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Abstract 

Previous research studies have used either physical experiments or discrete element 
method (DEM) simulations to explore, independently, the  influence of the coefficient of 
inter-particle friction (µ) and the intermediate stress ratio (b) on the behaviour of granular 
materials. DEM simulations and experiments using photoelasticity have shown that when 
an anisotropic stress condition is applied to a granular material, strong force chains or 
columns of contacting particles transmitting relatively large forces, form parallel to the 
major principal stress orientation.  The combined effects of friction and the intermediate 
stress ratio upon the resistance of these strong force chains to collapse (buckling failure) 
are considered here using data from an extensive set of DEM simulations including 
triaxial and true triaxial compression tests.   For all tests both µ and b affected the macro- 
and micro-scale response, however the mechanisms whereby the force chain stability 
was improved differ. While friction clearly enhances the inherent stability of the strong 
force chains, the intermediate stress ratio affects the contact density and distribution of 
orthogonal contacts that provide lateral support to the force chains.  

 

Key words: DEM, true triaxial tests, fabric, intermediate stress ratio, inter-
particle friction 
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The influence of inter-particle friction and the 
intermediate stress ratio on soil response 
under generalised stress conditions 

 

1. Introduction 
Granular materials respond to applied loads in a highly complex manner.  One 

mechanical response feature unique to granular materials is the sensitivity of the response 

to the intermediate principal stress.  This paper makes a contribution to fundamental 

understanding of granular material response by examining the combined effects of 

friction and the relative magnitude of the intermediate principal stress on the material 

response.  This study involved an extensive set of three-dimensional discrete element 

method (DEM) simulations using periodic boundaries. The first series of test simulations 

were triaxial compression tests on samples with equal packing density but differing 

coefficients of friction, µ. Then the analysis was extended to true triaxial test simulations 

where the samples were subjected to axial compression at a constant mean stress for a 

range of intermediate stress ratios between 0 and 1.  The study extends the earlier 

contributions of Ng [1] and Thornton [2].  

The paper outlines the simulation approach and presents the macro-scale, overall 

mechanical load-deformation response.  Quantitative analysis of the material fabric using 

the contact normal force orientations and distributions allowed observations on the 

fundamental mechanisms underlying the observed response to be made.  The results 

indicate that the friction coefficient, µ, influences the inherent stability of the strong force 

chains, while the intermediate stress ratio influences the lateral support provided to these 

force chains. 
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2. Simulation parameters and specimen generation 
The distinct element method (DEM) simulations presented here were performed on three-

dimensional poly-disperse assemblies of spheres. A Hertz-Mindlin contact model was 

used as in numerous prior DEM simulations [e.g. 3 - 4].  The Poisson’s ratio (ν) was 0.22, 

the shear modulus (G) was 28.68 GPa and the particle density (ρ) was 2570 kg/m3. The 

particle size distribution (PSD) was produced using seven different particle sizes, giving a 

mean particle diameter (d50) of 1.1 mm and minimum (dmin) and maximum (dmax) particle 

sizes of 1.005 mm and 1.425 mm respectively.  This  PSD was selected to match the 

properties of glass ballotini particles used in a complementary experimental study by 

Barreto [5].  The DEM code used in this study was a modified version of ELLIPSE3D [6] 

which is based upon the TRUBAL code developed by Cundall and Strack [7]. This code 

was modified in the current study, following previous updates by O’Sullivan [8] and Cui 

[9].  The simulations presented here were performed using periodic boundaries. Such 

boundaries are widely used in geotechnical engineering and details for their 

implementation can be found elsewhere [2, 10] 

The use of a periodic cell in a DEM simulation removes boundary effects and allows 

smaller numbers of particles to be considered than would be needed to get representative 

data in a physical experiment. However if the number of particles included in the periodic 

cell is too small, the results may not be representative of the general material behaviour.  

Consequently a parametric study was performed in order to select the optimum cell size. 

Simulations with 2000, 4000 and 8000 particles provided identical macro-scale results 

when the stress paths and the angles of shearing resistance were compared. However,  

quantification of the internal topology or fabric (using the fabric tensor as defined by 

Satake [11]) revealed  differences of up to 31% between  the assemblies with 2000 

particles and the other two specimen sizes, indicating that the sample was too small for 

the topology to be statitiscally representative. The good agreement in the response of the  

specimens containing 4000 and 8000 spheres meant that simulations of 4000 particles 
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were used to obtain valid results with reasonable simulation run times. These findings are 

not general as the minimum acceptable periodic cell size will depend on the particle size 

and shape distributions. 

Isotropic specimens were created by initially generating a cloud of non-contacting 

spheres with random locations within a cubic periodic cell of 33.9 mm × 33.9 mm × 33.9 

mm. Then the samples were compressed isotropically  and monotonically to 200 kPa. By 

setting µ to be 0.0 during compression relatively dense samples with a void ratio (e)  of 

0.521 were created.  Note that e is defined as the ratio between the volume of voids and 

the volume of solid particles. During consolidation e decreases, the number of inter-

particle contacts increases and  prior to shearing, the particle assembly is percolating, i.e. 

there is a network of contacts with sufficient stability to transmit stress through the 

sample. 

 

3. Influence of inter-particle friction and the 
intermediate principal stress during triaxial and 
true-triaxial compression 

3.1. Axi-symmetric (triaxial) compression 

Figure 1(a) illustrates the stress-strain response in terms of the deviatoric stress (t=(σ'1-

σ'3)/2) for triaxial compression tests with various values of µ. Note that σ'1 and σ'3 are the 

major and minor principal effective stresses, respectively. The angle of shearing 

resistance increases as µ increases, in line with the observation of Thornton [2] amongst 

others. The peak strength was mobilized  at approximately the same value of deviatoric 

strain ( ≅  8.5%) for all friction values. Taking the variation of the gradient of the stress-

strain response as a measure of the evolution of yielding, for low friction yielding occurs 

gradually and for high friction yielding occurs suddenly at relatively low strain levels, 

and there is a systematic evolution in the response as µ is varied. As  illustrated in  Figure 
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1(b), the overall dilative volumetric response observed is consistent with the initially 

dense state of the assemblies. After a limited initial compression at strain levels lower 

than 0.20% the samples start to dilate at a constant rate (see Figure 1(c)).   The magnitude 

of this initial compression  is small, and it is dependant on µ with a larger amount of 

compression being associated with the higher values of µ. During the subsequent dilation 

the rate of dilation increases with µ.  

The relationship between friction and stiffness,  evident in Figure 1(a),  can be 

quantiatively appreciated by considering the octahedral stiffness Goct,  defined as 

Goct = ∆J/∆εd, with : 

 𝐽𝐽 = 1
√6

[(𝜎𝜎1′ − 𝜎𝜎2′)2 + (𝜎𝜎2′ − 𝜎𝜎3′)2  + (𝜎𝜎1′ − 𝜎𝜎3′)2 ]0.5 [1] 

𝜀𝜀𝑑𝑑 = 2
√6

[(𝜀𝜀1 − 𝜀𝜀2)2 + (𝜀𝜀2 − 𝜀𝜀3)2  + (𝜀𝜀1 − 𝜀𝜀3)2 ]0.5   [2] 

 

where J is a principal stress invariant in terms of the major, intermediate and minor 

principal effective stresses (σ’1, σ’2 and σ’3), εd is the deviatoric strain and ε1, ε2 and ε3 

are the major, intermediate and minor principal strain values, respectively. The data 

presented in Figure 2(a) indicate that the sensitivity of Goct to µ decreases with increasing 

deviatoric strain. The non-linear nature of the relationship between µ and Goct  is clear 

from Figure 2(b) where the variation of  Goct  at different strain levels with µ are 

presented.  

Referring to  findings from prior research a conceptual fundamental mechanism 

explaining macro-scale response observed in Figures 1 and 2 can be developed.  Bulk 

instabilities are induced by the continual collapse of old, and formation of new force 

chains [12] where force chains are defined as particle assemblies carrying the majority of 

the load (i.e. particles carrying forces greater than the average magnitude of the contact 

force).  These force chains are supported laterally by a complimentary weak network of 

particles [13]. Prior to collapse force chains accumulate  stored potential energy and this 
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process continues until the force chains reach their peak load, after which buckling occurs 

and the force chains experience a loss in load-carrying capacity [14]. Furthermore, 

Tordesillas & Muthuswamy [15] showed  that force chain buckling can be elastic or 

plastic depending on the state of the contact points. Hence, failure is associated with 

buckling of the strong force chains and µ provides a resistance to buckling. Referring to 

Figure 1(a), when µ is low,  inter-particle sliding (yielding of contacts in the shear 

direction) will occur at a lower strain level than when µ is higher. High values of µ 

provide a more inherently stable structure resulting in almost simultaneous buckling of 

the strong force chains.  On the other hand, at low friction some of  the strong force 

chains can yield while others have not reached the limiting value for sliding, hence 

yielding is more gradual. Earlier research [14] has showed that  void spaces are created 

between the particles in the buckling chain and their laterally supporting neighbours and 

that the particle movements during buckling generate an inherently dilatant material 

response, as confirmed in Figures 1(b) and (c). The data presented here also show that at 

high values of µ collapse (buckling) is faster. It may then be possible to define collapse as 

the point of initiation of a constant rate of dilation. Figure 1(c) shows that this point is 

friction-dependant. 

Figure 3(a) shows the evolution of the coordination number Z  for different values of µ; Z 

is given by 2Nc/Np where Nc and Np are the number of contacts and particles in the 

specimen respectively.  Note that the number of contacts is multiplied by 2 because each 

contact is shared by two particles and this definition was used by Thornton [2]. All 

simulations have an initial value of Z = 6.1 and Z reduces as shearing progresses until a 

constant or “critical” coordination number, Zcrit,  is reached. The value of Zcrit reduces 

with increasing µ confirming that friction adds significant stability to the force chain 

network.  This stability associated with the higher µ values allows the stress to be 

transmitted using a smaller number of contacts and referring to Figure 1(a), the resultant 

mobilised shear strength is also higher.  This ability to transmit stress with a smaller 
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number of engaged contacts probably explains the increased dilative volumetric strain 

observed for the simulations with a higher µ value.  The level of strain required to attain 

Zcrit  increases with µ.  

Only a limited amount of information is provided by scalar measures of the material 

fabric such as Z.  A deeper understanding can be gained using orientation data that can be 

quantified using the fabric tensor, defined  by Satake [11] as: 

𝜙𝜙𝑖𝑖𝑖𝑖 = 1
𝑁𝑁𝑐𝑐
∑ 𝑛𝑛𝑖𝑖𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘
𝑁𝑁𝑐𝑐
𝑘𝑘=1   [3]       

 

where Nc is the total number of contacts and nk
i denotes the unit contact normal for the k-

th contact. Thornton [2] demonstrated the merits of considering the evolution of the 

deviatoric fabric Φd (= Φ1 – Φ3), where Φ1 and Φ3 are the major and minor fabric 

components, i.e. the maximum and minimum eigenvalues of Φij. Figure 3(b) illustrates 

the evolution of Φd for different friction values. There is clearly a correlation between a 

higher  mobilised shear resistance and a higher deviatoric fabric.  When friction is higher 

the strong force chains are less prone to buckling, i.e. they do not rely as much on an 

orthogonal force network to prop them up and facilitate transmission of the deviator 

stress. It is easy to imagine that when the friction is lower, the force chains buckle and the 

resulting lateral movement of the particles generates new contacts with adjacent particles, 

thus developing an orthogonal contact system.  Figure 3(c) illustrates the evolution of the 

product of Z and Φd for different µ values as shearing progresses. For µ>0.20 ZΦd is 

almost independent of µ,  implying that the number of particles participating in the strong 

force chains is approximately constant. 

A number of researchers [16 – 18],  have put forward functional relationships  between Z 

and e. The continued dilative response observed here (Figure 1(b)) at a constant 

coordination number (Figure 3(a)) indicates that Z and e are not related via a simple one-

one function.  In Figure 3(d) a plot of  Z against e  and contours illustrating the value of 
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the deviatoric fabric, are overlain on this data.   For each test, once a critical coordination 

number is attained, there is a monotonic increase in e accompanied by an increase in Φd. 

Therefore the emergence of a constant coordination number is not an indicator of a 

constant or steady state fabric, rather as the deformation continues the contact network 

topology is evolving and the rate at which contacts are being lost in the direction of the 

minor principal fabric is approximately equal to the rate of gain of contacts in the 

direction of the major principal fabric.  Consistently for each friction value, as shearing 

progresses the orthogonal support mobilized by the strong force chain network 

diminishes.  However, while rational, this interpretation is itself a simplification of 

reality; clearly as shearing continues the Φd contours are further apart, and for the higher 

friction values the increse in void ratio occurs at an almost constant Φd value. 

Various authors [2, 13] have observed that in granular assemblies there are a number of 

particles that do not contribute to the load-carrying capacity. Based on this, Thornton [2] 

defined the mechanical coordination number (Zm) as: 

𝑍𝑍𝑚𝑚 = 2𝑁𝑁𝑐𝑐−𝑁𝑁1
𝑁𝑁𝑝𝑝−𝑁𝑁0−𝑁𝑁1

  [4] 

where N1 and N0 are the number of particles with 1 and 0 contacts, respectively, and Nc 

and Np are defined as before.  However, when Figure 3(a) is compared to Figure 4(a) it 

seems apparent that the particular definition used for the coordination number does not 

affect the conclusions derived in this paper. In contrast, the evolution of the number of 

“rattlers” (particles with no load-capacity, N1+N0) as illustrated in Figure 4(b) shows that 

as µ increases the number of rattlers also increases. It can be then confirmed that at high 

friction the force chains do not rely as much on the orthogonal force network to prop 

them up. Hence, friction adds inherent stability to the force chains. 

Three-dimensional work by Thornton and Anthony [19]  defined  “strong” contacts to be 

those carrying a normal force, N,  equal or greater than the average normal contact force 

N . A similar definition was proposed in the earlier two-dimensional work of Radjai et 
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al [13].  In this paper we consider a similar decomposition to study the evolution of the 

strong (s) and weak (w) fabrics, Φij
s and Φij

w, with Φij
s and Φij

w being calculated by 

applying Equation 3 only to contacts where  NN ≥
 and NN <  respectively. This 

proposition is based on evidence by Radjai et al [13] that the weak force network has its 

largest value when the mean force is used to separate the two networks. The evolution of   

Φ1
s and Φ3

s (strong fabric) is presented in Figure 5(a), while the evolution of Φ1
w and Φ3

w 

(weak fabric) is presented Figure 5(b) for several µ values considered.   

Referring to Figure 5(a), it is clear that the strong force network becomes highly 

anisotropic reaching maximum values of 0.521 < Φ1
s < 0.547 (and 0.28 <Φd

s <0.32). The 

Φ1
s values correlate well with the t data (Figure 1(a)); there is a “stiffer” response as µ 

increases and the peak fabric value also occurs at a similar strain level for all the 

simulations. A limiting value of principal fabric (or an envelope) seems to occur when µ 

is larger than 0.14. However, the fabric tensor is normalised by the number of contacts, so 

misleading interpretations must be avoided, because while a similar degree of anisotropy 

is developed in the major principal direction, this magnitude of anisotropy is produced by 

an increasingly smaller number of contacts as µ increases. The weak force network (Φi
w) 

in Figure 5(b) exhibits a much smaller variation (0.333 < Φ1
w < 0.372 compared to 0.333 

< Φ1
s < 0.547), remaining almost isotropic for the entire duration of shearing. This 

suggests that friction increases the stability of the strong force chains while the stability 

of the weak (and laterally supporting) network remains largely unaffected by µ. The 

response observed in Figure 5(a) demonstrates that at low to moderate strain levels (i.e. εd 

< 4%) a stronger principal fabric develops at a faster rate as µ increases. Such 

phenomenon cannot be observed in Figure 5(b) where the overall change of Φ1
w is also 

much more limited. Consequently, it can be stated that friction only contributes to the 

stability of the strong force network. It is however (at least intuitively) expected that µ 

will affect the stability of both the strong and weak contact forces. However the results 
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presented here suggest that for this packing density and stress level the increase in 

stability of the weak force network has no significant effect on the macro-scale behaviour 

because it only carries a limited amount of the overall load. It is expected that a higher 

stress levels the contribution of the weak force network will become increasingly 

significant and its enhanced stability will have an evident effect at both micro- and 

macro-scale levels.  

The eigenvectors of Φij were used to determine the orientation of the strong and weak 

fabric. Taking  βσ and βΦ as the orientation of σ1 and Φ1 with respect to the horizontal 

direction, respectively, for all simulations βσ = 90o and βΦ
s ≈ 85.5o. As the weak fabric is 

approximately isotropic, calculation of a principal orientation is not meaningful. This 

occurs because when there is an almost isotropic fabric there is no significant bias in a 

particular direction. As a result the eigenvectors can be significantly affected by very 

small changes in the fabric tensor, therefore producing random values of βΦ
w. Once again, 

at a higher stress level it would be expected that the weak force would be orientated 

orthogonally to the direction of the major principal stress direction if its contribution to 

the stability becomes more significant, but this is not the case for the results presented 

here as discussed above. 

Visual inspection of the contact force network (Figure 6) for two values of µ confirms 

that the strong force network changes significantly, while the weak force network remains 

largely unaffected by µ. This confirms the interpretation provided regarding the 

quantitative data in Figure 5. Strong contact forces (where NN ≥ ) are plotted in black 

while weak contact forces are shown in gray and  the line thickness is  proportional to the 

magnitude of the normal force. Figure 6(a) with µ = 0.01 shows a greater number of 

strong forces than Figure 6(b) with µ = 0.5. Interestingly the weak contact force network 

is very similar for both values of friction. Figures 1, 3, 5 and 6 demonstrate that with high 

friction a higher shear strength is mobilised with a smaller number of strong forces. 
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Therefore we can conclude that the main role of µ is to provide an inherent resistance to 

strong force chain buckling by reducing the risk of lateral contact sliding in the force 

chain.  

3.2. True triaxial compression (Constant b tests) 

The influence of µ on the shear strength of granular materials has been studied 

experimentally [i.e. 20 – 21] and numerically using DEM by various researchers [i.e. 2, 4, 

22]. However, we know of no prior research considering  the effect of friction on true 

triaxial response. This paper therefore extends the earlier DEM studies of true triaxial 

response by Ng [1, 23] and Thornton [2]. True triaxial compression tests differ from 

conventional triaxial tests because the magnitudes of both the intermediate and the minor 

principal stresses are independently controlled.  In a standard triaxial test the mean 

effective stress p’ typically increases. In a drained true triaxial test it is common to keep 

both the mean effective stress and the intermediate  principal stress ratio (b) constant 

where   

𝑏𝑏 = 𝜎𝜎2′−𝜎𝜎3′

𝜎𝜎1′−𝜎𝜎3′
 [5]  

 

In this way, the effect of b on the stress-strain behaviour can be isolated. In true triaxial 

compression b = 0 and during shearing σ'1 increases while σ'2 and  σ'3 both decrease 

equally at a rate that is half the rate of increase of σ'1 in order to keep p’ constant.   

It is clear from previous DEM studies [2, 23]  and from previous experimental research 

[24 – 27], that as b increases from the triaxial condition (b = 0.0) towards the plane strain 

condition (bPS ≅  0.5) the angle of shearing resistance φpeak also increases. However as b 

continues to increase beyond the plane strain condition to achieve conditions similar to 

those experienced during triaxial extension (b = 1.0)  there is no consensus on the effects 

of b on φpeak. DEM research [2, 23] shows that φpeak decreases from bPS to b = 1.0 and also 

state that the resistance in triaxial compression (b = 0) is lower than in triaxial extension 
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(b = 1). Experimental research carried out by Haruyama [25] and Sutherland and Mesdari 

[27] seems to agree with these numerical results. However, tests by Green [26] and 

Shapiro and Yamamuro [28] indicate that there is no effect of b on  φpeak when b ≥ bPS. 

The reason for the discrepency in observations is difficult to explain.  Perhaps the 

differences arise because different authors tested different sands and it is difficult to 

guarantee that the initial state of every sample is the same. Furthermore, the true triaxial 

apparatusses used by these researchers use different combinations of boundary types 

including rigid platens, flexible membranes or combinations of both. The use of DEM 

and periodic boundaries in particular overcomes these difficulties.  

In the current study a series of simulations, each with a constant p’ of 200 kPa and using 

different values of µ and b were performed. Typical responses of the principal stresses for 

each simulation are presented in Figure 7. For each of these tests the initial specimen 

configuration was identical, with a void ratio of 0.521 and an initial isotropic fabric.  

Figure 7(a) indicates that, for each test, as the specimen is sheared σ'1 increases to a peak 

value (σ'1peak) and exhibits a slight post-peak strain softening, and there is a consistent 

trend for σ'1peak to decrease with b. Similarly referring to Figure 7(c), σ'3 decreases to a 

minimum value with magnitude of σ'3min and there is a subsequent post-peak increase in 

σ'3, and the magnitude of σ'3min decreases with increasing b. The trend in the variation of 

σ'2 is more complex.  Referring to Figure 7(b) for 0 ≤ b < 0.5, upon shearing σ'2 reduces 

and the magnitude of the minimum σ'2 value gradually decreases (i.e. σ'2min increases) as 

b increases. Then for b = 0.5 no change in σ'2 is observed during shearing.  There is then 

a transition to a response where σ'2 increases during shearing, and for 0.5<b<1.0, the 

magnitude of σ'2max increases with increasing b. When b = 1, σ'1 = σ'2 and their 

magnitudes increase at a rate equal to half the rate of decrease of σ'3. These conditions (b 

= 1) are similar to those experienced in conventional triaxial extension tests but differ in 

the sense that the orientation of the major principal stress is aligned with the vertical 

direction and the sample is compressed vertically.    
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The data presented in Figure 7 are unified in Figure 8(a) where the variation in the 

deviator stress t with deviatoric strain is presented.  It is clear that the maximum peak t 

value is mobilized in the simulation with b = 0.4 while the peak mobilized t value is a 

minimum for b = 1.0. This is in agreement with all DEM and experimental studies 

available. The difference in the initial shear stiffness seems to be independent of b, at 

least for the strain levels observed here. Figure 8(b) shows that the influence of the b 

value on the volumetric response is negligible, and as expected all the specimens 

experienced an overall dilation during shear.  Figure 9 demonstrates that the normal (or 

direct) strain response along each of the principal stress orientations differs.  Figure 9(a) 

shows that ε1 is always compressive and that the rate of compression decreases as b 

increases. Similarly ε3 in Figure 9(c) is always extensive and the rate of expansion 

increases with increasing b. Note however that as b increases the resultant increment in 

the rate of expansion becomes less significant. As shown in Figure 9(b) in the σ'2 

direction the normal strain response is highly dependent on the b-value. When b = 0.4 the 

specimen does not extent or contract significantly, i.e. there is a response very close to 

plane strain (PS). If b > bPS the ε2 response is compressive. On the contrary, if b < bPS 

then ε2 shows an extensional behaviour. The overall strain response illustrated in Figure 9 

is consistent with the stress behaviour discussed with reference to Figure 7. Note that for 

this set of simulations bPS (nor contraction or dilation) does not occur exactly when σ'2 is 

kept constant (b = 0.5). The current data indicates that stress conditions in plane strain are 

highly dependent on the value of friction, so it is expected that bPS = 0.5 for a particular 

value of µ only.  

Experimental evidence regarding the strain response of soil samples in true triaxial tests is 

as controversial as the variations of φpeak. Most researchers [26 - 27, 29 - 31] agree that 

axial strains to failure (ε1
f) decrease when b increases. However, Reades and Green [32] 

describe an initial increase on ε1
f when 0 < b < 0.2 and then a decrease when b > 0.2. 

Furthermore, Lade and Duncan [29] also found that this variation is dependent on the 
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initial state of the sample. Hence, comparison of experimental results and the DEM 

results presented here is inconclusive. Note however, that according to Figures 8 and 7(a), 

ε1
f appears to increase slightly as b increases. In terms of εv Reades and Green [32] 

reported that the volumetric strain rate was nearly constant when 0 < b < bPS.  As stated by 

Lade et al. [19] the volumetric responses of physical experiments are affected by the 

boundary conditions but the results in Figure 8(b) seem to support the idea of εv being 

independent of b and agree with results presented by Thornton and Zhang [3] from DEM 

simulations. 

Figure 10 gives the evolution of Goct for the same set of simulations. Figure 10(a) shows 

that the effect of b on Goct is negligible and this is confirmed in Figure 10(b) where the 

data are presented following the format of Figure 2(b). However while the data in Figure 

2(b) clearly showed the influence of µ on Goct, the data presented in Figure 10(b) show 

that the effect of b on Goct is insignificant.  

The influence of µ on the relationship between the peak angle of shearing resistance φpeak 

[= sin-1((σ'1-σ'3)/(σ'1+σ'3))] and b was explored and, as illustrated in Figure 11(a), φpeak 

clearly increases with µ for all the b-values considered.  There is a clear consistent trend 

in the pattern of response, as confirmed in Figure 11(b) where the responses for each µ 

value are seen to be indistinguishable when normalized  by φpeak for b = 0.0. This result is 

not surprising if we accept that µ affects the inherent stability of the strong force network, 

while the level of support provided by the weak force network is only slightly affected by 

friction as demonstrated in Figures 5(b) and 6.  

Prior research has considered the sensitivity of the material strength to µ for triaxial 

conditions, and Figure 12 compares the results of this study with previously published 

data in terms of sin(φpeak). The trends observed here for the constant b tests agree with the 

observations by Thornton [2] for triaxial compression response.  The range of variation of 

attainable sin(φpeak) values increases when the more general true triaxial stress conditions 
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are considered and it seems that a limiting envelop can be found when b = 0.5 (i.e. when 

b ≈ bPS). Also note that true triaxial simulations (b = 0) give the same sin(φpeak). When 

interpreted in relation to the t-p’ space, during true triaxial compression the stress path is 

vertical (as p’ is kept constant), while in conventional triaxial compression the stress path 

is inclined. However both stress paths approach the same strength envelope in the 

generalised stress space and the orientation of the stress path in the generalised stress 

plane is determined by b (a function of Lode’s angle, equal for both tests). 

Lade and Duncan [33] proposed that a parameter η determines the position of the strength 

envelope in the generalised stress space and η is given by: 

𝜂𝜂 =  �𝐼𝐼1
3

𝐼𝐼3
− 27� ∙ � 𝐼𝐼1

𝑝𝑝𝑎𝑎
�
𝑚𝑚

  [6] 

 

where I1 and I3 are the first and third invariants of the stress tensor, pa is the atmospheric 

pressure in the same units of the stress and m is the slope of the best-fit line when plotting 

(𝐼𝐼13/I3-27) versus (pa/I1). Figure 13 illustrates the results in the generalised stress plane and 

the responses agree with the Lade and Duncan failure criterion. Previous DEM 

simulations by Ng [1] Thornton [2] and Thornton and Zhang [3] also showed agreement 

with the Lade and Duncan failure criterion.  Here η is seen to be a function of µ (Figure 

14(a)) with η = 14.789µ0.3754
. It can therefore be implied that the value of η determined 

from physical true triaxial tests on a sand is an index of the inherent stability of the force 

chains in that sand.  It is likely that correlations could be found between η and the sand 

mineralogy (which will determine the friction) or, more likely, between η and the particle 

geometry (more angular, less convex particles will form more stable force chains).    

When Thornton [2] analysed the results of constant b-value tests he proposed that a peak 

fabric envelope could be represented using an “inverted” Lade & Duncan envelope 

described by: 
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𝜂𝜂∗ =  3𝜙𝜙13

2𝜙𝜙1𝜙𝜙2−3𝜙𝜙3
  [7] 

 

where Φ1, Φ2 and Φ3, are the principal values of the fabric tensor. The peak fabric 

envelopes for the simulations in the current study are also included in Figure 13.  While 

the range of η* values is smaller than the range of η values, there is a relationship 

between η* and µ and the form of this relationship is similar to the relationship between 

η and µ, in this case η* = 5.488µ0.0034 as illustrated in Figure 14(b).  The added stability 

provided to the contacts by increasing µ therefore has a small, but consistent influence on 

the material fabric. 

Figure 15(a) shows the evolution of the total number of contacts (i.e. Nc, rather than Z) 

belonging to the force network for true triaxial tests with various b-values for µ=0.14 and 

µ=0.7. Figure 15(b) does the same but considering the strong force network only. An 

increase of µ results in a reduction in the number of contacts. Note that Nc
s seems to be 

increasing after reaching Nc
s
min while Nc appears to be constant. However, the number of 

contacts seems to be unaffected by b, i.e. it is solely a function of µ. As noted above Goct 

varied with µ but not with b; Figure 15 implies that Goct is then dependant on the number 

of contacts in the force network, explaining the lack of sensitivity of b to Goct.   

 

To measure the variation in fabric for this three dimensional stress state a generalised 

octahedral fabric can be defined as: 

𝜙𝜙𝑜𝑜𝑜𝑜𝑜𝑜 = 1
√2

[(𝜙𝜙1 − 𝜙𝜙2)2 + (𝜙𝜙2 − 𝜙𝜙3)2+(𝜙𝜙1 − 𝜙𝜙3)2]0.5   [8] 

 

where Φ1, Φ2 and Φ3 are the principal values of Φij. This expression reduces to Φd = Φ1 - 

Φ3 for triaxial (axi-symmetric) conditions as proposed by Thornton [2]. Figure 16 shows 

the evolution of Φoct for a set of true triaxial tests with µ = 0.14 and µ = 0.7. A qualitative 

agreement to the macro-scale stress-deformation behaviour is observed. The smallest 
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amount of anisotropy is induced when b = 0.0 (providing the lowest shear strength) and 

the greatest amount of anisotropy is induced when b = 0.4, which is reasonably close to 

bPS. Nevertheless, the effects of b and µ are not fully explained by this value of Φoct. In 

fact, it is clear that when analysed in this manner, the effects of b appear to be 

insignificant in comparison to those of friction.  Consequently it is useful, as before, to 

isolate the response of the strong and weak force network. The evolution of Φi
s is 

provided in Figure 17 for two sets of constant b tests with two different values of µ. 

Figures 17(a), 17(c) and 17(e) illustrate Φ1
s, Φ2

s and Φ3
s respectively when µ = 0.14. 

Similarly, Figures 17(b), 17(d) and 17(f) do the same for µ = 0.7.  Independently of µ 

there is a clear decrease in Φ1
s(max) and Φ3

s(min) as b increases. For Φ2
s there are two types 

of observed behaviour. When 0 < b < bPS the value of Φ2
s reduces and for b > bPS its value 

increases. Hence, there is a good correlation between the strong fabric changes and the 

changes in principal stresses and strains in Figures 7 and 9. Also note however, that the b-

value required to achieve plane strain conditions (in terms of fabric) is also dependent on 

the value of µ. In agreement with Figure 1(a) and 5(a), high values of µ provide a 

“stiffer” evolution of Φi
s than low friction values. Note that for both low and high values 

of µ the magnitudes of the Φi
s values are similar, but as discussed before fewer contacts 

are required to achieve this anisotropy when µ is high. This strongly supports the fact that 

friction provides a significant stability to the strong force chains. Interestingly, when µ = 

0.14 (Figure 17(e)) the value of Φ3
s
min occurs when b > 0.6, while for µ = 0.7 (Figure 

17(f)) the limit Φ3
s
min is reached when b > 0.4.  As was the case in triaxial compression, 

the weak fabric remains almost isotropic during shearing and the orientation of the 

principal fabric βΦ
s coincides with that of the major principal stress βσ, but βΦ

w cannot be 

calculated in a meaningful way as it is approximately isotropic.  

It is important to illustrate clearly the role of the contacts orthogonal to the strong force 

network in providing support. It can be appreciated by reference to Figures 18 and 19 

which show polar histograms of the projection of contact orientations in the horizontal 
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plane (parallel to the orientations of σ'2 and σ'3) for µ = 0.14 and  µ = 0.70 respectively. 

While the radial length of each angular bin indicates the number of contacts oriented in 

that direction, the shading indicates the average magnitude of the contact forces for that 

bin normalised by the average magnitude of the contact forces in the specimen.  It is clear 

from these figures that forces with a relatively large magnitude develop in the lateral 

plane and the shape of this distribution varies with b.  It seems that for low b values there 

is an isotropic distribution of forces providing support to the strong force network. As b 

increases there are slightly more and stronger forces in the y (σ'2) direction, transmitting 

larger forces that are themselves more stable, giving more support to the strong force 

chains,  while at the same time the support offered in the x (σ'3)  direction still exists and 

only slightly reduced for b<0.5.  When b approaches 1.0, the increased support offered in 

the y-direction is counter acted by the reduced support offered in the x-direction, resulting 

in lower φpeak values. 

 

4. Discussion and conclusions  
This paper has made a contribution to advance fundamental understanding of granular 

material response by considering both the effects of friction and stress state on the 

material response. Using DEM simulations of triaxial compression and true triaxial 

compression tests we have presented alternative ways to interpret the evolution of fabric 

in order to link the evolution of micro-mechanical parameters to the macro-scale 

behaviour of granular materials. We have considered the effect of the inter-particle 

friction (µ) and the intermediate stress ratio (b) on the granular material’s response.  

The main findings from the triaxial compression tests were:  

1. Considering the macro-scale load-deformation response in the triaxial test 

simulations, in line with previous studies, as µ increases there are 

corresponding increases in the peak angle of shearing resistance (φpeak), the 
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amount of dilation (i.e. negative volumetric strain, εv) and the shear stiffness 

(Goct).  There is a non-linear relationship between µ and each of these 

response characteristics, reflecting the complexity of the material response. 

The mechanism of force chain failure most likely explains the differences in 

stiffness and strain at which the peak stress is mobilized. 

2. Analysis of the particle-scale data within the DEM simulations revealed that 

as µ increases, the critical coordination number decreased and there was an 

increase in the magnitude of the deviatoric fabric induced during shearing. 

The critical coordination number that specimens attain after a small amount 

of straining does not indicate a steady state response.  In fact, examination of 

the fabric tensor data revealed that the constant Z values indicate that the 

addition of contact to the strong force network that is aligned with the major 

principal stress, is balanced by the removal of contacts from the orthogonal 

weak force network. Furthermore, analysis of the evolution of ZΦd 

demonstrated that the number of contacts participating in the strong force 

chains is relatively insensitive to µ. This data also indicate that there is not a 

one-one functional relationship between Z and e, rather Z depends on Φd as 

well as  ε. 

3. Decomposition of the fabric tensor in its strong and weak components 

demonstrated strong force chains can collapse in a gradual manner at low 

friction values, while under a high friction regime the collapse could occur 

almost suddenly when the tangential force of most of the strong contacts 

attains a limiting value. While the strong fabric is orientated in the direction 

of the principal stress, the weak fabric remains largely isotropic and it was 

only slightly affected by the value of µ.  

The main findings from the true triaxial compression (constant p’, constant b) test 

simulations can be summarized as follows: 
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1. Both b and µ affect the macro-scale response in different ways; the value of µ 

determines the inherent stability of the force chains while the value of b 

determines the amount of external, lateral support. 

2. While the peak stress mobilized is a function of both b and µ, the stiffness, 

Goct, is independent of b.   

3. There appears to be a unique relationship between b and φpeak/φpeak b=0.  

4. The η parameter used to define the shape of the Lade and Duncan (1975) 

failure criterion in principal stress space is a function of µ.  As µ determines 

the stability of the strong force chains, the value of η obtained in physical 

experiments on a given sand is a measure of the stability of the force chains 

that form in that sand.  

5. There is a functional correlation (with a low sensitivity) between the η* 

parameter that defines the shape of the fabric response envelops and µ, this is 

evidence that friction also affects the geometrical fabric and does not simply 

add to the stability of force networks with the same topologies.  

6. There is a clear link between the octahedral fabric measure that considers the 

influence of the intermediate principal fabric and the macro-scale behaviour.  
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Figure captions 
 

Fig. 1 Influence of friction on (a) stress-strain response ,  (b) overrall volumetric behaviour 
and (c) volumetric behaviour at small strains during triaxial compression. 

Fig. 2 Influence of friction on (b) the evolution of the octahedral stiffness and (b) its value 
at various strain levels in triaxial compression 

Fig. 3 Influence of friction on the evolution of (a) the coordination number, and (b) the 
deviatoric fabric, (c) the product of Z and Φd and (d) evolution of Z,e and Φd in triaxial 
compression 

Fig.4 Influence of friction on (a) mechanical coordination number and (b) number of 
rattlers. 

Fig. 5 Influence of friction on the (a) strong and (b) weak fabric in triaxial compression 
while considering the major and minor principal values 

Fig. 6 Contact normal forces on the XZ-plane for peak states of triaxial compression 
simulations with (a) µ = 0.01 and (b) µ = 0.50 

Fig. 7 Variation of the (a) major, (b) intermediate and (c) minor principal stresses for true 
triaxial tests with µ = 0.22 and different b values 

Fig. 8 Influence of the b-value on (a) stress-strain and (b) volumetric response in true 
triaxial compression with µ = 0.22 

Fig. 9 Effect of the b-value on the (a) major, (b) intermediate and (c) minor principal 
strains during true triaxial compression with µ = 0.22 

Fig. 10 Influence of the b-value on (b) the evolution of the octahedral stiffness and (b) its 
value at various strain levels in true triaxial compression with µ = 0.22 

Fig. 11 Influence of inter-particle friction on the (a) peak angle of shearing resistance and 
(b) the normalised peak shear resistance in true triaxial compression 

Fig. 12 Influence of inter-particle friction and the intermediate stress ratio on the angle of 
shearing resistance in relation to previous studies 

Fig. 13 Influence of inter-particle friction on the peak stress and fabric states for true 
triaxial compression in the generalised stress plane 

Fig. 14 Effect of inter-particle friction on (a) the Lade & Duncan (1975) η parameter and 
(b) Thornton (2000) η* parameter 

Fig. 15 Effect of µ and b on the number of contacts in the (a) force network and (b) the 
strong force network 

Fig. 16 Effect of the intermediate stress ratio on the octahedral fabric for two values of 
friction 

Fig. 17 Effect of the inter-particle friction on the strong force chains in true triaxial 
compression for two values of friction 
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Fig. 18 Effect of b on the orthogonal support to the strong force chains for µ = 0.14 

Fig. 19 Effect of b on the orthogonal support to the strong force chains for µ = 0.70 


