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The meta-dynamics of an immune-inspired optimisation system NELLI are
considered. NELLI has previously shown to exhibit good performance across
very large set of optimisation problems and to be capable of continuous learn-
ing and exploiting memory by sustaining a network of novel heuristics. We
address the mechanisms by which new heuristics are defined and subsequently
generated. A new representation is defined, and a mutation-based operator in-
spired by clonal-selection introduced to control the balance between exploration
and exploitation in the generation of new network elements. Experiments show
significantly improved performance over the existing system in the bin-packing
domain. New experiments in the job-scheduling domain further show the gen-
erality of the approach.

1 Introduction

The previous two decades have seen significant advances in meta-heuristic op-
timisation techniques that are able to quickly find optimal or near-optimal
solutions to problem instances in many combinatorial optimisation domains.
Hyper-heuristic approaches to optimisation have attempted to raise the gener-
ality of approaches by focusing on techniques that work well across large sets
of problems. However, even these approaches suffer weaknesses in that if the
nature of the problems to be solved changes over time, then the algorithm needs
to be periodically re-tuned. Furthermore, such approaches are usually applied
tabula rasa, generating completely novel heuristics (or apply existing heuristics
in unique combinations) for every problem solved. This leads to inefficient al-
gorithms that fail to exploit previously learned knowledge in the search for a
solution.

In contrast, in the field of machine-learning, several contemporary learning
systems employ methods that use prior knowledge when learning behaviours in

1



new, but similar tasks, leading to a recent proposal from [17] that it is now
appropriate for the AI community to move beyond learning algorithms to more
seriously consider the nature of systems that are capable of learning over a life-
time. They suggest that algorithms should be capable of learning a variety of
tasks over an extended period of time such that the knowledge of the tasks is
retained and can be used to improve learning in the future. They name such
systems lifelong machine learning, or LML systems and identify three essential
components of an LML system: it should be able to retain and/or consolidate
knowledge, i.e. incorporate a long-term memory; it should selectively transfer
prior knowledge when learning new tasks; it should adopt a systems approach
that ensures the effective and efficient interaction of the elements of the system.

In [18, 19], the authors noted that the natural immune system exhibits prop-
erties that fulfill the three requirements for an LML system listed above. It
exhibits memory that enables it to respond rapidly when faced with pathogens
it has previously been exposed to; it can selectively adapt prior knowledge via
clonal selection mechanisms that can rapidly adapt existing antibodies to new
variants of previous pathogens and finally, it embodies a systemic approach by
maintaining a repertoire of antibodies that collectively cover the space of po-
tential pathogens. They describe the implementation a system dubbed NELLI
(Network for Life Long Learning) that was applied to a large dynamically
changing corpus of 1-d bin-packing optimisation problems with very success-
ful results. The system generated a continuous steam of novel heuristics, which
self-organised into a self-sustaining network of heuristics that efficiently collec-
tively covered the problem space using a minimal repertoire of components; and
was shown to be plastic enough to adapt to new classes of problem within the
bin-packing domain.1

In this work we retain the core of the NELLI system, in particular dynamics
that sustain the network, but focus on improving the meta-dynamic element
of the system in order to provide a better balance between exploration and
exploitation of the heuristic space. A novel heuristic representation is introduced
and a method based on clonal selection that improves upon existing heuristics
(providing exploitation) while retaining the ability of the system to explore the
space by generating novel heuristics.

A brief coverage of the background to this paper is provided before NELLI is
described in detail. We then provide details of the novel components introduced,
providing results that show a significant improvement over the previous system
on the bin-packing corpus. Additionally, we provide new results in the domain of
Job Shop Scheduling where a diverse set problem instances are tackled, showing
the generality of the approach.

2 Related Work

Although many mechanisms have been proposed to explain immune function,
of most relevance to this work is the idiotypic network model proposed by [14]

1In this work the set of problem instances supplied to the system changed dynamically
over time. The individual problem instances remained static
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as a possible mechanism for explaining long-term memory. Challenging existing
thinking at the time, Jerne proposed that antibodies produced by the immune
system interact with each other to form a self-sustaining network of collaborat-
ing cells, that collectively embodies a memory of previous responses. [3] pro-
posed that the engineering community might benefit from developing algorithms
inspired by double plasticity of the network view of the immune system: para-
metric plasticity provides an adaptive mechanism that adjusts parameters while
executing a task to improve performance while structural plasticity enables new
elements to be incorporated into network and elements to be removed, thereby
enabling the network to adapt to a time-varying environment — properties
which exactly fit the definition of an LML system.

Idiotypic network theory has been translated into a number of computa-
tional algorithms in machine-learning, optimisation and engineering domains
(see [21] for an overview). However, very few of these applications really ad-
dress problems in the kind of complex, dynamic environments envisaged by
[3]. [16] describe a system based on an idiotypic network for tracking evolving
clusters in noisy data-streams, finding it to be both capable of learning and scal-
able. However, the majority of relevant work evolving learning and/or memory
is found in the robotics domain [23]. Although immune-inspired algorithms are
common in the field of optimisation, the majority are applied to solving single
instances of problems rather than learning to solve large problem sets. Most
also are applied to static problems — an exception is the work of [10, 9] who
solve dynamic optimisation problems in which the fitness function varies using
an idiotypic network approach in which idiotypic network provides a memory.

In the hyper-heuristic domain, there are many examples of systems that
either generate novel heuristics or select from a set of pre-defined heuristics to
solve a problem and are shown to be capable of good performance across large
problem sets, see [4] for a recent and comprehensive overview. However there
is little work that combines these approaches (see the authors work in [18, 19]
for an exception). Furthermore, we are unaware of any work other than our
previously published work on NELLI [18, 19] that combines hyper-heuristics
with AIS in an optimisation system that learns and adapts over time.

3 Application domains

Two application domains are utilised. The objective of the Bin-Packing Problem
(BPP) is to find a packing which minimises the number of containers, b, of fixed
capacity c required to accommodate a set of n items with weights ωj : j ∈
{1 . . . n} falling in the range 1 ≤ ωj ≤ c, ωj ∈ Z whilst enforcing the constraint
that the sum of weights in any bin does not exceed the bin capacity c.

The Job Shop Scheduling Problem (JSSP) requires that J jobs have to be
processed on each ofM machines in a predefined order that can vary for each job.
Each of the M operations making up job j has to be processed on a specified
machine m and is denoted by (ji,mi). Each operation has a corresponding
processing time of pjm. The objective is to minimise the total makespan; the
time between starting the first operation and completing the last operation
across all machines.
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Scheduling and packing problems are amongst the most widely addressed in
the hyper-heuristic literature, e.g. [20] and [5] describe recent generative hyper-
heuristics for each of these domains respectively. The reader is directed to [4]
for an overview of hyper-heuristics.

4 NELLI

Introduced in [18] and described in detail in [19], NELLI comprises of three main
parts: a stream of problem instances, a continuously generated stream of novel
heuristics and a network that sustains co-stimulating components (heuristics
and problem instances). Illustrated in Figure 1, NELLI is designed to run con-
tinuously; problem instances and heuristics can be added in any quantity at any
point. The AIS is responsible for governing the dynamic processes that enable
heuristics and problem instances to be incorporated (stimulated) or rejected
(suppressed) by the network.

The three components of the original system are illustrated in Figure 1
surrounded by a dotted line. The components outside this boundary represent
the improvements to the system which are detailed in subsequent sections.

The dynamics of the system are visualised in Figure 2 In this diagram, the
Figure (a) shows a set of problems that have entered the system. In Figure (b)
4 heuristics are added; problems are allocated to the heuristic that solves them
best. The problems denoted P1 and P2 are encompassed by two heuristics,
signifying that the heuristics each produce an equal quality solution to those
problem instances. H2 is clearly subsumed by H1 and H3. As a result of applying
the network dynamics, the situation in (c) results; H2 is removed as it does not
add to the collective ability of the set of heuristics. Problems P1 and P2 are
removed as the best found solutions to these problem instances are implicitly
retained by heuristics H3 and H4 that best solve them.

The central AIS network component of NELLI remains faithful to the orig-
inal implementation and is described by Algorithm 1 where2:

• U - the complete set of 1370 problem instances.

• E - the current environment, i.e. the set of problems we are currently
interested in solving, i.e. E ⊂ U

• E∗ - the set of all problems to which the system has been exposed during
its lifetime

• N - the immune network, comprised of a set of problems and a set of
heuristics

• P - the set of problems currently sustained in the immune network N , i.e.
P ⊂ E∗

• H - the set of heuristics currently sustained in the immune network N
2The parameter values used in Algorithm 1 are described later in Section 7
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Figure 1: A conceptual view of the system: Problems and heuristics are contin-
uously injected into the AIS. The dynamics and meta-dynamics of the system
result in a self-sustaining network of heuristics and problems. Heuristics and
problems that receive no stimulation are removed. Solid lines show direct inter-
actions between components, dashed lines represent indirect interactions. The
original system is shown surrounded by a dotted line. The heuristic generator
now allows for new heuristics to be created randomly, as before, or by mutating
or concatenating heuristic sequences already sustained by the system.
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Figure 2: Diagram [a] shows the problems that the system is currently exposed
to E . The middle diagram [b] shows a set of generated heuristics that cover
the problems in E . The problems P1 and P2 shown are equally solved by
one or more heuristics and therefore not required to map the problem space.
The shaded heuristic is redundant as it does not have a niche. The right-hand
diagram [c] shows the resulting network N that sustains the minimal set of
problems and heuristics required to describe the space.
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hstim =
∑
p∈P

δbins

{
δbins = min (binsH′

p
)− binshp

: if min (binsH′
p
)− binshp

> 0

δbins = 0 : otherwise

(1)

pstim =
∑
h∈H

δbins

{
δbins = min (binsH′

p)
)− binshp : if min (binsH′

p
)− binshp > 0

δbins = 0 : otherwise

(2)

NELLI captures the three essential concepts of an immune network as pro-
posed by [22] – structure, dynamics, and meta-dynamics. The term structure
refers to the interactions between components of the network, in this case, prob-
lems and heuristics as described by steps 5 and 6 of Algorithm 1 and Equations
1 and 2. Dynamics refers to the variations in time of the concentration and
affinities between components of the network, and crucially, describes how the
network adapts to itself and the environment (steps 7-9 in Algorithm 1). Finally,
the network metadynamics refers to a unique property of the immune system,
that is the ability to continuously produce and recruit novel components, in this
case, heuristics and problems.

Algorithm 1 NELLI Pseudo Code

Require: H = ∅ :The set of heuristics
Require: P = ∅ :The set of current problems
Require: E = Et=0 :The set of problems to be solved at time t
1: repeat
2: optionally replace E : E∗ ← E∗ ∪ E
3: Add nh randomly generated heuristics to H with concentration cinit
4: Add np randomly selected problem instances from E to P with concen-

tration cinit
5: calculate hstim∀h ∈ H using Equation 1
6: calculate pstim∀p ∈ P using Equation 2
7: increment all concentrations (both H and P) that have concentration

< cmax and stimulation > 0 by ∆c

8: decrement all concentrations (both H and P) with stimulation ≤ 0 by ∆c

9: Remove heuristics and problems with concentration ≤ 0
10: until stopping criteria met

The network N sustains a set of interacting heuristics and problems. Prob-
lems are directly stimulated by heuristics, and vice versa. Heuristics are indi-
rectly stimulated by other heuristics.

A heuristic h can be stimulated by one or more problems. The total stim-
ulation of a heuristic is the sum of its affinity with each problem in the set P
currently in the network N . A heuristic h has a non-zero affinity with a problem
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p ∈ P if and only if it provides a solution that uses fewer bins than any other
heuristic currently in H. If this is the case, then the value of the affinity p↔ h
is equal to the improvement in the number of bins used by h compared to the
next-best heuristic. If a heuristic provides the best solution for a problem p
but one or more other heuristics give an equal result, then the affinity between
problem p and the heuristic h is zero. If a heuristic h uses more bins than
another heuristic on the problem, then the affinity between problem p and the
heuristic h is also zero.

Although the implemented dynamics are simplified with respect to much
research in AIS that relies on equations defined by [7], the system is shown in
[18, 19] to provide heuristics that efficiently cover the problem and collectively
minimise the total number of bins used to solve all problems the network is ex-
posed to. A heuristic only survives if it is able to solve at least one problem bet-
ter than any other heuristic in the system. This provides competition between
heuristics which forces a heuristic to find an individual niche to ensure survival.
Thus, although no quantitative value is calculated for heuristic↔heuristic in-
teractions there is an indirect interaction arising from the method of calculating
the problem↔heuristic interactions.

5 Novel Improvements to NELLI

This section introduces the improvements made to both the representation used
and the processes employed to generate a novel stream of heuristics for incor-
poration into NELLI.

5.1 Representation

A key feature of NELLI is the ability to generate a constant stream of novel
heuristics. In [18, 19], heuristics were defined using a tree representation bor-
rowed from Single Node Genetic Programming (SNGP) [13]. Trees were ran-
domly constructed from a set of terminal nodes that encapsulated information
about the problem state (e.g. in the bin-packing domain, the free space in the
bin and item size) and simple function nodes. In this paper we replace this
tree representation with a linear sequence of heuristic-components, in which all
nodes explicitly cause items to be placed into the solution. Each component, or
node, constructs part of a solution, e.g. placing items in a bin in the bin-packing
domain, or scheduling an operation in a scheduling domain.

Figure 3 shows a generic example showing a string of five heuristic com-
ponents with a “pointer” used by an encompassing wrapper to indicate the
current component position. For each problem instance the general concept
for any problem domain is to apply each node in sequence until all objects are
placed into the solution. When the pointer reaches the end of the string it is
simply returned to the beginning. A wrapper — specific to the problem domain
— controls the application of heuristics, testing whether the application of a
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Figure 3: Heuristics are represented as linear sequences of nodes. A pointer
keeps track of which node to apply next. The sequence restarts from the begin-
ning after the last node is processed.

heuristic was successful and specifying when to move the next heuristic in the
list.

The specific wrappers and set of heuristic components used in the BPP and
JSSP domains are described in sections 6.1 and 6.2 respectively.

5.2 Heuristic Generation

Many AIS-based optimisation algorithm employ some form of clonal selection
[6] in order to perform exploitation of the search space. Typically, new solutions
are generated in numbers proportional to, and with a mutation rate in inverse
proportion to the quality of the incumbent. The version of NELLI described
in [18, 19] performed only exploration in continuously generating novel heuris-
tics. To balance this, we introduce a simplified clonal selection approach that
achieves exploitation but without incurring the overhead that would result from
generating and applying a large numbers of cloned heuristics to large sets of
problem instances.

A number of mutation operators are used in order to better guide the search
for new heuristics towards promising areas of the landscape while maintaining
an element of diversity and exploration by still injecting a smaller number of
randomly generated heuristics. The dynamics of the system already favours
good sequences of nodes, meaning that the number of “good node sequences”
retained by the system should be significantly higher than bad combinations.
Thus, new heuristics are created by either mutating or concatenating existing
sequences currently sustained in the network. Randomly generated heuristics
are also injected into the system to maintain an element of diversity and contin-
ual exploration of the changing search space. A number of mutation operators
are used:

• Select a random heuristic from the network and swap the position of two
random nodes.

• Select a random heuristic from the network and replace a random node
with a new node selected randomly.

• Select a random heuristic from the network and remove a random node.

• Select a random heuristic from the network and add a random node at a
randomly selected position.
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• Select two random heuristics from the network and concatenate their
nodes to generate a new heuristic.

6 Heuristics and Wrappers

The wrappers and nodes specific to the BPP and JSSP are described in the
following sections.

6.1 Bin-Packing

The nodes used are given in table 1 and include only nodes that cause items
from the problem to be placed into a solution omitting the function nodes and
terminal nodes that encapsulated information about the problem state used in
the previous system. A key aspect of the improvements achieved in the bin-
packing domain is the way that a sequence of nodes is applied and is described
by Algorithm 2.

Algorithm 2 Bin-Packing Problem Wrapper

Require: I ∈ {i1, i2, ..., in} {The set of items to be packed}
Require: B = ∅ {The set of bins which is initially empty}
Require: N = (n1 . . . nj) {The sequence of nodes}
Require: p = 1 {At the start set the pointer to the first node}

repeat
add a new bin b to B
repeat
I ′ = I
result = evaluate(np) {This may cause items from I to be packed into
the current bin b}
p = p+ 1
if p > j then
p = 1

end if
until result < 0 or I = ∅ or I = I ′

if I = I ′ and I 6= ∅ then
pack each remaining item in a new bin

end if
until I = ∅

Unlike the previous application to the BPP the heuristic applied to pack each
bin is not identical. If a node is successful in packing one or more items into
a bin, then the pointer is advanced to the next node and the process continues
with the current bin — when a node fails, a new bin is opened, the current one
is closed and the pointer advances to the next node. The pointer is reset to
the start after the evaluation of the last node in the sequence. This results in a
different sequence of nodes being applied for each bin increasing the potential
utility of the heuristic.
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Table 1: BPP Nodes
B1 Packs the single largest item into the current

bin returning 1 if successful or -1 otherwise
B2 Packs the largest combination of exactly

2 items into the current bin returning
1 if successful or -1 otherwise

B3 Works as for B2 but packs exactly 3 items
B4 Works as for B2 but packs exactly 4 items
B5 Works as for B2 but packs exactly 5 items

B2A Packs the largest combination of up to 2 items
into the current bin giving preference to sets of
lower cardinality. Returns 1 if successful
or -1 otherwise

B3A As for B2A but considers sets of up to 3 items
B4A As for B2A but considers sets of up to 4 items
B5A As for B2A but considers sets of up to 5 items

6.2 JSSP

The component heuristics used in the linear sequence for JSSP are defined as
follows:

Each of the thirteen rules described in Table 2 can be combined with one of
three choices of conflict set described below which is used to determine which
operation(s) should be scheduled next:

• Conflict Set A Based on Giffler and Thompson’s pioneering work[11]
gets the operation(s) that can be completed the earliest and selects the
machine(s) that those operations are to be processed on. The set of op-
erations returned includes all available operations waiting to be processed
on those machines.

• Constraint Set B The set of all available waiting operations.

• Constraint Set C From [12] returns the subset of available operations
that can be started the earliest.

As before, a wrapper advances a pointer through the sequence of nodes
starting at the beginning an applying each in turn. Applying each heuristic
schedules exactly one operation onto a machine at the earliest possible time.
The dispatching rules themselves may return more than one possible operation
— in this case one of these is selected randomly and returned to the wrapper
to be scheduled.
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Table 2: Scheduling Rules

Pseudonym Packs an operation:

FCFS Earliest in its job queue

LMT Longest machine processing time so far

LORPT Longest remaining job time including

the operation

LOS Longest remaining job time not including

the operation

LOT Longest operation time

LPT Logest job duration

LRPT Longest remaining job time not including

the operation

RAND At random

SMT Shortest machine processing time so far

SORPT shortest remaining job processing time

including the operation

SOT Shortest op processing time

SPT Shortest job processing time

SRPT Shortest remaining job processing time

not including the operation
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7 Experiments

NELLI as defined by Algorithm 1 requires a number of parameters to be set.
The default parameters are detailed in Table 3 and justified in [18]. When
applied to the BPP, NELLI was executed using the default parameters settings.
On the JSSP the number of problems added each iteration, np, was reduced
from 30 to 10 to take account of the reduced size of the problem set.

Parameter Description Value
np number of problems 30

added each iteration
nh number of heuristics 1

added each iteration
cinit initial concentration of 200

heuristics/problems
∆c variation in concentration 50

based on stimulation
cmax maximum concentration 1000

level

Table 3: Default parameter settings for experiments

Two new parameters are introduced. The first, probmut, defines the proba-
bility that a new heuristic will be generated by mutating an existing heuristic
with the remainder generated randomly. The second parameter, maxlen, deter-
mines the maximum length that a randomly generated sequence of nodes can
have (randomly selected between [1 . . .maxlen]). If mutation is applied to gen-
erate a new heuristic then the operator chosen is selected with equal probability.
The maximum length of new heuristics generated by mutation is not fixed. The
length of the sequence has no affect on the heuristics computational complexity.
Nodes are simply evaluated cyclically until all items are placed into a solution.

The experiments conducted were designed to first test the utility of the
representation and second the merit of using mutation to exploit good sequences
and improve the speed of convergence. The results on the BPP are contrasted
against those achieved using the original implementation with those obtained on
the JSSP compared to the results obtained by applying the individual rules in
isolation. Experiments were conducted on both problem domains using a range
of different values of probmut and maxlen.

7.1 Bin-Packing Results

For the BPP, 1370 problems instances were used to test the system allowing
a comparison to the original implementation where these instances are defined
in detail [18, 19]. Results obtained here on the BPP are denoted NELLI* to
distinguish them from those obtained previously, denoted for this section as
NELLI.
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Table 4 gives the results obtained by the best combination of the probmut

and maxlen parameters. Figure 4 summarises the results obtained using each
of the 20 different parameter settings. Each box in the plot shows the result of
running NELLI* 30 times with each run terminated after 5000 iterations.

The table clearly highlights the benefit of the approach used by NELLI*
in comparison to NELLI, both in terms of the number of problems solved op-
timally and in the total number of extra bins used across all problems; the
number of extra bins is reduced from 308 to 171 and there is an increase in
problems solved optimally from 82% to 88.2%. The graph shows the impact of
the parameter settings, with a clear trend in improvement shown as the muta-
tion rate is increased, resulting in more exploitation of existing heuristics. Note
that even experiments in which the mutation rate was set to zero outperform the
previous version of NELLI, indicating the superiority of the newly introduced
representation over the previously used tree-structures.

The table shows a trade-off emerging between the number of heuristics sus-
tained and the overall quality — the new exploitation process generates and
sustains additional heuristics that fill gaps in the problem space. An additional
experiment limited the maximum number of heuristics allowed in NELLI* to 6
to mimic NELLI — even with this constraint an increase in performance was
obtained, of 281 bins over optimal.

Figure 5 expands 5 of the 20 plots (those denoted 0100.00 → 0100.99) from
Figure 4 plotting them against the results achieved previously using NELLI. It
is apparent that NELLI* reacts just as rapidly as NELLI achieving comparable
results within the first few iterations but that NELLI* continues to improve if
given sufficient time to do so. It is also clear from Figure 5 that increasing the
value of probmut correlates to a more rapid response highlighting the benefit of
a more directed search when compared to NELLI and results obtained using
NELLI* with probmut = 0. This is reinforced by Figure 4 which highlights
an increase in average solution quality with an increase in the probability of
generating new heuristics using mutation.

Experiments were also conducted where the concatenation and addition mu-
tation operators were removed from the system resulting in heuristics that never
exceeded their initial length. These results are omitted due to space considera-
tions but highlighted that utility of the concatenation operator in terms of both
speed of convergence and final solution quality.

7.2 Job Shop Scheduling Results

A smaller study was carried out on the JSSP to investigate the ability of NELLI
to generalise to other problem domains. A total of 62 problem instances were
used as a test-bed which were taken from 5 publications, described below.

• 3 instances from Fisher and Thompson [8] referred to as ft06, ft10, and
ft20.

• 40 instances from Lawrence [15]: referred to as la01− la40.

• 5 instances from Adams et al. [1]: referred to as abz05− abz09.
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Table 4: Extra bins (δ) required by NELLI* compared NELLI and the best
known solutions from the literature on the complete set of 1370 benchmark
problem instances

Number of Problems Solved
Requiring δ Extra Bins

δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

NELLI 1126 202 26 12 2 2

NELLI* 1209 152 8 1 0 0

Number Heuristics Number Extra Bins

NELLI 6 308

NELLI* 39 171
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Figure 4: Comparison between different mutation probabilities, probmut, and
different maximum string lengths, maxlen, averaged over 30 runs. The original
implementation of NELLI managed to solve these problems using between 308
and 309 extra bins. A t-test comparing the 2 systems (using the results shown
here for 0100.75) show the results to by highly significant giving a P value of less
than 0.0001

• 10 instances from Applegate and Cook [2]: referred as orb01− orb10.

• 4 instances from Yamada and Nakano [24]: referred as yn01− yn04.

These problem instances are widely studied by practitioners and have best
known solutions, obtained using more specialised metaheuristic techniques, that
are superior in many cases to those presented here. Studies using NELLI have
to date been limited to the BPP and even here, on the JSSP, the heuristic gen-
erator developed is limited to combining simple problem specific nodes with the
objective of generating sets of constructive heuristics quickly that can collec-
tively generalise over the problem space. No comparison is made here to other
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work due to the lack of publications addressing the JSSP in the hyper-heuristic
literature. Instead the heuristics that emerge are contrasted against results ob-
tained using each of the 39 nodes, described in Section 6.2 when applied in
isolation. Results obtained using each of these 39 nodes are presented in Figure
6 which shows for each node the result of applying the rule 30 times to each
problem instance.
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Figure 6: Comparison between scheduling rules applied in isolation taken over
30 runs.

Figure 7 shows the results of repeating the experiments described for bin-
packing in which both the mutation rate and maximum string length are varied.
The same pattern is observed — increasing the proportion of heuristics that are
generated via mutation improves solution quality. In this study there is less of
a difference in final solution quality with respect to the initial sequence length
although if mutation is not used it is clear that the final solution quality is
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reduced. Results obtained, and omitted here, using longer initial sequences of
dispatching rules showed a marked deterioration in solution quality which it is
hypothesised is due to the fact that many more nodes are utilised here than
on the BPP resulting in an increased size of the search space. As with the
BPP, high mutation rates allow the search to be directed towards more useful
sequences of rules although the stochastic nature of the scheduling rules causes
new sequences to vary in performance (the same rule can return a different
operation if there are still conflicts after they are applied).

The best known reported solutions to these problems have a total makespan
summed across all 62 problem instances of 63318. In contrast the best result
obtained by a single dispatching rule was achieved by LRPT-C which produced
solutions with a total makespan of 71130 (12.3% more than the optimal). The
best single result achieved using NELLI* gave a combined makespan of 65641
(3.6 % more than optimal).
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Figure 7: Comparison between different initial maximum string lengths and
mutation probabilities taken over 30 runs.

8 Conclusion

An existing immune-inspired system NELLI that enables an optimisation system
to solve large sets of problems has been improved by focusing on the meta-
dynamics of the system, i.e. the mechanism by which the system generates
novel heuristics. The original tree-based representation has been replaced with
a linear sequence of nodes that is applied cyclically. A mutation mechanism is
used to modify heuristics that are currently sustained in the system, acting as an
exploitation mechanism. An experimental investigation proved the efficacy of
this approach, and investigated the balance required between exploiting existing
heuristics and generating completely novel ones. In contrast to previous work,
the new representation results in each bin being packed with a (potentially)
different heuristic which is hypothesised to contribute to the improvement in
quality.
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Results on a large set of bin-packing problems showed significant improve-
ment compared both to the previous AIS and existing results in the literature.
The system was also applied to a previously untested domain, that of JSSP. A
new set of heuristic components and wrapper were defined, but the remainder
of the system remains identical to that used for bin-packing. Results showed
again that the system outperformed any individual heuristic, and that a balance
could be found between exploitation and exploration.
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