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In this paper, we use bioachr as a treatment for metal stabilization in contaminated 
sediment, which has been widely investigated and used in soil remediation but seldom 
in sediment management. Besides, we employed four extraction methods, diffusive 
gradients in thin-films technique (DGT), porewater concentration， sequential 
extraction (BCR) and toxicity characteristic leaching procedure (TCLP), to analyze 
stabilization efficiency. During incubation sediment slurry mixed with biochar, metal’s 
stability, bioavailability and geochemistry fraction have been altered and form a more 
stable speciation in sediment-biochar system. It is definite that the biochar can promote 
metals’ stability in sediment, but the adsorption is not the only stabilization mechanism. 
The pH value, total carbon content and so on affected by biochar directly or indirectly 
also contribute to the process of stabilization. 

This biochar treatment process could be used for ex-situ remediation of dredged 
sediment from aquatic benthic before further disposal, as landfill disposal, confined 
aquatic disposal and dumping at sea are still the most applied sediment management 
strategies in China. Although this study was based on laboratory investigations, the 
information and data from these experiments could pave the way for further engineering 
application.
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12 Abstract: Because of its high adsorption capacity, biochar has been used to stabilize 

13 heavy metals when remediating contaminated soils; to date, however, it has seldom 

14 been used to remediate contaminated sediment. In this study, a biochar was used as a 

15 stabilization agent to remediate Cu- and Pb-contaminated sediments, collected from 

16 three locations in or close to Beijing. The sediments were mixed with a palm sawdust 

17 gasified biochar at a range of weight ratios (2.5%, 5%, and 10%) and incubated for 10, 

18 30, or 60 days. The performance of the different treatments and the heavy metal 

19 fractions in the sediments were assessed using four extraction methods, including 

20 diffusive gradients in thin films, the porewater concentration, a sequential extraction, 

21 and the toxicity characteristic leaching procedure. The results showed that biochar 

22 could enhance the stability of heavy metals in contaminated sediments. The degree of 

23 stability increased as both the dose of biochar and the incubation time increased. The 

24 sediment pH and the morphology of the metal crystals adsorbed onto the biochar 

25 changed as the contact time increased. Our results showed that adsorption, metal 

26 crystallization, and the pH were the main controls on the stabilization of metals in 

27 contaminated sediment by biochar.
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30  Introduction

31 Sediment is a major component of river ecosystems and has a fundamental 

32 influence on ecosystem health. As such, there is great concern about heavy metal 

33 contamination of river sediment (Akcil et al., 2015). The heavy metals commonly found 

34 in sediments usually originate from industrial waste discharges through direct 

35 emissions, such as dumping, or indirect emissions, such as rain runoff and atmospheric 

36 deposition. Approximately 90% of the heavy metals that enter rivers may be deposited 

37 onto the sediment surface and incorporated into the lattice structure of minerals via 

38 adsorption, precipitation, and flocculation (Du et al., 2009; Lin et al., 2013). The 

39 stability of metals in sediment depends, to some degree, on the environmental 

40 conditions. With changes in the environmental conditions, such as the pH, oxidation 

41 reduction potential (OPR), temperature and salinity, the bound metals may be released 

42 into water, from where they may be taken up and bioaccumulated in food webs, thereby 

43 presenting risks to river ecosystems. In addition, the mobility and bioavailability of 

44 sediment-bound metals in river ecosystems may increase during resuspension by 

45 natural processes, waste disposal, and dredging activities (Akcil et al., 2015). Therefore, 

46 sediments act as both a sink and a source of heavy metals in aquatic ecosystems and 

47 can switch between these roles under different conditions (Peng et al., 2009). Because, 

48 when released, metals are toxic to aquatic ecosystems, the stability of metals in 

49 sediment matrices should be enhanced to reduce their potential impacts on the aquatic 

50 environment.
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51 Currently physical, chemical, and biological technologies are used to treat 

52 contaminated sediments, both in-situ and ex-situ (Wang et al., 2017). During ex-situ 

53 remediation, sediment is dredged from the riverbed and disposed of, disturbing aquatic 

54 benthic life; in-situ remediation, however, does not impact on natural hydrological 

55 conditions and methods are designed to prevent the desorption of pollutants from the 

56 sediment to the water column (Peng et al., 2009; Wang et al., 2017). In most case, ex-

57 situ remediation is the first choice in many restoration projects because of the severity 

58 of the pollution and doubts that in-situ remediation methods can provide stable results 

59 over the long-term (Peng et al., 2009). The concentrations of toxic metals can increase 

60 dramatically during dredging operations because of the re-suspension of sediment and 

61 release of dissolved metal pollutants (Akcil et al., 2015). Sediment remediation 

62 methods are designed to either dislodge or extract contaminants from sediment or to 

63 enhance their stability in the sediment. Sorbent amendments and stabilization strategies 

64 that mimic biogeochemical processes are used to enhance the stability of heavy metals, 

65 and potentially reduce the ecological risks (Bolan et al., 2014). A wide range of 

66 materials such as zero-valent iron, hematite, ferrihydrite, apatite, clays, calcium-rich 

67 sepiolite, attapulgite, and activated carbon have already been used to remediate metal-

68 contaminated sediments (Ghosh et al., 2011; Qian et al., 2009; Yin and Zhu, 2016). 

69 However, while biochar is well-known for its stability and high adsorption, it has been 

70 used infrequently in sediment management applications (Wang et al., 2017). 

71 Biochar is a carbon-rich material obtained from the thermochemical conversion of 

72 biomass under oxygen-limited conditions (Keiluweit et al., 2010; Tong et al., 2011; 

73 Wang et al., 2017; Yuan et al., 2011). Because of its unique properties, it is increasingly 

74 used in soil remediation applications (Zhang et al., 2013). Studies to date have shown 

75 that biochar can enhance the matrix pH under most acid and neutral conditions, and 
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76 hold moisture, thereby increasing the soil water content and retaining necessary 

77 nutrients for plant growth (Atkinson et al., 2010; Gunes et al., 2014; Jeffery et al., 2015; 

78 Major et al., 2010). In a recent study, biochar was used to improve and remediate 

79 several metal-contaminated rice fields in China. The results from a series of field trials 

80 showed that the bioavailability of metals in soil and the metal concentrations in rice 

81 grains decreased by between 20% ~ 70%, and 20% ~ 60%, respectively, in soils treated 

82 with biochar (Wang et al., 2017). In terms of sediment, studies have addressed the 

83 effects of biochar on (1) mercury-related processes such as methylation and 

84 demethylation (Liu et al., 2016), (2) the fractions of Fe and As (Chen et al., 2016), and 

85 (3) the basic physico-chemical properties of sediment such as water retention, CO2 

86 emissions, total organic carbon, pH, and electrical conductivity (Ojeda et al., 2016). 

87 Despite the fact that few studies have addressed how biochar can be used to treat metal-

88 contaminated sediments, we speculate that the benefits already seen in soil management 

89 might also apply to sediment remediation.

90 In sediment management strategies, sediment quality guidelines have traditionally 

91 been based on the total contaminant concentrations rather than the leachability or 

92 bioavailability (Qian et al., 2009). However, the total contaminant concentrations 

93 cannot adequately represent contaminant mobility, because the mobility, bioavailability 

94 and eco-toxicity of metals in sediments are generally controlled by different 

95 geochemical fractions and the binding relationships between contaminants and solid 

96 phases (Kazi et al., 2005), which can be more accurately explained by the metal 

97 fractions. It is well-known that, when incorporated into the lattice structures of minerals, 

98 heavy metals are stable and less bioavailable than weakly-bound labile metals. To date, 

99 a series of chemical methods, including porewater extraction, membrane extraction, 

100 and chemical reagent extraction, have been developed to facilitate rapid evaluation of 
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101 the bioavailability of metals in soils or sediments (Chen et al., 2016; Yin et al., 2014; 

102 Yin and Zhu, 2016; Zhang et al., 2001). In these methods, speciation analysis and 

103 leaching tests are based on the different abilities of chemical reagents to extract and 

104 classify metal geochemical fractions and evaluate their mobility and bioavailability, 

105 and membrane extraction is based on the equilibrium between the solid and liquid to 

106 assess the dissolved pollutants concentration and their resupply ability from solid phase. 

107 These methods provide detailed information about metal species in sediment phases 

108 and helps to predict the potential future behavior of these pollutants (Hasan et al., 2018; 

109 Kazi et al., 2005; Song et al., 2017).

110 The objective of this study was to investigate if biochar could be used effectively 

111 to remediate sediments that were contaminated with heavy metals. Four extraction 

112 methods were employed to evaluate specific components of the performance of the 

113 biochar treatments, as follows: (1) diffusive gradients in thin films (DGT) were used to 

114 investigate the concentrations of labile metals (in-situ sample) (Zhang et al., 2001); 2) 

115 a centrifuge method was used to determine the concentrations of dissolved metals in 

116 porewater; 3) a multi-step sequential extraction method (the Community Bureau of 

117 Reference (BCR) method, Yin and Zhu (2016)) was used to evaluate the distribution of 

118 metal fractions, and 4) the toxicity characteristic leaching procedure (TCLP, USEPA 

119 (1984)), a one-step extraction method, was used to investigate the potential leachability 

120 of metals in sediments under strong or moderately acidic conditions. While this was a 

121 laboratory-based study, the information and data from these experiments could form 

122 the basis of further engineering applications.
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123 1 Materials and methods

124 1.1 Sediment collection and biochar preparation 

125 Three different sediments were collected from an inner-city river (CR), a standby 

126 reservoir (SR), and an artificial lake (AC) either close to or in Beijing, China. The 

127 sediments were collected by a grab sampler, packed into plastic bags and sealed, then 

128 transported to the laboratory, and stored at 4°C. The sediments were then amended with 

129 solutions of Cu(NO)2 and Pb(NO)2 to give medium-to-high concentrations of Cu(II) 

130 and Pb(II) (Gu and Hua, 2006; Zhu and Wang, 2012). The sediment slurries were hand-

131 stirred several times to homogenize and then incubated in the dark for 40 days. The 

132 total concentrations of Cu and Pb in the sediments before and after the Cu(NO)2 and 

133 Pb(NO)2 solutions were added are presented in Table 1. A palm sawdust-based 

134 gasification biochar (SBIO), details of which are reported in an earlier study, was 

135 selected as the metal stabilization agent (supplementary file). Briefly, to prepare the 

136 biochar, the palm sawdust was air-dried and then pyrolyzed at approximately 550°C in 

137 a kiln in O2-limited conditions for 2 hours.

138 1.2 Sediment and biochar properties

139 The physico-chemical properties of the biochar and air-dried sediments were 

140 characterized as follows. The pH was measured in a 1:1 suspension of solid and 

141 deionized water and shaken for 3 hours at 160 rpm. This test showed that all samples 

142 were alkaline (Table 1). The concentrations of total organic carbon (TOC) were 

143 determined with a TOC analyzer (Multi N/C 3100, Analytik Jena AG). The surface area 

144 was determined with the Brunauer–Emmett–Teller (BET) equation with multipoint 
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145 adsorption isotherms of N2 at 77 K. Solid samples of biochar and sediment were 

146 digested with HNO3, HF, and HClO4 (3 mL/2 mL/3 mL) in a Teflon bomb. The metal 

147 concentrations in the extract solution were measured by flame atomic absorption 

148 spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS), and 

149 the chemical compositions were characterized by X-ray fluorescence (XRF) 

150 spectrometry (Yin and Zhu, 2016)

151 The surface physical morphology of the SBIO was analyzed using scanning 

152 electron microscopy (SEM) (Chen et al., 2016). The functional groups were recorded 

153 using Fourier transform infrared spectra (Chen et al., 2016). There was a peak at 3438 

154 cm−1 that corresponded to the hydroxyl group stretching vibration. Bonds at 1615 and 

155 1440 cm−1 were caused by C=O deviational vibration and symmetrical stretching, and 

156 the stronger peak at 1038 cm−1 was assigned to the C-O stretching vibration (Keiluweit 

157 et al., 2010; Yuan et al., 2011) (Fig. S5). Analysis of the mineralogical composition of 

158 the related solid samples using powder X-ray diffraction (XRD) (Yin and Zhu, 2016) 

159 indicated that the solid samples were dominated by calcite and quartz (Figure S7a). 

160 Table 1

161 1.3 Batch experiments to stabilize Cu and Pb with biochar

162 The biochar was mixed with approximately 200±10 g of each of the contaminated 

163 sediment slurries, which corresponded to 104.4, 85.0, and 90.2 g of dry sediment from 

164 SR, CR, and AC, respectively, at ratios of 0%, 2.5%, 5%, and 10%. The mixtures were 

165 placed into PVC cylinders that were covered with caps that measured 8×10 cm, and 

166 homogenized using a glass stirring rod. The containers were then incubated in the dark 

167 at room temperature for 15, 30, or 60 days. The sediment-biochar microcosms for each 

168 incubation time were grouped together and each cluster was kept separate from the 
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169 others. The water content of each microcosm was maintained at the same level (60%) 

170 by adding deionized water. Each treatment was performed in triplicate.

171 1.4 Metal stabilization evaluation

172 The remediation ability of the biochar was assessed by various methods, namely 

173 the DGT technique, the porewater concentration, the BCR 4-step sequential extraction 

174 procedure and the TCLP. Analytical grade reagents, including HNO3, HF, HClO4, 

175 CH3COOH, H2O2, NH2OH•HCl, CH3COONH4, copper nitrate trihydrate, and lead 

176 nitrate, were used throughout. 

177 1.4.1 DGT and porewater analysis

178 The DGT device used in this study was purchased directly from the manufacturer 

179 (Nanjing Weisheng Huangbao Keji Co. Ltd). The structure of this device is shown in 

180 Figure S3. After incubation, about 1/3 of the sediment slurry of each treatment was 

181 placed into a PVC box (Dimensions 2×3 cm) with a lid, and the DGT devices were 

182 carefully pressed onto the surface of the sediment slurry, and placed in an incubator at 

183 25℃ for 24 h. The resin layer of DGT was then detached from the device and soaked 

184 in 1 mL of 1M HNO3 to elute extracted metal by DGT for 10 h in a shaker (160 rpm) 

185 (160 rpm). The elution solution was diluted for a suitable time and stored at 4°C until 

186 analysis. The DGT extracted concentration (CDGT) can be calculated from the analysis 

187 results, as in earlier study (See supplementary file). Porewater samples were collected 

188 by centrifuging the sediment slurry at 5,000 rpm for 20 min. The supernatant was 

189 filtered through a 0.45-μm membrane and stored at 4°C until analysis.

http://www.sciencedirect.com/science/article/pii/S0003267015009186
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190 1.4.2 Sequential extraction (BCR)

191 The BCR method (Yin and Zhu, 2016), which involves four steps and four 

192 fractions, was used to evaluate the distribution of the metal fractions in sediments with 

193 or without biochar (Table 2). The sediment slurries were air-dried in an airing chamber 

194 and ground to pass through a 100-mesh sieve. Then 0.50 g of the dry weight solid 

195 sample was sequentially extracted by four reagents in 50-mL polyethylene centrifuge 

196 tubes. After each step, the supernatants of all the solutions were filtered with a 0.45-μm 

197 polytetrafluoroethylene syringe filter, and the filtrates were stored at 4°C until analysis. 

198 The average recoveries of the fractions extracted (F1+F2+F3+F4) ranged from 85% to 

199 105% of the total concentrations. 

200 Table 2

201 1.4.3 TCLP test

202 The leachability of Cu and Pb was estimated by the TCLP (USEPA, 1984). The 

203 TCLP reagents were prepared by diluting acetic acid until a pH of 2.88 was achieved. 

204 Then, 1.00 g of sediment (dry weight) and 20 mL of reagents were added into 50-ml 

205 polyethylene centrifuge tubes and shaken at 160 rpm for 18 h. Finally, the supernatant 

206 was filtered through a 0.45-μm polytetrafluoroethylene syringe filter, and the filtered 

207 extracts were stored at 4°C until analysis.
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208 2 Results 

209 2.1 Bioavailability of Cu and Pb reduced by biochar

210 The results from the tests with different amounts of biochar and for different 

211 incubation times with the CDGT and porewater concentration (Cp) tests are shown in 

212 Figure 1. The bioavailabilities of Cu and Pb were much lower in AC than in the other 

213 sediments. For higher doses of SBIO, the CDGT was considerably lower in the sediment 

214 microcosms than in the blank sample. The rates at which the bioavailabilities of Cu and 

215 Pb decreased were highest in CR with an amendment ratio of 10%; at the end of the 

216 incubation, the CDGT (Cu) was below the detection limit (1 ug/l) and CDGT (Pb) was 

217 almost 40% lower than in the blank.

218 The biochar had positive effects on the porewater concentration (Cp), and 

219 reductions were more closely related to the incubation times than to the biochar doses. 

220 In the Cu stabilization test, the Cp always decreased as the stabilization time increased. 

221 However, in the Pb stabilization test, the Cp decreased when incubated for 30 days but 

222 increased when incubated for 60 days. This may reflect the high affinity of the biochar 

223 for Pb as almost all dissolved Pb was adsorbed by SBIO without enough sustainable 

224 resupply from the sediment phase, which cannot be detected by centrifugation (Cp) but 

225 DGT extraction due to labile metals measured by DGT not only existed as a dissolved 

226 fraction but also as a solid fraction (Yin et al., 2014). In addition, the pH and ORP both 

227 decreased during the incubation period (Figure S4). Because the ability of the biochar 

228 to adsorb Pb was sensitive to changes in the pH (Figure S2), the dissolved Pb detected 

229 at 60 d may reflect the decreases in the pH, and this phenomenon can be alleviated 

230 largely by adding biochar. 
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231 Figure 1.

232 2.2 Metal fractions in the treated and untreated sediments

233 The distribution of the Cu and Pb fractions in the treated and untreated sediments 

234 incubated for different periods are shown in Figure 2. When treated with the biochar, 

235 the contaminated sediment was more stable than the blank treatment. The potentially 

236 available fractions of Cu (F1+F2+F3) gradually decreased as the biochar amount and 

237 incubation time increased, and the residual fraction (F4) was 61.4%, 54.7%, and 87.7% 

238 higher in the CR, SR, and AC contaminated sediments, respectively, than in the blank 

239 samples for a biochar dose of 10% and an incubation of 60 days. The acid-soluble 

240 fraction (F1) of Pb decreased, and the F1 fraction in the SR sediments treated with 

241 biochar were 64.4% largely lower than that in the blank at the end of the experiment 

242 for a 10% dose. As well as Cu, the residual fraction (F4) of Pb increased as the biochar 

243 dose and the length of the incubation period increased. In fact, the chemical reagents 

244 used in the sequential extraction to classify the metal fractions, especially the reagents 

245 for F3 (H2O2-NH4Ac) and F4 (HNO3-HF-HClO4), were very harsh. In the real 

246 environment, such harsh conditions would not occur; both F3 and F4 would be stable 

247 in the environment and they were more sensitive to the biochar in our experiments.

248 Figure 2.

249 2.3 Effect of SBIO on the leachability of Cu and Pb

250 As shown in Figure 3, the results from the leachability tests were similar to those 

251 from the DGT and BCR tests. As the proportion of biochar in the sediment sludge 

252 increased, the stability of the metal pollutant also increased and the metal 

253 concentrations in the leachate decreased. Over a period of 60 days, the stabilization of 
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254 both Cu (58.6% and 27.5%) and Pb (37.1% and 17.7%) were highest and lowest in CR 

255 and AC.

256 Figure 3.

257 3 Discussion

258 3.1 Relationship between DGT and other extraction methods

259 The DGT method has been used for several years to predict the supply of heavy 

260 metals and the bioavailability of other pollutants in soil and sediment (Zhang et al., 

261 2001). Various studies have shown that there is a good correlation between the amount 

262 of metal taken up by plants and the metal concentration measured by DGT (Zhang et 

263 al., 2014; Zhang et al., 2001). To obtain better insights into the relationships between 

264 the extraction assessment methods used in this study, the relationships between DGT, 

265 Cp, BCR, and TCLP (from Pearson correlation analysis) were compared (Tables S3–

266 S8). The DGT results were strongly correlated with those of BCR and TCLP, but 

267 weakly correlated with the Cp results. There were significant correlations between DGT 

268 and TCLP for all treatments and different sediments at least at the P<0.05 level. The 

269 highest R2 values for Cu and Pb were 0.71 (P<0.01) and 0.79 (P<0.01), respectively, in 

270 the SR sediments. 

271 The Cu and Pb that are weakly bound with carbonates through specific adsorption 

272 and covalent forces, such as Fe/Mn oxides or hydroxides or weaker stable organic 

273 matter, are labile and can be captured by DGT (Roulier et al., 2010). In the sequential 

274 extraction, the F1 and F2 fractions that were classified as easily-exchangeable and 

275 weakly-bound to organic or inorganic sites were well correlated with CDGT and 
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276 F1+F2+F3 (Figure 4). This further indicates that the DGT measurement is not 

277 specifically confined to a single metal fraction (Ernstberger et al., 2002; Roulier et al., 

278 2010). The results of metal isotope tracer experiments have also shown that labile Zn 

279 was strongly correlated with the extractable fractions (Roulier et al., 2010; Young et 

280 al., 2010), and that there was a good correlation between CDGT and the labile isotopic 

281 exchange (Ernstberger et al., 2002). Therefore, a DGT device can be used to replace 

282 predictions of the bioavailability of metals from the BCR and TCLP methods.

283 Figure 4

284 3.2 Possible mechanisms of stabilization induced by biochar

285 Regardless of whether biochar, in this case SBIO, is added to sediments or not, the 

286 stability of the Cu and Pb fractions in sediments always increases. Nevertheless, when 

287 SBIO is added, the process of natural stabilization may be reinforced or the metal 

288 fractions may be redistributed, and metals may also be incorporated into the lattice of 

289 the treatment agent as the incubation time increases (Yin and Zhu, 2016). The 

290 mechanisms used by biochar to stabilize metals are complicated, and, to date, are not 

291 fully understood. In prior studies, metal adsorption by biochar has been regarded as the 

292 major driver for metal stabilization (Fang et al., 2016; Roulier et al., 2010; Zhu et al., 

293 2017). The main mechanisms of metal adsorption by biochar include (i) electrostatic 

294 complexation resulting from ion exchange, (ii) surface complexation with active 

295 functional groups on biochar surfaces (such as carboxyl and hydroxyl), (iii) metal 

296 transport from the outer sphere to the inner sphere, and (iv) the formation of inner-

297 sphere complexes with metals (Fang et al., 2016; Yin and Zhu, 2016; Zhu et al., 2017).

298 The results from this study also support these mechanisms for metal adsorption by 

299 biochar. The results from the FTIR and XPS analysis (Figures S5 and S6) show that the 
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300 surface oxygen functional groups of SBIO changed after adsorption of Cu and Pb. Also, 

301 the SEM measurements demonstrate that the surface morphology of SBIO changed 

302 considerably after reacting with heavy metals, which indicates that surface precipitation 

303 contributes to the adsorption process. Further, a recent study reported that the crystal 

304 morphology of biochar-Cu could be transformed as the contact time increased. The 

305 XRD analysis (Figures S7) showed that the crystal signal of Gerhardtite and Malachite 

306 gradually weakened with time. Until the 30-day point, Gerhardtite, Malachite, 

307 Paramelaconite, and Posnjakite were detected, and were perhaps related to metal 

308 stabilization in sediment-metal-biochar systems. This phenomenon however has not 

309 been observed in Pb adsorption tests in this study. However, in another study, over a 

310 period of 30 days, a new compound formed on the surface of Pb-loaded biochar, but 

311 was not observed in the early stages (Fang et al., 2016). This therefore shows that time 

312 has a positive influence on the metal stability. 

313 Because of the biochar, the pH was higher in all the SBIO tests than in the blank 

314 systems, and the ORP was also lower. During incubation, all treatment systems became 

315 weakly alkaline and showed stronger reducibility (Figure S4). At the end of the 

316 incubation, the pH had increased by almost one unit and the ORP was between 150 and 

317 200 mV lower in the tests with 10% biochar than in the blank. The carbonates and 

318 functional groups such as –COO- (–COOH) and –O- (–OH) contained in the biochar 

319 are mainly responsible for enhancing the pH value (Shen et al., 2016; Yuan et al., 2011). 

320 Under a higher pH, there is less competition between the H+ and heavy metal ions for 

321 ligands (CO3
2−, SO4

2−, S2−, Cl−, OH−, phosphate, etc.), the sorption and/or precipitation 

322 is enhanced, and metal ions combine more easily with ligands into a relatively more 

323 stable form (Peng et al., 2009; Shaheen et al., 2013). 

324 In this current study, the F3 and F3+F4 fractions were considerably higher in the 



15

325 control tests than in the blank, which shows that the biochar transformed metals into 

326 stable fractions. As a sorbent treatment, biochar has a high solid organic matter (SOM) 

327 content and so the content of SOM in sediment increases when mixed with biochar 

328 (Shaheen and Rinklebe, 2015). Metals, therefore, may bind to organic matter, like 

329 humic substances, and form metal-organic complexes, which can reduce the metals’ 

330 mobility (Srivastava et al., 2008). Several related studies have also shown that, under 

331 enhanced organic matter, more stable metal fractions could form (Ahmad et al., 2014; 

332 Bian et al., 2013; Ok et al., 2011). 

333 However, while the results indicate that biochar may be able to stabilize metals in 

334 contaminated sediments under certain conditions as clear decreases in Cp and CDGT and 

335 clear increases in F3 and F4 in this study, it is clear that biochar is not as effective as 

336 phosphate or iron-bearing materials, the removals and transformations reported in other 

337 related studies are much higher than those reported in this and other biochar-related 

338 studies (Zhang et al., 2017; Igalavithana et al., 2017; Lu et al., 2017). For example, 

339 when phosphate compounds were added to contaminated soils, the concentrations of 

340 extractable heavy metals decreased by more than 90% (Ahn et al., 2015; Sima et al., 

341 2015), while the oxidizable and residual phases of Pb and Cu increased by between 70% 

342 and 90% when nano-zero-valent iron, an activated carbon composite, and ferrihydrite 

343 were added (Chen et al., 2016; Qian et al., 2009). The lower efficiencies in this study 

344 may be related to the inherent physico-chemical properties of both the sediments and 

345 the biochar. First, metals in sediments exist as different fractions bound to, or enveloped 

346 by, Fe or Mn oxides, hydroxides, or organic matter that account for a large amount of 

347 the total metal, and it is difficult for biochar to increase the stability of these fractions 

348 by directly participating in physico-chemical reactions; on the other hand, soluble and 

349 carbonate metals only account for a smaller fraction of sediment and can be easily 
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350 captured and bound by biochar. So, while the Cp and CDGT results showed that the 

351 stabilization was effective, these tests could not show obviously changes in the 

352 distributions of the metal fraction. Second, when biochar is mixed with sediment slurry, 

353 the SOM and finer particulates will either be adsorbed onto the surface of the biochar 

354 or may block the pore structure, which further reduces the possibility of contact 

355 between the metal and the treatment agent (Wang et al., 2017). Meanwhile, the outer 

356 surface of biochar may undergo oxidation or aging first, followed by the interior pores, 

357 which may cause the CEC to shift and reduce element retention (Ahmad et al., 2014). 

358 Finally, the stabilization period also has an important influence on the metals’ stability. 

359 In fact, regardless of whether a treatment is applied or not, metals can gradually 

360 stabilize because of natural attenuation. This natural process may be accelerated by 

361 adding biochar, but short-term incubations do not support the formation of stable 

362 compounds (Fang et al., 2016; Rajapaksha et al., 2015).

363 4 Conclusion 

364 The bioavailability and mobilization of metals, rather than the total metal content, 

365 were used to predict the risks of heavy metals to the environment. The degree to which 

366 biochar was able to stabilize metals in contaminated sediments in laboratory 

367 incubations was evaluated using DGT, the porewater concentration, the BCR sequential 

368 extraction, and the TCLP. The DGT and TCLP tests showed that the bioavailability and 

369 labile fractions of the metals decreased because of the biochar. The results of the Cp 

370 tests improved more when the incubation time increased than when the amount of 

371 biochar was increased. The stable F3 and F4 fractions increased as the dose of biochar 

372 increased. Adsorption, transformations in the crystal morphology, and changes in the 



17

373 environmental conditions (e.g. pH and SOM) induced by the biochar were the main 

374 mechanisms of metal stabilization. There were good correlations between the DGT, 

375 BCR, and TCLP, but these methods were more weakly correlated with the porewater 

376 concentrations. These methods are interchangeable in field applications, but the DGT 

377 method should be considered the main approach for assessing the bioavailability 

378 because of its convenience, analysis capacity, and speed. These results represent an 

379 initial application of biochar in sediment management. The approach needs to be 

380 refined and field studies should be carried out before any real-life practical applications 

381 are attempted. We would hope that this approach using biochar will be useful for 

382 curbing the release of metals during sediment dredging and re-suspension; alternatively, 

383 biochar-treated sediments could be used in land reclamation initiatives.
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Fig.4 Correlation between DGT concentration and TCLP/ BCR. The figure of a, b and c were CR, SR and AC contaminated by Cu, respectively; and d, e and f were 
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Table 1. Characterization of sediments and SBIO samples

Materials SR CR AC SBIO
pH 7.2 7.28 7.14 11.7
TOC (g/kg) 39.1 43.08 18.34 275.75
Water content (%) 52.2 42.5 45.1 -
BET (m2/g) - - - 90.4
1K (mg/kg) 20445 19943 21134 41700
1Ca (mg/kg) 58279 104274 22974 132576
1Mg (mg/kg) 13793 19322 11684 11906
1Na (mg/kg) 13175 6650 17772 3563
*Cu (mg/kg) 35.3 43.9 30.6 55.3
*Pb (mg/kg) 30.8 40.9 25.3 40.2
Zn (mg/kg) 77.5 105.3 56.2 170.3
Cu spiked (mg/kg) 635.3 643.9 630.6 -
Pb spiked (mg/kg) 730.8 740.9 725.3 -
2SiO2 (%) 51.22 54.85 63.27 53.35
2CaO (%) 12.69 14.05 5.01 21.48
2Al2O3 (%) 18.194 15.16 16.06 4.12
2K2O (%) 2.63 2.35 2.68 6.19
2Fe2O3 (%) 7.89 5.31 5.07 2.34
2MgO (%) 4.11 4.92 3.28 2.64
2MnO (%) 0.1 0.1 0.1 0.93

1: the result from ICP-MS
2: the result from XRF

*: the original concentration without Cu(II) or Pb(II) spiking

Table 2. Extraction conditions used for the fractionation process of BCR

Step Fraction Reagents/conditions
1 F1, acid-soluble fractions 20 mL of 0.11M HAc, shaken for 16 h 
2 F2, reducible fractions 20 mL of 0.5M (pH 2) NH2OH•HCl, shaken for 16 h

3 F3,oxidizable fractions

5 mL of 8.8M H2O2, placed in a water bath at 85℃ for 1 
h; an additional 5 mL of 8.8M H2O2, placed in a water 
bath at 85℃until the solution was evaporated to a few 
millilitres; 25 mL of 1M (pH 2) NH4Ac, shaken for 16 h

4 F4, reducible fractions
And dry residuals were digested as solid sample for metal 
content analysis

*all shaking was conducted at a temperature of 25℃ and centrifuged at 160 rpm.





Supplementary materials

1. Metal adsorption kinetics and isotherm by biochar

1.1 Adsorption and fitting method

Adsorption kinetics and isotherm characteristics of Cu and Pb by SBIO were 

studied through a batch of experiments. In the study of adsorption kinetics, SBIO passed 

through a 100 mesh sieve was mixed with a 1000-mg/L stock solution in 50-mL 

polyethylene centrifuge tubes. The tubes were placed on a reciprocating shaker and the 

sorption results were analyzed at time intervals ranging from 0.5 to 60 hours. In the 

study of adsorption isotherm, powdered SBIO (100 mesh) was added to metal solutions 

of various concentrations (100~1000 mg/L) with shaking at 15, 25, and 35℃. At the 

end of each sorption, the solution was centrifuged at 5,000 rpm for 15 min and the 

supernatant was filtered through a 0.45-μm membrane, 2mol/L nitric acid, and stored 

at 4℃ until analysis. All sorption experiments were conducted at a solid/liquid ratio of 

4:1 for Cu and 1:2 for Pb under free pH conditions, with shaking at 160 rpm and were 

performed in triplicate.

In this study, the adsorption kinetics data at were fit using the Pseudo-first-order 

(Eq. 1) and the Pseudo-second-order (Eq. 2) models, and the adsorption isotherm date 

were analyzed using the Langmuir (Eq. 3) and Freundlich (E. 4) models.

   Eq. 1log (𝑞𝑒 ‒ 𝑞𝑡) = log𝑞𝑒 ‒
𝑘1

2.303 ∙  t

              Eq. 2
𝑡

  𝑞𝑡
=

1

𝑘2𝑞2
𝑒

+
𝑡

𝑞𝑒

                 Eq. 3𝑄𝑒 =
𝐾𝐿𝑄𝑚𝑎𝑥𝐶𝑒

1 + 𝐾𝐿𝐶𝑒
 

                    Eq. 4𝑄𝑒 = 𝐾𝑓𝐶𝑚
𝑒

where qt and qe (mg/g) are sorbate removed at time t and at equilibrium, 

respectively, k1 and k2 (h-1) are the sorption rate constants of the first-order and 

second-order, respectively, KL (L/mg) and KF (mg(1-n)Lng-1) are the Langmuir 
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equilibrium adsorption constant related to the affinity of binding sites and the roughly 

Freundich affinity coefficient, respectively, Qmax (mg/g) is the maximum capacity of 

sorbent, Ce (mg/L) is the equilibrium concentration of the sorbate, m is the Freundlich 

linearity constant, and Qe is the adsorbed capacity (mg/g).

Moreover, the shifted Langmuir (Eq.5) and Freundlich (Eq.6) mode were 

employed to describe multi-layer adsorption:

    Eq.5  𝑄𝑛
𝑒 = 𝑄𝑛 ‒ 1

𝑚𝑎𝑥 +
𝐾𝑛

𝐿𝑄 𝑛
𝑚𝑎𝑥(𝐶𝑒 ‒ 𝐶𝑠)

1 + 𝐾𝑛
𝐿(𝐶𝑒 ‒ 𝐶𝑠)

         Eq.6𝑄𝑛
𝑒 = 𝑄𝑛 ‒ 1

𝑚𝑎𝑥 + 𝐾𝑛
𝑓𝐶𝑚

𝑒   

where n is the layer of sorbate, and the other parameters are defined as 

previously described. So the maximum capacity in multi-layer adsorption is the sum 

of Qmax from layer 1 to layer n.

1.1 Adsorption kinetic analysis

 The adsorption behaviour of Cu(II) and Pb(II) onto SBIO were examined at 

1000 mg/L of Pb and Cu solution to investigate the equilibrium process, respectively. 

As presented in Fig.1S, the sorption process of Pb and Cu were similar, most Cu or Pb 

sorption by SBIO taking place at the initial process (<12h) and then slowly reached 

equilibrium within 20 h. The maximum sorption capacity of Pb and Cu were 

approximately 665 and 55 mg/g, and the sorption ability for Pb was greatly higher 

than Cu by over 10 times.

Table S1 Best-fit model parameters of lead adsorption on SBIO 

Model First-order Second-order Langmuir Freundlich
Parameter 1 k1=1.23 k2=0.0032 𝐾𝐿 = 273.4 𝐾𝑓 = 421.1

Parameter 2 qe=663.8 qe=683.7 𝑄𝑚𝑎𝑥 = 635.7 m=0.07Pb
R2 0.88 0.94 0.94 0.91

Parameter 1 k1=0.14 k2=0.0024
𝐾1

𝐿 = 1.94
𝐾2

𝐿 = 0.011
𝐾1

𝑓 = 10.59
𝐾2

𝑓 = 1.29

Parameter 2 qe=57.57 qe=67.61
𝑄 1

𝑚𝑎𝑥 = 19.1
𝑄 2

𝑚𝑎𝑥 = 33.7
m1=0.504
m2=0.104

Cu

R2 0.98 0.97 0.99*/0.98** 0.92*/0.92**
*: first layer, **: second layer
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Through fitting with the Pseudo-first-order and Pseudo-second-order model, the 

effect of reaction time on adsorption metals onto SBIO and related parameters were 

analyzed and are presented in Fig.1S and Table S1. These sorption results demonstrated 

that SBIO provides adsorption sites with both Pb and Cu. Surface complexation with 

active functional groups of the biochar contributed more to metal bonding, as shown in 

Fig.S4-S8. Due to increasing pH introduced by SBIO, the biochar surface potentials 

could become more negative and the surface functional groups (e.g. –COOH ,-OH and 

phenolic hydroxyl) further dissociated which promoted the metal sorption process as 

well as adsorption capability (Tong et al., 2011a; Uchimiya et al., 2011). Besides, co-

precipitation, surface/innersphere complexation and physical adsorption also play a 

critical role in the metal sorption process (Zhang et al., 2013). Otherwise, the model 

fitting result indicates that the correlation coefficient (R2) between Pseudo-first-order 

and Pseudo-second-order were hardly different, but the calculated value of qe by the 

Pseudo-first-order was closer to the real value, which indicated that diffusion/ion 

exchange was the limiting step to adsorption rather than chemisorption (Yin and Zhu, 

2016). 

1.2 Adsorption isotherm analysis

The maximum adsorption capacity of Cu and Pb onto SBIO was estimated using 

Langmuir and Freundlich isotherm models, which present the surface properties and 

affinity of SBIO and describe the relationship between adsorption capacity and 

equilibrium concentration at given temperatures as shown in Fig.1S. According to the 

shape of the adsorption isotherms within given concentrations, the adsorption can be 

classified as single-layer adsorption for Pb and multi-layer adsorption for Cu, 

respectively. The multi-layer adsorption seemed to be caused by adsorption hysteresis 

at larger pores and disappearance of this phenomenon was attributed to an increased 

chemical potential of the pore walls (Wang and Hwang, 2000). Besides, cooperative 

adsorption also contributed to this process, for which it was assumed that a shift in 

concentration was necessary for special adsorption to readily occur (Grant et al., 1998). 

So both the shifted Langmuir and shifted Freundlich isotherm were employed to 
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characterize the adsorption process of Cu onto SBIO at both the first and second layers. 

Table S1 lists the parameters of the Langmuir and Freundlich model and their 

correlation coefficients. The results demonstrate that the Langmuir model is suitable to 

explain the sorption behaviour of Cu and Pb onto SBIO, and the adsorption capacity 

(Qmax, Langmuir model) for Pb (635.7 mg/g) is much higher than for Cu (52.8 mg/g) at 

a given temperature.
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Table S2 Summary of the literature data on sorption of Pb2+ and Cu2+ to different biochar

Biochar Pb2+ Qmax (mg/g) Cu2+ Qmax (mg/g) Ref.

Sludge 31 (Zhang et al., 2013)

Shell 45 (Elaigwu et al., 2014)

Cow manure 230 (Kołodyńska et al., 2012)

Dairy manure 140 (Cao et al., 2009)

Sugar cane 87 (Abdelhafez and Li, 2016)

Orange peel 28 (Abdelhafez and Li, 2016)

Pinewood 4 (Liu and Zhang, 2009)

Begass 135 (Inyang et al., 2011)

Peanut shells 350 (Guocheng, 2014)

Rraditional Chinese medicine waste 400 (Guocheng, 2014)

Peanut straw 50 (Tong et al., 2011b)

Soybean straw 33 (Tong et al., 2011b)

Seed 27 (Mahdi et al., 2018)

Spartina alterniflora 48 (Li et al., 2013)

Cow manure 54 (Xu et al., 2013)

Pinewood 4 (Liu et al., 2010)

Pinewood 3 (Liu et al., 2010)

Raw farmyard manure 39 (Batool et al., 2017)

poultry manure 43 (Batool et al., 2017)

Sawdust 655 55 In this study
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Fig.S2 The effect of pH on SBIO adsorption capability for Cu (a) and Pb (b)
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2 The DGT device 

Fig.S3 The structure of the DGT device 

The CDGT can be measured from the following equation:

M=Ce*(Vacid+Vgel)/fe    Eq. 7

where M is the mass of metal adsorbed by resin gel, Ce is metal concentration in 

1M HNO3, Vacid is the HNO3 volume used to elute metals bound by resin gel, Vgel is 

the resin gel volume, and fe is the elute efficiency. 

CDGT=M△g/(DtA)      Eq. 8

where △g is the thickness of diffusive gel (cm), D the diffusion coefficient of the 

metal ion in the diffusive gel (cm2/s), t is the contact time between the DGT device 

and sediment (s), and A is the area of window (cm2).

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.1.0.0421/resultui/dict/%3Fkeyword=volume


3 The figure of supporting information
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Fig.S5 FTIR spectra of SBIO after adsorption of Cu and Pb

As shown in Fig.S5, obvious signals of –OH, ester C=O, carboxyl C, C-O and 

aromatic C-H were obtained, and these groups were the major functional groups of 

SBIO. After reaction with Cu and Pb respectively, the peak for all of these functional 

groups were obviously either weakened or deviated, especially for C=O, C-O and C-

H.



Fig.S6 XPS spectra of wide scan for SBIO (a), SBIO loaded Cu (b) and Pb (c), C 1S and O 1 s before 

adsorption (d and g) and after adsorption Cu (e and h) and Pb (f and i) onto SBIO
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Fig.S7 X-ray diffraction spectrum of SBIO before (a) and after adsorption Cu (b) and Pb (C) 

during different react times  

 Ca: CaCO3; Qe: SiO2; Ma: MgCa(CO3)2; K: KCl; Fc: CuFeO2, Pc: Cu5O2(PO4)2, Mh: Malachite, 

Ge: Gerhardtite, Pa: Paramelaconite, Po: Posnjakite, Ve: Veszelyite, Ch: Chalcophanite, Ce: Cerussite, Le: 

Leadhillite, Ls:Pb2SO5
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Fig.S8 SEM image of surface SBIO (a-c), SBIO loaded Cu (d-f) and SBIO loaded Pb at different 

resolutions, respectively 

4. The relevance and variability between evaluation methods

Table S3 Correlation coefficient (R2) between DGT and other extraction methods for Cu at CR

CDGT CP TCLP F1 F2 F3 F1+F2 F2+F3 F1+F2+F3

CDGT 1.000

CP 0.29 1.000

TCLP 0.51** 0.48* 1.000

F1 0.37* 0.05 0.387* 1.000

F2 0.37* 0.21 0.491* 0.86** 1.000**

F3 0.14 0.08 0.182 0.82** 0.81** 1.000

F1+F2 0.37* 0.19 0.488* 0.88** 0.99** 0.82** 1.000

F2+F3 0.52** 0.62** 0.71** 0.47** 0.69** 0.26 0.69** 1.000

F1+F2+F3 0.54** 0.55** 0.72** 0.56** 0.77** 0.34* 0.76** 0.99** 1.000

*: P<0.05; **
: P<0.01



Table S4 Correlation coefficient (R2) between DGT and other extraction methods for Cu at SR

CDGT CP TCLP F1 F2 F3 F1+F2 F2+F3 F1+F2+F3

CDGT 1.00

CP 0.48* 1.00

TCLP 0.71** 0.38* 1.00

F1 0.16 0.02 0.41* 1.00

F2 0.61** 0.31 0.85** 0.32 1.00

F3 0.02 0.002 0.06 0.03 0.22 1.00

F1+F2 0.60** 0.29 0.86** 0.36* 1.00** 0.21 1.00

F2+F3 0.46* 0.38* 0.56** 0.18 0.39* 0.16 0.40* 1.00

F1+F2+F3 0.47* 0.36* 0.58** 0.23 0.41* 0.14 0.42* 0.99** 1.00

*: P<0.05; **
: P<0.01

Table S5 Correlation coefficient (R2) between DGT and other extraction methods for Cu at AC

CDGT CP TCLP F1 F2 F3 F1+F2 F2+F3 F1+F2+F3

CDGT 1.00

CP 0.47* 1.00

TCLP 0.48* 0.35* 1.00

F1 0.42* 0.42* 0.71** 1.00

F2 0.90** 0.64** 0.42* 0.46* 1.00

F3 0.92** 0.58** 0.46* 0.52** 0.99** 1.00

F1+F2 0.89** 0.66** 0.48* 0.54** 0.99** 0.99** 1.00

F2+F3 0.01 0.22 0.01 0.05 0.08 0.03 0.05 1.00

F1+F2+F3 0.37* 0.83** 0.39* 0.40* 0.60** 0.52** 0.61** 0.37* 1.00

*: P<0.05; **
: P<0.01

Table S6 Correlation coefficient (R2) between DGT and other extraction methods for Pb at CR

CDGT CP TCLP F1 F2 F3 F1+F2 F2+F3 F1+F2+F3

CDGT 1.00

CP 0.58** 1.00

TCLP 0.70** 0.45* 1.00

F1 0.73** 0.38* 0.85** 1.00

F2 0.02 0.042 0.06 0.05 1.00

F3 0.36* 0.00 0.17 0.28 0.38* 1.00

F1+F2 0.75** 0.18 0.47* 0.59** 0.21 0.79** 1.00

F2+F3 0.30 0.05 0.56** 0.75** 0.14 0.25 0.29 1.00

F1+F2+F3 0.82** 0.77** 0.64** 0.64** 0.01 0.14 0.58** 0.15 1.00

*: P<0.05; **
: P<0.01



Table S7 Correlation coefficient (R2) between DGT and other extraction methods for Pb at SR

CDGT CP TCLP F1 F2 F3 F1+F2 F1+F2+F3 F1+F2+F3

CDGT 1.00

CP 0.04 1.00

TCLP 0.79** 0.11 1.00

F1 0.83** 0.09 0.95** 1.00

F2 0.43* 0.05 0.27* 0.32 1.00

F3 0.38* 0.12 0.17 0.21 0.92** 1.00

F1+F2 0.63** 0.01 0.50* 0.56** 0.94** 0.82** 1.00

F2+F3 0.03 0.17 0.15 0.14 0.03 0.01 0.07 1.00

F1+F2+F3 0.50** 0.17 0.75** 0.76** 0.23 0.07 0.41* 0.61** 1.00

*: P<0.05; **
: P<0.01

Table S8 Correlation coefficient (R2) between DGT and other extraction methods for Pb at AC

CDGT CP TCLP F1 F2 F3 F1+F2 F2+F3 F1+F2+F3

CDGT 1.00

CP 0.16 1.00

TCLP 0.59** 0.03 1.00

F1 0.19 0.03 0.40* 1.00

F2 0.13 0.03 0.17 0.05 1.00

F3 0.15 0.13 0.33 0.53** 0.62** 1.00

F1+F2 0.26 0.05 0.46* 0.68** 0.54** 0.92** 1.00

F2+F3 0.00 0.07 0.06 0.58** 0.12 0.10 0.11 1.00

F1+F2+F3 0.37* 0.01 0.53** 0.73** 0.36* 0.66** 0.89** 0.10 1.00
*: P<0.05; **

: P<0.01
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