exiting work related to the SQLi 
attack detection and prevention techniques, the author has 
noticed a huge lack of employing Artificial Intelligence 
(AI) in this filed. AI has been successfully used in a wide 
range of fields including: medical diagnosis, stock trading, 
robot control, law, remote sensing, scientific discovery, and 
toys. AI studies how to create computers and computer 
software that are capable of intelligent behaviour just like 
human beings. Artificial neural Networks (NNs) is one of 
the popular AI algorithms which has been employed in 
various fields in order to perform complex functions that 

are difficult for conventional computers or human beings. 
For instance: pattern recognition, identification, 
classification, speech, vision, and control systems. This 
motivates us to bring the SQLi attack detection and 
prevention problem into the AI filed and particularly into 
the application of the NN. Our ultimate research objective 
is to provide a NN-based Intrusion Detection and 
Prevention (ID&IP) tool that can be easily extended from 
SQL-IDS to any application level attacks e.g. Deny of 
Service (DoS), drive-by downloads, phishing email, and 
Man-In-The-Middle (MIMT) attacks.  

In author’s previous work [14], she proposed a NN 
model for the detection of SQLi attacks. Her proposed 
technique was successful to classify a given URL as either 
a benign URL or a malicious URL. This has been done by 
taking into account the popular SQLi attack keywords and 
URL patterns. The author then improved this initial 
proposal in [15] by adding another level of intelligence 
where her proposed model was successful to not only detect 
the malicious URLs from the benign URLs but also to 
detect the type of SQLi attacks, Table 1 [15], for the 
malicious URLs and classify them accordingly. In the 
author’s most recent work [16], our previous work from 
[14] and [15] has been tested in order to demonstrate the 
effectiveness of our proposed technique. In this paper, we 
re-evaluate the performance of our previous proposal in 
terms of accuracy, true-positive rate, and false positive-rate 
through two scenarios. This includes using different sets of 
URLs for the URL generator that leads to different 
classifications made by the URL classifier and different 
decisions made by the NN model. The author’s previous 
proposal from [14-16] is discussed in the next section.  

III. PROPSOED MODEL 

In this section, we explain three elements of our 
previous proposal [14-16] which includes: the URL 
generator, the URL classifier, and the NN model as 
follows, Figure 1[15]. 

A. The URL Generator 
The URL generator has two components: “Benign 

URLs” and “Malicious URLs”. The “Benign URLs” 
includes the real URL addresses that exit in the world and 
have/have not SQLi attack signature(s). These URLs have 
been captured from [18]. The Google search engine [19] 
has been employed in order to find the URL addresses 
which are benign but have SQLi attack signature(s). The 
“Malicious URLs” includes the malevolent and harmful 
URL addresses that have SQLi attack signature(s). These 
URLs have been generated by adding the SQLi attack 
signature(s) to the most popular URL addresses in the 
world [18] using the PHP scripting language [20].   

B. The URL Classifier 
The URL classifier is responsible for: 1) identifying a 

given URL as a benign URL or as a malicious URL, and 2) 
detecting the type of SQLi attack for the malicious URLs. 
Basically, the URL classifier deals with the URL addresses 
which are presented/generated by the URL generator. The 
author has mathematically defined the URL classifier’s 
functionalities as follows. 

 Let a URL characteristic ri is defined by a random 
variable Ri as follows: 



Figure 1. Components of the proposed neural network-based model [15] 

𝑅𝑖=  

{
1, if discovered by the SQLi signature detectors 

0, if not discovered by the SQLi signature detector  
 

Let C be a random variable indicating the URL’s class 
which can be either malicious or benign: 

Cϵ {malicious, benign} 

Each URL (malicious/benign) is assigned with a vector 
defined by r− = (r1, r2, , … , rn) with ri being the result of the 
i-th random variable Ri. 

Let a malicious URL characteristic ti is defined by a 
random variable Ti: 

𝑇𝑖=  

{
1, if discovered by the SQLi attack type detectors 

0, if not discovered by the SQLi atatck type detector  
 

Let D be a random variable representing the type of the 
malicious URLs, which can be: “Tautologies”, 
“Illegal/logically incorrect queries”, “Piggy-backed query”, 
“Union queries”, “Stored procedures”, “Inference SQLi 
attack”, or “Alternate encoding”, Table 1[15]: 

D𝜖 {Tautologies, Illegal/logically incorrect queries, 
Piggy-backed query, Union queries, stored procedures, 
Inference SQLi attack, Alternate encoding} 

Each malicious URL is assigned with a vector defined 
byt− = (t1, t2, , … , tn), with ti being the result of the t-th 
random variable Ri. 

C. The Neural Network (NN) Model 
The NN model deals with the URL addresses that have 

already been classified into either benign or malicious. It also 
has knowledge about the type of SQLi attack for malicious 
URLs. The NN model receives this information from the URL 
classifier and takes it into account for three phases of: training, 
validating and testing with distribution rates of 70%, 15%, and 
15%, all respectively.  

The NN model includes x inputs and y outputs which are 
connected through n hidden layers/neurons via directed 
arrows, Figure 2 [15]. Each directed arrow can have different 
value. The value called connection weigh or simply weight.  

In order to learn the weights, the author has employed a 
popular NN-based algorithm called backpropagation which is 
an abbreviation for backward propagation algorithm. The 
algorithm starts with a set of inputs (a set of random weights) 
and a set of desire outputs. By using the inputs and the random 
weights, the author first let the network calculate some 
outputs. Obviously, as the weights are selected randomly, 
there will be differences between the calculated outputs and 
the desire outputs. Thus, the calculated outputs will be 
compared with the desire outputs and the differences will be 
measured. The differences between these two sets called 
network errors. Now, the network knows about the errors, it 
tries to adjust the weights in order to produce the outputs 
which are closer to the desire outputs and thus have smaller 
errors.  

The author has mathematically defined the 
backpropagation algorithm as follows.  

Let the weight for the i-th node defined by a random 
variable 𝑊𝑗,𝑖 (left side of the arrow below); where 𝑊𝑗,𝑖 (right 

side of the arrow below) is the node’s old weight, α is the 
learning rate,  𝑎𝑗 is the node’s input value, and Ϫ𝑖 is the 

network error. Therefore, the new weight is calculated and 
then adjusted as follows.  

𝑊𝑗,𝑖   𝑊𝑗,𝑖 + α x 𝑎𝑗 x Ϫ𝑖 

The error for the i-th node (Ϫi) is calculated as follows. 

Ϫ𝑖 = (𝑇𝑖  – 𝑂𝑖) x g’ ( ∑ 𝑊𝑗,𝑖𝑗  𝑎𝑗) 

For simplicity, the author puts together the three 
components of the NN model in two groups as follows. 

1) Training Elements 

The Training Elements include three components as 
follows. 

 “Input Matrix”: this matrix contains all the URLs 

(malicious and benign) that the NN model uses in 

training stage. These URLs have been 

generated/presented by the URL generator. 

 “Target Matrix”: this matrix includes all the decisions 

(malicious or benign) for all the URLs as well as the type 

of SQLi attacks for malicious URLs. These decisions 

cover each URL stored in the ‘Input’ matrix. 



 

Figure 2. An artificial neural network model [15] 

 “Fitness Network”: this is the NN model with n layers 

with x inputs and y outputs where the data from ‘Input’ 

and ‘Target’ matrixes are used for training, validating, 

and testing, respectively.   

2) Validating/Testing Elements 

The Validating/Testing Elements of the NN model 
include two components as follows.  

 “Sample Matrix”: this matrix contains sample data from 

the “Input Matrix”. The trained NN model uses the data 

in the “Sample Matrix” as inputs during the validation 

phase. 

 “Output Matrix”: this matrix contains output data for the 

data in the “Sample Matrix”. The trained NN model 

predicts the output values for the “Sample Matrix” and 

stores them in the “Output Matrix”. 

 
The implementation of the proposed NN model is 

discussed in the next section.  

IV. IMPLEMENTATIONS 

The implementation of the proposed NN model is 
discussed as follow.  

A. The URL Generator 
The two elements of the URL generator, Benign URLs and 

Malicious URLs, are implemented as follows.   

1) The “Benign URLs” 
The “Benign URLs” holds the real URL addresses and 

includes two separate lists: List1 and List2. List1 contains a 
list of the real URL addresses which are benign with 
absolutely no SQLi attack signature. List2 includes a list of 
the real URLs which are also benign but with SQLi attack 
signature(s). The author has considered 6,250 real URL 
addresses for List1 and List2. Therefore, the benign URL 
addresses come to 12,500 in total. As an example URL for 
List1, consider the Google’s URL address in the UK [19]. This 
is a benign/real URL address with absolutely no SQLi attack 
signature(s). As an example URL for List2, consider the 
European Union’s URL address in Wikipedia [21]. This is 
also a benign/real URL address but has a SQLi attack keyword 
of “union”. As a result of this, the proposed NN model can 
falsely detect the European Union’s URL as a malicious URL 
and thus classify it as a “Union queries” SQLi attack. This is 
called false positive. Furthermore, the author divides List2 

into five sub-lists: List2.1, List2.2, List 2.3, List2.4, and List 
2.5, where 20% (1,250 URLs), 40% (2,500 URLs), 60% 
(3,750 URLs), 80% (5,000 URLs), and 100% (6,250 URLs) 
of the URLs has this issue. For instance, in List 2.1, only 10% 
of the benign URLs have SQLi attack signature(s) whereas in 
List 2.5 100% of the URLs has this issue. This comes to 6,250 
URLs for List2 in total. The reason to employ different data 
sets in this paper is to re-evaluate the effectiveness and the 
performance of the author’s previous proposal [14-16] in 
terms of: accuracy, false-positive, and false-negative rates.  

2) The “Malicious URLs” 
In this paper, the author generated the malicious URLs by 

simply adding SQLi attack signature(s), Table 1[15], to the 
benign URLs using a PHP script. For instance, addressing the 
“Piggy-backed query” SQLi attack signatures, a generated 
malicious URL can be a benign URL that has delimiter “;”.  
Likewise, adding “;, SHUTDOWN, exec” signatures to a 
benign URL, generates a malicious URL which can be 
identified as a “Stored procedures” SQLi attack. The total 
malicious URLs come to 12,500. 

B. The URL Classifier 
The URL classifier is accountable for: 1) identifying 

whether a given URL is a benign URL or a malicious URL, 
and 2) identifying the type of SQLi attack for a given 
malicious URL. Given that 1 represents true/malicious and 0 
represents false/benign in this paper, the author encoded these 
two tasks using string of logic for each URL. This has been 
done by allocating two vectors: r− and t− to each URL where 
r− has 32 features (r− = (r0, r1, , … , r31)) and t− has 8 
features (t− =  (t0, t1, , … , t7)). For instance, if a URL 
includes:  “ ; ”,  “AND”, “IF”, “ELSE” and “WAITFOR” 
keywords, it will be classified as a malicious URL with 
“00000000000101000000111000000000” value for  r− 
where: r11 represents “ AND ”, r13 represents “;”, r20 
represents “IF”, r21 represents “ELSE”, and r22 represents 
“WAITFOR”. Moreover, given that this is an “Inference SQLi 
attack”, which is the attack type6 in this paper, the value for 
t−  vector is “00000010”. The r− and t− components are 
shown in Table 2 [15] and Table 3 [15], respectively. 

C. The Neural Network (NN) Model 
The NN model employs 70% of the total URLs for 

“Training phase”, 15% for “Validating phase”, and 10% for 
“Testing phase”. Given that the author has implemented two 
scenarios to re-evaluate the effectiveness of our previous 
proposal, and that each scenario has different NN 
configurations, the author identifies the NN elements 
independently for each scenario. Therefore, the two 
implemented scenarios (SCENARIO1 and SCENARIO2) are 
designed as follows. 

V.   SCENARIO1: DETECTION AND STRESS TEST 

In SCENARIO1, which is called DETECTION AND 
STRESS TEST, the author focuses on responsibility number 
one for the NN model: identifying the malicious URLs from 
the benign URLs. This scenario has been taken into account 
in order to re-evaluate the performance of the previous 
proposal [14-16] in terms of: accuracy, true-positive rate, and 
false positive-rate with different and controversial data sets. 
The data sets are controversial as there is a great chance for 



the NN model to falsely detect the malicious URLs as benign 
and vice versa. For each category of benign and malicious 
URLs, the author has taken into account the equal number of 
12,500 URL addresses with the following specifications.  

The URL addresses in benign category are grouped in two 
lists: List1 and List2 each list carries 6,250 URLs, Table 4. In 
order to make the decision making (benign/malicious) harder, 
List2 is further divided into five sub-lists: List2.1,  

TABLE 2. ASSIGNED VECTORS FOR SQLI ATTACK 

SIGNATURES [15]  

Vectors SQLi attack signatures 

r0 ‘ 

r1 or 

r2 = 

r3 like 

r4 select 

r5 convert 

r6 int 

r7 char 

r8 varchar 

r9 nvarchar 

r10 incorrect logics 

r11 and 

r12 orderby 

r13 ; 

r14 union 

r15 union select 

r16 shutdown 

r17 exec 

r18 xp_cmdshell() 

r19 sp_execwebtask() 

r20 if 

r21 else 

r22 waitfor 

r23 -- 

r24 ascii() 

r25 bin() 

r26 hex() 

r27 unhex() 

r28 base64() 

r29 dec() 

r30 rot13() 

r31 * 

List2.2, List 2.3, List 2.4, and List 2.5, where 20% (1,250 
URLs), 40% (2,500 URLs), 60% (3,750 URLs), 80% (5,000 

URLs), and 100% (6,250 URLs) of the URLs has the issue of 
being benign but having SQLi attack signature(s). The total 
number of the URLs in each sub-list is 6,250. The URL 
addresses in malicious category are the malicious URL 
addresses which carries the SQLi attack signature(s). The total 
number of the URLs in this category is 12,500 with 
distribution rate of: 1,800 URLs for Type1 to Type 6 and 
1,700 URL addresses for Type 7 SQLi attack, Table 4. 

In Scenario1, all the malicious and benign URLs, which 
are 12,500 URLs in each category that gives 25,000 URLs in 
total, are classified by the URL classifier to either benign or 
malicious. This task has been done by developing: 1) one PHP 
script to convert all 25,000 URL addresses to strings of logics 
(zeros and ones), and 2) one PHP script to identify each URL 
either as benign or malicious. In both scripts, 1 represents 
true/malicious and 0 represents false/benign. This gives us 
two matrices that act as inputs to our proposed NN model: 
Input Matrix and Target Matrix. They are named as Training 
Elements.   

TABLE 3. ASSIGNED VECTORS FOR SQLI ATTACK TYPE 

[15] 

Vectors SQLi attack type 

t0 Benign 

t1 Tautologies 

t2 Illegal/logically incorrect queries 

t3 Piggy-backed query 

t4 Union queries 

t5 Stored procedures 

t6 Inference SQLi attack 

t7 Alternate encoding 

 

TABLE 4. BENIGN AND MALICIOUS URLS FOR SCENARIO 1 & 2 
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Figure 3. Network Architecture for the Neural Network component of the proposed model (Scenario1) 

There are two other matrices that act as output to the 
proposed NN model: Sample Matrix and Output Matrix. They 
are named as Testing/Validating Elements. For simplicity, the 
author has merged the validating and testing elements together 
with the following specifications for Scanrio1. 

1)  Scenario1: Training Elements 

 “Input Matrix”: this matrix is a logical 25,000 x 32 

matrix where the URLs are represented in strings of 

logics, 0s (benign) and 1s (malicious). It is a matrix with 

25,000 rows and 32 columns. 25,000 represent the 

number of the URLs in this scenario, which is 12,500 for 

benign URLs and 12,500 for malicious URLs precisely. 

The 32 represents the size of the assigned vectors to the 

SQLi attack. 

 “Target Matrix”:  this matrix is a logical 25,000 x 1 

matrix where the URLs are represented in string of 

logics, 0s (benign) and 1s (malicious). It is a matrix with 

25,000 rows and 1 column. 25,000 represent the number 

of the URLs while 1 represents the size of the assigned 

decision vector to each URL which is either benign (0) 

or malicious (1). 

 Fitness network: this is our NN model with 10 hidden 

nodes or 10 layers/neurons where 70%, 15%, and 15% 

of the data from ‘Input’ and ‘Target’ matrices are used 

for training, validating, and testing, all respectively. 

2) Scenario1:Validating/Testing Elements 

 “Sample Matrix”:  this matrix is a logical n x 32 matrix 

contains n sample data from the “Input Matrix”.  

 “Output Matrix”:  this matrix is a logical n x 1 matrix 

contains output data for the URLs represented in 

“Sample Matrix”. The trained NN model predicts the 

output value, in terms of a URL being benign or 

malicious, for each URL in the “Sample Matrix”. These 

predictions will be stored in the “Output Matrix”.   

The whole data set, which includes 25,000 URLs and 
25,000 decisions (malicious/benign), will be used in order to 
train (by 70% of data), validate (by 15% of data), and test (by 
15% of data). The Scenario has been implemented in 
MATLAB [22]. The NN model has 10 hidden layers, 32 input 
features, 1 output layer, and 1 output features, Figure 3. For 
Scenario1, the results have been captured, represented, and 

analyzed in two groups of: confusion matrix and Receiver 
Operating Characteristic as follows.   

The confusion matrices for all three phases of training, 
validating, and testing are depicted in Figure 4 to Figure 8. 
Each figure shows different results with different sets of date. 
For instance, Figure 4 shows the output results when the input 
data includes 12,500 benign URLs (6,250 URLs from List 1 
and 6,250 URLs from List 2.1) and 12,500 malicious URLs 
while Figure 8 shows the output results when the input data 
comes from List1, List 2.5, and malicious URLs. This gives 
the total of 25,000 URLs for each experiment.   

As it is depicted in Figure 4 to Figure 8 and based on the 
implementations, there are two output classes and two target 
classes: class 0 which represents benign URLs and class 1 
which represents malicious URLs. For each class, the number 
of the correct responses is shown in a green square and the 
number of the incorrect responses is shown in red square. The 
grey square illustrates the percentages of the accuracies (upper 
numbers) and inaccuracies (bottom numbers) for output and 
target classes. The blue square shows the overall percentages 
of the accuracies (upper numbers) and inaccuracies (bottom 
numbers) for each experiment.  

For instance in Figure 4, three phases of training, 
validating and testing receive 25,000 URLs (11,749 + 501 + 
751 + 11,999). This includes 12,250 benign URLs (11,749 + 
501), which are in class 0, and 12,250 malicious URLs (751 + 
11,999) which are in class 1.  The former is 49.0% (47.0% + 
2.0%) and the latter is 51.0% (3.0% + 48.0%) of the total 
URLs used in this phase. For the benign URLs, which are in 
class 0, the percentage of correct responses is 95.9% while the 
percentage of the incorrect responses is 4.1%. These 
percentages are 94.1% and 5.9% for malicious URLs, which 
are in class 1, all respectively. This gives the total percentage 
of 95.0% accuracies and 5.0% of inaccuracies. 

Moving from Figure 4 to Figure 8, as it was expected, the 
author realises that the total percentage of accuracies are 
reduced and the total percentage of inaccuracies are increased 
for each set of experiment gradually by 5.0%. For instance, in 
Figure 5, in which the author employs URLs from List 2.2 
where 40.0% of the URLs (total of 2,500) have the issue of 
being benign but having SQLi attack signature(s), the 
percentage of accuracies is 90.0% and inaccuracies is 10.0%. 
However, these percentages reach 75.0% and 25.0% 
correspondingly in Figure 8, in which the  



 

Figure 4. Confusion matrix for three phases in Scenario1 
(URLs from: List1 & List 2.1 & Malicious URLS)  

 

Figure 5. Confusion matrix for three phases in Scenario1 
(URLs from: List1 & List 2.2 & Malicious URLS)   

 

Figure 6. Confusion matrix for three phases in Scenario1 
(URLs from: List1 & List 2.3 & Malicious URLS)  

 

Figure 7. Confusion matrix for three phases in Scenario1 
(URLs from: List1 & List 2.4 & Malicious URLS)   

 

Figure 8. Confusion matrix for three phases in Scenario1 
(URLs from: List1 & List 2.5 & Malicious URLS)   

author employs URLs from List 2.5 where 100.0% of URLs 
(total of 6,250 URLs) have the issue of being benign but 
having the SQLi attack signature(s).  

The network performance for all three phases (training, 
validating, and testing) and for all five sets of experiments in 
Scenario1 are captured in Figure 9 to Figure 11. This has been 
measured in terms of mean squared error and has been shown 
in log scale. The mean squared error is the difference between 
output and target. Thus the lower values are better and zero 
means there is no error in the network. Moving from Figure 9 
to Figure 11, the author notices that, as it was expected, the 
network performance is gradually reduced by almost 0.03ms 
from 0.02ms in Figure 9 to 0.13ms in Figure 11. This is 
because of the different data set that the author employed in 
each set of experiments which makes it more difficult for the 
network to reach its best performance when gradually got 
from Figure 9 to Figure 11. This means the network takes 
longer to get its best performance. For instance, the network 
performance is better in Figure 10 (i.e.  



 

Figure 9. Network performance for Scenario1 (URLs from: 
List1 & List 2.1 & Malicious URLS)  

 

Figure 10. Network performance for Scenario1 (URLs 
from: List1 & List 2.3 & Malicious URLS)  

 

Figure 11. Network performance for Scenario1 (URLs 
from: List1 & List 2.5 & Malicious URLS)  

almost 0.10ms) than Figure 11 (i.e. almost 0.13ms). It means 
the network reaches to its best point faster when 60% of data 
have the issue of being benign but having the SQLi attack 
signature(s). The best validation performance occurs by 
iteration 44, 43, 36 in Figure 9 to Figure 11 all respectively. 
The network performance in Scenario1is reasonable because 
of the following considerations: the final mean square error is 
small and the test set error and the validation set error have 
similar characteristics.  

The author has also capture the Mean Squared Error 
(MSE), which is the difference between outputs and targets, 
and Percentage Error (%E), which is the fraction of the 
samples which are misclassified, for five sets of experiments 
in Table5. In Table 5, value 0 means no error for MSE and no 
misclassifications for %E.                

VI. SCENARIO 2: DETECTION, CLASSIFICATION, 

AND STRESS TEST 

In SCENARIO2, which is called DETECTION, 
CLASSIFICATION, and STRESS TEST, the author focuses 
on responsibility number two of the proposed NN-based 
model: identifying the type of SQLi attack for malicious 
URLs. The SCENARIO2 has also been implemented with 
controversial data sets. The data sets called controversial as 
there is a great chance of having false detections i.e. to falsely 
classify the malicious URLs. To achieve this, the author has 
considered the same data sets of 25,000 URLs from 
SCENARIO1, Table 4. For Scenario2, the training and 
testing/validating elements of the NN model are defined as 
follows. 

1) Scenario2: Training Elements 

 “Input Matrix”: this matrix is a logical 25,000 x 32 

matrix where 25,000 represent the total number of the 

URLs in Scenario2 and 32 represents the size of the 

assigned vectors to the SQLi attack.  

     TABLE5. (MSE) AND (%E) IN SCENARIO 1  

Phase Samples MSE %E 

URLs from: List1 & List 2.1 & Malicious URLS  
Training 17500 2.85060e-2 4.97142e-0 

Validating 3750 2.77257e-2 5.33333e-0 

Testing 3750 2.64664e-2 4.85333e-0 

URLs from: List1 & List 2.2 & Malicious URLS  
Training 17500 5.37746e-2 10.01714e-0 

Validating 3750 5.27890e-2 9.35999e-0 

Testing 3750 5.32295e-2 10.58666e-0 

URLs from: List1 & List 2.3 & Malicious URLS  
Training 17500 8.35546e-2 14.94857e-0 

Validating 3750 8.34291e-2 15.19999e-0 

Testing 3750 8.47232e-2 15.09333e-0 

URLs from: List1 & List 2.4 & Malicious URLS  
Training 17500 1.04517e-1 19.67999e-0 

Validating 3750 1.05754e-1 19.94666e-0 

Testing 3750 1.08780e-1 21.60000e-0 

URLs from: List1 & List 2.5 & Malicious URLS  
Training 17500 1.33045e-1 24.84571e-0 

Validating 3750 1.32979e-1 24.95999e-0 

Testing 3750 1.35371e-1 25.78666e-0 

 

 



 

Figure 12. Network Architecture for the Neural Network component of the proposed model (Scenario2) 

 “Target Matrix”:  this matrix is a logical 25,000 x 8 

matrix where 25,000 represent the total number of the 

URLs in Scenario2 and 8 represent the type of the SQLi 

attack.  

 Fitness network: this is the NN model with 10 hidden 

layers where 70%, 15%, and 15% of the data from 

‘Input’ and ‘Target’ matrices are employed for training, 

validating and testing, all respectively. 

2) Scenario2:Validating/Testing Elements 

 “Sample Matrix”:  this matrix is a logical n x 32 matrix 

contains sample n data from the “Input Matrix”.   

 “Output Matrix”:  this matrix is a logical n x 8 matrix 

contains output data for the data represented in “Sample 

Matrix”. The trained NN model predicts the output 

value, which is the SQLi attack type, for each URL in the 

“Sample Matrix”. These predictions will be stored in the 

“Output Matrix”. 

In Scenario2, the NN model has 10 hidden layers, 32 input 
features, 8 output layer, and 8 output features, Figure 12. For 
Scenario2, the results have been captured, represented, and 
analyzed as follows.  

The confusion matrices of Scenario2 for all three phases 
are captured in Figure 13 to Figure 17.  Moving from Figure 
13 to Figure 17, as it was expected before, the author notices 
that the overall percentage of the accuracies is gradually 
reduced from 48.0% to 42.0% and the overall percentage of 
inaccuracies is gradually increased from 52.0% to 58.0%, both 
respectively. The gradual decrement in the overall percentage 
of accuracies and the gradual decrement in the overall 
percentage of the inaccuracies are due to the nature of the data 
in each set of experiments. This means the more difficult set 
of data, for instance when there is 100% benign URLs with 
SQLi attack signature(s), will produce the lowest accuracies 
and the highest inaccuracies in the decision making process, 
Figure 17.   

The network performance for three phases in the five sets 
of experiments for Scneario2 is captured in Figure 18 to 
Figure 20. Moving from Figure 18 to Figure 20, as it was 
expected, the author notices that the network performance in 
Scenario2 is gradually decreased from 0.006ms in Figure 18 
to 0.022ms in Figure 20 by almost 0.002ms. Obviously, this 
is because of the nature of the data that regularly gets tougher 
which means the network takes longer to reach its best 

performance. The best validation performance occurs by 
iteration 150, 78, 82 for Figure 18 to Figure 20 all 
respectively. The network performance in Figure 18 to Figure 
20 is reasonable for each set of experiment because of the 
following considerations: the final mean square error is  

 

Figure 13. Confusion matrix for three phases (URLs from: 
List1 & List 2.1 & Malicious URLS in Scenario2)  

 

Figure 14. Confusion matrix for three phases (URLs from: 
List1 & List 2.2 & Malicious URLS in Scenario2)  



 

Figure 15. Confusion matrix for three phases (URLs from: 
List1 & List 2.3 & Malicious URLS in Scenario2)  

 

Figure 16. Confusion matrix for three phases (URLs from: 
List1 & List 2.4 & Malicious URLS in Scenario2)  

 

Figure 17. Confusion matrix for three phases (URLs from: 
List1 & List 2.5 & Malicious URLS in Scenario2)  

 

Figure 18. Network performance (URLs from: List1 & List 
2.1 & Malicious URLS in Scenario2)  

 

Figure 19. Network performance (URLs from: List1 & List 
2.3 & Malicious URLS in Scenario2)  

 

Figure 20. Network performance (URLs from: List1 & List 
2.5 & Malicious URLS in Scenario2)  

 



Table6. (MSE) and (%E) in Scenario 2 

Phase Samples MSE %E 

URLs from: List1 & List 2.1 & Malicious URLS  
Training 17500 7.33524e-3 26.82285e-0 

Validating 3750 6.87468e-3 27.58666e-0 

Testing 3750 7.57969e-3 27.23999e-0 

URLs from: List1 & List 2.2 & Malicious URLS  
Training 17500 8.26756e-3 26.88857e-0 

Validating 3750 8.52256e-3 27.40000e-0 

Testing 3750 8.83980e-3 27.20000e-0 

URLs from: List1 & List 2.3 & Malicious URLS  
Training 17500 1.54859e-2 28.99999e-0 

Validating 3750 1.58143e-2 29.08000e-0 

Testing 3750 1.48089e-2 28.89333e-0 

URLs from: List1 & List 2.4 & Malicious URLS  
Training 17500 2.51881e-2 36.82571e-0 

Validating 3750 2.49600e-2 37.65333e-0 

Testing 3750 2.46622e-2 37.15999e-0 

URLs from: List1 & List 2.5 & Malicious URLS  
Training 17500 2.18843e-2 33.04857e-0 

Validating 3750 2.22466e-2 32.30666e-0 

Testing 3750 2.25724e-2 33.46666e-0 

small and the test set error and the validation set error have 
similar characteristics.  

The MSE and %E for five sets of experiments has been 
also captured for Scenario2 in Table6. 

VII. CONCLUSION 

In this paper, we further investigated the performance of 
our previous proposal from [14-16]. We measured the 
effectiveness of our previous proposal   in terms of accuracy, 
true-positive rate, and false positive-rate through two 
scenarios: Scenario1 and Scenario2. In both scenarios, we 
took into account controversial data sets as there was a great 
chance for the previous proposal to provide false detections. 
For instance, it was a great chance to falsely detect the 
malicious URLs as benign and vice versa in Scenario1 and 
falsely classify the malicious URLs. For both scenarios, the 
results were captured, represented, and analyzed in two 
groups of: confusion matrix and network performance. 
Addressing the captured results the proposed neural network 
model for detection and classification of the SQLi attack 
showed a good performance in terms of accuracy, true-
positive rate as well as false-positive rate. 
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