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Abstract—The rapid proliferation of new devices has led to the
Internet of Things (IoT), a network where virtually any object
equipped with a radio interface could get connected. Accordingly,
networks are exploding in terms of the number of devices but also
in complexity. The key issue arises from the increasing density
in wireless communications, which the “deterministic” nature of
current protocols can no longer handle. Herein, we explore ways
in which the latest development in artificial intelligence (AI) and,
particularly, machine learning (ML) may help addressing the
complex requirements of IoT communications, highlighting the
crucial role of “predictive” communications. We illustrate the
software architectures and the fundamental mechanisms that can
enable AI processes in communications. Finally, we introduce
an exemplary case study where machine learning is successfully
used to find the delicate balance between spectrum and energy
efficiency in wireless sensor networks. The emerging panorama
for cognitive communications is one in which intelligent processes
must start at the very edge and need to transfer meta-learned
information in a peer-to-peer fashion.

Index Terms—Cognitive communications, Intelligent Net-
works, Machine Learning, Transfer Learning, Internet of Things,
Wireless Sensor Networks.

I. INTRODUCTION

The widespread digitization of the physical world and the
Internet of Things (IoT) trend to connect virtually any object
equipped with a radio interface, are creating ever more com-
plex systems. Across all sectors of industry and society, there
is a quest to adopt Artificial Intelligence (AI) to master the
complexity of IoT systems, which requires pervasive, wireless
connectivity beyond what is currently possible. While AI is
being used broadly in the most innovative applications and
services, there is an opportunity to use those very same intel-
ligent mechanisms to construct more intelligent and cognitive
communications[1]. The key issue with pervasive connectivity
is not only the shear number of devices (projected to be at
the tunes of trillions) but the increasing density in wireless
communications, which the “deterministic” nature of current
protocols can no longer handle.
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As the number of commercial and industrial IoT devices
proliferates, getting such a diverse range of “things” to behave
and connect intelligently is crucial to realizing the full poten-
tial of our digital ecosystems. An industrial factory typically
uses thousands of sensors to monitor the status of thousands
of machines and processes. Yet conventional communication
protocols are not geared for such industrial IoT requirements,
where reliable wireless connectivity and ultra-low latency are
a must. In most challenging IoT applications, sensor data
needs to be collected, analyzed and correlated with historical
performance data to make decisions in real-time [2]; as an
example you can consider swarms of industrial drones or
remote facilities filled with smart sensors and actuators that
need to communicate and coordinate with each other to
accomplish tasks without being connected to a remote AI
cloud service [3],[4].

In such cases, embedding intelligence at the source of the
sensing is the most sensible way to obtain timely actionable
reactions. What is more, the very same intelligent mechanisms
may be used both at the application level (e.g., to detect
anomalies or predict trajectories) and to meet the demands
of real-time communications (e.g., enabling prediction-based
protocols).

The opportunities and challenges to exploit AI to achieve
intelligent 5G networks by effectively orchestrating cellular
network resources, have been widely investigated in the last
few years [5]. However, the time has come to focus on
future designs and working paradigms consisting in moving
the intelligence from the core to the edge of the network[6],
to enable decisions to be made directly on the IoT nodes (i.e.,
on resource constrained sensors), rather than “phoning home”
to headquarters or a cloud service to find out “what to do
next”.

Thanks to recent breakthroughs in lightweight AI methods,
it is now possible to bring IoT systems to the next level,
allowing localized (rather than cloud-centric) decisions and
minimizing the communication footprint. That will, in turn,
allow enterprises to better capitalize on their IoT investments.



It is crucial for IoT devices to be able to work together, for
instance to diagnose and solve problems in real-time, even in
disconnection from central big-data capability.

Starting from this challenging vision of decentralized intel-
ligence, here we explore the various ways in which the latest
AI developments, particularly machine learning, may help
addressing the complex requirements of IoT communications,
highlighting the crucial role of “predictive” rather than “de-
terministic” communications. First, we illustrate the software
architectures that may be used for moving intelligence towards
the edge and transferring meta-learned models (Sect. II). Next,
we look at learning mechanisms that can naturally be deployed
in the IoT node (Sect. III). Finally, we introduce an exemplary
case study where machine learning is successfully used to find
the delicate balance between spectrum and energy efficiency
in wireless sensor network.

This level of autonomy and self-adaption (through machine
learning) within individual nodes is crucial in a context that is
continuously changing in ways that conventional “determinis-
tic” models fail to capture. In our prototyping study we wanted
to ascertain the extent by which lightweight machine learning
could beneficially be used in cognitive communications. Our
findings, based on a range of diverse sensors (some having
as little as 20kbytes of memory), show great potential and
encourage further studies in this direction. However, in this
work we only present the results related to a specific sensor
platform due to the space limits.

II. GENERAL SOFTWARE ARCHITECTURES FOR LEARNING

Since new attractive applications have caused the data vol-
ume in both fixed and mobile networks to skyrocket in recent
years, it is foreseeable that the technologies available today
will be unable to satisfy users’ demands for service quality
in the future. In this context, cognitive wireless technologies
play an important role when it comes to reliability of com-
munication often setting stringent requirements on the energy
efficiency and robustness of the wireless systems, which makes
a type of “on-the-fly” adjustment to the residual energy level
necessary in practical implementation.

Artificial intelligence and, particularly, machine learning
have considerably evolved in the past decade, with a broad set
of methods and applications. Our intention in this section is to
explore which general software architectures for learning (i.e.,
Traditional Vs. Distributed shown in Fig. 1) may be employed
in cognitive wireless communications to support the well know
cognitive cycle in which the radio should be able to learn from
its past actions.

A. Centralized Learning

Up until recently, the predominant method for employing
machine learning has been the centralized one. In the Internet
of Things context, this has been referred to as cloud-assisted
sensing, whereby all contextual data needs to be transported
onto a central point before it can be used to make prediction
models and inference. The sensor nodes are “dumb” in the
sense that their functional requirements are limited to data

Fig. 1. Traditional learning architecture Vs Distributed learning architecture.

collection and communication. All intelligence resides in
servers, which is where sufficient computing resources are
concentrated. Centralized learning shares the pros and cons
of centralization; on the one hand, it can rely on rich datasets
and powerful computations. Yet, communication becomes the
limiting factor, particularly considering the projected scale of
IoT systems and their predominant use of wireless spectrum.

B. In-node Learning

Recent development in AI has made it possible to miniatur-
ize machine learning processes to the extent that online learn-
ing can be run onto limited devices, with as little memory as a
few dozens kilobytes [7]. Thanks to new breakthroughs at the
intersection between network science and machine learning,
it is now possible to train artificial neural networks (ANN)
directly onto constrained devices, rather than in powerful
servers [8]. It is therefore realistic to conceive that intelligent
processes should start at the network periphery, leading to
new forms of decentralized machine learning. Decentralized
learning opens several new avenues when it comes to cognitive
wireless communications, as it allows wireless devices to
directly spot communication patterns without incurring any
communication overheads with base stations or other central-
ized points [9]. In-node learning has significant potential to
evolve current communication standards towards prediction-
based communications at the physical, MAC and network
layers, and enabling cross-layer communication protocols for
high-density, low-power, massive-scale systems.

C. Transfer Learning

In-node learning represents a major step forward compared
to a centralized architecture, and is also the starting point
for even more elaborate forms of decentralized intelligence.
With transfer learning it is possible to transfer information
learned across nodes in a peer-to-peer learning fashion [10].
The value to intelligent communications is unprecedented, as
it allows for a learned node to bootstrap or accelerate the
learning transient of another one. High-level, meta information
can travel not only from top to bottom (e.g., from the cloud
down to individual nodes) but also between similar nodes
(e.g., among neighboring sensors). It is also conceivable to
use transfer learning to generate meta-learning models, starting



from sub-domains. All these possibilities are very important in
cognitive communications, where it is not always possible for
a device to learn communication patterns (e.g., due to lack of
access to data or limited computing capability). An exemplary
work on the use of transfer learning as a mechanism for
cooperative management in cognitive radio has been carried
out by Zhao et al. [11].

III. LEARNING MECHANISMS FOR CONSTRAINED
DEVICES

Thanks to recent breakthroughs in machine learning minia-
turization, it is now possible to contemplate the realization
of AI tasks directly onto constrained devices, that are digital
objects such as wireless sensors having limited computing
capability. The key difference with other programmatic ap-
proaches is the use of online reinforcement learning mech-
anisms, which allow individual nodes to self-tune, without
requiring any predetermined rules or threshold setting [12]. To
this end, cognitive IoT devices can use local information to
find out the communication and interference patterns and make
prediction models. These can be used to drive transmission
power and channel selection so as to minimize packet collision
and energy consumption, without having to tightly rely on
cloud resources or on edge-to-cloud communication. Next, we
explore three key mechanisms that can make real impact on
cognitive communications.

A. Anomaly Detection

IoT systems are typically used to gather vast amounts
of data, with a view to identify anomalies (such as system
failures, intrusion, or unanticipated behavior of the environ-
ment) or other events of interest and take appropriate actions,
accordingly. Using conventional AI to detect, prevent or adjust
to events means that the whole of data gathered at the edge
would need to be transferred to the cloud, before any process
may be applied. This is unfeasible, considering the scale and
resource constraints of IoT systems. Specific problems include:
i) limited wireless spectrum around devices; ii) limited en-
ergy available on the devices that are not typically able to
permanently stay in transmit mode; iii) limited computing
available on the server side, considering that IoT devices
are projected to grow by 2-3 orders of magnitude within
the next few years. Lightweight online and reinforcement
learning methods come to the rescue. Bosman et al. [7] have
done extensive work to evaluate the viability of various ML
methods in tiny sensors. Their work proves that non-trivial
events and diverse anomalies may be picked up on-the-fly
and without having to rely on any prior knowledge. That
means that, despite the limitations of embedded platforms, it
is possible to provide them with sufficient intelligence as to
self-adjust their transmission parameters based on the observed
context. That may include information from any of the network
layers and including also the data patterns. What is even
more potential, is the ability to fuse or transfer meta-learned
information among neighboring devices to further improve the
detection of anomalies (in terms of precision and recall) [13].

Anomaly detection at the edge is a fundamental building block
in edge intelligence, as it allows for substantial filtering and
compression of data, which is paramount to scaling up IoT
communications.

B. Resource Management

Edge devices, sensors, actuators, controllers and other sort
of embedded systems are typically battery powered and
communicate through wireless protocols. Efficient resource
management is therefore of paramount importance, particu-
larly finding optimal transmission frequencies and power and
minimizing packet collision and latency. These are conflicting
requirements which demand going well beyond the simple,
reactive protocols in use. AI offers the opportunity to develop
predictive methods that prevent, rather than address, issues
such as packet re-transmissions.

Chincoli et al.[9] have carried out exemplary work on
learning-based resource management in wireless sensor net-
works, showing how reinforcement learning may be used in
small sensors to tackle the combined problems of energy and
spectrum efficiency. Q-learning can indeed be deployed in
low-spec devices to iteratively predict the channel conditions
through trial-and-error methods that are more viable than
other optimization algorithms (Sections IV and V).

Overall, in-node reinforcement learning is a pre-requisit for
typical IoT devices to continuously strive for minimum energy
status.

C. Self-characterization

Online reinforcement learning has crucial applications in
smart sensing and predictive communications, as illustrated
in the aforementioned examples. However, the true power of
AI resides in the ability to train artificial neural networks
(ANN) based on sample datasets that reflect the context of
the given application. Meaningful ANNs require considerable
computing power, which is typically available only in the
cloud. This has so far confined ANNs to centralized learning
architectures (Sect. II.A), whereby the ANN is first trained in
the cloud and then pushed down to the edge node.

This form of intelligence decentralization is effective in
various applications, but still requires considerable batch com-
munication and processing between the many IoT nodes and a
few cloud service centers. There is still a centralized bottleneck
in the process, which limits the real-time element of AI in IoT.

However, thanks to recent developments reported in [14] it
is now conceivable to train ANNs directly in edge nodes. This
enables new possibilities in IoT intelligence, since individual
nodes will soon be able to self-characterize their contextual
parameters in real-time, i.e. via limited or no communication
with cloud services.

In terms of intelligent communications, in-node ANNs
open the door to far more advanced prediction capability,
which is necessary to capture the complex realm of wireless
communications.



IV. COGNITIVE TRANSMISSION POWER CONTROL

In this section, we investigate one of the aforementioned
ML techniques in constrained devices, to better illustrate and
substantiate the “intelligence at the edge” vision. We describe
a cognitive, cooperative Transmission Power Control (TPC)
scheme based on reinforcement learning (RL) agents, whereby
each wireless sensor node iteratively learns its minimum
energy level. Since all sensors incorporate the same RL agent
functionality, this is an example of multi-agent systems that
strives for optimality through a sequence of trial-and-error
actions. Specific goals are specified in terms of network quality
of service (QoS) parameters. As an example, we target the
combination of minimum energy and minimum packet error
rate, showing that this has positive effect in terms of both
energy and spectrum efficiency.

The agent is the decision maker of the system that interacts
and influences the environment (i.e., the wireless channel). The
decisions that the agent takes are called actions, a ∈ A ⊆ N,
where A is a set of actions.

The status of the environment is defined as state s ∈ S ⊆ N,
where S is a set of states. The agent is rewarded via a
discrete range of negative and positive numbers, whether the
action taken provides a positive or negative effect on the
environment towards the goal, respectively. The so called
reward is defined as r ∈ R ⊆ R, where R is a set of rewards.
The TPC protocol adopts the Q-learning algorithm, a well-
known lightweight RL solution [15], suitable for constrained
devices by computing the long-term quality value (Q-value) of
the state-action combinations (sk, ak), at every k-th episode.
Q-value is updated by using the following formula:

Qk+1(sk, ak) = (1− lk) ∗Qk(sk, ak)+

lk(sk, ak) ∗ [rk+1 + δ ∗maxa Qk(sk+1, a)]
(1)

where lk ∈ U [0,1] is the learning factor at the k-th episode,
providing the system to be between purely conservative (i.e.,
l=0) or adaptive (i.e., l=1). The parameter δ ∈ U [0, 1] is the
discount factor, which weighs the contribution of the future
Q-value estimations maxa Qk(sk+1, a).

The episode k represents the transmission of N packets
within a window W , using the same action. At the end of
the current window, the agent is rewarded, the new state is
updated and the action is changed; then, W is flushed and
new packets are sent.

Q-learning is an off-policy algorithm, which means that
the action selection does not follow a defined policy π but
it changes over time, following a strategy. The strategy of
the proposed protocol is ε-greedy, which is based on the
comparison of ε ∈ U [0,1] with a uniformly distributed random
value x ∈ U [0,1]. In this way, when x ≤ ε the system
explores; otherwise it exploits the actions that produced the
maximum Q-value for the specific state sk. The ε factor is
variable in accordance with a scheduling setup related to the
episode count.

In summary, the different components of the proposed
Cognitive Q-Learning TPC (CQL-TPC) protocol have the
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Fig. 2. a) Intelligent node, b) States, Actions and Rewards of the Intelligent
node.

following meanings: i) the action is the transmission power
level, ii) the state is the interference intensity at the transmitter
and receiver side, mapping both the Clear Channel Assess-
ment (CCA) attempts and the retransmissions combination in
discrete values, and iii) the reward takes into account the
quantization of the Packet Reception Ratio (PRR) and the
selected transmission power combinations (i.e., the higher the
PRR and the lower the transmission power, the higher the
reward).

In multi-agent systems, each parameter is independent and
specific per agent; thus the kth episodes are also different
and occur asynchronously. For this reason, actions may be
taken at the same time by different agents, whereas other
nodes are idle. Since the agents do not know the <state-
action-reward> triplet of other nodes, game theory plays an
important role for converging the node decisions to a near-
optimal global equilibrium. In this context, the nodes are the
players of a common interest theoretical game in which the
payoff of each player is maximized if their decisions improve
the interference mitigation for a global benefit (i.e., the nodes
gain higher reward by selecting lower power levels). Figure
2.a illustrates the different functional blocks composing the
intelligent node and the interactions with the environment,
and the figure 2.b summarizes the states, actions and rewards
during the transmission process of a nodes pair.

V. EXPERIMENTS AND RESULTS

This section shows the experiments conducted on a real
testbed in which the multi-agent CQL-TPC strategy has been
implemented in the sensor nodes. In particular, the network
performance and energy consumption have been evaluated in
different density conditions in terms of nodes by comparing
the proposed CQL-TPC scheme with a standard homogeneous



scheme, named MaxPow, in which the transmission is always
performed with the maximum power level. In addition, the
convergence and scalability of the proposed approach are
analyzed and discussed.

A. Testbed setup and working parameters

The CQL-TPC scheme is implemented in ZigBit nodes [16]
composed by i) the ATxmega256A3U processor with 32 MHz
of computational speed, 256kB + 8kB of Flash memory and
16kB of SRAM, ii) the AT86RF233 low power transceiver
working at 2.4 GHz which can be used to develop IEEE
802.15.4 applications and, iii) a USB connector.

Since many functionalities are embedded in the hardware,
we expect to obtain reliable and accurate results; moreover,
the CQL-TPC scheme has been programmed in the inte-
grated development platform, Atmel Studio, provided by the
manufacturer to support the IEEE standard 802.15.4 module.
The developed software code is lightweight enough since it
occupies only 20.12% of the total memory.

The sensor nodes are deployed in a specific environment
to minimize the external interferences; in particular we used
a Faraday cage, thus focusing only on the interference that
is caused by our sensor nodes. They are placed to form a
Manhattan grid symmetric topology in which we tested four
transmission scenarios, depicted in figure 3 consisting of one,
two, four and eight node pairs, respectively. Each transmitter
sends packets to its associated receiver at d=1m distance.

As main performance indexes we measured: i) the Packet
Reception Ratio (PRR) consisting of the ratio of the received
ACKs and the generated packets, calculated over a window
W of 10 packets; ii) the latency, defined as the difference
between the reception and generation packet time, averaged
among the received packets within W ; iii) the average energy
consumption of the nodes with respect to the transmission
power levels chosen by the CQL-TPC algorithm.

Table I summarizes all the parameters and the related values
used in the experiments.

According to the implemented scenarios, the states sk and
rewards rk are calculated as follows:

sk = ‖retrk‖+ ‖ccak‖ ∗ (nretr + 1) (2)

rk = ∆ ∗ [(prrqk − 1) ∗ nptx + (nptx − ptx,k)− mr

2
] (3)

where retrk and ccak are the retransmissions and the number
of CCA obtained in the k-th episode, nretr is the maximum
number of retransmissions allowed for each packet, prrqk is
the quantized PRR over mprr levels, nptx is the number of
transmission power levels, ptx,k is the transmission power
level used during the k-th episode and mr is the number of
quantization levels for the reward, respectively.

Regarding the learning phase of the algorithm and the ε-
greedy factors, we scheduled the relative values as a function
of the episodes (i.e., the packets transmitted in one window).
The scheduling is planned according to the three phases
of learning, convergence and testing shown in Table II. In
particular, at the beginning of the learning procedure, the

(a) (b)

(c) (d)

Fig. 3. Scenario with two (a), four (b), eight (c) and sixteen nodes (d).

TABLE I
PARAMETERS SETTING OF THE ATMEL ZIGBIT NODES

Parameter Symbol Value
Number of pairs nodes nn 1,2,4,8

Distance transmitter-receiver (m) d 1
Distance between a pair of transmitters (m) D 5

Packet payload size (byte) payload 50
Inter-arrival time (ms)- Poisson Distributed µ 300

Number of packets in a window N 10
Number of transmission power levels nptx 16

-17, -12, -8, -6, -4,
Transmission power (dBm) ptx -3, -2, -1, 0, 1,

2, 2.5, 3, 3.4, 3.7, 4
Number of states ns 68

Reward quantization step size ∆ 3.12
Reward quantization levels mr 320

PRR quantization levels mprr 20
Maximum retransmissions attempts nretr 3

Maximum CCA attempts ncca 4

learning factor l is kept high, equal to 0.9, whereas the ε
value gradually decreases from 0.9 (explorative strategy) to
0.1 (exploitative strategy). Later, in the convergence phase,
the ε value is kept constant to 0.1, whereas l decreases from
0.9 to 0.1. Lastly, in the final phase, the values of l and ε are
maintained small to rapidly adapt in case of changes in the
environment.

It is worth noting that, we assume a symmetric communica-
tion on the links between the nodes pairs to support the CQL-
TPC scheme because each specific power level, computed by
the cognitive algorithm, needs to be communicated by the
transmitter to its recipient in the payload of the packets and,
in the same way, the receiver uses the same power level to
send back the acknowledgements.

B. Results and discussions

The performance of CQL-TPC is evaluated by comparing
the proposed scheme with the standard strategy in which the



TABLE III
NETWORK PERFORMANCE COMPARISON BETWEEN CQL-TPC AND

MAXPOW.

Performance metric Nodes CQL-TPC MaxPow
PRR (%) 2 100 100

4 100 100
8 100 100
16 99.22 99.85

Latency (ms) 2 4.2 4.7
4 4.5 4.77
8 4.7 4.87
16 4.9 5.2

Retransmissions 2 0 0
4 0 1.7 · 10−3

8 8.5 · 10−3 9.7 · 10−3

16 15.6 · 10−3 20.5 · 10−3

CCA attempts 2 1 0
4 1 1.04
8 1.04 1.08
16 1.06 1.12

Convergence time (min) 2 4.7±0.5 -
4 5.2±1.5 -
8 11.1±2.6 -
16 14.7±5.7 -
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Fig. 4. CQL-TPC Vs MaxPow: Average energy consumption varying the
density pairs.

adapt the transmission power saving more than 10% of the
energy as shown in figure 4.

In particular, the difference in energy consumption between
the two tested scheme varies between 26 and 17 nJ/bit,
depending of the density of the network. Assuming to use
two alkaline AA batteries of 3000mAh @1.5V for each node
corresponding to a total energy of 32400 Joule, the nodes in
which the CQL-TPC is implemented can transmit for a longer
period before batteries depletion. We have estimated that the
lifetime of the nodes increases of several days (i.e., 14-23),
without any sleeping techniques, and few months (i.e., 9-17)
if the deep sleep mode is enabled during the idle periods.
Moreover, the energy consumed by the CQL-TPC in the
learning and convergence phases does not affect the battery
capacity in the long term since such estimated average value
of about 2 Joule and 0.38 Joule with deep sleep disabled and
enabled, can be considered as a negligible value compared to

the total batteries energy.
Finally, the convergence time of the proposed scheme is

similar in the first two scenarios but it increases for denser
networks in which the interference is higher and more dyna-
mic, thus the system is less stable and it requires more time to
settle as confirmed by the the high standard deviation values
for the scenario with sixteen nodes.

VI. CONCLUSION AND RESEARCH DIRECTIONS
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TABLE II
PARAMETERS SETTING FOR THE PHASES OF LEARNING, CONVERGENCE

AND TESTING

Phase l ε δ Episode #
Learning 0.9 0.9 0.8 k < 150

0.9 0.7 0.8 150 6 k < 300
0.9 0.3 0.8 300 6 k < 450
0.9 0.1 0.8 450 6 k < 600

Convergence 0.1 0.1 0.8 600 6 k < 750
0.01 0.1 0.8 750 6 k < 900

Testing 0.01 0.01 0.8 k > 900

maximum power (MaxPow) is always used for the trans-
mission. As performance indexes to validate the cognitive
approach within the presented communication scenarios, we
computed the average values of PRR, latency, number of re-
transmissions, number of CCA attempts and energy consump-
tion of the whole network. We also evaluated the convergence
time of the CQL-TPC scheme in relation to the density of the
network. This is computed as the time needed by the agent to
reach the Q-value that differs at most 1% from the final value,
at the end of each experiment.

The obtained results are summarized in figure 4.a where it
is possible to note that most of the performance between CQL-
TPC and MaxPow are similar in all the scenarios. In particular,
the PRR slightly drops when the network is composed by 8
pairs of nodes; on the contrary, the latency, the retransmissions
and the CCA attempts raise proportionally to the number
of nodes. The main and significant difference that confirms
the value of the cognitive approach, is related to the energy
consumption due to the used transmission power levels; in this
case, the intelligence within the CQL-TPC allows to wisely
adapt the transmission power saving more than 10% of the
energy as shown in figure 4.b.

In particular, the difference in energy consumption between
the two tested scheme varies between 27 nJ/bit and 15 nJ/bit,
depending of the density of the network. Assuming to use
two alkaline AA batteries of 3000mAh @1.5V for each node
corresponding to a total energy of 32400 Joule, the nodes
in which the CQL-TPC is implemented can transmit for a
longer period before batteries depletion. We have estimated
that the lifetime of the nodes increases from several days (i.e.,
15-25), without any sleeping techniques, up to few months
(i.e., 9-16) if the deep sleep mode is enabled during the idle
periods. Moreover, the energy consumed by the CQL-TPC in
the learning and convergence phases does not affect the battery
capacity in the long term since such estimated average value
of about 2 Joule and 0.35 Joule, with deep sleep disabled and
enabled, can be considered as a negligible value compared to
the total batteries energy.

Finally, the convergence time of the proposed scheme is
similar in the first two scenarios but it increases for denser net-
works in which the interference is higher and more dynamic;
thus, the system is less stable and it requires more time to
settle as confirmed by the high standard deviation values for
the scenario with sixteen nodes. However, it is worth noting
that the obtained converge time is not a big issue in static
WSN scenarios in which the nodes slowly vary their mutual
interference making the presented approach far preferable with
respect to the deterministic one.

VI. CONCLUSION

Many powerful AI and ML techniques addressing knowl-
edge engineering, planning, scheduling, and learning in dis-
tributed environments have been developed in last years to
face different networking and communication issues taking
advantages from the availability of both processing and storing
capabilities within the Cloud. In the next future, the attention
on the design and application of such powerful techniques will



be moved from the core to the edge of complex and heteroge-
neous networks by adapting and re-designing their working
features to face the limitation imposed by the presence of
widely used constrained IoT devices.

In this perspective, the presented work discussed the po-
tential and, at the same time, the needs of moving more
intelligence towards the edge of the networks by making
constrained devices evolve through the use of lightweight
ML and AI techniques, paving the way for the so called
“actionable intelligence” at the edge. The implemented case
study, focused on the design of a cognitive transmission power
control well suited for small real sensors, proves the feasibility
of the proposal in terms of energy efficiency, reliability and
scalability also ensuring standard network performance levels.
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