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Abstract 
 

Although the starvation or non-growth state is probably the most common physiological 

state of bacteria, it has been studied in relatively few organisms. In spite of its 

importance in pathogenesis, bioremediation and several industrial processes, limited 

research has been performed on Rhodococcus under starvation/stationary phase 

conditions. The objectives of this study were to analyse the physiological adaptation of 

Rhodococcus erythropolis SQ1 to starvation/stationary phase, and to generate and 

screen a bank of mutants to identify genetic elements involved in this adaptation.  

 

It was found that R. erythropolis SQ1 can survive for at least 43 days in LB and 

distilled water, and 65 days in chemically defined medium (CDM) containing high (1 % 

w/v) or low (0.1 % w/v) glucose concentrations. Early stationary phase R. erythropolis 

SQ1 cells grown in 0.1 % glucose also exhibited enhanced resistance to heat and 

oxidative stress compared with exponential phase cells. A mutant bank of 898 R. 

erythropolis SQ1 mutants was generated and screened; four mutants were of particular 

interest. The culturability of mutants 4G6 and 10D3 dropped to <0.1 % of the maximum 

CFU/ml at 27 days incubation, and to <3 % of the maximum CFU/ml for mutants 1B2 

and 1H1, when grown in 1 % glucose medium. No drop in culturability was observed 

when mutants were grown in 0.1 % glucose. Mutant 4G6 had a transposon insertion in 

uvrB (UvrB, part of the DNA excision repair mechanism), while the insertion for 

mutant 10D3 was immediately downstream of a putative guaB gene, which, based on 

bioinformatic analyses, is followed by another putative IMP dehydrogenase (guaB-like) 

and/or a cholesterol oxidase gene. In mutant 1H1 the transposon inserted 

272 nucleotides downstream of a gene encoding a putative phosphoglycerate mutase 

and upstream of putative thioredoxin and cytochrome c biogenesis genes.  

 

In conclusion, R. erythropolis SQ1 was shown to present a classic starvation/stationary 

phase survival response, with the associated increase in resistance to various external 

stresses. A mutant bank has been generated which can be used in the future to analyse 

other phenotypes of interest. Several genes linked to starvation/stationary phase survival 

were identified. These findings show that a wide variety of genes are involved in 

starvation/stationary phase survival. Indeed, over 100 such genes have been identified 

in Escherichia coli and Mycobacterium tuberculosis.  
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1.1. The genus Rhodococcus 

Members of the genus Rhodococcus are described in Bergey’s manual as aerobic, Gram 

positive, non-motile, mycolate-containing, partially acid-fast, nocardioform 

actinomycetes. The shape of cells during growth ranges from cocci to filaments with 

short projections and elementary branching (Goodfellow, 1989). According to 16S 

phylogenetic clustering, they are part of the Corynebacterineae, which includes Gram-

positive actinomycetes with mycolic acid in the cell wall (Stackebrandt et al., 1997). 

 

Over the last seven decades there has been confusion surrounding the taxonomy of the 

mycolic acid-containing actinomycetes, which currently includes Rhodococcus, 

Corynebacterium, Dietzia, Gordonia, Mycobacterium, Nocardia, Skermania, Millisia, 

Segniliparus, Williamsia, Tsukamurella and Smaragdicoccus (Adachi et al., 2007; 

Butler et al., 2005; Goodfellow et al., 1998; Kampfer et al., 1999; Soddell et al., 2006; 

Stackebrandt et al., 1997). This is largely due to the inability of conventional tests to 

distinguish amongst different species. In the last ten years, methods have been 

developed to distinguish Rhodococcus from other members of the mycolata group. A 

study by Bizet et al. (1997) showed that pure cultures of Rhocococcus, Gordonia and 

Dietzia could be discriminated using a carbon source utilisation test based on the 

“Biotype-100” strips (Biomérieux), in which growth on 99 different carbon sources is 

analysed with the computer package Taxotron (Taxolab). The system could differentiate 

between 29 different species, including 10 Rhocococcus, 7 Gordonia and 1 species of 

Dietzia (Bizet et al., 1997). Primers and specific probes based on the 16S rRNA 

sequences have also been designed for identification of R. equi (Bell et al., 1996), 

R. globerulus, R. erythropolis, R. opacus and R. ruber (Bell et al., 1999), and 

R. coprophilus (Savill et al., 2001). In addition, primers specific to the vap virulence 
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genes of the R. equi virulence plasmid have been designed to differentiate between 

virulent and avirulent equine-derived strains (Takai et al., 1998).  

 

The name “Rhodococcus” was first used by Overbeck in 1891, and was subsequently 

reintroduced by Tsukamura in 1974 (Overbeck, 1891; Tsukamura, 1974). Study of the 

lipid composition of coryneform bacteria led to further determination of what was called 

the “rhodochrous” complex (Minnikin et al., 1977). Following a study of 177 strains 

examined for 92 unit characters (such as colony morphology, growth on sole carbon 

source, growth temperature), the taxon Rhodococcus was definitely established in 1977 

(Goodfellow & Alderson, 1977).  

 

The genus is defined primarily on the basis of cell-wall composition. It is restricted to 

actinomycetes that have: (a) A1γ peptidoglycan consisting of N-acetylglucosamine, N-

glycolylmuramic acid, D- and L-alanine, and D-glutamic acid with meso-DAP as the 

diamino acid; (b) arabinose and galactose as diagnostic wall sugars (chemotype IV and 

whole-cell sugar pattern type A); (c) a phospholipid pattern consisting of 

diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, and 

phosphatidylinositol mannosides; (d) a fatty acid profile containing major amounts of 

straight-chain, unsaturated, and tuberculostearic acids (type IV), and mycolic acids with 

32–54 carbon atoms; and (e) dehydrogenated menaquinones with eight or nine isoprene 

units (Briglia et al., 1996; Goodfellow, 1989; Li et al., 2004). The mol% G+C of the 

DNA ranges from 55.5 to 72 mol% (Goodfellow et al., 1998; Li et al., 2004). 

 

16S rRNA studies subsequently indicated that Rhodococcus was indeed a genus of its 

own and, even though there have been minor changes over the last decade or so, most of 

the species described as Rhodococcus are now well characterised (Goodfellow et al., 
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1998). More recent work on 29 R. erythropolis strains showed very little diversity in the 

16S rRNA sequence (Oberreuter et al., 2002). There are now forty-one officially 

recognised species of Rhodococcus (Euzéby, 2007). 

 

1.2. Environmental and industrial applications of Rhodococcus 

Rhodococci have been isolated from a large range of habitats such as soil, rocks, ground 

water, marine sediments, animal dung, the guts of insects and from infected animals, 

plants and humans (Goodfellow, 1989; Rowbotham & Cross, 1977; Tilford, 1936; 

Weyland, 1969; Woolcock et al., 1979). They have been isolated from environments 

ranging from the deep sea (Heald et al., 2001) to the Arctic and Antarctic soil (Bej et 

al., 2000; Kochkina et al., 2001), and there are even reports of isolation from the air in 

the Mir space station (Li et al., 2004). Members of the genus Rhodococcus have an 

outstanding range of enzymes that enable them to transform many chemicals, rendering 

them extremely attractive for many industrial processes, as well as good candidates in 

environmental biotechnology (Warhurst & Fewson, 1994). This is reflected in the 

number of patents exploiting Rhodococcus; a search for the word “Rhodococcus” at 

http://openaccess.dialog.com/ip/ in all patent sources yielded over 1000 titles in October 

2007. This section of the review will focus on the environmental and industrial 

applications of the genus Rhodococcus, with an added emphasis on the species 

R. erythropolis. 

 

1.2.1. Desulphurisation of fossil fuels 

The combustion of fossil fuels releases sulphur oxides in the atmosphere, contributing 

to acid rain and air pollution. To control emissions, environmental agencies worldwide 

impose strict regulations on the sulphur content of fuels. The United States and 

European Union environment protection agencies have imposed regulations (Directive 
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98/70/EC of the European parliament) that allow a maximum sulphur content of 15 ppm 

since 2006 (Anonymous, 1998). A new objective will be to bring the concentration of 

sulphur in fuels to 10 ppm by 2009, if new legislation currently proposed by the 

European Commission is adopted (Anonymous, 2007). 

 

The conventional technique to remove sulphur from petroleum is through a process 

called hydrodesulphurisation (HDS), which involves reacting oil fractions at high 

temperature and pressure with an inorganic catalyst and hydrogen, resulting in the 

production of hydrogen sulphide and a desulphurised product (Gray et al., 1996). This 

technique is very energy-demanding, and some compounds are recalcitrant to it, for 

example benzothiophene, dibenzothiophenes (DBT) and DBT with substitutions 

adjacent to the sulphur group (McFarland, 1999). Several organisms capable of 

desulfurising DBT have been isolated, in particular Rhodococcus erythropolis. 

R. erythropolis IGTS8 (ATCC 53968), patented by the Institute of Gas Technology 

(Des Plaines, IL, USA), can oxidise DBT to 2-hydroxybiphenyl (HBP), releasing 

inorganic sulphur that can then be assimilated by the bacteria (Kilbane & Jackowski, 

1992). Other strains that can desulphurise fuel have been isolated, such as R. 

erythropolis KA2-5-1 (Hirasawa et al., 2001), R. erythropolis H-2 (Ohshiro et al., 1995) 

and R. erythropolis D-1 (Ohshiro & Izumi, 2000). Importantly, the phenyl rings of DBT 

are left intact following desulphurisation by R. erythropolis, and the HBP (2-

hydroxybiphenyl) is returned to the fuel, hence its calorific (i.e. fuel) value is not 

diminished (Kayser et al., 1993). 

 

The oxidation pathway of DBT has been characterised, and the enzymes DszA, DszB, 

DszC and DszD identified (Denome et al., 1993; Denome et al., 1994). DszA and DszC 

are flavin-dependent monooxygenases, particular in that they use FMNH2 as a co-
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substrate instead of FAD. DszB is the desulfinase that removes the sulphur, and DszD is 

a FMN:NADPH reductase that supplies DszA and DszC with FMNH2 (Oldfield et al., 

1997) (see Figure 1.1).  

 

A number of steps in the pathway are still not well understood, including for example 

the transfer of these hydrophobic polyaromatic molecules into the cell (Monticello, 

2000).  The genes involved in the basic desulphurisation steps have been characterised. 

dszA, dszB and dszC have been located in a single operon on a 150 kb circular plasmid 

in R. erythropolis IGTS8, and on a 100 kb linear plasmid in related strains (Denis-

Larose et al., 1997; Oldfield et al., 1997). Their transcription is repressed by the 

presence of sulphur-containing amino acids, but not by DBT (Li et al., 1996). 
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Figure 1.1. Desulphurisation of DBT into HBP by R. erythropolis IGTS8. 
Reproduced from Oldfield et al. (1997). DBT, dibenzothiophene; DBTO, 
dibenzothiophene 5-oxide; DBTO2, dibenzothiophene 5,5-dioxide; HBPSI, 2-(2′H-
hydroxyphenyl)benzene sulphinate; HBP, 2-hydroxybiphenyl. 
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Exploiting the biochemical and genetic information available on the desulphurisation 

pathway of Rhodococcus and indeed other organisms, it was possible to consider 

manipulating these organisms to produce improved biocatalysts. Work has been done to 

improve the desulphurisation rate, for example by insertion of multiple copies of the dsz 

operon in R. erythropolis I19 (Folsom et al., 1999). An attempt has also been made to 

increase the desulfinase enzyme activity and broaden its specificity by error-prone PCR 

of the dszB gene (Borole et al., 2003). A clone with higher desulfinase activity was 

isolated, but analysis of the dszB sequence showed the mutation was not within the gene 

and therefore it is assumed that the modification took place in a regulatory sequence. 

 

There are still many hurdles to overcome before biodesulphurisation of fuels becomes a 

routine process, including the stability of the biocatalyst. BDS is performed using 

resting cells, meaning they are non-growing live cells (Guerinik & Al-Mutawah, 2003; 

Noda et al., 2002; Oldfield et al., 1997). An advantage of using resting cells is that they 

can be used at higher concentrations than growing cells (Abbad-Andaloussi et al., 

2003). Resting cells, harvested at the end of exponential phase for maximum activity, 

are usually washed and resuspended in potassium phosphate or HEPPS [4-(2-

hydroxyethyl)-1-piperazine-propane-sulfonic acid] buffer to which the fuel is added and 

mixed. Due to the hydrophobicity of R. erythropolis, the cell suspension can form a 

very fine and stable emulsion with the oil, which increases the conversion rate of DBT 

to HBP (Borole et al., 2002). This, however, does make it difficult to separate the 

biocatalyst from the reaction medium after the fuel was desulphurised. As a result, an 

immobilised R. erythropolis KA-2-5-1 resting cell system has been developed (Naito et 

al., 2001). This biocatalyst was found to function well and, when reactivated by 

incubation overnight in growth medium, could maintain its activity for up to 900 hours. 
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1.2.2. Production of biosurfactants 

Biosurfactants are produced by micro-organisms and represent a broad spectrum of 

molecules, including normal and hydroxyl fatty acids, glycolipids, cyclic lipopeptides, 

N-acyl amino acids, lipopeptides, mono and diglycerides, and phospholipids. Due to 

their amphiphatic nature, they have in common their capacity to accumulate at air–

water, oil–water and solid–liquid interfaces (for a review, see Christofi & Ivshina, 2002; 

Lang, 2002). As a result they have solubilisation, emulsification, dispersion, wetting, 

foaming and detergent effects. The diversity of chemical structures and surface 

properties may reflect differences in their role in the microorganisms’ natural habitat. 

For example, several biosurfactants increase the bioavailability of hydrophobic 

substrates (including many xenobiotics), while others have antimicrobial activities (for a 

review, see Ron & Rosenberg, 2001). Synthetic surfactants have been used in oil 

washing for secondary oil recovery and to clean oil pipes and oil reservoirs. The impact 

of biosurfactants on the biodegradation of xenobiotic contaminants in soil and other 

environments has been investigated and showed that biosurfactants can be used to speed 

up the remediation of organic and metal-contaminated sites, and their low toxicity 

makes them suitable for bioremediation by bioaugmentation (for a review, see Christofi 

& Ivshina, 2002). They are believed to help cell adhesion to hydrophobic phases in two-

phase systems, help the entry of hydrophobic compounds into the cell by decreasing the 

interfacial tension and disperse hydrophobic compounds to increase the surface area for 

bacteria–molecule contact (Finnerty, 1994). This is illustrated by the increased 

desulphurisation of fuel by R. erythropolis in the presence of surfactants (Feng et al., 

2006; Patel et al., 1997). A similar observation was made with R. erythropolis EK-1 and 

surfactants produced by a Pseudomonas strain (Karpenko et al., 2006). Similarly, 

mycolic acids enhanced the degradation of diesel by Rhodococcus baikonurensis (Lee et 

al., 2006). 
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The predominant biosurfactants produced by members of the genus Rhodococcus are 

glycolipids, with trehalose as the hydrophilic compound and mycolates as the 

hydrophobic component (Lang & Philp, 1998). The type and quantity of biosurfactant 

produced by Rhodococcus is dependent on growth conditions including growth phase, 

nutrient limitation and exposure to hydrophobic substrates such as n-alkanes. Non-

growth-associated production of trehalose lipids has also been observed (Kim et al., 

1990). R. erythropolis can produce biosurfactants such as trehalose mono- and di-

corynomycolates, trehalose-6,6′-diacylates and trehalose-6-acylates and trehalose 

tetraester,  as well as common glycolipids and lipids such as cetyl alcohol, palmitic acid, 

methyl n-pentadecanoate, triglyceride and mycolic acids (Lang & Philp, 1998; Pirog et 

al., 2004). It was shown that high yields of up to 20 g/l glycolipids could be obtained 

with resting cells of R. erythropolis DSM 43215 (Kim et al., 1990). Production of 

efficient surfactants (unidentified, monitored by measuring medium surface tension) 

was also observed in R. erythropolis strains DSM 1069 and TA57 (Pizzul et al., 2006). 

R. ruber can also produce a trehalose dicorynomycolate in large quantities (approx. 

10 g/l) under nitrogen-limited conditions, as described by Philp et al. (2002), that is 

more hydrophobic than that produced by R. erythropolis.  
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1.2.3. Biosynthesis and biocatalysis 

There are many advantages to the use of biocatalysts in chemical synthesis. In 

particular, complex reactions can be performed in a single step, leading to the use of 

fewer and cheaper reagents. High yields and high product purity can also be achieved. 

Milder reaction conditions, typically at near ambient temperature and pressure, can also 

reduce the cost of the operation (Johannes, 1996; Thomas et al., 2002). Biocatalysis has 

also been proposed as a way to shift the current main source of chemicals from oil to 

biomass, thereby reducing CO2 emissions and hopefully leading to “greener” chemistry 

(Danner & Braun, 1999). Rhodococcus species have been found to catalyse reactions 

that have applications in the synthesis of fine chemicals (e.g. perfumes, paints), 

pharmaceuticals and sensors, and more, a selection of examples are presented below. 

 

The most successful use of Rhodococcus species in an industrial setting so far has been 

the production of acrylamide by Rhodococcus rhodochrous J1 (Nagasawa & Yamada, 

1990). Each year more than 30,000 tons of acrylamide are produced, with a productivity 

of over 7 kg acrylamide per g of cells (Nagasawa et al., 1993), using non-growing cells 

fixed inside acrylamide beads [see US patent 7,205,133 by Banba et al. (2002)].  

 

Resting cells of R. erythropolis DSM 1069 were shown to synthesise cyclopropanol 

from cyclopropyl methyl ketone (Overbeeke et al., 2003). This reaction has potential for 

industrial exploitation, as cyclopropanol is difficult to produce by traditional organic 

chemistry methods and is thus not commercially viable. The possibility to produce 

cyclopropanol in large quantities for a reasonable cost would open new ways in organic 

synthesis that could not be investigated before. Another example of potential industrial 

application came from the observation that R. erythropolis DCL14 could grow on 

limonene as a source of carbon (van der Werf et al., 1999b). This led to the discovery of 
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enzymes that produce enantiopure epoxides (van der Werf et al., 1999a), essential 

building blocks in the synthesis of fine chemicals used as fragrances and flavours. 

R. erythropolis IGTS8 and R. erythropolis IGTS8 BKO-53, a R. erythropolis IGTS8 

derivative lacking dszA and dszB but containing multiple copies of dszC, originally 

developed for biodesulphurisation of fuels, were used to transform simple sulphides into 

chiral sulfoxides, thus providing interesting building blocks for organic chemistry 

(Holland et al., 2003a; Holland et al., 2003b). The bioconversion was mediated by 

resting cells, resuspended in a phosphate buffer containing glucose, ethanol and the 

appropriate sulphide during a period of 15 hours. In addition to substituted benzyl 

sulphides, the organism mediated sulphide oxidation of amino acids such as methionine 

and cysteine. 

 

R. ruber strain DSM 44541 was found to transform sec-alcohols into ketones and vice 

versa by an asymmetric hydrogen transfer that uses 2-propanol or acetone as a cofactor 

(Kosjek et al., 2003). Optically active R or S alcohols, which are important as 

intermediates for the synthesis of fine chemicals, are produced depending on the 

substrate. R. ruber has been shown to produce dodecanedioic acid, which is an 

intermediate in the synthesis of films, fibres, paints and adhesives (Thomas et al., 2002) 

and to synthesise poly(3-hydroxyalkanoic acid) (PHA), a polymer that can be used to 

produce biodegradable plastics (Madison & Huisman, 1999). 

 

The exploitation of resting cells of R. erythropolis SC 13845 and R. erythropolis 16002 

as biocatalysts in the production of the HIV-protease inhibitor Atazanavir is being 

considered. A key step in the process of Atazanavir production includes a 

diastereoselective reduction which can be mediated by specific R. erythropolis isolates 

with a diastereomeric purity of >98 % and minimum production of undesirable end-
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products (Patel et al., 2003). Rhodococcus sp. strains B264-1 and I24 were found to 

convert indene to indandiol, an essential step in the synthesis of another HIV-protease 

inhibitor, CRIXIVAN (Buckland et al., 1999). 

 

The ability to survive adverse environmental conditions, including high concentrations 

of toxicants (de Carvalho et al., 2004; Paje et al., 1997), combined with their ability to 

metabolise a wide range of diverse and unusual compounds (e.g. substituted phenols), 

offers a rich resource for the development of biosensors capable of detecting these toxic 

compounds in the environment (de Carvalho & da Fonseca, 2004). Potential sensors 

currently being developed or evaluated include the use of whole cells of R. erythropolis 

for the detection of 2,4-dinitrophenol (Emelyanova & Reshetilov, 2002). R. ruber and 

R. erythropolis also have the capacity to degrade the industrial pollutant acrylonitrile, 

prompting the development of a biosensor relying on the transformation of acrylonitrile 

into ammonium acrylate by R. ruber (Roach et al., 2003). Another field of interest is the 

oxidation of cholesterol. R. erythropolis can oxidise cholesterol, which leads to various 

applications (Jadoun & Bar, 1993). Work is being carried out towards the isolation and 

purification of the cholesterol oxidase of R. erythropolis, with the aim of producing a 

test or a sensor to detect cholesterol (Sojo et al., 1997; Sojo et al., 2002). Disruption of 

the cholesterol metabolism pathway could also produce mutants that accumulate 

bioactive steroids, or potential precursors in the synthesis of bioactive steroids (van der 

Geize et al., 2001).  

 

1.2.4. Biodegradation and bioremediation 

Rhodococcus species can metabolise a wide range of xenobiotics, from simple 

hydrocarbons through to chlorinated and aromatic hydrocarbons, nitroaromatics and 

chlorinated polycyclic aromatics such as polychlorinated biphenyls (PCBs) (Warhurst & 
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Fewson, 1994). This makes them potentially useful in bioremediation. A few specific 

examples are described below. 

 

A wide range of chemicals, in particular aromatics and hydrocarbons, can be degraded 

by Rhodococcus. Natural isolates have been found to degrade polychlorinated biphenyls 

(PCBs), a common pollutant from industrial oils (Begonja Kolar et al., 2007). 

R. erythropolis UPV-1 can degrade phenol and formaldehyde, and processes are being 

investigated to use it for decontamination of industrial wastewater (Begoña Prieto et al., 

2002; Hidalgo et al., 2002; Prieto et al., 2002). R. erythropolis M1 can degrade 2-

chlorophenol, phenol and ρ-cresol in co-culture with Pseudomonas fluorescens 

(Goswami et al., 2005). R. erythropolis HL PM-1 can degrade dinitrophenol (Kitova et 

al., 2004), and R. erythropolis DSM 1069 and TA57 have been found to metabolise 

polyaromatic hydrocarbons (Pizzul et al., 2006). Additionally, R. erythropolis VKM 

AS-1339D degrades oil and oil products (Yagafarova et al., 2002). Screening of 

contaminated soil from a chemical plant for benzene degraders resulted in the isolation 

of a Rhodococcus strain of particular interest due to its ability to use liquid benzene as a 

sole carbon source and at concentrations observed to be toxic to other bacteria. This 

strain can also co-metabolise toluene and use chlorinated benzenes, making it an ideal 

candidate for bioremediation (Paje et al., 1997). The persistence of Rhodococcus is 

illustrated by their isolation from soil in Antarctica (Bej et al., 2000). These species 

were shown to degrade a wide range of alkanes (C6–C20 and branched alkane pristane), 

as well as being able to grow at temperatures ranging from –2 °C to +15 °C. These 

characteristics would make these species useful in bioremediation of cold environments 

where oil is extracted, such as Alaska or Siberia. 
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R. ruber also can degrade a large number of pollutants. An example is ethyl tert-butyl 

ether, a common pollutant from petrol (Chauvaux et al., 2001). Like R. erythropolis, 

some strains of R. ruber can degrade PCBs (Begonja Kolar et al., 2007). Most 

interestingly, R. ruber can metabolise polyethylene, one of the most widespread and 

most recalcitrant plastic pollutants known (Gilan et al., 2004), which could lead to the 

bioremediation of landfill.  

 

Strains of R. erythropolis have been found to degrade fertilisers (isobutylidenediurea, 

Jahns & Schepp, 2001), carcinogenic toxins (aflatoxin B1, Alberts et al., 2006), C5–

C16 hydrocarbons and motor oils (de Carvalho & da Fonseca, 2005b), diesel (Lin et al., 

2005) and to dehalogenate haloalkanes (Armfield et al., 1995). For a review of the 

metabolic capacities of R. erythropolis, see de Carvalho & da Fonseca (2005a). 

 

Rhodococcus strain DN22 has been found to readily degrade RDX (hexahydro-1, 3, 5-

trinitro-1, 3, 5-triazine) in vitro. RDX is a commonly used explosive, hence a rather 

frequent pollutant. Since these compounds are toxic and mutagenic, it is important to be 

able to clean up sites where vast quantities of explosives have been used or stocked, for 

example by a bioremediation process. Several bacteria are known to biodegrade RDX 

either aerobically or anaerobically, including Rhodococcus strain DN22 (Coleman et al., 

1998) and Enterobacteriaceae (Kitts et al., 1994), respectively. Initial studies of the 

RDX biodegradation pathway in Rhodococcus strain DN22 indicate that the system is 

inducible and that the initial steps may be mediated by a cytochrome p-450 system. 

Coleman et al. (2002) suggest that the cytochrome p-450 enzyme is plasmid-encoded. 

This is of significance since this would enable transfer to other bacteria. 
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Although in vitro studies are important in order to identify the specific organisms 

involved in biodegradation of a particular toxicant and the metabolic pathways 

involved, investigation of the performance of individual isolates or microbial consortia 

in contaminated soil and/or water is absolutely essential. Factors such as the competing 

indigenous microflora and environmental conditions impact on the survival and 

catabolic activity of the introduced organism. A number of studies have been initiated, 

investigating the biodegrading activity of Rhodococcus sp. in soil.  

 

The activity of the naphthalene-degrading Rhodococcus strain 1BN was investigated in 

naphthalene-contaminated soil in the presence and absence of an indigenous population 

of naphthalene-degrading bacteria (Cavalca et al., 2002). Rhodococcus strain 1BN was 

able to survive in the naphthalene-contaminated soil in the presence of the competing 

indigenous naphthalene-degrading microflora, constituting 13.6 % of the naphthalene-

degrading population on the 22nd day of the experiment. Although naphthalene 

degradation was not significantly different in soil supplemented with Rhodococcus 

strain 1BN compared to uninoculated soil, the presence of 1BN resulted in faster 

mineralisation of the parent compound to CO2. Screening of the soil microflora by PCR 

amplification of narA (Gram-positive) and ndoB/nahAC (Gram-negative) naphthalene-

degrading dioxygenase genes revealed that, although after 10 days the ndoB-harbouring 

strains (Gram-negative) were dominant, at 22 days the dominant isolates contained 

narA (Gram-positive). This would suggest that, in substrate-limiting conditions, 

Rhodococcus and other Gram-positive bacteria survive longer than Gram-negative 

bacteria. Due to their broad metabolic activity, Gram-positive bacteria such as 

Rhodococcus also bring additional degradative properties to the microcosm, for 

example towards medium- and long-chain alkanes. Similar observations on population 

changes were made during a study of crude oil biodegradation in soil under laboratory 
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conditions. Gram-negative bacteria were predominant during the first seven months 

after which Gram-positive bacteria, including indigenous Rhodococcus species, were 

dominant (Peressutti et al., 2003).  

 

The range of chemicals degraded and metabolised by Rhodococcus species is 

impressive, as outlined above and in several reviews (de Carvalho & da Fonseca, 2005a; 

Warhurst & Fewson, 1994). With the development of genetic tools for Rhodococcus 

(see e.g. Veselý et al., 2003) and the recent availability of complete genome sequences 

(McLeod et al., 2006), there is a great scope for the production of genetically 

engineered “one-cell factories” to use in industry, and for the production of strains that 

can help clean up the environment from toxicants. What is striking with most of these 

industrial processes is that they use resting cells (see e.g. Abbad-Andaloussi et al., 

2003; Caro et al., 2007; Kim et al., 1990). The cells are grown in the appropriate 

medium, very often until stationary phase to obtain as much biomass as possible, then 

harvested by centrifugation. The reactions catalysed then take place in either a 

phosphate buffer or an aqueous solution of the compound to be metabolised. Even 

though some of these processes are used commercially, there are no reports on how the 

physiological state of the cells, in these cases starvation, may affect the production of 

the product of interest, the half-life of the catalyst or its renewal. Interestingly, in a 

chemostat biodesulphurisation study, it was found that highest activity was obtained 

when Rhodococcus cells were selectively starved for sulphur, but not for carbon or other 

nutrients (Kishimoto et al., 2000).  

 

For bioremediation, it is essential that the organisms used can survive in low-energy 

environments, particularly soil. It has been shown that polyurethane-immobilised 

Rhodococcus could survive for more than six months in soil, and that they increased the 
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degradation rate of pentachlorophenol (Briglia et al., 1990). Autochthonous populations 

of Rhodococcus were found in soil after a controlled oil spill, even though they could 

not be detected before the oil spill (Peressutti et al., 2003). This suggests that the 

population naturally present in soil was growth-restricted, but that it retained the ability 

to grow and degrade hydrocarbons. Rhodococcus species could be found in soil for up 

to 13 months after the oil spill, also showing that they successfully competed with other 

species present in the ecosystem (Peressutti et al., 2003). Finally, in a bioremediation 

study of activated sludge with phenol-degrading Ralstonia eutropha, it was found that 

cells that were starved prior to addition to the sludge survived longer than exponential 

phase cells (Watanabe et al., 2000). Although this type of protocol has not been 

investigated with Rhodococcus, it could point to an easy and effective way of increasing 

the efficiency of bioremediation. 
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1.3. Pathogenicity of Rhodococcus  

1.3.1. Rhodococcus equi infections: epidemiology and disease 

Due to its pathogenic nature, Rhodococcus equi is probably one of the best studied 

Rhodococcus species so far. It was isolated for the first time from foals and humans in 

1923 and in 1967, respectively. It was first classified as a Corynebacterium, then 

assigned to the Mycobacterium genus and finally reclassified as Rhodococcus (Mosser 

& Hondalus, 1996). It has attracted attention because it is the main cause of pneumonia 

in foals between 1 and 6 months old leading to fatality, and, more recently, due to its 

emergence as a human opportunistic pathogen. 

 

In foals, the most common clinical manifestation of infection by R. equi is a chronic and 

suppurative pneumonia, with extensive abscessation and lymphadenitis. Intestinal 

manifestations are present in about 50 % of all foals with pneumonia. The intestinal 

infection is characterised by ulcerative enterocolitis that can lead to peritonitis, which is 

usually fatal. It is especially difficult to diagnose since the symptoms are subtle and 

complex until rather extensive damage has been done to the lung. Joint inflammation, 

with or without infection can occur, as well as osteomyelitis and subcutaneous lesions 

(for a review, see Giguère & Prescott, 1997). In adult horses, disease due to R. equi is 

rare and has been associated with immunodeficiency (Freestone et al., 1987). 

Furthermore, although rare, R. equi has been found to cause disease in other animals 

such as cats, pigs, cattle and dogs (Fairley & Fairley, 1999; Hondalus, 1997). 

 

In humans, R. equi is associated with immunocompromisation, including in individuals 

with AIDS and patients undergoing immuno-suppressive therapy (Prescott, 1991; Takai 

et al., 1994). The predominant clinical manifestation is pneumonia, but other infections 
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reported include subcutaneous lesions, osteomyelitis, pericarditis and skin infections. 

Recurrence is common, and the treatment is long, about six months. The same treatment 

is applied to horses and humans, and generally consists of a combination of 

erythromycin and rifampin (Giguère & Prescott, 1997; Perez et al., 2002). The mortality 

rate is about 20–25 % in immunocompromised patients, but over 50 % for HIV patients 

(Perez et al., 2002). 

 

Virulence determinants of Rhodococcus equi:  

In vitro experiments have shown that R. equi binds to the macrophage complement 

receptor CR3 (Hondalus et al., 1993). The bacteria are phagocytosised but the 

phagosome–lysosome fusion is inhibited (Zink et al., 1987). R. equi can therefore 

replicate in the phagosome, explaining why the treatment of choice includes antibiotics 

that concentrate in macrophages. Similar behaviour has been observed for other 

intracellular pathogens such as Mycobacterium, Nocardia asteroides and Legionella 

pneumophila. Interestingly, avirulent strains have been shown to persist in macrophages 

but are incapable of multiplying (Hondalus & Mosser, 1994). For a review, see 

Hondalus (1997). 

 

The main virulence factors of R. equi identified to date are plasmid-encoded proteins. 

All virulent strains isolated from foals contain a plasmid in the 80–90 kb range (Makrai 

et al., 2002). This plasmid harbours the gene for the 15–17 kDa VapA protein 

(virulence-associated protein), a cell-surface protein of unknown function (Takai et al., 

1991). Sequence analysis of the virulence plasmid revealed a putative pathogenicity 

island harbouring the vapA gene and six additional vap genes (vapC, D, E, F, G and H). 

Deletion and complementation analyses provided clear evidence for VapA as a 

virulence factor in R. equi (Jain et al., 2003). In contrast to foal-derived clinical isolates, 
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all of which harbour an 80–90 kb VapA-encoding plasmid, the plasmid profile of 

human isolates is more diverse. Isolates from immunocompromised patients without 

AIDS were mostly avirulent and plasmid-free, while isolates from AIDS patients 

harboured a virulence plasmid of 79–100 kb with a degree of relatedness to that 

harboured by equine isolates (Takai et al., 1994; Takai et al., 1995). 

 

Virulence plasmid gene expression was recently analysed using a DNA microarray 

containing 66 out of the 69 identified ORFs from the 80 kb virulence plasmid (Ren & 

Prescott, 2003). A comparison of in vivo and in vitro growth revealed that, in 

macrophage-grown R. equi, all seven vap genes were induced, in addition to 6 ORFs of 

unknown function located in the putative pathogenicity island (PI). The observation of a 

putative IdeR binding site upstream of vapA is significant since IdeR controls 

transcription of genes encoding proteins contributing to bacterial survival within 

macrophages, as well as proteins for iron uptake and sequestration in Mycobacterium 

tuberculosis (Gold et al., 2001). Furthermore, an IdeR homologue has been identified in 

R. equi (Boland & Meijer, 2000). Investigation of the effect of iron depletion on gene 

expression revealed the up-regulation of vapA, C, G and H and down-regulation of 

vapD, suggesting that vapA is part of the IdeR regulon in R. equi (Ren & Prescott, 

2003). 

 

Although R. equi infection is rarely fatal, the costs associated with treating the disease 

are high, especially since infected foals are less likely to race once adult (Ainsworth et 

al., 1998). This has led The Horserace Betting Levy Board, UK, to fund the sequencing 

of the complete genome of R. equi 103S (see www.sanger.ac.uk/Projects/R_equi/). 
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1.3.2. Rhodococcus fascians infections 

The only other Rhodococcus known to be pathogenic is Rhodococcus fascians. 

Fasciation of sweet pea was first described in 1927, and the causative agent identified in 

1936. Its classification remained problematic until the 1980s, when it was finally named 

Rhodococcus fascians. It is the only known phytopathogen of the genus (Bell et al., 

1998; Finnerty, 1992). R. fascians initiates the formation of leafy galls that consist of 

centres of shoot amplification and shoot growth inhibition. It has a very broad host 

range, across 39 plant families and 86 genera (Goethals et al., 2001). 

 

Both R. equi and R. fascians are commonly found in soil (Maes et al., 2001; Muscatello 

et al., 2006). They must therefore survive large variations in temperature, humidity, pH 

and other physico-chemical characteristics of soil, as well as the intra-macrophage (for 

R. equi) and plant environment (for R. fascians). Soil is widely considered to be 

oligotrophic (Morita, 1993), so these organisms must have some ways of surviving 

periods of low energy availability. 
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1.4. Mechanisms of starvation survival in bacteria 

1.4.1. Definitions 

In this study, we propose to investigate some physiological responses of rhodococci to 

starvation, and aim to identify molecular elements that participate in the starvation 

survival of rhodococci. The term “starvation” describes environmental conditions in 

which bacteria stop growing, or grow at a very slow rate, because of the lack of 

nutrients. It is also commonly called “stationary phase”, although the stationary phase is 

not necessarily induced by a lack of nutrients. 

 

Starvation survival has been investigated in Vibrio, Escherichia coli, Pseudomonas, 

Ralstonia, Rhizobium, Sinorhizobium and Salmonella to name a few Gram-negative 

bacteria (Jenkins et al., 1988; Kjelleberg et al., 1993; O'Neal et al., 1994). Among the 

non-sporulating Gram-positives, Staphylococcus, Enterococcus, Streptococcus, Listeria, 

Micrococcus as well as Lactococcus have been studied to a limited extent (Besnard et 

al., 2000; Clements & Foster, 1998; Duwat et al., 2000; Giard et al., 1997; 

Mukamolova et al., 1998; Trainor et al., 1999). Little work has been done to date on 

Rhodococcus although some work has been done on the close relative Mycobacterium, 

due to its pathogenicity and its ability to remain dormant in the lung (Betts et al., 2002; 

Kamalakannan et al., 2002; Shleeva et al., 2002). 

 

It has been suggested that bacteria can enter a state where they are “viable but non 

culturable” (VBNC), meaning that they still have metabolic activities but cannot 

multiply (see e.g. Besnard et al., 2000). This definition seems somewhat misnamed as 

some VBNC bacteria have been reported to be “resuscitated” (McDougald et al., 1998), 

usually by using special growth conditions, adding nutrients, or mediated through an 
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extracellular protein (Mukamolova et al., 1998). It has been suggested that the term 

“dormant” describes the state of the cell more accurately, as these cells can return to a 

“viable and cultivable” state (Kell et al., 1998; Kell & Young, 2000). The following 

definitions are more precise: 

 

Physiological 
state 

Phenotype 

 
Viable 
(culturable) 
 

 
Capable of division; will form a colony on agar plate or 
proliferate observably in liquid medium 
 

Dormant 
 

In a state of low metabolic activity and unable to divide or 
to form a colony on an agar plate without a preceding 
resuscitation phase 
 

Non-viable 
(non-
culturable) 
 

Incapable of division; will not form a colony on an agar 
plate nor proliferate observably in liquid medium 

 
Table 1.1. Reproduced from Kell & Young (2000). 
 
 

1.4.2. Physiology of starvation 

The physiological responses of non-sporulating bacteria to starvation are extraordinarily 

similar from species to species, especially in the case of carbon starvation. One of them 

is the formation of starvation and multiple-stress resistant microcells. The formation of 

multiple-stress resistant cells has been observed in all bacteria studied so far. Although 

morphology is not a good marker of starvation, it should be noted that most bacteria 

change shape, becoming coccoid or round, and dramatically reduce in size, up to 90 % 

in the case of Vibrio (Baker et al., 1983; Kjelleberg et al., 1993). The aspect of the 

culture itself may change too, from smooth to rough colonies on agar or clumping and 

biofilm formation in broth. The rugose and biofilm phenotypes are associated with the 

production of exopolysaccharides in response to nutrient starvation (Wai et al., 1998). 

The biofilm is believed to trap and adsorb nutrients and protect bacteria from predators, 

thus providing a more favourable environment for growth (Wai et al., 1998). 
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A model of starvation has been developed with Vibrio, and has subsequently been 

supported by studies with other organisms. In this model, bacteria adapt to starvation-

induced growth arrest by a complex pattern of regulation that turns on the expression of 

some genes and turns off others (Kjelleberg et al., 1993). This adaptation takes place in 

three phases during multiple-nutrient starvation in vitro. The first phase is described as a 

stringent control phase marked by decreased rate of macromolecular synthesis, the 

temporary accumulation of guanosine-tetraphosphate (ppGpp) and an increased rate of 

protein degradation. In Vibrio the stringent phase takes place as soon as the cells face 

carbon deficiency in the medium and lasts about half an hour (Nyström et al., 1990). 

During the second phase larger events take place, including changes in membrane fatty 

acid composition. The reserve material poly-β-hydroxybutyrate (PHB) is degraded and 

multiple stress resistance to heat, high and low pH and oxidative damage appears 

(Nyström et al., 1992). This phase extends for up to 6 hours (Kjelleberg et al., 1993). 

From then on, the bacteria enter the third phase, which appears as a slow shutdown of 

metabolic functions in which the rates of respiration and of RNA, protein and 

peptidoglycan synthesis plummet (Holmquist & Kjelleberg, 1993).  

 

It was found for Vibrio that only starvation for carbon led to the formation of viable 

multiple-stress resistant cells, as opposed to cells starved for nitrogen or phosphorus 

(Holmquist & Kjelleberg, 1993; Nyström et al., 1992). It was shown that carbon 

starvation could induce the same physiological changes as multiple-nutrient starvation. 

Comparison of the protein profile, by 2D gel electrophoresis, of cultures starved for 

carbon, nitrogen, phosphorus and multiple-nutrient starvation proteins showed that few 

proteins were specific to carbon starvation (Nyström et al., 1992). In these studies, the 
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carbon source was also the energy source, which would indicate that energy is the most 

important factor in triggering the starvation survival response. 

1.4.3. Molecular components of regulation of the Starvation Survival 

Response (SSR) in Gram-negative bacteria 

 

 1.4.3.1. The stringent response: ppGpp 
In response to a non-growing state a phenomenon called the stringent response is 

initiated resulting in the accumulation of the “alarmone” guanosine 3′, 5′ -

bispyrophosphate (ppGpp). This alarmone has been identified in all the organisms 

studied so far, including E. coli, Salmonella, and several Gram-positive bacteria (see 

below) (Gallant et al., 1972; Spector, 1998). ppGpp is usually present at low 

concentrations in the cell, its level being stabilised by two enzymes, RelA and SpoT 

(Hernandez & Bremer, 1991; Xiao et al., 1991). RelA is the ribosome-associated ppGpp 

synthetase I and is activated by uncharged tRNAs as a result of the lack of amino acids. 

SpoT is a bifunctional enzyme with both weak (p)ppGpp synthetic and hydrolytic 

properties. The lack of amino acids and starvation for a carbon or energy-source inhibit 

its hydrolytic activity, leading to a rapid increase in the level of ppGpp in the cell 

(Murray & Bremer, 1996). 

 

The effects of ppGpp are numerous. High levels of ppGpp block DNA replication at the 

origin by repressing transcription of dnaA, the gene that encodes the initiator protein 

DnaA (Chiaramello & Zyskind, 1990). Although ppGpp levels were also observed to 

have an effect on chromosomal replication in Bacillus subtilis, replication was initiated 

but then blocked 100–200 kb downstream of the origin. Replication resumed at the 

blocked site once the stringent response was lifted. Above all, ppGpp influences the 

transcription of rpoS, encoding the sigma factor RpoS which in turn leads to an increase 
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in the expression of many starvation inducible genes (for a review, see Hengge-Aronis, 

2002a).  

 1.4.3.2. The stationary phase sigma factor: σS  
RpoS is the stationary phase sigma factor, also called σS or σ38. The vegetative σ factor, 

σ70 (RpoD), is the general “house-keeping factor” that recognises transcription initiation 

signals on DNA. In exponentially growing cells, low levels of RpoS are present, 

although there are relatively high levels of rpoS mRNA. As the growth rate decreases 

and the culture enters stationary phase, rpoS transcription is increased 5- to 10-fold, and 

RpoS levels increase dramatically (Lange & Hengge-Aronis, 1994). When the 

concentration of RpoS increases in the cell, it displaces σ70 from the RNA polymerase, 

thereby diminishing the activity of σ70. Both in vitro and in vivo work also showed that 

ppGpp decreased the ability for wild-type σ70 to compete with σS and bind to the core 

RNA polymerase (Jishage et al., 2002). RpoS has been identified in E. coli and is 

present in the branch of proteobacteria. It is recognised as the key regulator of the 

general stress response. Regulation of RpoS occurs at every level: transcriptional, 

translational and post-translational. For a review, see Hengge-Aronis (2002b).  

 

A number of factors have been implicated in the control of rpoS transcription, including 

ppGpp, polyphosphate and cAMP-CRP. Quorum-sensing systems have also been 

implicated in the transcriptional regulation of rpoS (Lazazzera, 2000). ppGpp and 

polyphosphates have a part in rpoS regulation and RpoS activity at three different points 

in the pathway; they increase the transcription of rpoS, stimulate the activation of 

inactive rpoS mRNA into active mRNA that can be translated, and enhance the binding 

of σS to the RNA polymerase core enzyme (Figure 1.2) (Al-Maghrebi & Benov, 2001; 

Hengge-Aronis, 2002b). This is supported by the observation of E. coli mutants lacking 

polyphosphate kinase (PPK) or RpoS. ppk mutants are unable to accumulate 
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polyphosphates and demonstrate reduced viability in stationary phase (nutrient 

deprivation) and are less resistant to heat, oxidative and osmotic stress (Rao & 

Kornberg, 1996). Interestingly, introduction of extra copies of rpoS on a multi-copy 

plasmid restored the heat resistance of the ppk mutants to that of the wild-type strain. 

Furthermore, E. coli rpoS− lacked polyphosphate protection against oxidative DNA 

damage (Al-Maghrebi & Benov, 2001). 

 

A complex network of proteins and regulatory RNAs is involved in the activation of 

rpoS mRNA (see Figure 1.2), some of which are induced at late log phase by ppGpp 

and by oxidative stress (HU, histone-like protein; Hfq, host factor for coliphage Qβ and 

DsrA, small RNA regulator of transcription). UDP-glucose, whose concentration 

increases in the presence of glucose or galactose, decreases the translation levels of 

RpoS, although the level at which it acts, its mode of action and whether its cellular 

levels changes during stress or starvation is unknown. Histone-like protein H-NS is 

activated by cold and inhibits HU, Hfq and DsrA, as well as the activation of rpoS 

mRNA. Transcription of regulatory RNA OxyS is induced by oxidative stress, including 

H2O2, and it subsequently reduces the transcription of rpoS RNA by binding to and 

inhibiting Hfq. Factors identified to date involved in translational regulation of RpoS 

include changes in rpoS mRNA secondary structure. Theoretical predictions of the rpoS 

mRNA secondary structure have been made, although the in vivo structure remains to be 

determined (Hengge-Aronis, 2002b).  
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Figure 1.2. Transcriptional and translational regulation of rpoS, leading to 
synthesis of σS. Black arrows, induction; red arrows, repression. See text for details. 
Adapted from Hengge-Aronis (2002b).  
cAMP-CRP, cAMP-receptor protein; ppGpp, guanosine 3′, 5′-bispyrophosphate; polyP, 
polyphosphate; HU, histone-like protein; Hfq, host factor for coliphage Qβ; H-NS, 
histone-like protein; DsrA, small RNA regulator of transcription; OxyS, regulatory 
RNA induced by oxidative stress. 
 

 

 



35 

A number of small regulatory RNA molecules targeting rpoS translation have been 

identified in E. coli and include DsrA, OxyS and RprA (reviewed by Hengge-Aronis, 

2002b). DsrA plays a role in low-temperature induction of rpoS translation (Sledjeski et 

al., 1996), while OxyS is induced by oxidative stress (Altuvia et al., 1997). RprA also 

stimulates RpoS translation, but the physiological conditions by which it responds have 

yet to be determined. 

 

In addition to transcriptional and translational control, control of RpoS activity is also 

possible through regulated proteolysis by the ClpXP protease. RssB is a targeting factor 

which, when phosphorylated, exhibits specificity for RpoS and thereby tags RpoS for 

proteolysis by the ClpXP protease (see Figure 1.3) (Jenal & Hengge-Aronis, 2003; 

Weichart et al., 2003). Production of RssB is controlled by σS. The integration of all 

these signals to control σS remains to be elucidated. 
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Figure 1.3. Recognition and degradation pathway of σS. σS displaces σ70 from RNA 
polymerase (E), leading to expression of a different transcriptome. Which stresses 
intervene at each stage of the pathway has not yet been determined, but the half-life of 
σS is known to increase under sudden carbon starvation, heat shock, osmotic upshift and 
acidic pH. Black arrows, induction; red arrows, repression. Adapted from Hengge-
Aronis (2002b). 
E, RNA polymerase; ClpXP, ATP-dependent protease consisting of proteolytic (ClpP) 
and chaperone (ClpX) subunits; RssB, two-component-type response regulator. 
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 1.4.3.3. Gene expression controlled by σS 
It is estimated that the expression of more than 70 genes is affected by σS, encoding 

functions leading to altered morphology and metabolism, increased survival during 

starvation and fluctuating environmental conditions, and also factors leading to 

increased virulence and cell death (Hengge-Aronis, 1993; Hengge-Aronis, 2002b). 

Many of the RpoS-dependent genes are not required during the early stationary phase, 

but provide protection for the cell when de novo protein synthesis might not be possible. 

The otsA and otsB genes, for example, encode enzymes required for production of the 

osmoprotectant trehalose. The regulation of these genes is RpoS-dependent and they are 

induced in response to osmotic shift during the exponential phase (Hengge-Aronis, 

1996) and during entry into stationary phase (Hengge-Aronis et al., 1991). 

 

Microarray analysis of the whole genome of E. coli K-12 has shown that up to 481 

genes are up-regulated by RpoS during transition from exponential to stationary phase 

(Weber et al., 2005). Of this grand total, 252 were found to be up-regulated during 

transition to stationary phase, 422 in response to osmotic challenge and 197 in response 

to acid stress. Interestingly, 140 genes were always up-regulated by RpoS, 

independently of the challenge. Of those 140 genes, 16 are involved in stress protection 

(heat, osmotic pressure, oxidative damage etc.), 26 are involved in central energy 

metabolism (glycolysis, fermentation, pentose phosphate shunt), 11 in regulation, 20 in 

transmembrane transport, 7 in protein processes and finally 60 were of other or 

unknown function (Weber et al., 2005). In this study however, the transition was from 

growth in LB, which is a highly complex medium that can sustain high cell densities, as 

illustrated by the fact that the authors chose an OD600nm of 4.0 as the transition point 

between exponential and stationary phase (Weber et al., 2005). 
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When E. coli K-12, grown in a chemostat in chemically defined medium with 0.01 % 

glucose, was compared with exponential-phase E. coli in 0.1 % glucose, 340 genes were 

found to be up-regulated and 502 down-regulated (increase or decrease by a factor of 

more than 2) (Franchini & Egli, 2006). Among these, 181 up-regulated genes increased 

expression by a factor of more than 5, and 81 down-regulated genes decreased 

expression by a factor of more than 10. Surprisingly few of these were stress resistance-

associated genes (6 up-regulated, 5 down-regulated). The other genes are involved in 

transport (32 up-regulated, 11 down-regulated), carbon and energy metabolism (30 up-

regulated, 7 down-regulated), regulation (14 up-regulated, 12 down-regulated), cell 

structure (7 up-regulated, 9 down-regulated), protein processing (1 up-regulated, 25 

down-regulated), amino acid biosynthesis (1 up-regulated, 1 down-regulated), nucleic 

acid biosynthesis (1 up-regulated, 12 down-regulated), other functions (3 up-regulated, 

none down-regulated) and unknown or hypothetical functions (56 up-regulated, 15 

down-regulated) (Franchini & Egli, 2006). The differences between this study and that 

by Weber et al. (2005) are probably due to the different media employed 

(i.e. chemically defined vs LB) and differences in protocol (chemostat vs batch), as well 

as different cut-off points for inclusion in up- or down-regulated lists (i.e. 2- and 5-fold 

change vs 4-fold change in gene expression). 
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1.4.4. Molecular components of regulation of the SSR of Bacillus 

subtilis 

 1.4.4.1. Sigma factor, SigB (σB) 
In Bacillus subtilis, the secondary sigma factor σB is a key element in the control of the 

general stress response (for a review, see Hecker et al., 1996). The σB-dependent 

general stress regulon encompasses over 100 stress genes differentially expressed in 

response to glucose, phosphate or oxygen starvation, and heat, alcohol, acid and 

osmotic stress (Voelker et al., 1995). The mechanism by which σB is activated has been 

well studied. In contrast to σS, it does not rely on ppGpp but reacts to the ratio of ATP to 

ADP in the cell. The sigB operon comprises eight genes transcribed constitutively from 

a σA (housekeeping factor)-dependent promoter upstream of rsbR (Wise & Price, 1995). 

There is also a second internal promoter recognised by σB located immediately upstream 

of rsbV, which leads to increased expression of rsbV, rsbW, sigB and rsbX (Duncan et 

al., 1987). Although all proteins encoded by the sigB operon are probably involved in 

the regulation of σB activity, RsbW is the primary regulator. 

 

RsbW can bind either to σB, thereby sequestering it and preventing its activity, or to 

RsbV, resulting in free σB, which can then activate transcription of σB-dependent genes. 

The formation of the RsbW–RsbV complex is controlled by RsbW and influenced by 

RsbU and RsbX (Boylan et al., 1992; Duncan et al., 1987). Scientific evidence to date 

supports the presence of two independent pathways for activation of σB. In the case of 

starvation for glucose or phosphate, RsbW activity responds to the ATP:ADP ratio. It 

has been confirmed for B. subtilis that glucose and phosphate limitations result in a 

reduction in the intracellular level of ATP (Voelker et al., 1995). In the presence of low 

concentrations of ATP, RsbW (a protein kinase) cannot phosphorylate RsbV, as a result 

of which the RsbW–RsbV complex is then formed. Therefore, the σB factor is free to 
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interact with the RNA polymerase and to drive expression from σB-dependent 

promoters. For reviews, see Hecker et al.(1996) and Hecker and Volker (1998). 

 

Activation of sigB in response to glucose or phosphate starvation confers multiple-stress 

resistance to B. subtilis through the expression of over 100 genes, involved in heat, 

oxidative, water and osmotic stress resistance, as well as many with unknown function 

(Hecker & Völker, 1998; Völker et al., 1999). Interestingly, characterisation of a sigB 

mutant revealed that σB, although activated by glucose and phosphate starvation, is not 

required for starvation survival (Völker et al., 1999). It is therefore believed that σB 

provides additional protection to the bacteria against stresses that could arise during 

long-term starvation.  

 

 1.4.4.2. Stringent response in Bacillus 
A stringent response mechanism, similar to that in E. coli, has been reported in 

B. subtilis. A bifunctional RelA enzyme with the activity of the E. coli RelA and SpoT 

has been isolated from B. subtilis. As in E. coli, this enzyme provokes an increase in 

intracellular ppGpp levels under nutrient-limited conditions (Wendrich & Marahiel, 

1997). This results in a more than threefold decrease in the expression of translational 

apparatus genes, including rRNAs, tRNAs, ribosomal proteins (almost all, including 

nusA, rpoA and rpoB) and translation factors (e.g. tig, infA–C, fus, tufA and tsf) 

(Eymann et al., 2002). Genes expected to be expressed in actively growing cells (i.e. 

involved in nucleotide biosynthesis, synthesis of lipids, energy metabolism, RNA 

modification, protein modification, cell wall synthesis and DNA replication) are also 

repressed (Eymann et al., 2002). Relatively few transcription units were up-regulated by 

the stringent response (approximately 50). These include, in particular, the branched-

chain amino acid biosynthetic operon (Ile, Val and Leu; ilv–leu) and a γ-aminobutyrate 
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permease, urease, serine proteases and alkaline protease (gabP, ure, vpr and epr, and 

aprE). This possibly reflects the need to relieve the amino acid-induced starvation 

response (Eymann et al., 2002). Sporulation-associated genes are also up-regulated (e.g. 

yvyD, ytxGHI, spo0A, and spoVG), presumably so that sporulation can occur quickly 

under worsening conditions. Additionally, a relA mutant was found to sporulate less 

efficiently than the wild-type strain (Eymann et al., 2002). The stringent response in 

Bacillus also results in termination of DNA replication, located approximately 100–

200 kb on either side of oriC. A contrahelicase, RTP (replication terminator protein), 

prevents further progression of the replisome by binding constitutively to LSTer and 

RSTer (left and right stringent termini), approximately 100 kb up- and downstream of 

the origin of replication on the chromosome. ppGpp does not increase the DNA-binding 

affinity of RTP. It is interesting to note that, in a mutant lacking RTP, the stringent 

response retarded the replisome, showing that other mechanisms are involved in 

stopping replication (Autret et al., 1997). 

 

1.4.5. Starvation survival response of Staphylococcus aureus 

Staphylococcus aureus is an important human pathogen resulting in diseases ranging 

from mild skin infection to life-threatening septicaemia. It is of particular concern in 

hospitals as it is one of the most important causes of nosocomial infection, due to its 

ability to survive for extended periods of time outside of the host. During this period, 

S. aureus is able to survive long-term starvation and fluctuating environmental 

conditions. S. aureus was proven to survive at least 7 days of carbon starvation in in 

vitro experiments (Clements & Foster, 1998). Further characterisation of the SSR 

showed responses similar to those already identified in other bacteria, including 

reductive cell division, and an increase in resistance to acid shock and oxidative stress 

(Watson et al., 1998b). In order to further investigate this, Watson et al. (1998a) 
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screened a mutant bank for starvation survival deficient mutants (i.e. mutants that were 

unable to survive starvation-induced stationary phase). Based on sequence analysis, the 

genes identified encoded a putative superoxide dismutase, a haem A synthase, an RNA 

polymerase σ subunit, an SOS response component and a phosphoribosyltransferase. 

Further work confirmed the presence of a haem A synthase (ctaA) and a major 

superoxide dismutase (sodA) in S. aureus and their role in starvation survival (Clements 

et al., 1999a; Clements et al., 1999b). 

 

Superoxide dismutases (SOD) detoxify superoxide-anions resulting in production of 

hydrogen peroxide. In many bacteria, including E. coli, Bacillus and Listeria, increased 

production of SOD has been observed during stationary phase growth (Dukan & 

Nyström, 1999; Inaoka et al., 1998; Nyström, 1999; Vasconcelos & Deneer, 1994). This 

may be part of a mechanism used by the bacterium to protect proteins from oxidative 

damage, an important activity considering that there is a low protein turnover due to a 

low level of de novo protein synthesis. Analysis of the S. aureus sod mutant revealed a 

low level of survival in stationary phase of growth (Watson et al., 1998a). The S. aureus 

sod mutant demonstrated a survival defect with amino-acid limitation only. During 

carbon and phosphate limitation it behaved identically to the parent strain (Watson et 

al., 1998a). The effect of the sodA mutation during amino acid starvation is dependent 

on the degree of aeration. When incubated statically the behaviour of the sodA mutant is 

identical to the parent strain. In contrast, increased aeration results in a dramatic 

reduction in the viability of the mutants (Clements et al., 1999a). Interestingly, the sodA 

mutant demonstrated increased sensitivity to acid compared to the wild-type strain, 

although the role of sodA in acid resistance remains to be investigated. Using a mouse 

abscess model to determine the consequence of the sodA defect on pathogenicity, no 

significant differences were observed between the mutant and wild-type strain.  
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The stringent response in S. aureus results in a sharp increase in ppGpp intracellular 

concentration following nutrient (carbon or amino acid) starvation (Crosse et al., 2000). 

Immunological analysis revealed that S. aureus contains a protein exhibiting cross-

reactivity with E. coli anti-RelA and anti-SpoT antibodies.  

 

A gene homologous to the B. subtilis sigB has been identified in S. aureus, although the 

genetic organisation differs, in that the S. aureus sigB locus lacks the upstream rsbR, 

rsbS and rsbT genes (Kullik & Giachino, 1997; Wu et al., 1996). Analysis of a 

S. aureus mutant revealed that σB, although not essential for starvation survival, 

contributes to increased stress resistance (Chan et al., 1998).  

 

1.4.6. Starvation survival of Mycobacterium 

Mycobacterium tuberculosis is a pathogen that kills over 2 million people every year, 

and one third of the world population is believed to be currently infected (WHO, 2002). 

The incidence of M. tuberculosis infection is on the increase in developed and 

developing countries. One of the main challenges facing control of this pathogen is that 

M. tuberculosis cells can remain dormant in lung lesion tissue and can reactivate years 

later, leading to tuberculosis. The mechanisms that enable Mycobacterium to survive for 

long periods are poorly understood.  

 

In order to gain an understanding of the molecular basis for dormancy, both 

M. tuberculosis and M. smegmatis, a fast-growing relative, have been studied. 

M. smegmatis was shown to be able to survive carbon, nitrogen or phosphorus 

starvation for 650 days in vitro in chemically defined medium (Smeulders et al., 1999). 

During this time they were shown to undergo reductive cell division and exhibited 
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resistance to oxidative, osmotic and acid stress. Following starvation, mycobacterial 

cells tend to clump, probably as a result of changes in surface characteristics (Shleeva et 

al., 2002; Smeulders et al., 1999). 

 

Non-culturable cells could be induced in vitro in M. tuberculosis by letting them grow 

into late stationary phase (4–5 months) in modified Sauton’s medium (chemically 

defined, 6 % glycerol v/v, for details see Shleeva et al., 2002). It is not known whether 

the cells stop growing because of nutrient exhaustion or cell density. At this stage, the 

cells lost their culturability (0 CFU for M. tuberculosis) on solid agar, but could be 

recovered by culture in liquid medium. The recovery was much improved by the 

addition of filtered spent medium to fresh broth or the addition of Rpf from 

Micrococcus luteus. Rpf is the resuscitation promoting factor found to resuscitate 

dormant cells of Micrococcus luteus, and that also stimulates growth of other high G+C 

organisms, including mycobacteria (Mukamolova et al., 1998). Similar predicted genes 

were found in M. tuberculosis, M. leprae and M. smegmatis, in addition to several other 

high G+C such as Corynebacterium glutamicum and Streptomyces. Rpf from 

Micrococcus luteus was found to resuscitate M. tuberculosis and R. rhodochrous 

(Shleeva et al., 2002). Further work on putative rpf genes of M. avium and 

M. tuberculosis showed the proteins they encode have similar resuscitating activities to 

Rpf from Micrococcus luteus (Zhu et al., 2003). 

 

 1.4.6.1. Stringent response in Mycobacterium 
Homologues of RelA and SpoT were found in a single protein in M. tuberculosis and 

named RelMtb (Avarbock et al., 1999). In vitro studies demonstrated that RelMtb 

catalyses the synthesis of (p)ppGpp, consistent with the activity of E. coli RelA. The 

purified RelMtb also possesses 3′-pyrophosphohydrolase activity, correlating with E. coli 
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SpoT activity. This provides further support for the findings that Gram-positive bacteria 

possess one protein for both synthesis and degradation of (p)ppGpp. Characterisation of 

a knockout RelMtb mutant revealed that the mutant grew significantly more slowly in 

synthetic medium than the wild type strain (Primm et al., 2000). Interestingly, no 

significant differences were observed for the growth rate of the mutant and wild type in 

human macrophage-like cell lines (Primm et al., 2000).  

 

 1.4.6.2. Transcription factors 
The first transcription factor from M. tuberculosis to be associated with the stationary 

phase is SigF (DeMaio et al., 1996). It has a close homology to SigF and SigB, 

sporulation and stress-response sigma factors, respectively, from B. subtilis. SigF was 

shown to be transcribed during stationary phase, nitrogen depletion, cold and alcohol 

shock, and oxidative stress. Analysis of gene expression in M. bovis BCG (Bacille 

Calmette–Guérin) strain grown in complex medium revealed strong induction of sigF 

expression during stationary phase, nitrogen depletion and cold shock. Weak induction 

of sigF transcription was observed during the late-exponential phase in response to 

alcohol shock and oxidative stress. Since no measurements were taken during the late-

stationary phase, it is not known if sigF expression is transitional.  

 

In a study of the transcription of sigA and sigB in M. tuberculosis (Hu & Coates, 1999), 

the level of sigA mRNA remained constant from early exponential phase through to late 

stationary phase, and was not affected by stress. The level of sigB on the other hand was 

low during exponential phase, increased to its maximum in late-exponential phase and 

then slowly decreased. Expression of sigB was also influenced by environmental stress, 

in that induction of transcription was observed following oxidative stress and heat 

shock. These results suggest that SigA may be the housekeeping sigma factor, similar to 
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σ70 of E. coli, whereas SigB may be a stationary-phase sigma factor responsive to 

starvation and environmental stress. SigB and SigF could well work together, each with 

its own regulon, to ensure survival of dormant cells. 

 

 1.4.6.3. Mutant, whole-genome and proteome analyses of 
Mycobacterium – response to starvation  
In a study by Keer et al. (2000), mutants of M. smegmatis were generated by transposon 

mutagenesis, and screened for starvation survival deficiency, i.e. mutants unable to 

survive carbon-starvation-induced stationary phase. Five starvation survival deficient 

mutants were further analysed and the genes disrupted were partly sequenced. Based on 

bioinformatic studies the predicted genes encoded a putative penicillin-binding protein, 

a polyketide synthase, a monoamine oxidase, a membrane protein and an enzyme for 

biosynthesis of biotin.  

 

Disruption mutants of the predicted bioA gene were auxotrophic for biotin, thereby 

confirming the bioinformatic analysis. Interestingly, mutants harbouring a disruption of 

a gene encoding a putative membrane protein have altered colony morphology when 

grown on agar. The isolation of a stationary-phase mutant harbouring a disruption of a 

gene predicted to encode a putative penicillin-binding protein is supported by 

observations in E. coli. Penicillin-binding proteins are needed for cell-wall synthesis. 

Studies of E. coli stationary phase cultures indicate an increase in the level of specific 

penicillin-binding proteins, in comparison with exponential-phase cultures (Dougherty 

& Pucci, 1994). The roles of the polyketide synthase and the monoamine oxidase in 

stationary-phase and starvation survival are unknown. 

 

An interesting study, based on microarray analysis of M. tuberculosis starvation, during 

which the expression of 3649 genes was monitored, has been published (Betts et al., 
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2002). Monitoring after 4, 24 and 96 hours of multiple-nutrient starvation (cells washed 

and resuspended in PBS) revealed that several hundred genes were significantly up- or 

down-regulated. For example, at 96 hours, 279 and 323 genes were up- and down-

regulated, respectively (Betts et al., 2002). Up-regulated genes included those involved 

in antibiotic production and resistance, nucleotide synthesis and metabolism, and 

sequences related to insertion sequences and phages. In addition to the up-regulation of 

a number of regulatory genes (e.g. sigB, sigD, sigE and sigF), it is interesting to note 

that the majority of up-regulated genes correspond to proteins with hypothetical or 

unknown functions (e.g. Rv0116c, encoding a 26.9 kDa protein homologous to a 

putative secreted protein from M. leprae). Down-regulated genes included those 

involved in the synthesis of amino acids, lipids, prosthetic groups, carriers and 

cofactors, in addition to genes involved in DNA replication, repair, recombination, 

restriction and modification, and translation and post-translation modifications. Of the 

281 energy metabolism genes, 15 % were significantly down-regulated. In addition, 

several virulence-associated genes were down-regulated, e.g. the isocitrate lyase 

required for in vivo survival of M. tuberculosis and polyketide pk52 induced during 

macrophage infection. 

 

Two-dimensional gel electrophoresis analysis was performed in the same study and 

revealed up-regulation for only three proteins, including an α–crystalline homologue 

and 24.3 and 25.7 kDa hypothetical proteins, of unknown function. The 16 kDa α–

crystalline homologue is believed to enhance long-term protein stability, and it was 

found that only oxygen limitation could increase its synthesis (Yuan et al., 1996). 

 

Four down-regulated proteins were identified, although two of these proteins were 

recovered in culture filtrates of M. tuberculosis. The down-regulated proteins included 
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Tig, a chaperone-like protein, and GrpE, which together with DnaJ is a chaperone for 

DnaK (Pierpaoli et al., 1998). Although few up- or down-regulated proteins were 

identified in this study, it should be noted that the 2-D gel analysis on the 

M. tuberculosis proteome was performed on 6-week multiple-nutrient-starved cultures. 

This is in contrast to the microarray experiment which monitored cultures in early 

stationary phase (Betts et al., 2002). It is well known that there is a sharp increase in 

protein synthesis just before the cells enter stationary phase, and therefore these changes 

were presumably captured in the microarray experiment.  

 

Proteome analysis of a carbon-starved M. smegmatis culture identified a Dps 

homologue which is preferentially expressed under starvation conditions (Gupta et al., 

2002). The Dps (DNA-binding protein from starved cells) of E. coli is expressed during 

stationary phase and then binds non-specifically to the DNA, thereby protecting it 

against DNase and oxidative damage in particular (Almirón et al., 1992). The Dps-like 

protein from M. smegmatis (Ms-Dps) was purified and shown to bind non-specifically 

to DNA. In the presence of Ms-Dps, DNA was protected from oxidative radicals as 

demonstrated by an in vitro DNA damage assay. The Ms-Dps protein also protected the 

DNA from DNaseI activity (Gupta & Chatterji, 2003). Dps-like proteins have been 

identified in other Gram-positive organisms including B. subtilis and L. innocua (Bozzi 

et al., 1997; Chen & Helmann, 1995).  

 

1.4.7. Starvation survival of Rhodococcus 

Few studies so far have focussed on the starvation survival of Rhodococcus. Most of the 

information available to date is circumstantial, such as when cells are grown in defined 

mineral media to stationary phase for accumulation of a biocatalyst (see e.g. Begoña 

Prieto et al., 2002). Survival of Rhodococcus species has also been demonstrated in 
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bioremediation studies using a mixed culture added to polluted seawater (Shkidchenko 

et al., 2004) as well as in soil (Briglia et al., 1990; Peressutti et al., 2003). Both of these 

environments are notoriously low in energy sources and have been described as 

generally oligotrophic (Morita, 1993). Remarkably, Rhodococcus chlorophenolicus was 

shown to survive for 200 days in soil, all the while degrading polychlorophenol (Briglia 

et al., 1990). It is also clear from numerous environmental studies that rhodococci are 

resilient organisms, as they have been isolated from a very wide range of environments, 

from the deep sea (Heald et al., 2001) to the Antarctic soil (Bej et al., 2000). 

 

In one of the only studies dedicated to the starvation survival of Rhodococcus, 

R. corallinus was shown to recover from total carbon or nitrogen starvation for up to 

5 months (Sanin, 2003). Following starvation, when placed in normal growth medium 

(0.4 % glucose, w/v), maximum (non-starved) growth rates were achieved after just 

5 days in the case of cells that had been starved for carbon, or 10 days if the cells had 

been starved for nitrogen. The hydrophobicity of the cells was also measured, but little 

variation was observed (Sanin, 2003; Sanin et al., 2003). 

 

In another study, a large but transient drop in culturability (5 logs) was observed in 

Rhodococcus rhodochrous by allowing the cells to enter late stationary phase (60 hours 

growth) in modified Sauton’s medium (chemically defined, 6 % glycerol v/v, for details 

see Shleeva et al., 2002). It is not known whether the cells stopped growing because of 

nutrient exhaustion or cell density. At this stage, the cells lost their culturability on solid 

agar, but could be recovered by culture in liquid medium, suggesting that the cells 

entered a temporary state of non-culturability. Rpf from Micrococcus luteus was found 

to greatly increase “resuscitation” of “non-culturable” R. rhodochrous (Shleeva et al., 

2002).  
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1.5. Objectives 

As described above, the starvation survival of Rhodococcus has not been studied in 

great detail, in spite of the importance that organisms of this genus hold for industrial 

processes and bioremediation. Indeed, R. erythropolis has been suggested as an 

important future bioremediation agent (Čejková et al., 2005), and an agent in the 

biodesulphurisation of fuel (Caro et al., 2007). In addition, with the exception perhaps 

of R. equi, this genus remains relatively unexplored in terms of genetic analyses. 

Relatively few tools are available for the genetic manipulation of these organisms and 

complete genome sequences are only now becoming available. 

 

This study consists of two major components. An objective of this research was to study 

the physiological adaptation of a selected Rhodococcus strain, R. erythropolis SQ1, to 

energy and carbon starvation, in particular in terms of (i) its capacity to survive 

starvation, and (ii) the cross-protection to other environmental insults such as heat and 

oxidative stress, afforded by the transition to nutrient-induced stationary phase.  

 

In addition, the second objective was to generate a mutant bank of R. erythropolis SQ1 

and to screen this bank for starvation survival mutants, with subsequent sequence 

analysis of the mutated genes, in order to gain an insight to the molecular mechanisms 

involved in the starvation survival response of Rhodococcus.  
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2.1. Bacterial Strains and Growth Conditions 

The bacterial strains used in this study are described in Table 2.1. Rhodococcus spp. and 

Escherichia coli were routinely grown overnight in Luria-Bertani (LB) (Atlas, 1996) or 

Glucose Yeast Extract (GYE) broth on a rotary shaker (200 rpm) and incubated at 27 

and 37 °C, respectively. For growth on solid media, 13 g/l of bacteriological agar 

(Oxoid) was added to the broth. Media were sterilised by autoclaving at 121 °C and 15 

pounds per square inch of pressure for 15 min. When required, media were 

supplemented with antibiotics at concentrations of 200, 100 and 40 µg/ml of 

kanamycin, ampicillin and chloramphenicol (all Sigma-Aldrich), respectively, for 

Rhodococcus. Final concentrations of 50 µg/ml of kanamycin or 100 µg/ml of 

ampicillin were used for E. coli. All strains were stocked at −20 and −80 °C in 20 % 

and 40 % glycerol, respectively. 
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2.2. Growth curves of R. erythropolis  

Growth curve experiments were performed to establish the growth rate of 

R. erythropolis SQ1 and to determine when cultures entered stationary phase. Optical 

density (OD600nm) and viable plate count measurements were used to monitor the 

viability of Rhodococcus and entry into stationary phase. Unless otherwise stated, 

cultures used to inoculate the medium were in the exponential growth phase. To ensure 

this, R. erythropolis SQ1 stored at −20 °C was grown at 27 °C and 200 rpm in the same 

medium as that used for the growth curve. When this culture reached an OD600nm 

between 0.5 and 1.0 (early exponential phase), it was inoculated at 1 % (v/v) in the 

same medium. After overnight growth at 27 °C and 200 rpm, this culture was used to 

inoculate 100 ml medium (in 500 ml conical flasks) at an OD600nm 0.01. The flasks were 

then incubated at 27 °C and 200 rpm. Samples were taken periodically to determine the 

OD600nm and the viable plate count (Figure 2.1).  

 

To measure the viable plate count, 1 ml of culture was sampled for a serial dilution. 

Dilutions were performed in 9 ml quarter strength (Ringer) saline supplemented with 

0.05 % (v/v) Tween. Aliquots (100 µl) of the appropriate dilutions were then plated in 

triplicate on LB agar. The plates were then incubated for at least two days at 27 °C and 

the viable plate count calculated as colony forming units per ml (CFU/ml).  

 

Where specified, glucose concentration in the culture medium was determined during 

the course of growth. A 1 ml sample of culture was taken and centrifuged at 16,000×g 

for 1 min. The supernatant was then filter-sterilised (0.22 µm, Millipore) before storage 

at −20 °C. The quantity of glucose in the samples was measured using a colorimetric 

hexokinase-based method (Glucose HK assay kit; Sigma-Aldrich), following the 

manufacturer’s protocol. The standard curves were done using chemically defined 
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medium containing 0.1 % and 1 % glucose. When required, samples were diluted with 

glucose-free chemically defined medium, so that the only variable would be the glucose 

concentration. 
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Figure 2.1. Schematic overview of the growth experiments methodology. 
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2.3. Measurement of impact of heat shock on cell viability 

The ability of R. erythropolis SQ1 to survive heat shock was evaluated by using a 

modification of the protocol described by Jenkins et al. (1988). R. erythropolis SQ1 was 

grown overnight in 100 ml of chemically defined medium (CDM IIA) containing 0.1 % 

glucose at 27 °C and 200 rpm to ensure that entry into stationary phase was due to 

depletion of the carbon source. The inoculum was prepared as described in Section 2.2. 

The composition of chemically defined medium is provided in Section 2.15. Ten ml 

samples were taken at mid-exponential and early-stationary phase. The exponential 

phase samples were taken after approximately 48 h of growth at an OD600nm 0.5. 

Additional samples were taken after 6 days of incubation (early-stationary phase).  

 

The samples were aliquoted (1 ml) in 1.5 ml eppendorfs pre-warmed at 57 °C. The 

aliquots were then incubated in a 57 °C waterbath for up to 2 h. At 0, 5, 10 and 15 min 

one sample was removed from the waterbath and maintained at room temperature for 

5 min to cool down. Serial dilutions of the samples were then prepared using quarter 

strength (Ringer) saline solution supplemented with 0.05 % (v/v) Tween and 100 µl 

aliquots were plated in triplicate on LB-agar. The plates were then incubated for 48 h at 

27 °C and the viable count (CFU/ml) determined. In parallel, an additional late-log-

phase sample was diluted prior to heat shock treatment to an OD600nm of approximately 

0.5 and a titre of 5.05×108 CFU/ml (which was reached in mid-exponential phase) in 

order to determine whether cell density affected the heat resistance profile. Since no 

difference was observed, the protocol described above was used. 
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2.4. Measurement of impact of oxidative damage on cell 

viability 

Exponential and stationary phase cultures were sampled for investigation of the 

resistance of R. erythropolis SQ1 to oxidative damage. Cells were grown as described 

in Section 2.2. One ml samples were taken and the cells harvested by centrifugation at 

16,000×g for 5 min. The supernatant was discarded and the cells resuspended in quarter 

strength (Ringer) saline. The washed cells were then used to inoculate 2 ml of quarter 

strength (Ringer) saline to an OD600nm of approximately 0.01 (approx. 1×106 CFU/ml). 

The cell concentration was determined by plating three 100 µl aliquots. Tert-butyl 

hydroperoxide (tBHP) was then added to 1 ml of cells at concentrations ranging from 1 

to 400 mM. To measure cell viability, 100 µl samples were taken at regular intervals for 

serial dilution. Dilutions were done using 900 µl quarter strength (Ringer) saline 

supplemented with 0.05 % Tween. Aliquots (100 µl) of the appropriate dilutions were 

then plated in triplicate on LB-agar. The plates were subsequently incubated for two 

days at 27 °C and the cell viability calculated as colony forming units per ml (CFU/ml). 
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2.5. Transformation of cells by electroporation 

2.5.1. Preparation of electrocompetent cells of E. coli and 

Rhodococcus 

Electrocompetent cells of E. coli DH5α (Invitrogen) were prepared as described in the 

manual for the Gene Pulser II (Bio-Rad). LB (100 ml) was inoculated with 1 ml fresh 

overnight culture and grown at 37°C with vigorous shaking to an OD600nm between 0.5 

and 1. The flasks were then chilled on ice for approximately 30 min and the cells were 

subsequently harvested by centrifugation at 10,000×g for 10 min in a centrifuge cooled 

to 4 °C (5810R, Eppendorf). The supernatant was discarded and the cells were washed 

twice in ice-cold 10 % glycerol, and then resuspended in 400 µl of 10 % glycerol. The 

cells were aliquoted (50 µl) in ice-cold eppendorfs, which were then stored at –80 °C 

until required for electroporation.  

 

A similar protocol was used for the preparation of electrocompetent Rhodococcus but 

with the following modifications: incubation of the culture at 27 °C to an OD600nm of 1.0 

and final resuspension of the cell pellet in 2.5 ml of 10 % glycerol (Tanaka et al., 2002). 

 

The protocol described by Zheng et al. (1997) was also used. Briefly, cells for 

electroporation were prepared by growth of a single colony in 200 ml of LB 

supplemented with 1.8 % sucrose, 1.5 % glycine and 100 mg ml−1 isoniazid, incubated 

at 27 °C with constant shaking at 200 rpm for 2 days, chilling on ice for 1.5 h, and 

repeated washing in 10 % glycerol dissolved in pure water. 

2.5.2. Electroporation 

An aliquot of competent cells was thawed on ice and gently mixed with 0.5 to 2 µg of 

DNA. The cells were then incubated on ice for approximately 1 min. The electroporator 
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(Gene Pulser II with Pulse Controller Plus, Bio-Rad) was set at 25 μF, 2.5 kV and 

200 Ω for E. coli (Bio-Rad protocol), or at 25 µF, 2.5 kV and 400 Ω for Rhodococcus 

(Treadway et al., 1999). The mixture of cells and DNA was transferred to a cold 0.2 cm 

electroporation cuvette and placed into the electrotransformation chamber. The sample 

was pulsed once at the above settings, which should produce a pulse of time constant 

4.5–5 ms for E. coli and 8–12 ms for Rhodococcus. The cuvette was removed from the 

chamber and 950 µl of SOC recovery medium (composition of SOC is provided in 

Section 2.15) (Sambrook et al., 1987) was immediately added. The cell suspension was 

transferred to a 17×100 mm sterile propylene culture tube and incubated at 37 °C and 

200 rpm for 1 h for E. coli. For Rhodococcus, the samples were incubated at 27 °C and 

200 rpm for 2–4 h. The samples were subsequently plated on LB agar plates containing 

the appropriate antibiotic. 
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2.6. Transposon mutagenesis and generation of mutant bank 

Transposon mutagenesis exploits the ability of transposons to insert randomly into 

DNA. The EZ-TN<KAN-2> transposon is an artificial transposon, consisting only of a 

kanamycin resistance gene from Tn903 flanked by 19 bp inverted repeat mosaic end 

sequences which serve as binding sites for the transposase (Epicentre Biotechnologies). 

The DNA is provided as a complex with the EZ-TN transposase enzyme and the 

resulting transposome can be electroporated into living cells, where the intracellular 

Mg2+ activates the transposase, leading to random insertion of the transposon into the 

genome (see Figure 2.2), the only requirement being a TA dimer at the point of 

insertion (Berg et al., 1983). Mutants are obtained by selection for kanamycin 

resistance.  

 

Figure 2.2. Generation of a mutant bank by random transposon insertion using the 

EZ-Tn5 Transposome (©2007 Epicentre Biotechnologies). 

 

Transposon mutagenesis was performed on competent cells of R. erythropolis SQ1 

prepared as described in Section 2.5.1. Instead of plasmid DNA, 1 µl transposome 

(transposon–transposase complex) EZ-Tn5<KAN-2>Tnp from Epicentre 

Biotechnologies was used. The electroporated cells were plated on LB agar containing 

200 µg/ml of kanamycin and incubated at 27 °C. Each colony growing on the selective 
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medium was picked using a sterile toothpick and inoculated in 100 µl of LB 

supplemented with 200 µg/ml of kanamycin in a well of a microtitre plate (stock 

plates). The plates were incubated overnight at 27 °C in a static incubator and fresh 

microtitre plates containing 150 µl of LB + kanamycin per well (working plates) were 

inoculated using purpose-built sterile 96-prong replicators. 100 % glycerol (50 µl) was 

added to each well of the stock plates and mixed by pipetting, and the plates were stored 

at −80 °C. In each plate, well A1 was inoculated with wild-type R. erythropolis SQ1. 

Well H12 contained LB only (the non-inoculated negative control).  
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2.7. Mutant screening strategy 

The mutant bank was screened for stationary phase survival mutants following the 

method described by Uhde et al. (1997). Transfers were made from the working plates 

to plates containing chemically defined medium CDM IIA (see Section 2.15. for 

details) containing either 1 % or 0.1 % (w/v) glucose broth. The working plates were 

replicated at weekly intervals on LB agar or CDM 1 % glucose agar to assess the 

survival of the mutants (see Figure 2.3). The appearance of growth for each mutant was 

recorded. Further investigation of mutants exhibiting interesting features was continued 

by going back to the stock plates. Each plate was assigned a number (from 1 to 10) and 

each well was identified alpha-numerically, so that each mutant has a unique identifying 

code (e.g. 4C7), allowing easy retrieval of mutants of interest for further analysis. 
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Figure 2.3. Mutant screening strategy (adapted from Uhde et al., 1997). The 
mutants were not allowed to enter stationary phase until inoculation in CDM II A for 
screening. 
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2.8. DNA isolation 

2.8.1. Plasmid DNA Isolation (<20,000 bp) 

Plasmid DNA was recovered from bacterial cultures using the Wizard SV Miniprep kit 

(Promega). For extraction of plasmids from Rhodococcus species the following 

adaptation was made: 1–5 ml overnight culture was harvested and resuspended in TE 

buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) supplemented with 20 mg/ml lysozyme 

(Sigma) and incubated for 2–4 h in a 37 °C waterbath. The procedure was completed 

using the DNA isolation kit as per the manufacturer’s instructions. The plasmids used in 

this study are listed in Table 2.2. 

 

2.8.2. Genomic DNA Isolation 

The FastDNA SPIN Kit for Soil (Qbiogene) was used to extract genomic DNA from 

R. erythropolis SQ1 and mutants thereof. Modifications made to the manufacturer’s 

protocol were as follows. Two to four ml of broth culture (OD600nm ~1.0) were 

centrifuged at 12,000×g for 10 min. The pellets were resuspended in 978 µl Sodium 

Phosphate Buffer (SPB) and 122 µl MT buffer (provided in the kit), and subsequently 

transferred to a Lysing Matrix E Tube. The procedure was continued as described in the 

manufacturer’s handbook, including a lysis step at setting 5.5 for 30 s in the FastPrep 

Instrument (Qbiogene). In the final step, the genomic DNA was eluted in 100 µl 

DNase- and pyrogen-free water provided in the kit. 
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Plasmid Antibiotic 

resistance 

Description Reference 

pRE7 KmR E. coli – Rhodococcus shuttle 

vector (5.9 kb) 

Zheng et al. (1997) 

pDA71 AmpR, CmR E. coli – Rhodococcus shuttle 

vector (8.8 kb) 

Dabbs (1998) 

pSRK21 KmR E. coli – Rhodococcus shuttle 

vector (5.8 kb) 

Veselý et al. (2003) 

pCR2.1-TOPO AmpR, KmR E. coli cloning vector (3.9 kb) Invitrogen 

 

Table 2.2. Description of the plasmids used in this study. 

Amp, ampicillin; Cm, chloramphenicol; Km, kanamycin. 



67 

2.9. Restriction Analysis of DNA 

Restriction enzymes used were from Roche Applied Science and used according to the 

manufacturer’s instructions. Routinely, the DNA was combined with the appropriate 

buffer (10×) and 10 U of enzyme followed by incubation overnight at 37 °C. When 

performing multiple digests, the buffer was chosen according to the manufacturer’s 

recommendations in order to yield the highest possible activity. 

 

2.10. Agarose Gel Electrophoresis 

The results of DNA extraction, DNA restriction analysis and PCR amplification were 

visualised by agarose gel electrophoresis. Molecular grade agarose (0.8 to 1.0 % w/v, 

Fluka) was dissolved in Tris-acetate buffer (TAE; 40 mM Tris-base, 20 mM acetate and 

2 mM EDTA, pH 8.0) by heating. Ethidium bromide was incorporated in the gel at a 

final concentration of 0.3 μg/ml. The gel was cast in a mould (Embi Tec) and allowed 

to solidify prior to being submerged in TAE buffer. The molecular size standard used 

was the New England Biolabs 2-log DNA ladder. The DNA samples were mixed with 

loading buffer (0.25 % bromophenol blue, 30 % glycerol in water) prior to gel loading. 

Samples were electrophoresed through the gel at 150 V in a Run-One electrophoresis 

cell (Embi Tec) until the bromophenol blue from the loading buffer had migrated half-

way through the gel. Gels were visualised and recorded using the Molecular Imager FX 

Pro and the Quantity One software (Bio-Rad). When necessary, DNA fragments were 

extracted from gels using the Montage DNA gel extraction kit (Millipore) following the 

manufacturer’s protocol. 
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2.11. Polymerase Chain Reaction (PCR) 

PCR was routinely performed using BioMix (Bioline), unless otherwise specified. 

BioMix is a complete reaction mix (2×) for PCR that contains 32 mM (NH4)2SO4, 

125 mM Tris-HCl (pH 8.8), 0.02 % Tween 20, 2 mM dNTPs, 0.05 U/µl Taq 

polymerase and 3 mM MgCl2. A PCR reaction consisted of 25 µl BioMix, 1 µl of each 

primer (100 pmol/µl), DNA template and the volume was adjusted to 50 µl with dH2O. 

The primers used in this study are described in Table 2.3. Water was substituted for the 

DNA template in the negative controls. The reagents were combined and centrifuged 

briefly prior to being placed in the Px2 thermal cycler (Thermo Scientific). A typical 

reaction was carried out as follows: a denaturing period of 5 min at 94 °C, followed by 

25 cycles of 1 min denaturation at 94 °C, 1 min annealing at 50 °C and 3 min of 

elongation at 72 °C. A final elongation period of 10 min at 72 °C was then followed by 

cooling down to 4 °C. The PCR products were then analysed by agarose gel 

electrophoresis as described above.  

 

2.12. Inverse PCR 

Inverse PCR (iPCR) is a method designed to recover DNA sequences flanking a region 

of known sequence (Ochman et al., 1988). In this study, iPCR was performed on 

mutants of R. erythropolis SQ1 harbouring the EZ-Tn<KAN2> transposon (Epicentre 

Biotechnologies). Genomic DNA was isolated from the mutants and restricted with the 

appropriate restriction endonucleases, and subsequently religated. The sequence 

flanking the transposon was then amplified by PCR, as illustrated in Figure 2.4 and 

described below in further detail. 
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Figure 2.4. Principle of Inverse PCR (iPCR) and cloning. For illustration purposes 
only the restriction endonuclease NarI is used. 
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Approximately 2 μg of genomic DNA was digested with a panel of restriction enzymes. 

The restrictions were performed following the manufacturer’s instructions and the 

efficiency of restriction was checked by agarose gel electrophoresis on 0.8 % agarose 

gels. The DNA was then separated from the restriction enzymes by phenol/chloroform 

extraction (Sambrook et al., 1987). Briefly, the DNA was diluted to a volume of 200 μl 

and an equal volume of phenol:chloroform:isoamylalcohol (25:24:1) (Sigma-Aldrich) 

was added. The contents of the tube were mixed by agitation until an emulsion formed. 

The mixture was centrifuged at 12,000×g for 15 s at room temperature to separate the 

organic and aqueous phases. The aqueous phase, containing the DNA, was then 

transferred to a fresh sterile eppendorf and the DNA precipitated by adding an equal 

volume of isopropanol (2-propanol). The tube was mixed by agitation and the DNA 

pelleted by centrifugation at 14,000×g for 10 min. The DNA was resuspended in 17 μl 

dH2O, to which 1 μl ligation buffer (10×) and 1 μl of T4 DNA ligase (Roche Applied 

Science) were added. After incubation at room temperature overnight, the reaction was 

inactivated by heating in a 80 °C waterbath for 20 min. The ligation mixture was then 

dialysed against dH2O on a 0.025 μm MF-Millipore membrane (hydrophilic, Millipore) 

for 1 h at room temperature prior to iPCR.  

 

The PCR was performed as previously described in Section 2.11 using 1 μl religated 

DNA as the template. The amplification cycle consisted of a denaturing period of 5 min 

at 96 °C, followed by 30 cycles of 30 s denaturation at 95 °C, 1 min annealing at 56 °C 

and 1 min of elongation at 72 °C. A final elongation period of 5 min at 72 °C was then 

followed by cooling down to 4 °C. The PCR products were then analysed by agarose 

gel electrophoresis. 
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2.13. TA-Cloning  

The iPCR products were cloned using the TOPO TA Cloning Kit (with pCR2.1-TOPO 

vector) with One Shot TOP10 chemically competent E. coli DH5-α from Invitrogen 

according to the manufacturer’s instructions. The pCR2.1-TOPO vector was used since 

it has 3′-T overhangs to allow efficient cloning of Taq polymerase-generated fragments 

(Taq adds an A to the 5′ end of the region amplified). The T overhangs are also 

covalently linked to topoisomerase I from the vaccinia virus, mediating the ligation of 

the PCR-generated fragment into the cloning vector.  

 

2.14. DNA sequencing and bioinformatics analysis 

The concentration of purified plasmid DNA was determined by agarose gel 

electrophoresis. Ethanol-precipitated DNA, provided to MWG Biotech (London) for 

sequencing, was prepared as follows. The plasmid DNA (1-2 μg) was diluted in a final 

volume of 100 μl dH2O, to which 0.1 volume of 3 M sodium acetate (pH 5.5) and 2 

volumes of 100 % ethanol were added. The sample was mixed after 5 min at 4 °C and 

centrifuged at 14,000×g for 5 min at room temperature. The pellet was resuspended in 

200 μl 70 % ethanol and centrifugation was repeated. The supernatant was discarded, 

and the DNA pellet was air-dried at room temperature. DNA sequencing was performed 

by MWG Biotech using primers M13 uni (−21) and M13 rev (−29) (see Table 2.3). 

 

All sequence manipulations (i.e. cutting and pasting, generation of complement 

sequence, identification of restriction and primer binding sites) were done using the 

programme Vector NTI from Invitrogen (http://www.invitrogen.com). The sequence 

was then analysed using various tools of the Vector NTI package, such as AlignX, 

ContigExpress, ORF Finder and the Translation tool. The complete DNA sequences 

obtained were also searched directly against the non-redundant database at NCBI, using 
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either BLASTN for a nucleotide search or BLASTX to search the database with the 

sequence translated in all six frames. The resulting putative proteins were searched 

against the database using BLASTP (Altschul et al., 1997; Schaffer et al., 2001) at 

www.ncbi.nlm.nih.gov. The search was performed on the non-redundant database (nr) 

limited to the phylum Bacteria. The most significant results were used to assign a 

function to the putative protein. Further analysis of the DNA sequence was carried out 

with a neural network promoter prediction method (Reese & Eeckman, 1995), in an 

attempt to identify putative promoters. The software NNPP version 2.2 used is available 

at http://www.fruitfly.org/seq_tools/promoter.html. 



74 

2.15. Composition of solutions and reagents 

All solutions and media were prepared with deionised water, except where indicated. 

Bacteriological medium components were obtained from Oxoid. All chemicals, 

antibiotics and vitamins were purchased from Sigma-Aldrich and were of HPLC grade. 

2.15.1. Growth media and supplements 

All media were prepared and dispensed prior to autoclaving at 121 ˚C and 15 pounds 

per square inch of pressure for 15 min. 

 

Luria-Bertani broth (per litre) (Atlas, 1996): 

  Tryptone   10 g 

  Sodium chloride (NaCl) 10 g (172 mM) 

  Yeast extract   5 g 

 

Glucose-yeast extract broth (per litre): 

  Glucose  10 g (55 mM) 

  Yeast extract  10 g  

 

CDM I (per litre): 

  Glucose      2 g (11 mM) 

  Ammonium sulphate [(NH4)2SO4]   1 g (7.5 mM) 

  Dipotassium phosphate anhydrous (K2HPO4) 1 g (5.7 mM) 

  Salts solution (recipe provided below)  10 ml 

  Trace elements solution (recipe provided below) 1 ml 
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CDM IIA 1 % Glucose (per litre): 

 Glucose      10 g (55 mM) 

  Ammonium sulphate ((NH4)2SO4)   1 g (7.5 mM) 

  Dipotassium phosphate anhydrous (K2HPO4) 2.75 g (15.8 mM) 

  Potassium phosphate (KH2PO4)   2.25 g (16.5 mM) 

  Salts solution      10 ml 

  Trace elements solution    1 ml 

For CDM IIA 0.1 % Glucose, only 1 g of glucose was used per litre (final concentration 

5.5 mM). 

 

Salts solution (per litre): 

  Magnesium sulphate (MgSO4.7H2O)   25 g (0.1 M) 

  Ferrous sulphate (FeSO4.7H2O)   0.28 g (1 mM) 

  Manganous sulphate (MnSO4.4H2O)   1.7 g (7.6 mM) 

  Sodium chloride (NaCl)    0.6 g (10 mM) 

  Sodium molybdate (Na2MoO4.2H2O)   0.1 g (0.4 mM) 

  Zinc sulphate (ZnSO4.7H2O)    0.06 g (0.2 mM) 

  Calcium chloride (CaCl2.2H2O)   0.01 g (0.07 mM) 

  Hydrochloric acid, 0.1M    1 litre 
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Trace elements solution (per litre): 

  Hydrochloric acid (25 %)    6.5 ml 

  Ferrous chloride (FeCl2.4H2O)   1.5 g (7.5 mM) 

  Borate (H3BO3)     60 mg (1 mM) 

  Manganous chloride (MnCl2.4H2O)   100 mg (0.5 mM) 

  Cobalt chloride (CoCl2.6H2O)   120 mg (0.5 mM) 

  Zinc chloride (ZnCl2)     70 mg (0.5 mM) 

  Nickel chloride (NiCl2.6H2O)    25 mg (0.1 mM) 

  Copper chloride (CuCl2.2H2O)   15 mg (0.1 mM) 

  Sodium molybdate (Na2MoO4.2H2O)   25 mg (0.1 mM) 

The salts and the trace elements solutions were distributed in 200 ml bottles, autoclaved 

and stored at 4 °C. 
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2.15.2. Composition of media supplements 

Vitamin solution (per 100 ml) (Atlas, 1996): 

  Biotin      4 mg (160 µM) 

  p-aminobenzoic acid    10 mg (260 µM) 

  Folic acid     4 mg (90 µM) 

  Calcium pantothenate    10 mg (420 µM) 

  Nicotinic acid     10 mg (813 µM) 

  Vitamin B12     0.2 mg (1 µM) 

  Thiamine hydrochloride   10 mg (296 µM) 

  Pyridoxine (B6) hydrochloride  20 mg (975 µM) 

  Thioctic acid     10 mg (485 µM) 

  Riboflavin     1 mg (26 µM) 

The vitamin solution was filter-sterilised to avoid heat degradation, aliquoted in 1.5 ml 

eppendorfs and stored at −20 °C. 

 

Thiamine solution: 

  Thiamine hydrochloride   5 mg (0.7 mM) 

  Distilled water     20 ml 

The thiamine solution was filter-sterilised to avoid heat degradation, aliquoted in 1.5 ml 

eppendorfs and stored at −20 °C. 
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Amino acid solution (per 100 ml): 

  L-Gln      292 mg (20 mM) 

  L-Arg      126.1 mg (7 mM) 

  L-Ile      52 mg (4 mM) 

  L-Leu      52 mg (4 mM) 

  L-Tyr, diNa     52 mg (2.8 mM) 

  L-Val      46 mg (3.9 mM) 

  L-His.HCl     42 mg (2.7 mM) 

  L-Phe      32 mg (1.9 mM) 

  L-Met      31 mg (2 mM) 

  L-Glu      15 mg (1 mM) 

  L-Asp      13.3 mg (0.7 mM) 

  L-Asn.H2O     13.2 mg (1 mM) 

  L-Pro      11.5 mg (1 mM) 

  L-Ser      10.5 mg (1 mM) 

  L-Trp      10 mg (0.5 mM) 

  DL-Ala     8.9 mg (1 mM) 

  Gly      7.5 mg (1 mM) 

  Distilled water     100 ml 

The amino acid solution was filter-sterilised and stored at 4 °C. 
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Pyrimidine solution (per 100 ml): 

  Uracil      20 mg (1.8 mM) 

  Thymine     20 mg (1.6 mM) 

  Cytosine     20 mg (1.8 mM) 

The pyrimidine solution was gently heated to dissolve all components. It was then 

filter-sterilised and stored at 4°C. 

 

Antibiotics:  

Stock solutions of 100 mg/ml kanamycin and ampicillin were prepared in distilled 

water, filter-sterilised and stocked at –20 °C. Stock solution of 100 mg/ml 

chloramphenicol was prepared in 100 % ethanol and stocked at –20 °C. 
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2.15.3. Reagents 

Tris-EDTA (TE) buffer (1×): 10 mM Tris-HCl, 1 mM EDTA pH 8.0. 

 

Tris-acetate-EDTA buffer (TAE) (50×): 

  Tris-HCl   240 g (2 M) 

  Glacial acetic acid  57.1 ml 

  EDTA 0.5 M   100 ml (50 mM) 

  dH2O    to 1000 ml 

The pH was then adjusted to 8.5. The solution was diluted 50× to prepare agarose gels 

and used as running buffer. 

 

SOC broth: Magnesium chloride (MgCl2)  10 mM 

  Magnesium sulphate (MgSO4) 10 mM 

  Potassium chloride (KCl)  2.5 mM 

  Sodium chloride (NaCl)  10 mM 

  Tryptone    20 g/l 

  Yeast extract    5 g/l 

  Glucose    20 mM 

SOC broth was dispensed in universals and autoclaved at 121 °C and 15 pounds per 

inch of pressure for 15 min.  
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Members of the genus Rhodococcus are widely distributed and have been isolated from 

diverse environments, as described in Chapter I. Their ability to survive in low-energy 

and nutrient environments is significant due to the role they play in bioremediation (e.g. 

in the case of Rhodococcus erythropolis and Rhodococcus ruber) and pathogenesis (e.g. 

in the case of Rhodococcus equi and Rhodococcus fascians). From an industrial 

perspective, it has been shown that nitrogen starvation may elicit biosurfactant 

production in R. ruber (Philp et al., 2002) and R. erythropolis (Kim et al., 1990). 

Nitrogen starvation also decreased the hydrophobicity of Rhodococcus corallinus 

(Sanin et al., 2003), with consequences for bioremediation and microbial de-

emulsification (Van Hamme et al., 2003). Carbon and/or energy starvation can also be 

important factors for other chemical/biosynthesis processes. For instance, 

ultramicrobacteria (UMB) are produced by carbon/energy starvation, and used for 

microbial-enhanced oil recovery (Van Hamme et al., 2003).  

 

There has been little study to date of the processes by which rhodococci survive 

starvation, or indeed of the effects of starvation on rhodococci. It has been shown 

however that R. corallinus can grow after incubation for up to 5 months in carbon- or 

nitrogen-free medium (Sanin, 2003). The objective of the study reported in this chapter 

was to characterise the physiological response of Rhodococcus to starvation (in this 

study, carbon was chosen as the limiting nutrient) and to investigate whether carbon 

starvation can induce cross-protection in Rhodococcus to a variety of environmental 

stresses, including heat and oxidative stress. 
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3.1. Selection of an appropriate Rhodococcus strain for the 

study of carbon starvation 

There are many parameters that influenced the choice of the particular strain of 

Rhodococcus for this study. In order to investigate the physiological response of 

Rhodococcus to starvation (the focus of this chapter), it was essential to be able to 

accurately limit the nutrient or nutrients for which the bacterium was being starved and 

to be able to monitor the growth of Rhodococcus on this medium. The growth 

behaviour of Rhodococcus on chemically defined medium was therefore considered. 

The second part of this study (Chapter IV) however is concerned with the generation of 

a mutant bank and the screening of that mutant bank for starvation or stationary phase 

survival mutants. Therefore additional criteria were applied to the selection of the 

appropriate strain. These included sensitivity to antibiotics that may be used as selective 

pressure to allow for screening of mutants and transformants, and the transformability 

of Rhodococcus with plasmid DNA  

 

3.1.1. Design of a chemically defined medium suitable for studying 

the effect of carbon starvation on Rhodococcus 

Thirteen strains representative of four taxa – R. erythropolis, R. ruber, R. equi and 

R. fascians – were selected. These strains are described in Table 2.1. Of the forty-two 

species of Rhodococcus identified to date (Euzéby, 2007), these four species were 

selected initially for their industrial, environmental and/or medical significance. All 

thirteen strains selected were able to grow readily on Luria-Bertani (LB) or glucose 

yeast extract (GYE) media, whether prepared as broth or agar plates. The basic 

chemically defined medium described by Goodhue et al. (1986) was selected as the 

basis for designing a chemically defined medium appropriate for Rhodococcus. It 
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should be noted that the basic medium described by Goodhue et al. (1986) does not 

include vitamins, although these are widely reported to be necessary for the growth of 

some rhodococci (Goodfellow & Alderson, 1977; Goodfellow, 1989). Therefore, in the 

first instance, in this study supplementation with either a complex mix of vitamins 

(described in Chapter II) or with 0.7 mM thiamine was performed in order to ensure 

growth of all strains and to avoid complex deficiencies. These modified media were 

labelled as CDM IA and CDM IB, respectively. Glucose (0.2% w/v) was chosen as the 

carbon and energy source (Goodhue et al., 1986). Growth was assessed visually after 

48 h of incubation at 27 °C and agitation at 200 rpm. The results are shown in Table 

3.1. 

 

Strains of R. ruber Ac72, Ac74, Ac82 and Ac87 grown in CDM IA and IB broth 

clumped extensively. A significant amount of clumping was also observed for 

R. erythropolis Ac201. Extensive clumping of bacterial cells is undesirable since this 

leads to inaccurate cell counts, whether evaluated by determining viable plate counts or 

optical density. Although dense cultures were obtained for most strains tested in 

CDM IA and IB, it is possible that the low concentrations of carbon (0.2 % w/v glucose, 

i.e. 11 mM) and phosphate (6 mM K2HPO4) used may be growth-limiting. Furthermore, 

although there was no evidence of pH fluctuation, the low concentrations of phosphate 

and the limited buffering capacity provided may lead to large variations in pH during 

lengthy periods of incubation. Therefore, the glucose concentration was increased from 

0.2 to 1 % w/v. The phosphate concentration was also increased to 32.3 mM using 

15.8 mM dipotassium hydrogen phosphate (K2HPO4) and 16.5 mM potassium 

dihydrogen phosphate (KH2PO4), thereby buffering the medium at pH 6.2–7.4 

(Sambrook et al., 1987). Good growth was attained in this medium (CDM IIA; see 

Table 3.1) for all species and strains tested, except for R. equi. Supplementation with 
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amino acids and pyrimidines (see Chapter II for composition) was required for good 

growth of R. equi (CDM IIB; Table 3.1). 
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Table 3.1. Growth of Rhodococcus species in a range of chemically defined media.  
 
−, no growth; + to ++++, increasing growth; ND, not determined.  

CDM IA and CDM IB correspond to a basic chemically defined medium containing 

0.2% glucose described by Goodhue et al. (1986) supplemented with either 1 % v/v of 

vitamin mix (described in Chapter II) or 0.7 mM thiamine, respectively. 

CDM IIA corresponds to CDM IA with 1 % glucose and is phosphate-buffered. 

CDM IIB corresponds to CDM IIA supplemented with amino acids and pyrimidines. 

 

 
 

CDM 
Species Strain 

IA IB IIA IIB 

SQ1 +++ +++ ++++ ND 

Ac201 +++ +++ ++++ ND 

NCIMB 8147 +++ +++ ++++ ND 

R. erythropolis 

NCIMB 8863 +++ +++ ++++ ND 

GV1 + + ++ ++++ 

VI 1 + − + ++++ 

NCIMB 10027 − + + ++++ 

R. equi 

NCIMB 10701 + + + ++++ 

Ac72 ++ ++ +++ ND 

Ac74 ++ ++ +++ ND 

Ac82 +++ +++ ++++ ND 

R. ruber 

Ac87 ++ ++ +++ ND 

R. fascians Ac170 +++ +++ ++++ ND 
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3.1.2. Antibiotic resistance markers for screening of transformants 

and mutants of Rhodococcus 

Antibiotic resistance is an essential tool for genetic manipulation of microorganisms. 

Most resistance markers are encoded by a single gene, thus making them easily 

transferable from one organism to another. The majority of cloning vectors are designed 

with specific antibiotic resistance markers, allowing the isolation of the organisms 

harbouring the vector. Transposons, frequently used for random mutagenesis, generally 

possess an antibiotic resistance gene. It is therefore essential that the Rhodococcus 

strain selected for this study is sensitive to antibiotics that may be used in a later stage 

of the project. The cloning vectors used in this study carry resistance genes for 

ampicillin, kanamycin and chloramphenicol, and the transposon system we proposed to 

use harbours a kanamycin resistance gene. It was therefore essential to verify the 

antibiotic sensitivity profile of the available rhodococcal strains. 

 

All the strains considered for this study were plated on GYE agar containing either 

100 µg ml−1 of ampicillin, 200 µg ml−1 of kanamycin or 40 µg ml−1 of chloramphenicol. 

The genes coding for resistance to these antibiotics are used as the selective markers on 

the cloning vectors used to date in Rhodococcus (Dabbs, 1998; Quan & Dabbs, 1993; 

Veselý et al., 2003). Antibiotic concentrations were chosen according to the literature 

regarding the use of these vectors in Rhodococcus (Quan & Dabbs, 1993; Veselý et al., 

2003). 

 

Except for the phytopathogen R. fascians, all the strains tested were sensitive to 

ampicillin, kanamycin and chloramphenicol (Table 3.2). R. fascians Ac170 was 

resistant to all three antibiotics. Based on these observations, the Rhodococcus–E. coli 
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shuttle vectors and the transposon mutagenesis system used later in this study are 

unsuitable for R. fascians Ac170. 
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Growth medium 
Strain GYE GYE + 

ampicillin 
GYE + 

kanamycin 
GYE + 

chloramphenicol

R. fascians 
Ac170 + + + + 

R. erythropolis 
Ac201 + − − − 

R. erythropolis 
NCIMB 8147 + − − − 

R. erythropolis 
NCIMB 8863 + − − − 

R. erythropolis 
SQ1 + − − − 

R. ruber  

Ac72 
+ − − − 

R. ruber  

Ac74 
+ − − − 

R. ruber  

Ac82 
+ − − − 

R. ruber  

Ac87 
+ − − − 

 
Table 3.2. Growth of selected Rhodococcus strains on GYE agar containing 

antibiotics.  

 
Concentrations of 100 µg ml−1 ampicillin, 200 µg ml−1 kanamycin and 40 µg ml−1 

chloramphenicol were used. Cultures were incubated at 27 °C until colonies could be 

clearly observed, or for up to 4 days.  

+, growth; −, no growth.  
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3.1.3. Transformability of rhodococcal strains 

To date, there are only a limited number of publications reporting the genetic 

manipulation of Rhodococcus sp. There are a few reports concerning the introduction of 

DNA to Rhodococcus species using conjugation. Conjugation has been reported for R. 

erythropolis BD2 with plasmid pBD2 (Dabrock et al., 1994), R. fascians with plasmid 

pD188 (Desomer et al., 1988) and R. erythropolis SQ1 with plasmids pB264 and 

pAN12 derivatives (Lessard et al., 2004; Yang et al., 2007b). These conjugative 

plasmids can however be so large as to be unwieldy for molecular manipulation. pBD2 

is approximately 210 kb, while pD188 is 138 kb (Dabrock et al., 1994; Desomer et al., 

1988). The transfer efficiency of pB264 (5 kb) is low at 7.3×10−7 per recipient (Lessard 

et al., 2004). A recent study with pAN12 derivatives has yielded promising results with 

conjugation efficiencies up to 7×10−4 tranconjugants per recipient cell (Yang et al., 

2007a). 

 

R. erythropolis, R. ruber, R. equi and R. fascians have all been transformed by 

electroporation (Chauvaux et al., 2001; Desomer et al., 1990; Sekizaki et al., 1998; 

Treadway et al., 1999). Several shuttle vectors have been designed that allow transfer of 

genes to and from rhodococci by electroporation, such as pMVS301 that replicates in E. 

coli, R. equi, R. erythropolis and R. globerulus (Singer & Finnerty, 1988); pDA21 that 

replicates in E. coli, R. equi, R. erythropolis and R. rhodochrous (Dabbs, 1998), pRE-7 

that replicates in E. coli, R. ruber and R. equi (Chauvaux et al., 2001; Zheng et al., 

1997) and pSRK21 that replicates in E. coli and R. erythropolis (Veselý et al., 2003). In 

addition, random transposon mutagenesis has been achieved in R. erythropolis and 

R. equi using electroporation (Fernandes et al., 2001; Mangan & Meijer, 2001). It was 

therefore decided to investigate the efficiency of transformation of selected 
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Rhodococcus strains by electroporation, with the aim of using this technique to generate 

a mutant bank (Chapter IV). 

 

Three strains, R. equi NCIMB 10027, R. equi NCIMB 10701 and R. erythropolis SQ1, 

were tested for their transformability (i.e. the ease with which transformants can be 

obtained in the laboratory). Two protocols were used to produce electrocompetent cells. 

The main differences between these protocols is that cells are grown in LB alone in one 

(Denome et al., 1993), whereas in the other LB is supplemented with sucrose, glycine 

and isoniazid (Zheng et al., 1997). Glycine is often used in the growth medium to 

prepare competent cells as it disrupts the structure of the peptidoglycan. Isoniazid is an 

antibiotic that disrupts the synthesis of mycolic acids, a component of the cell wall of 

actinomycetes. The transformation efficiencies were determined using plasmids 

pSRK21 and pRE-7.  

 

pSRK21 is a small (5.8 kb) shuttle vector based on Corynebacterium vectors and was 

designed specifically for transfer between E. coli and R. erythropolis (Veselý et al., 

2003). It is based on the fusion of pSR1, a Corynebacterium glutamicum plasmid 

(Archer & Sinskey, 1993), and pK19, an E. coli shuttle vector bearing both an ori 

(origin of replication) and a kanamycin resistance gene (Pridmore, 1987). A maximum 

transformation efficiency of 7×104 transformants µg−1 DNA was achieved with 

pSRK21 in R. erythropolis CCM2595 (Veselý et al., 2003).  

 

pRE-7 is similar in size (5.9 kb) to pSRK21 and was designed as a shuttle vector 

between E. coli and R. equi (Zheng et al., 1997). It was created by combining the ori of 

R. equi strain 103 virulence-associated plasmid pOTS, the kanamycin resistance gene of 

plasmid pACYC177 and the plasmid pBluescript KS(+) (ColE1 ori) (Zheng et al., 
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1997). A maximum transformation efficiency of 2.5×107 transformants µg−1 DNA was 

achieved with pRE-7 in R. equi 103− (pOTS-cured strain) . 

 

R. equi NCIMB 10027 and R. equi NCIMB 10701 competent cells were initially 

prepared using the method described by Zheng et al. (1997). With plasmid pSRK21, 

transformation frequencies of 9.5×105 and 4.45×106 transformants μg−1 DNA were 

obtained for NCIMB 10027 and NCIMB 10701, respectively. R. equi NCIMB 10027 

was also transformed with plasmid pRE-7, achieving a frequency of 

1×105 transformants μg−1 DNA. 

 

For R. erythropolis SQ1, frequencies of up to 1.85×105 transformants μg−1 pRE-7 DNA 

were achieved using the protocol of Denome et al. (1993). Using the method of Zheng 

et al., (1997), low cell densities were consistently obtained in the growth medium 

described. Therefore, a modified medium was used in which isoniazid was omitted, 

leading to frequencies of up to 1.95×104 transformants μg−1 pSRK21 DNA.  

 

The transformation frequencies obtained were comparable to the ones reported by the 

researchers cited above, i.e. 104-105 transformants μg−1 DNA for R. erythropolis SQ1 vs 

7×104 transformants µg−1 DNA for R. erythropolis CCM2595 (Veselý et al., 2003). 

Furthermore, these numbers are close to the transformation efficiency recommended by 

the manufacturer of the transposon system we proposed to use in subsequent stages of 

the project for random mutagenesis of Rhodococcus (105 transformants μg−1 DNA; 

Epicentre). 
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3.1.4. Selection of the study strain 

Representatives of four taxa within the genus Rhodococcus were selected in the initial 

stages of this study on the basis of their industrial, environmental and/or medical 

significance. R. erythropolis and R. ruber are of particular interest due to their 

biodegradation and biocatalysis capacities, and R. fascians and R. equi are important 

pathogens (as reported in Chapter I). 

 

The outcome of growth experiments performed on chemically defined media allowed 

for a preliminary selection of potential study strains to be made. As reported above 

(Section 3.1.1), supplementation of chemically defined medium with amino acids and 

pyrimidines was required for growth of R. equi. Since amino acids contain carbon, 

phosphorus, nitrogen and, in some cases, sulphur, these requirements complicate the 

estimation of the final quantities of each element in the growth medium. In addition, 

several strains of R. equi can use amino acids as their sole source of carbon, nitrogen, 

phosphorus and energy (Bizet et al., 1997). This renders determination of the limiting 

growth factor rather complex. Despite shared mechanisms, it is also well documented 

that starvation survival mechanisms for carbon/energy and amino acids do differ (e.g. 

the stringent response in the case of starvation for amino acids) (Autret et al., 1997) (see 

Chapter I). Therefore, if amino acids were to be used in the growth medium, their 

abundance or depletion could influence the mechanisms that trigger the starvation 

survival response. On this basis it was therefore decided to disregard R. equi as the 

study organism, due to its complex nutrient requirements. 

 

R. ruber cells are known to be particularly hydrophobic (Philp et al., 2002). This 

hydrophobicity is responsible for the extensive clumping observed for all R. ruber 

strains in all three growth media tested in Section 3.1.1. This aggregation would lead to 
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difficulties in accurately assessing bacterial growth and physiological status. The 

reliability of viable plate counts (CFU/ml) and optical density measurements, for 

instance, would be questionable. 

 

R. fascians Ac170 grew well on chemically defined medium and no cell aggregation 

was observed. However, this strain was resistant to all three antibiotics tested in this 

study (Section 3.1.2). Of particular relevance was the resistance to kanamycin, since the 

kanamycin resistance marker is present on the cloning vectors and the transposon 

mutagenesis system at our disposal for this study. 

 

R. erythropolis grew well on all the chemically defined media investigated in this study 

and, with the exception of R. erythropolis Ac201, no cell aggregates were observed 

(Section 3.1.1). It should be noted that R. erythropolis SQ1 (one of the strains tested) is 

a mutant of ATCC 4277-1 (Quan & Dabbs, 1993), which in turn is an arsenic- and 

chloramphenicol-sensitive variant of the type strain ATCC 4277 (Dabbs et al., 1990). It 

is described as having increased transformability compared to the type strain (Quan & 

Dabbs, 1993), and has also been used in a targeted gene disruption experiment (van der 

Geize et al., 2001). Indeed R. erythropolis SQ1 stands out for its ease of manipulation 

in laboratory conditions and its high transformability, achieving frequencies of 

>105 transformants μg−1 plasmid DNA (Section 3.1.3).  

 

On the basis of the analyses above, R. erythropolis SQ1 was selected as the study 

organism for the remainder of this project.  
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3.2. Response of R. erythropolis SQ1 to starvation 

It is generally accepted that the environment is oligotrophic (Morita, 1993), sea water 

and certain types of soil are especially so (Di Mattia et al., 2002; Kjelleberg et al., 

1993). Since most bioavailable energy sources are carbon-based, it is justified to study 

the response of Rhodococcus to carbon starvation. Furthermore, the entrance into 

stationary phase is of particular interest, since this is when most of the stress-resistance 

capacities are acquired (see for example Matin, 1991; Smeulders et al., 1999; van 

Overbeek et al., 1995).  

 

Growth curves are indispensable to the study of the behaviour of bacteria. It was 

especially important for this project that the growth profile of Rhodococcus in non-

limiting and in limiting environments was established. To this effect, growth was 

monitored in LB, a complex medium, and in CDM IIA containing 1 and 0.1 % glucose. 

Survival of R. erythropolis SQ1 in the complete absence of nutrients (distilled water) 

was also monitored. 

 

3.2.1. Response of R. erythropolis SQ1 to growth in complex 

medium and to multiple-nutrient starvation 

The aim of this experiment was to compare the behaviour of R. erythropolis SQ1 in a 

commonly used rich medium (LB) and when subjected to multiple-nutrient starvation. 

Growth curves were performed by growing R. erythropolis SQ1 in complex (LB) and 

nutrient-free media (distilled water). In both cases exponential-phase cultures 

(corresponding to a 24 h culture) were used to inoculate flasks containing 100 ml of 

media to a starting cell density of 0.01 OD600nm. Cultures were then incubated at 27 °C, 

at 200 rpm. Samples were taken at regular intervals over a period of 43 days. For each 
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sample, viable plate counts (CFU/ml) and optical density (OD600nm) were determined. 

R. erythropolis SQ1 was shown to survive long-term starvation in both LB and dH2O 

(Figure 3.1). High viable plate counts of up to 4×109 CFU/ml were observed in LB after 

2 days. This figure then decreased to approximately 5×107 CFU/ml after 30 days in 

stationary phase. In contrast, the cultures in distilled water did not exhibit any decrease 

in viability over the 43 day period. There was a slight increase in cell numbers, from 

5×106 to 2×107 CFU/ml within the first 10 days, presumably due to the metabolism of 

stored material. The cell numbers then remained stable, dropping only to 

1.2×107 CFU/ml.  

 

It is interesting to note that, when grown in LB, the viable cell count decreases to 

approximately the same as that in water. This drop in culturability, of 1–2 logs, is 

similar to that observed in E. coli grown in LB (Siegele et al., 1993) and in Oenococcus 

oeni grown in modified FT 80 medium, containing meat extract, yeast extract, salts and 

carbohydrates (Cavin et al., 1989; Zapparoli, 2004). Similarly, Enterococcus faecalis 

was found to survive multiple-nutrient starvation in water for up to 80 days (Hartke et 

al., 1998). Mycobacterium tuberculosis and Mycobacterium kansasii were shown to 

survive for up to 2 years in rich nutrient broth or in distilled water (Nyka, 1974). 

Survival in water was also observed in E. coli for up to 20 days (Ozkanca & Flint, 

1997), although only when incubated at 4–25 °C. At 30 °C, the culture did not yield 

colonies on agar after 7 days incubation in water. 



97 

 

 

 

 
 
 
 

Fi
gu

re
 3

.1
. G

ro
w

th
 c

ur
ve

 o
f 

R
. e

ry
th

ro
po

lis
 S

Q
1 

gr
ow

n 
in

 L
B

 a
nd

 d
is

til
le

d 
w

at
er

. D
at

a 
ar

e 
fr

om
 t

w
o 

se
pa

ra
te

 
ex

pe
rim

en
ts

, p
la

te
d 

in
 tr

ip
lic

at
e.

 C
lo

se
d 

sy
m

bo
ls

, L
B

; o
pe

n 
sy

m
bo

ls
, w

at
er

. ■
 a

nd
 □

, C
FU

/m
l; 
♦ 

an
d 

, O
D

60
0n

m
. E

rr
or

 
ba

rs
 re

pr
es

en
t o

ne
 st

an
da

rd
 d

ev
ia

tio
n.

 



98 

3.2.2. Response of R. erythropolis SQ1 to glucose limitation 

The response of R. erythropolis SQ1 to glucose starvation was initially characterised 

using the experimental medium CDM IA with two different glucose concentrations – 

1 % and 0.1 % w/v. Exponential-phase cultures (corresponding to a 24 hr culture) were 

used to inoculate flasks containing 100 ml of media to a starting OD600nm of 0.01. Flasks 

were then incubated at 27oC, at 200 rpm. Samples were taken at regular intervals over a 

period of 43 days. For each sample, viable plate counts (CFU/ml) and optical density 

(OD600nm) were determined (Figure 3.2). It should be noted that the flasks were 

transferred to a static incubator after entry into stationary phase as determined from OD 

measurements, as described previously in starvation experiments for Vibrio and S. 

aureus (Nyström et al., 1990; Watson et al., 1998b). This corresponds to 7 and 12 days 

for the 1 % and 0.1 % glucose media, respectively. 

 

The culture grown in CDM IA 0.1 % glucose clearly achieves much lower maximum 

OD600nm (2 vs 6.6) and viable plate counts (1.3×109 vs 6.1×109 CFU/ml) than that grown 

in 1 % glucose. This confirms that glucose is the limiting component in the medium. It 

is worth noting that maximum cell numbers were attained after 7 and 14 days of 

incubation in CDM IA 1 % and 0.1 % glucose, respectively. The calculated growth rate 

for the culture grown in 1 % glucose was indeed nearly double that of the culture grown 

in 0.1 % glucose (i.e. 0.17 hr−1 vs 0.094 hr−1; Figure 3.3).  
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Figure 3.3. Comparison of the growth rates of R. erythropolis SQ1 grown in 
CDM IA 1 % (■) and 0.1 % glucose (□). Data plotted were obtained from two 
experiments, plated in triplicate. Error bars represent one standard deviation. 
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Differences in culture behaviour are quite striking after the logarithmic phase of growth 

– the culture grown in glucose-limited medium reaches a plateau, whereas the culture 

grown in non-limiting medium (1 % glucose) exhibits a rapid reduction in culturability, 

as demonstrated by the viable plate counts (Figure 3.2). There is a steady decline in the 

culturability of the culture, from a maximum of 6.1×109 CFU/ml to less than 

106 CFU/ml. 

 

As mentioned in Section 3.1.1. (Design of a chemically defined medium suitable for 

studying the effect of carbon starvation on Rhodococcus), the buffering capacity was a 

concern with CDM IA. To determine whether the drop in viability observed in Figure 

3.2 was due to phosphate starvation and/or variation in pH, this experiment was 

repeated using the improved phosphate-buffered medium CDM IIA with glucose 

concentrations of 1 % and 0.1 % w/v. The experiment was conducted as described 

above with flasks being transferred to static incubation upon entry into the stationary 

phase, which in the case of the CDM IIA 1 % and 0.1 % glucose corresponded to 10 

and 9 days, respectively. There was no significant difference in the behaviour of 

R. erythropolis SQ1 when grown in CDM IA or CDM IIA (Figure 3.4).  
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It is worth noting that the drop in culturability observed in Figures 3.2 and 3.4 is 

coincident with the transfer of the culture from shaking to static incubation. Static 

incubation was the standard method used in the study of starvation survival of Vibrio 

and S. aureus (Nyström et al., 1990; Watson et al., 1998b), but interestingly placing 

flasks of growing cultures in a stationary incubator is the method used to produce 

dormant Mycobacterium tuberculosis (Wayne & Hayes, 1996). In order to determine 

whether transfer to static incubation impacted on the culturability of R. erythropolis 

SQ1, an experiment was performed in which the growth curves of cultures subjected to 

continuous agitation were compared with cultures transferred to static incubation 

following 24 hours (mid-exponential) of shaking incubation (Figure 3.5).  

 

Interestingly, when R. erythropolis SQ1 was transferred to static incubation after 

24 hours of growth, no dramatic drop in CFU/ml was observed (Figure 3.5a). There is a 

decrease in viable counts from 1.8×109 to 1×108 CFU/ml in CDM IIA 1 % glucose, but 

that figure then remained constant throughout the remainder of the experiment. The 

growth curves also showed that R. erythropolis SQ1 could survive long-term starvation 

under aerated conditions (Figure 3.5b). Although there is an initial drop in culturability 

when R. erythropolis SQ1 is grown in 1 % glucose, it occurs comparatively late (at 

20 days of incubation) and is less pronounced, i.e. less than 1-log reduction in the viable 

count, compared to a 4-log reduction when agitation is stopped at early stationary phase 

(Figure 3.2, Figure 3.5b). Furthermore, the viable count remained constant during 

subsequent incubation. 

 

Since there was a possibility that the drop in culturability associated with transfer to 

static incubation was due to depletion of oxygen in the media rather than glucose 
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exhaustion, it was decided that all subsequent growth experiments would be performed 

under agitation. 
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Figure 3.5. Growth curve of R. erythropolis SQ1 grown in CDM II 1 % glucose and 
CDM II 0.1 % glucose with or without static incubation. (a) Flasks were moved to a 
static incubator after 24 hours of shaking incubation. (b) Flasks were kept in a shaking 
incubator for the duration of the experiment. Data are from two separate experiments, 
plated in triplicate. Closed symbols, CDM IIA 1 %; open symbols, CDM IIA 0.1 %. ■ 
and □, CFU/ml; ♦ and , OD600nm. Error bars represent one standard deviation.
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3.2.3. Consumption of glucose in CDM 

The glucose concentration in the growth medium was monitored by a colorimetric 

method in parallel with optical density and viable plate count measurements. Standard 

curves were performed to allow for accurate measurement of the glucose concentration 

(Figure 3.6).  

 

Figure 3.7 demonstrates the utilisation of glucose by R. erythropolis SQ1 growing in 

CDM IIA 1 % glucose (Figure 3.7a) and 0.1 % glucose (Figure 3.7b). Note that at 

7 days, the glucose is completely exhausted in CDM IIA 0.1 %, whereas there is still in 

excess of 15 mM remaining in 1 % glucose medium. In both cases the glucose 

concentration drops sharply, by 50 %, in just 24 hours. It should also be noted that in 

both the 1 % and 0.1 % glucose media, the glucose concentration eventually drops to 

levels that are not detectable by the colorimetric method used (<0.1 mM). 
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Figure 3.6. Representative standard curves for measurement of glucose in CDM 
IIA. (a) Standard curve performed with CDM IIA-0.1 % glucose, (b) standard curve 
performed with CDM IIA-1 % glucose. 
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Figure 3.7. Monitoring of glucose concentration during growth of R. erythropolis 
SQ1 in (a) CDM IIA 1% glucose and (b) CDM IIA 0.1% glucose.  
Data are from two separate experiments, plated in triplicate. ■, CFU/ml; ▲, glucose 
concentration in mM. Error bars represent one standard deviation. Note that the glucose 
concentration ranges up to 55 mM in CDM IIA 1 % glucose, but only 5.5 mM in 0.1 % 
glucose. 
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3.3. Starvation of R. erythropolis SQ1: Cross protection 

induced by carbon starvation 

Bacteria in the environment are subjected to permanently changing conditions, 

especially in terms of nutrient availability and both physical and chemical challenges, 

including temperature fluctuations and oxidative stress. There have been a number of 

reports demonstrating a correlation between nutrient starvation and the ability of a 

bacterium to survive changing environmental conditions. Studies examining the effects 

of carbon starvation on survival and cross-protection have been performed in vitro on 

E. coli (Jenkins et al., 1988). Similar observations have been made in a limited number 

of bacterial genera including Vibrio (Nyström et al., 1992), Pseudomonas putida 

(Givskov et al., 1994), Salmonella typhimurium (Seymour et al., 1996), Enterococcus 

faecalis (Giard et al., 1997), Mycobacterium smegmatis (Smeulders et al., 1999) and 

Listeria monocytogenes (Ferreira et al., 2001). These studies have shown that bacteria 

starved for carbon developed cross-protection against a range of stress factors. Such 

observations may be of particular importance to the survival of non-sporulating 

bacteria. In this study, the effect of glucose starvation on the ability of R. erythropolis 

SQ1 to survive heat shock and oxidative stress was examined.  
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3.3.1. The effect of carbon-starvation on the ability of R. erythropolis 

SQ1 to survive heat-shock 

CDM IIA 0.1 % glucose was chosen as the growth medium for this experiment in order 

to ensure that the growth limiting factor was the carbon and energy source. Flasks 

containing 100 ml of medium were inoculated at a cell density of 0.01 OD600nm with 

exponential phase cultures (24 hours growth) and incubated at 27oC with 200 rpm 

agitation. Samples were taken at 48 and 144 hrs (2 and 6 days), corresponding to an 

exponentially growing and an early stationary phase culture, respectively. In order to 

investigate the protection afforded by carbon limitation to heat shock, the time points 

for the shock were chosen according to the glucose concentration of the medium, as 

illustrated previously in Figure 3.7 as days 2 and 6 – at day 2 when the culture is in 

exponential phase glucose is still plentiful, while day 6 corresponds to 24 hours before 

exhaustion of glucose from the medium.  

 

In a preliminary experiment, the exponential and early stationary phase samples taken 

as described above were aliquoted and incubated in a 57 °C water bath for up to 

60 minutes. Aliquots were removed at 5, 10, 15, 20, 30 and 60 minutes and viable plate 

counts were performed. Percentage survival was determined for each time point as a 

percentage of the viable count at time of sampling (i.e. a sample not subjected to heat 

treatment) (Figure 3.8). The early stationary phase culture demonstrated an increased 

resistance to heat shock in comparison to the exponential phase culture. Since little 

growth could be observed after 15 minutes heat shock it was decided that, in subsequent 

experiments, experiments would be performed over 15 minutes with sampling at 

5 minute intervals. 
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Figure 3.8. Preliminary heat shock experiment in which R. erythropolis SQ1 
cultures were exposed to heat treatment at 57 oC.  
■, exponential phase culture; ▲, early stationary phase culture. Results shown represent 
one experiment. 
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In the experiment described above, the cell density of the two cultures being compared 

(exponential and early stationary phase) obviously differ. Concerns were raised over the 

effect of cell density on the survival of R. erythropolis SQ1 subjected to heat shock. In 

order to address this issue, a late exponential phase culture was diluted in 

CDM IIA lacking glucose to approximately 0.5 OD600nm and submitted to heat shock as 

described above. The same culture was also submitted to the standard protocol 

described earlier to provide a control. No significant difference could be observed in the 

ability to survive heat shock (Figure 3.9), showing that cell density is not a significant 

factor in the resistance of R. erythropolis SQ1 to heat shock. Further experiments were 

therefore performed without diluting the cells prior to heat shock. 
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Figure 3.9. Effect of heat shock on diluted and undiluted late exponential phase 
cultures of R. erythropolis SQ1. , late exponential phase culture (approx. 
2.0 OD600nm); ▲, late exponential phase diluted to approximately 0.5 OD600nm. 
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Chloramphenicol is a bacteriostatic antibiotic that inhibits protein synthesis by blocking 

the peptidyl transferase activity of the ribosome subunit 50S (Neu & Gootz, 1996). To 

investigate whether the observed cross-protection induced by carbon starvation could be 

reduced by inhibiting protein synthesis, the challenged cultures were incubated for 2 h 

with 40 µg ml−1 chloramphenicol prior to heat shock treatment. This chloramphenicol 

concentration was selected as it is the one at which R. erythropolis SQ1 growth is 

inhibited, as illustrated in Table 3.2, thus ensuring that protein synthesis is inhibited. 

 

In order to investigate the effect of protein synthesis inhibition on heat shock survival, 

samples were taken of exponential and early stationary phase cultures as described 

above, aliquoted and either treated with chloramphenicol or kept at 27 °C for 2 hours. 

All samples were then incubated in a 57 °C water bath for up to 15 minutes. At 

5 minute intervals, aliquots were removed and viable plate counts were performed. 

Percentage survival was determined for each time point as a percentage of the viable 

count at time of sampling (Figure 3.10). 

 

Figure 3.10 shows very clearly that early stationary phase cells are more resistant to 

heat shock than exponential phase cells, with 40–50 % cells surviving 5 minutes of 

shock vs 0 %, respectively. Interestingly, treatment of the cultures with 40 µg ml−1 

chloramphenicol prior to heat shock treatment did not have any substantial effect on the 

resistance of R. erythropolis SQ1 to heat shock, in that their resistance to heat shock 

was not diminished. It has previously been shown for E. coli that when cultures were 

treated with 100 µg ml−1 chloramphenicol for approximately 4 hours after depletion of 

glucose from the growth medium, stationary phase cells were as sensitive to heat shock 

as exponentially growing cells (Jenkins et al., 1988). Inhibition of heat shock resistance 

by chloramphenicol has also been demonstrated for Enterococcus faecalis (Giard et al., 
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1996) and Clostridium perfringens (García et al., 2001), although the heat-shock 

resistance in Clostridium was not starvation-induced. It was therefore hypothesised that 

in E. coli and Enterococcus, proteins are synthesised upon entry into stationary phase 

which confer heat resistance capabilities to the cells and that treatment with 

chloramphenicol blocks the development of heat resistance by blocking new protein 

synthesis.  
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Figure 3.10. Survival of R. erythropolis SQ1 subjected to heat shock (57 °C) with 
and without exposure to 40 µg ml−1 chloramphenicol.  
■, exponential phase culture; ■, exponential phase culture treated with 
chloramphenicol; ▲, early stationary phase culture; ▲, early stationary phase culture 
treated with chloramphenicol. Error bars represent one standard deviation. 
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3.3.2. Cross-protection against oxidative stress 

In studies performed to date examining the interaction between nutrient starvation and 

the development of resistance to oxidative stress, hydrogen peroxide (H2O2) is typically 

used as the oxidative agent (see for example Giard et al., 1996; Jenkins et al., 1988). 

H2O2 was initially used in this study to induce oxidative stress, but the standard 

deviations obtained were so large that the results were not significant (data not shown). 

Additionally, it has been reported that R. erythropolis is able to use H2O2 as a sole 

oxygen source (Tarasov et al., 2004). Other oxidative agents that have been used in 

oxidative damage studies reported in the literature include paraquat, menadione and 

tert-butyl hydroperoxide (tBHP). tBHP was used in oxidative damage studies with 

Pseudomonas aeruginosa (Ochsner et al., 2000) and, in preliminary experiments 

performed in this study, tBHP was found to give reliable and reproducible results.  

 

A preliminary experiment was performed to estimate the quantity of tBHP necessary to 

induce measurable cell death. Exponentially growing R. erythropolis SQ1 cells were 

washed in saline and resuspended to approximately 1×109 CFU/ml. They were then 

exposed to an increasing concentration of tBHP in the 1 to 600 mM range. After 

5 minutes, the cells were diluted by serial dilution (hence also diluting tBHP) and plated 

in triplicate on LB agar in order to obtain viable plate counts (Figure 3.11). 400 mM of 

tBHP gave a drop in culturability of approximately 3 logs, which was deemed adequate 

for the purpose of further experiments. 
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Figure 3.11. Effect of increasing concentrations of tBHP on exponentially growing 
R. erythropolis SQ1 cells.  
At each concentration approximately 1×109 CFU/ml was treated with tBHP for 5 min 
and then plated in triplicate. No growth was observed at 500 and 600 mM tBHP. 
Results presented are that of one experiment. 
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Having established the concentration of tBHP required to induce oxidative stress, the 

effect of carbon starvation on oxidative stress resistance was investigated. 

CDM IIA 0.1 % glucose was chosen as the growth medium for this experiment in order 

to ensure that the growth limiting factor was the carbon and energy source. Flasks 

containing 100 ml of medium were inoculated at a cell density of 0.01 OD600nm with 

exponential phase (24 h) cultures and incubated at 27 °C with 200 rpm agitation. 

Samples were taken at 48 and 144 hours (2 and 6 days), corresponding to exponentially 

growing and early stationary phase cultures, respectively. In order to investigate the 

protection afforded by carbon limitation to oxidative stress, the time points for the 

shock were chosen according to the glucose concentration of the medium, as illustrated 

previously in Figure 3.7 as days 2 and 6 – at day 2 when the culture is in exponential 

phase and glucose is still plentiful, while day 6 corresponds to 24 hours before 

exhaustion of glucose from the medium.  

 

The exponential and early stationary phase samples taken above were aliquoted, washed 

and adjusted to 1×106 CFU/ml in saline, as described in Chapter II. Aliquots were then 

subjected to oxidative shock by the addition of tBHP at a final concentration of 400 mM 

and samples were incubated at 27 °C and under agitation. The percentage survival of 

the cells was then determined from viable plate counts in which samples were diluted in 

saline and plated in triplicate on LB agar. Percentage survival was calculated as 

percentage of the viable count of cells that had been removed from the reaction vessel 

prior to addition of tBHP. 

 

To investigate whether the extent of cross-protection induced could be reduced by 

inhibiting protein synthesis, the cultures challenged were also incubated for 2 hours 

with 40 µg ml−1 chloramphenicol. Immediately after sampling and dilution, two 
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aliquots for each time point were incubated at 27 °C – one aliquot was treated with 

chloramphenicol, whereas the other was not. This concentration was selected as it is the 

one at which R. erythropolis SQ1 growth is inhibited, thus ensuring that protein 

synthesis is inhibited. Oxidative stress was then performed as described above. 

 

At all time points early stationary phase (6 days) R. erythropolis SQ1 cultures were 

found to be more resistant to oxidative stress than exponential phase (2 days) cultures, 

indicating that carbon starvation induced oxidative stress resistance in R. erythropolis 

SQ1 (Figure 3.12). At 10 minutes of exposure, early stationary phase cultures 

demonstrated 40 % survival in comparison with only 7 % survival for exponential phase 

cultures. After 15 minutes of exposure to oxidative stress, no exponential phase cells 

survived, in contrast to 20 % survival for the early stationary phase culture. 

 

In contrast to the results obtained for the heat shock experiment, resistance to oxidative 

stress was transitorily decreased by treatment with chloramphenicol (Figure 3.12). This 

effect could be seen only after 5 minutes of oxidative stress; there was no significant 

difference in percentage survival between chloramphenicol-treated and untreated cells 

at 10 and 15 minutes. At 5 minutes, the percentage survival was reduced from 48 (no 

chloramphenicol treatment) to 26 % (chloramphenicol-treated) for exponential phase 

cultures, and from 63 (no chloramphenicol treatment) to 45 % chloramphenicol-treated) 

for stationary phase cultures. The same observation was repeatedly made in four 

independent experiments. 
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Figure 3.12. Survival of R. erythropolis SQ1 subjected to oxidative stress (400 mM 
tBHP) with and without exposure to 40 µg ml−1 chloramphenicol.  
■, ; ■, exponential phase R. erythropolis SQ1 culture treated with chloramphenicol; ▲, 
early stationary phase R. erythropolis SQ1 culture; ▲, early stationary phase 
R. erythropolis SQ1 culture treated with chloramphenicol. 
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Chapter IV 
Random Transposon Mutagenesis of 

R. erythropolis SQ1 and Genomic 
Analysis of the Mutants 
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Mutagenesis, both random and site-directed, is an essential tool in the functional 

analysis of microbial genomes. Many biochemical pathways and mechanisms have been 

elucidated by studying mutants. An example is the histidine synthesis pathway of 

E. coli (Haas et al., 1952). In the context of understanding starvation survival, 

mutagenesis strategies have been used in Listeria monocytogenes (Herbert & Foster, 

2001), Staphylococcus aureus (Watson et al., 1998a) and Mycobacterium smegmatis 

(Keer et al., 2000), amongst others. These studies used random mutagenesis based on 

transposons. Transposon mutagenesis provides many advantages over other 

mutagenesis methods. Most transposon systems will allow only one insertion to take 

place at a time, therefore disabling a single gene or a limited area of the genome (Berg 

et al., 1983). This is in contrast to physical (UV) or chemical methods (e.g. with 

methoxylamine or N′-methyl-N′-nitro-N-nitrosoguanidine) that affect the entirety of the 

genome. The transposon used to disrupt the target DNA also usually contains an 

antibiotic resistance gene, so that mutants are easily selected. Since the sequence of the 

transposon is known, it also allows for recovery of the flanking sequences by various 

PCR methods. One drawback is that the insertion of the transposon is influenced by the 

target sequence, e.g. in vitro the transposon Tn5 inserts preferentially in G+C-rich areas 

of the genome (Herron et al., 2004).  

 

Transposon mutagenesis has been reported for a number of Rhodococcus species. 

Mutagenesis using a modified Himar1 transposon has been reported for R. equi (Ashour 

& Hondalus, 2003). pTNR, based on IS1415, was used to mutagenise R. erythropolis, 

R. fascians, R. rhodochrous and R. ruber (Sallam et al., 2006). Transposon mutagenesis 

based on the use of the Ez:Tn<KAN-2>Tnp transposome from Epicentre has been 

reported for a number of Rhodococcus species. In this commercial system, the 

transposome consists of the 19 bp inverted repeat sequences of Tn5 and the Tn903 
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kanamycin resistance gene as a complex with the Tn5 transposase. The transposome is 

ready to be electroporated into the bacterial cell, where the intracellular Mg2+ activates 

the transposase. The Ez::Tn5 transposon is then inserted randomly into the genome. 

Due to the fact that the Ez::Tn5 DNA is not on a carrier plasmid, nor is it an intact 

transposon, introduction of multiple copies in the genome is limited and indeed unlikely 

(Goryshin & Reznikoff, 1998). To date, the use of the EZ::Tn5 transposome has been 

reported for mutagenesis of Rhodococcus rhodochrous CW25, Rhodococcus 

erythropolis KA2-5-1 and Rhodococcus equi ATCC 33701 (Fernandes et al., 2001; 

Mangan & Meijer, 2001; Tanaka et al., 2002). This transposome system was therefore 

chosen in this study to generate a mutant bank of R. erythropolis SQ1 for the purpose of 

isolating carbon starvation or stationary phase survival mutants.  
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4.1. Generation of a mutant bank of R. erythropolis SQ1 

The protocol described by Tanaka et al. (2002) was used for mutagenesis of 

R. erythropolis SQ1 with EZ::TN<KAN-2>Tnp and resulted in a mutant bank of 898 

mutants. This protocol was selected over others because growth of R. erythropolis SQ1 

in LB supplemented with glycine, as performed by Fernandes et al. (2001) and Mangan 

& Meijer (2001) was extremely unpredictable and impeded the production of competent 

cells. Growth could be very quick or plateau around OD600nm 0.5, and it was not 

possible to predict whether growth would be fast or slow. A transformation efficiency 

of 4.5×104 mutants µg−1 of transposome DNA was obtained, which compares 

favourably with the efficiencies reported in the literature of 3×104 mutants µg−1 for 

R. equi (Mangan & Meijer, 2001) and 7.5×104 mutants µg−1 for R. rhodochrous 

(Fernandes et al., 2001). A higher efficiency of 2.3×106 mutants µg−1 was reported for 

R. erythropolis KA2-5-1 (Tanaka et al., 2002), possibly explained by the lower 

concentration of kanamycin used to select for mutants (100 µg ml−1 in contrast to 

200 µg ml−1 in this study). A higher kanamycin concentration of 200 μg ml−1 was 

needed for R. erythropolis SQ1 in order to avoid isolation of spontaneously resistant 

mutants. The isolation of spontaneous resistant mutants below 400 µg ml−1 kanamycin 

was reported for R. rhodochrous by Fernandes et al. (2001). 

 

In order to ensure that resistance to kanamycin was due to insertion of the Tn903 

kanamycin resistance gene in the genome of R. erythropolis SQ1, primers KANR-FP 

and KANR-RP were designed to amplify the kanamycin resistance gene in its entirety. 

A PCR amplification product of 816 bp would be expected. The plasmid pRE-7 (Zheng 

et al., 1997), which contains the Tn903 kanamycin resistance gene, was used as a 

positive control. Agarose gel electrophoresis of the PCR products obtained from 20 

randomly selected mutant colonies revealed a band of approximately 800 bp 



126 

(Figure 4.1). This confirms the insertion of the transposome DNA in the Rhodococcus 

genome. No spontaneously kanamycin-resistant mutants were obtained. In total 898 

kanamycin-resistant colonies were obtained. 
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Figure 4.1. Agarose gel (0.8 %) electrophoresis of the PCR products using KANR-
FP and KANR-RP, designed to the Tn903 kanamycin resistance gene.  
Lane 1, 2-log ladder (New England Biolabs); lane 2, negative control (no DNA); lane 3, 
positive control (pRE-7); lane 4, mutant 1; lane 5, mutant 2. 
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4.2. Mutant screening strategy 

The mutant bank generated by transposon insertion was screened for mutants affected 

in stationary phase survival or recovery. This was done following the method detailed 

by Uhde et al. (1997). Following electroporation, each colony growing on LB agar 

supplemented with 200 µg ml−1 kanamycin was inoculated in an individual well of a 

microtitre plate containing 200 µl kanamycin-supplemented LB broth; 898 mutants 

were obtained in total. After overnight incubation at 27 °C, the mutants were transferred 

to a fresh microtitre plate using 96-prong replicators, and the original plate was frozen 

at −80 °C as the master stock. The mutants were again allowed to grow overnight 

before inoculating microtitre plates containing chemically defined medium CDM IIA 1 

and 0.1 % glucose for stationary phase survival and recovery screening. Cultures were 

never allowed to enter stationary phase except for specific experiments. The mutants, 

while still in mid-exponential phase, were spotted on LB agar using 96-prong 

replicators; it was obvious after 48 h growth that important changes had occurred. The 

extent of growth on agar varied widely from less than 1 mm to approximately 10 mm in 

diameter. The shape varied slightly, flat growth in particular was observed (Figure 4.2). 

To facilitate the description and the screening of the mutants, they were classified at this 

stage in five categories, based on appearance of growth on solid medium (Table 4.1). 
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Table 4.1. Classification of R. erythropolis SQ1 mutants on the basis of appearance 
of growth on agar plates when spotted from microtitre plates. 
 

 

Group of mutants Characterisation of growth 

α Identical or similar to wild-type R. erythropolis SQ1, rough and 

matt, slight variation in size and appearance of edge, 

approximately 2 mm diameter 

β Extensive growth, rough and matt, thinning towards edge 

(mycelial-like), serrated edges, approximately 10 mm diameter 

γ Less growth than wild-type, smooth and shiny, very often 

irregular shape and well-defined edges, 1 to 2 mm diameter 

δ Slow growing, appearance often variable, less than 1 mm 

diameter 

ε Increased/decreased pigmentation 
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Figure 4.2. Appearance of mutants growing on CDM IIA 1 % glucose agar.  
The class of each mutant is indicated on each photo. Growth on LB agar is identical to 
that on CDM II agar. wt, Wild-type. 
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The appearance of β mutants on solid medium generally remained constant, in that once 

the phenotype was observed; it was then reproduced and was not a transitory phase. The 

growth characteristics observed were also the same whether the mutants were spotted or 

streaked on agar. The same appearances were observed on CDM II 1 % glucose agar 

and LB agar. Streaking of mutants on plates also showed that the populations were 

homogeneous. 

 

To investigate whether the appearance of growth on agar correlated with a change in the 

appearance of growth in broth, mutants of each category were picked from CDM II 1 % 

agar plates and inoculated into CDM II 1 % glucose broth. Appearance of growth is 

noted in Table 4.2. The only obvious differences from the wild-type were observed with 

mutants of type β, which aggregated in broth compared to the wild-type R. erythropolis 

SQ1. This may possibly be due to a change in the hydrophobicity of the cell membrane. 

The same appearance was observed with mutants picked from LB agar plates.  
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Growth in liquid medium (CDM II 1 % glucose broth) when 

transferred from CDM II 1 % glucose agar 

Class of 

mutants 

24 h incubation 48 h incubation >96 h incubation 

α Small aggregates (less 

than 0.5 mm) 

Predominantly 

homogenous growth 

Predominantly 

homogenous growth 

β Aggregates (up to 

1 mm diameter) 

Aggregates (up to 

1 mm diameter) 

Aggregates (up to 1 mm 

diameter) 

γ Homogenous growth Homogenous growth Homogenous growth 

δ ND ND ND 

ε Small aggregates (less 

than 0.5 mm) 

Predominantly 

homogenous growth 

Predominantly 

homogenous growth 

 

Table 4.2. Appearance of growth of the different classes of mutants in liquid 
CDM II 1 % glucose. ND, not determined. 
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In order to screen the mutant bank for stationary phase and carbon starvation survival 

mutants, the 898 mutants were cultured for up to three weeks in microtitre plates 

containing CDM II 1 % glucose and CDM II 0.1 % glucose at 27 °C, following an 

adaptation of the protocol used by Uhde et al. (1997) (see Chapter II). The reasoning 

was that comparison of the growth patterns of R. erythropolis SQ1 mutants in 

CDM II 1 % glucose and 0.1 % glucose would reveal mutants that, for example, could 

survive stationary phase after growth in low-carbon medium but not high-carbon, and 

vice-versa. Following 1, 8, 14 and 22 days of incubation in the microtitre plates, a 

replica of each plate was made on LB agar and incubated at 27 °C. After 48 h 

incubation (for the 1, 8 and 14 day samples) or 96 h incubation (for the 22 day samples) 

the mutants were classified according to the system described in Table 4.1 and the 

results recorded. Growth on plates was observed after 4 days for 22 days samples 

because growth occurred more slowly at that time point, as judged by observation of the 

wild-type growth in well A1 of each plate. A summary of the results is presented in 

Table 4.3. 

 

It is interesting to note that in CDM 1 % glucose, the number of class δ mutants 

remained almost constant, whereas the mutant classes β, ε and γ increased over time. 

This is particularly so for γ mutants, increasing from 28 at 24 h to 58 at 14 days. Similar 

observations were made for CDM 0.1% glucose; the number of γ mutants increased 

from 3 to 54 from day 1 to 14. In addition, the δ mutants increased in number from 8 to 

27. Four pigmentation mutants were also observed. Three were white and one was 

orange, instead of the salmon colour of R. erythropolis SQ1. 

 

Nine mutants consistently failed to form colonies on LB agar, in contrast with the 

mutants above that failed to grow on agar only transitorily. An attempt to culture them 
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in LB broth failed. They presumably have an insertion in a biosynthetic pathway, the 

product of which is not provided by LB or CDM. 
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Incubation time Growth 
medium 

Mutant 
class 1 day 8 days 14 days 22 days* 

      

α 829 804 763 767 

β 0 22 26 29 

γ 28 40 58 53 

δ 19 17 18 20 

ε 0 4 4 10 

CDM 1 % 
glucose 

No growth 22 11 29 21 

      

α 866 800 765 781 

β 0 27 27 29 

γ 3 42 54 51 

δ 8 12 27 19 

ε 0 2 2 3 

CDM 0.1 % 
glucose 

No growth 21 15 23 17 

      

 

Table 4.3. Summary of the results of the mutant bank screening experiment.  
At each time point indicated, the mutants grown in microtitre plates were duplicated 
onto LB agar. After 2 days of growth (4 days for 22-day samples), each mutant was 
scored and the score recorded. 

*Total number for this time point is 900, this is due to mutants 4C7 and 9A3 being 
classified as γ and ε simultaneously, i.e. their growth is similar to γ with in addition an 
altered pigmentation; 4C7 is orange whereas 9A3 is white. 
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Sixteen mutants, exhibiting weak or no growth in at least one stage of screening, were 

selected for further study. Detailed results of the stationary phase/carbon starvation 

screening for these mutants are shown in Table 4.4. It was expected that stationary 

phase survival mutants would grow at day 1 and maybe day 8, and then die out (see 

mutant 3F5). It was also expected that mutants that are deficient in glucose-sensing 

mechanisms, for example, would die quickly in CDM 0.1 % glucose, since they would 

not adapt to the low-energy conditions. Auxotrophic mutants were not expected to grow 

in either 1 or 0.1 % glucose medium.   
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Extent of growth at various time points 

CDM 1 % glucose CDM 0.1 % glucose Mutant 

1 d 8 d 14 d 22 d 1 d 8 d 14 d 22 d 

1B2 WT ++ WT ++ WT WT + WT 

1B3 + WT + + WT WT + + 

1H1 WT WT WT WT WT WT + WT 

3B4 − + − − WT WT − + 

3B10 − + − − − + − − 

3F5 WT + − − + + − + 

4G6 WT ++ ++ WT WT WT + WT 

4G11 + WT − + WT WT + + 

5C11 WT WT WT WT WT WT + + 

5F8 − WT + − + − + − 

6B2 WT WT WT + WT + + + 

6E6 − WT − + WT WT − + 

8B7 + WT WT WT WT + + + 

10D3 ++ ++ ++ ++ WT WT + WT 

10E1 + WT + WT WT WT + + 

10E4 + + + + + + + + 

 

Table 4.4. Results of screening of selected mutants.  
Detailed results for 16 mutants, selected for further study, from the mutant bank 
stationary phase/carbon starvation screening experiment. Mutants were grown in 
microtitre plates and plated on LB agar. Growth was observed at 2 days after plating 
(4 days for 22-day samples). WT, wild-type growth; ++, intermediate growth; +, weak 
growth; −, no growth was observed. 
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4.3. Growth curves of selected mutants in chemically defined 

medium 

The growth of wild-type R. erythropolis SQ1 was compared with that of mutants. The 

16 mutants described in Table 4.4 were further investigated by cultivation in glass 

flasks, as was described previously for wild-type R. erythropolis SQ1. Briefly, an 

inoculum of the mutant culture was taken from the stock microtitre plate (LB + 

kanamycin) and inoculated in LB broth (10 ml in a universal). After overnight growth, 

this culture was used to inoculate 100 ml CDM IIA 1 % and 0.1 % glucose in a 500 ml 

conical flask to 0.01 OD600nm. Samples were taken at regular intervals. The OD600nm and 

viable plate counts were measured at regular intervals. Viable plate counts were 

determined by serial dilution and plating on LB agar, as described previously. Four 

mutants, 4G6, 10D3, 1B2 and 1H1 were found to behave differently from the wild-type. 

 

As can be seen from Figure 4.3, mutants 4G6 and 10D3 did not survive well during 

prolonged stationary phase. Mutant 4G6 grown in CDM IIA 1 % glucose reached a 

maximum cell density of 6.7×109 CFU/ml at 3 days, with a subsequent steady decrease 

in culturability until day 27, when cell counts of 7.6×105 CFU/ml were obtained 

(0.01 % survival compared to maximum) (Figure 4.3a). No drop in culturability was 

observed for mutant 4G6 grown in CDM IIA 0.1 % glucose, but the cell densities 

obtained were consistently lower than those of the wild-type R. erythropolis SQ1.  

 

Mutant 10D3 grown in CDM IIA 1 % glucose (Figure 4.3b) reached a maximum of 

5.5×109  CFU/ml at 12 days, showing that it probably grows slower than wild-type 

(maximum of 6.3×109 CFU/ml at 4 days). The viable cell density then decreased to 
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5.1×106 CFU/ml (0.1 % survival) at 27 days. When grown in CDM IIA 0.1 % glucose, 

mutant 10D3 appeared to behave as wild-type R. erythropolis SQ1. 

 

In contrast, only a modest decrease in culturability could be observed for mutants 1B2 

and 1H1 in comparison with wild-type R. erythropolis SQ1 when grown in 

CDM IIA 1 % glucose (Figure 4.4). For mutant 1B2, culturability dropped to 

approximately 1×108 CFU/ml at 20 days then remained constant. For mutant 1H1, 

culturability remained similar to wild-type until 27 days, when it dropped to 

1×108 CFU/ml. No significant decrease in culturability was observed when the mutants 

were grown in CDM IIA 0.1 % glucose. 

 

 

 



140 

(a) 

 
(b) 

 
 
 
Figure 4.3. Growth curves of mutants 4G6 (a) and 10D3 (b) compared to wild-type 
R. erythropolis SQ1. Data are from two separate experiments, plated in triplicate. 
Closed symbols, CDM IIA 1% glucose; open symbols, CDM IIA 0.1% glucose. ■ and 
□, wild-type R. erythropolis SQ1; ▲ and , mutants 4G6 (a) and 10D3(b). 
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(a) 

 
(b) 

 

Figure 4.4. Growth curves of mutants 1B2 (a) and 1H1 (b) compared to wild-type 
R. erythropolis SQ1. Data are from two separate experiments, plated in triplicate. 
Closed symbols, CDM IIA 1% glucose; open symbols, CDM IIA 0.1% glucose. ■ and 
□, wild-type R. erythropolis SQ1; ▲ and , mutants 1B2 (a) and 1H1(b). 
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4.4. Identification of genes and functions disrupted by 

transposon insertion 

The strategy used for obtaining the sequence of the DNA flanking the inserted 

transposon in any particular mutant was based on restriction and religation of the 

genomic DNA, followed by inverse PCR. Total genomic DNA was purified from the 

mutants as described in Chapter II and restricted using a panel of restriction 

endonucleases. The DNA from each restriction reaction was religated. A fraction of the 

religated DNA should carry the transposon. The DNA flanking the transposon was then 

amplified by inverse PCR using primers KAN-2_FP-1 and KAN-2_RP-1 (provided in 

the transposon kit, Epicentre Biotechnologies), that are specific to the 3′ and 5′ ends of 

the transposon, respectively, and designed to amplify DNA upstream and downstream 

of the kanamycin resistance gene (Figure 4.5). The amplicons were then cloned into 

pCR2.1 (Invitrogen) and sequenced using the M13 forward and reverse primers, 

specific to areas of the vector that are adjacent to the cloned sequence. 
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Figure 4.5. Principle of recovering DNA flanking a transposon insertion site by 
inverse PCR (iPCR). In this example NarI has been arbitrarily selected as the 
restriction endonuclease for restriction of the genomic DNA in the first step. 
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Mutants selected by the screening strategy described above were grown in LB broth and 

their genomic DNA isolated for characterisation of the sequence disrupted by 

transposon insertion. Since it is not possible to predict which restriction endonuclease 

will yield a fragment that can be religated and amplified by iPCR, it is important in the 

first instance to restrict the genomic DNA using a range of restriction enzymes. For 

instance, using mutant 1H1 as an example, although EcoRI cuts the genomic DNA 

efficiently (Figure 4.6), iPCR products were only obtained for religated SalI-, BamHI- 

and BclI-digested DNA. These products were of approximately 200 bp, 1 and 8 kb, 

respectively (Figure 4.7). Therefore, for all the mutants investigated the first step of the 

analysis involved treating the genomic DNA with a range of restriction endonucleases, 

followed by religation and iPCR. 

 

The iPCR amplification products of an appropriate size (0.2–8 kb) were then selected 

for cloning into the vector pCR2.1 using the TA cloning system (Invitrogen) and 

subsequent sequencing. The pCR2.1 vector is designed with binding sites for the 

primers M13 uni (−21) and M13 rev (−29) on either side of the cloning site, which can 

be used to verify the presence of inserted DNA by PCR and for sequencing the cloned 

DNA. 
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Figure 4.6. Total genomic DNA from mutant 1H1 subjected to restriction 
endonucleases and analysed by agarose gel electrophoresis. Lane 1, 2-Log DNA 
ladder (New England Biolabs); Lanes 2-6, DNA restricted by BclI, EcoRI, SalI, BamHI 
and BglII, respectively. Sizes of the molecular weight standards are shown on the left. 
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Figure 4.7. Agarose gel electrophoresis of DNA products of inverse PCR on 
religated DNA from mutant 1H1. Lane 1, 2-log DNA ladder; lanes 2-6, template was 
DNA restricted by EcoRI, SalI, BamHI, BclI and BglII, and religated prior to iPCR. 
Sizes of the molecular weight standards are shown on the left. 
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For all mutants analysed, the DNA sequence of the cloned insert was determined using 

M13 uni (−21) and M13 rev (−29) primers. The resulting data was processed and 

analysed using the bioinformatic suite Vector NTI (Invitrogen) and online resources 

such as BLASTX and BLASTP at the NCBI (http://www.ncbi.nlm.nih.gov). The first 

step in analysing the products obtained by inverse PCR was to reconstruct the sequence 

by firstly identifying the restriction site for the endonuclease used to prepare the DNA 

template for iPCR and secondly by locating the transposon insertion site. Only the 

sequences between the restriction sites (if available) and the transposon insertion site 

were retained. The reverse complement of one of the two sequences was then generated 

and the two sequences amalgamated by joining at the transposon insertion site, thereby 

reconstructing the transposon insertion site and enabling analyses of the disrupted 

sequence.  

 

 

 

http://www.ncbi.nlm.nih.gov/�


148 

4.4.1. Nucleotide excision repair mutant 4G6: uvrB mutant 

Genomic DNA from mutant 4G6 was isolated, restricted with a range of enzymes and 

then religated to perform iPCR. A 1.7 kb PCR amplification product was obtained from 

BclI-restricted template DNA, which was then cloned and sequenced as described 

earlier, yielding a sequence of 1671 bp. The sequence was examined for the presence of 

a 9 bp repeat sequence, a characteristic of Tn5 transposon insertion (Berg et al., 1983). 

In mutant 4G6 there is slight variation in the 9 bp sequence upstream and downstream 

of the transposon. Alignment of the two sequences is thus: 

 

 It can be seen that 2 out of 9 bp are different, at positions 1 and 5. Note that two 

guanines in the upstream sequence are replaced with two cytosines downstream. This 

did not result in any difference for the open reading frame search; the same ORFs were 

identified regardless of which of the 9 bp sequence was retained in the reconstructed 

sequence (Figure 4.8). It should be noted that in all the other mutants analysed 

(described later in this chapter), the repeat sequences are identical. 

 

Eight putative ORFs were identified in the 1671 bp sequence obtained (Figure 4.8). The 

ORFs were then analysed by comparison with the non-redundant protein database at 

NCBI using BLASTX. BLASTX translates the sequences in the six frames then 

searches the protein database against them; the bacterial genetic code was used for the 

translation. The most significant result (E-values <1×10−33) were for ORF 8 and ORF 4 

(Table 4.5). This was corroborated by performing a BLASTP search on all ORF frames. 

ORF 4 was found to be similar to an hypothetical protein from Rhodococcus sp. RHA1 

and several Mycobacterium species. The protein predicted for ORF 8 was found to 

possess 73 % amino acid identity to the 350 C-terminal amino acids of UvrB 
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(excinuclease ABC subunit B) (Figure 4.9). UvrB is typically a protein of 673–721 

amino acids (e.g. 673 and 698 amino acids for M. tuberculosis and E. coli, respectively) 

(Arikan et al., 1986; Darwin et al., 2003). It seems therefore that the sequence obtained 

for mutant 4G6 corresponds to the 3′ end of the uvrB gene. 
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Open reading frame Position Strand Size 

ORF 1 3–329 Sense 327 bp 

ORF 2 50–679 Sense 630 bp 

ORF 3 52–408 Sense 357 bp 

ORF 4 25–576 Antisense 552 bp 

ORF 5 350–757 Antisense 408 bp 

ORF 6 705–1301 Antisense 597 bp 

ORF 7 1126–1587 Sense 462 bp 

ORF 8 598–1632 Antisense 1035 bp 

 

Figure 4.8. Schematic representation of the 1671 bp sequence retrieved for mutant 
4G6. The BclI restriction sites used to retrieve the sequence are shown, as well as the 
transposon insertion site and putative open reading frames. Size, position and strand of 
the ORFs identified in the sequence are shown in the table.  
ORFs were identified with the ORF Finder function of Vector NTI (Invitrogen, 
http://www.invitrogen.com). 
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Organism Protein Score 

ORF 4   

Rhodococcus sp. RHA1 Hypothetical protein RHA1_ro00975 6×10−65 

Saccharopolyspora erythraea 

NRRL 2338 

Hypothetical protein SACE_2169 2×10−43 

Streptomyces coelicolor A3(2) Hypothetical protein SCO6745 1×10−34 

Mycobacterium sp. JLS Hypothetical protein Mjls_2552 4×10−33 

Mycobacterium sp. MCS Hypothetical protein Mmcs_2515 4×10−33 

ORF 8   

Rhodococcus sp. RHA1 Excision nuclease ABC subunit B 2×10−161

Mycobacterium gilvum PYR-GCK Excinuclease ABC, B subunit 8×10−144

Mycobacterium bovis BCG str. 

Pasteur 1173P2 

Excinuclease ABC subunit B uvrB 3×10−143

Nocardia farcinica IFM 10152 Excinuclease ABC subunit B 5×10−143

Mycobacterium tuberculosis 

CDC1551 

Excinuclease ABC subunit B 6×10−143

 

Table 4.5. BLASTX search results for ORF 4 and ORF 8. The genetic code was set 
to 11 (bacterial) and the search was performed on the non-redundant database. 
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                1                                                                   70 
SQ1         (1) ---------------------------------------------------------------------- 
RHA1        (1) MVGNLPGFQLTEIVGEFVGTCAYPGCMAFASEHPVV-----AHSEFRPIGEIERSEARFEVVSDHKPAGD 
Nocardia    (1) --------------------------MAFATEIPAEGETPLAHSEFRPVGAIERAEGRFQVVSEHQPAGD 
H37Rv       (1) ----------------------------------------------------MRAGGHFEVVSPHAPAGD 
PYR-1       (1) --------------------------MAFATEHPVL-----AHSEYRPVDEVVRSGARFEVVSEFEPAGD 
                71                                                                 140 
SQ1         (1) ---------------------------------------------------------------------- 
RHA1       (66) QPAAIADLERRINAGEKDVVLLGATGTGKSATTAWLIEKVQRPTLVMAPNKTLAAQLANELRDMLPNNSV 
Nocardia   (45) QPAAIDELERRIKAGEKDVVLLGATGTGKSATTAWLIERLQRPTLVMAPNKTLAAQLANELREMLPHNAV 
H37Rv      (19) QPAAIDELERRINAGERDVVLLGATGTGKSATTAWLIERLQRPTLVMAPNKTLAAQLANELREMLPHNAV 
PYR-1      (40) QPAAIDELERRIRAGEKDVVLLGATGTGKSATTAWLIERLQRPTLVMAPNKTLAAQLANELREMLPHNAV 
                141                                                                210 
SQ1         (1) ---------------------------------------------------------------------- 
RHA1      (136) EYFVSYYDYYQPEAYIAQTDTYIEKDSSINDDVERLRHSATSSLLSRRDVVVVASVSCIYGLGTPQSYLD 
Nocardia  (115) EYFVSYYDYYQPEAYIAQTDTYIEKDSSINDDVERLRHSATSSLLSRRDVVVVASVSCIYGLGTPQSYLD 
H37Rv      (89) EYFVSYYDYYQPEAYIAQTDTYIEKDSSINDDVERLRHSATSALLSRRDVVVVASVSCIYGLGTPQSYLD 
PYR-1     (110) EYFVSYYDYYQPEAYIAQTDTYIEKDSSINDDVERLRHSATSNLLSRRDVVVVASVSCIYGLGTPQSYMD 
                211                                                                280 
SQ1         (1) ---------------------------------------------------------------------- 
RHA1      (206) RSVQLEVGVEVPRDALLRLLVDVQYTRNDLAFTRGSFRVRGDTVEIIPSYEELAVRIEFFGDEIEALYYL 
Nocardia  (185) RSVQLEVGTEVDRDALLRLLVDVQYTRNDLSFTRGSFRVRGDTVEIIPSYEELAVRIEFFGDEIEALYYL 
H37Rv     (159) RSVELKVGEEVPRDGLLRLLVDVQYTRNDMSFTRGSFRVRGDTVEIIPSYEELAVRIEFFGDEIEALYYL 
PYR-1     (180) RSVELKVGDEVPRDGLLRLLVDVQYTRNDMAFTRGTFRVRGDTVEIIPSYEELAVRIEFFGDEIEELYYL 
                281                                                                350 
SQ1         (1) ---------------------------------------------------------------------- 
RHA1      (276) HPLTGDVVRKVDSVRIFPATHYVAGPERMERAVKDIEAELEERLADLEGKGKLLEAQRLRMRTQYDLEMI 
Nocardia  (255) HPLTGDVVRKVDTLRIFPATHYVAGPDRMERAVRDIEQELEERLAELERQGKLLEAQRLRMRTQYDLEMI 
H37Rv     (229) HPLTGEVIRQVDSLRIFPATHYVAGPERMAHAVSAIEEELAERLAELESQGKLLEAQRLRMRTNYDIEMM 
PYR-1     (250) HPLTGDIIRKVDSLRIFPATHYVAGPERMAQAISTIEAELEERLAELEGQGKLLEAQRLRMRTNYDIEMM 
                351                                                                420 
SQ1         (1) --------------------------------------------SRFLRSAPCTRAICRASETWSSSDFG 
RHA1      (346) KQVGFCSGIENYSRHIDGRGPGTAPATLIDYFPEDFLLVIDESHVTVPQIGAMYEGDMSRKRNLVEFGFR 
Nocardia  (325) RQVGFCSGIENYSRHIDGRPAGSAPATLLDYFPEDFLLVIDESHVTVPQIGGMYEGDMSRKRNLVEYGFR 
H37Rv     (299) RQVGFCSGIENYSRHIDGRGPGTPPATLLDYFPEDFLLVIDESHVTVPQIGGMYEGDISRKRNLVEYGFR 
PYR-1     (320) RQVGFCSGIENYSRHIDGRPAGSAPATLLDYFPEDFLLVIDESHVTVPQIGGMYEGDMSRKRNLVDFGFR 
                421                                                                490 
SQ1        (27) LPSATDNRPLTWEEFSQRIGQTVYLSATPGKYELGQSGGEFVEQVIRPTGLIDPEVIVKPTKGQIDDLVH 
RHA1      (416) LPSATDNRPLTWEEFTQRIGQTVYLSATPGKYELGQAGGEFVEQVIRPTGLVDPQVVVKPTKGQIDDLVH 
Nocardia  (395) LPSAVDNRPLTWEEFADRIGQVVYLSATPGPYELGRTGGEVVEQVIRPTGLVDPKVVVKPTKGQIDDLVH 
H37Rv     (369) LPSACDNRPLTWEEFADRIGQTVYLSATPGPYELSQTGGEFVEQVIRPTGLVDPKVVVKPTKGQIDDLIG 
PYR-1     (390) LPSAVDNRPLTWEEFADRIGQTVYLSATPGSYELSQSGGEFVEQVIRPTGLVDPQVVVKPTKGQIDDLIG 
                491                                                                560 
SQ1        (97) EIRERAERDERVLVTTLTKKMSEDLTDYLLELGIRVRYLHSDIDTLRRVELLRQLRLGEYDVLVGINLLR 
RHA1      (486) EIRERADRDERVLVTTLTKKMAEDLTDYLLELGIRVRYLHSDIDTLRRVELLRQLRLGEYDVLVGINLLR 
Nocardia  (465) EIRLRTERDERVLVTTLTKKMAEDLTDYLLGLGVRVRYLHSEIDTLRRVELLRQLRLGEYDVLVGINLLR 
H37Rv     (439) EIRTRADADQRVLVTTLTKKMAEDLTDYLLEMGIRVRYLHSEVDTLRRVELLRQLRLGDYDVLVGINLLR 
PYR-1     (460) EIRKRTERDERVLVTTLTKKMAEDLTDYLLEMGIRVRYLHSEVDTLRRVELLRQLRLGEYDVLVGINLLR 
                561                                                                630 
SQ1       (167) EGLDLPEVSLVAILDADKEGFLRSSTSLIQTIGRAARNVSGQVHMYADKITASMAQAIEETERRREKQVA 
RHA1      (556) EGLDLPEVSLVAILDADKEGFLRSSTSLIQTIGRAARNVSGQVHMYADKITDSMQHAIEETERRREKQIA 
Nocardia  (535) EGLDLPEVSLVAILDADKEGFLRSSTSLIQTIGRAARNVSGEVHMYADKITDSMQFAIEETERRRAKQIA 
H37Rv     (509) EGLDLPEVSLVAILDADKEGFLRSSRSLIQTIGRAARNVSGEVHMYADKITDSMREAIDETERRRAKQIA 
PYR-1     (530) EGLDLPEVSLVAILDADKEGFLRSPRSLIQTIGRAARNVSGEVHMYADKMTDSMKQAIDETERRRAKQTA 
                631                                                                700 
SQ1       (237) YNEKMGVDPQPLRKKIADILDQVYEEAEDTAASVDVG--GSGRNATRGRRAQGEAGRAVSAGVYEGRDTK 
RHA1      (626) YNEKMGVDPQPLRKKIADILDQVYEEAEDTASGVDVG--GSGRNATRGRRAQGEAGRSVSAGVYEGRDTK 
Nocardia  (605) YNEKMGIDPKPLRKKIADILDQVYREADEVEVGG------SGRNASRGRRAQGEPGRAVSAGVIEGRDVK 
H37Rv     (579) YNEANGIDPQPLRKKIADILDQVYREADDTAVVE---VGGSGRNASRGRRAQGEPGRAVSAGVFEGRDTS 
PYR-1     (600) YNKEHGIDPKPLRKKIADILDQVYREADDTEAAESVPIGGSGRNASRGRRAQGEPGRAVSAGVFEGRDTS 
                701                                               753 
SQ1       (305) SMPRAELADLVKELTGQMMNAARDLQFELAGRLRDEISDLKKELRGMDAAGLK 
RHA1      (694) SMPRAELADLVKELTNQMMNAARDLQFELAGRLRDEIADLKKELRGMDAAGLK 
Nocardia  (669) SMPRAELADLVTELTAQMMNAARELQFELAGRLRDEIADLKKELRGMDAAGLS 
H37Rv     (646) AMPRAELADLIKDLTAQMMAAARDLQFELAARFRDEIADLKRELRGMDAAGLK 
PYR-1     (670) NMPRAELADLIKDLTAQMMAAARDLQFELAARIRDEIADLKKELRGMDAAGLK 

 
 
Figure 4.9. Alignment of the putative UvrB sequence from R. erythropolis SQ1 
with sequences from Rhodococcus sp. RHA1, Nocardia farcinica IFM 10152, M. 
tuberculosis H37Rv and M. vanbaalenii PYR-1. Grey background, >50 % identity; 
green background, identical residues. 
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The nucleotide excision repair pathway is ubiquitous in all organisms (Eisen & 

Hanawalt, 1999), of which UvrB is an important subunit. UvrA and UvrB function, in 

E. coli, as a complex to identify conformational defects caused by DNA damage, by 

moving randomly along the DNA. The DNA conformation is changed by ATP 

hydrolysis and binding of UvrB to the DNA, with subsequent release of UvrA from the 

complex. UvrC will then attach to the DNA–UvrB complex and nick the DNA on either 

side of the lesion; the DNA–UvrB–UvrC complex is released by a helicase II. The gap 

is then filled by the DNA polymerase I (Lodish et al., 2000). M. tuberculosis uvrB 

transposon mutants were found to be hypersensitive to nitric oxide and UV light 

(Darwin et al., 2003). These UvrB mutants were also found to be less virulent in mice 

than wild-type strains (Darwin & Nathan, 2005). Interestingly, M. tuberculosis uvrB 

mutants were shown to reach the same cell density as wild-type when grown in 

Middlebrook 7H9 broth supplemented with 0.2 % glycerol, 0.05 % Tween-80, 0.5 % 

bovine serum albumin, 0.2 % dextrose and 0.085 % sodium chloride (Darwin et al., 

2003). Although further work showed that ABC excision repair has a role in the 

pathogenesis of M. tuberculosis (Darwin & Nathan, 2005), and in particular in the 

resistance to nitric oxide, it is not known whether uvrB mutants can survive long-term 

starvation. 

 

In order to understand the genetic context of this transposon insertion in mutant 4G6, 

the arrangement of genes coding for the elements of the nucleotide excision repair 

pathway (uvrA–D) was investigated in Rhodococcus RHA1, M. tuberculosis CDC1551 

and H37Rv, Nocardia farcinica IFM10152 and E. coli K12 using the genome 

visualisation program BacMap (Stothard et al., 2005), available at 

http://wishart.biology.ualberta.ca/BacMap. It should be noted that Rhodococcus RHA1 

(McLeod et al., 2006) and R. equi 103 (www.sanger.ac.uk/Projects/R_equi/) represent 

http://wishart.biology.ualberta.ca/BacMap�
http://www.sanger.ac.uk/Projects/R_equi/�
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the only sequenced Rhodococcus genomes to date. It was found that in the genomes the 

uvr genes are not organised in an operon, but rather are distributed across the genome of 

all these species. A putative ORF was identified downstream of uvrB in R. erythropolis 

SQ1 that is very similar to ORF RHA1_ro00975 in Rhodococcus RHA1, but both are of 

unknown function. In other organisms a variety of genes are found downstream of uvrB, 

e.g. the molybdenum cofactor biosynthesis protein in E. coli K12 or the puromycin 

resistance protein in both M. tuberculosis CDC1551 and H37Rv. 
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4.4.2. Mutant with insertion downstream of putative IMP 

dehydrogenase gene guaB: mutant 10D3 

Mutant 10D3 was found to have a consistently weaker growth than wild type R. 

erythropolis SQ1 on all solid media tested (Section 4.1.2). Growth curves also showed 

that this mutant did not survive prolonged starvation in CDM IIA 1 % glucose, with the 

culturability dropping to 0.1 % of the maximum after 15 days in stationary phase. The 

genomic DNA was isolated and restricted with a panel of enzymes as previously 

described. iPCR yielded a 1.2 kb fragment from BclI-restricted genomic DNA, which 

was subsequently cloned and sequenced. A 1165 bp sequence was reconstructed and 

analysed for open reading frames (as described above), the results of which are shown 

in Figure 4.10. 

 

When the nucleotide sequence was analysed against the non-redundant database at the 

NCBI using BLASTX, a putative inositol-5′-monophosphate dehydrogenase (GuaB) 

was identified, encoded by ORF 4. Scores lower than 1×10−100 were obtained with 

GuaB from Rhodococcus RHA1, N. farcinica IFM10152 and several Mycobacterium 

species. This result was confirmed by running the translated product of all the ORFs 

identified against the non-redundant database using BLASTP. The putative protein 

sequence obtained by translation of ORF 4 is 221 amino acids long and is highly similar 

to GuaB from various organisms. For example, amino acid identities of 93, 88 and 85 % 

were obtained with the GuaB of Rhodococcus RHA1, N. farcinica IFM10152 and M. 

tuberculosis H37Rv. The alignment of the ORF 4 amino acid sequence with selected 

IMP dehydrogenases of high similarity shows clearly that the sequence obtained for 

mutant 10D3 represents the 3′ end of a putative guaB gene. Alignment of the available 

putative R. erythropolis SQ1 IMP dehydrogenase sequence with the corresponding 
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GuaB sequences returns an identity of 77 % for the 200 C-terminal amino acids (Figure 

4.11). 

 

The inositol-5′-monophosphate dehydrogenase (EC 1.1.1.205) catalyses the 

dehydrogenation of inosine 5′-monophosphate into xanthosine 5′-phosphate (Figure 

4.12). It is an essential step in the synthesis of guanosine 5′-phosphate (GMP). GMP 

then feeds directly into the synthesis of guanosine 5′-diphosphate (GDP), and from 

there into the synthesis of lipoarabinomannan, phosphatidylinositol mannosides and 

lipomannan (Yamazaki et al., 2006), and of course DNA. It is encoded by the gene 

guaB and is part of the guanine synthesis operon in E. coli (Vales et al., 1979). 
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Open reading frame Position Strand Size 

ORF 1 29–895 Sense 867 bp 

ORF 2 19–360 Antisense 342 bp 

ORF 3 459–875 Antisense 417 bp 

ORF 4 503–1165 Antisense 663 bp 

 
Figure 4.10. Schematic representation of the 1165 bp sequence retrieved for 
mutant 10D3. The BclI restriction sites used to retrieve the sequence are shown, as well 
as putative open reading frames predicted by ORF finder and the transposon insertion 
site. Size, position and strand of the ORFs identified in the sequence are shown in the 
table. 
ORFs were identified with the ORF Finder function of Vector NTI (Invitrogen, 
http://www.invitrogen.com). 
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                1                                                         60 
SQ1         (1) ------------------------------------------------------------ 
M.leprae    (1) MIRGMSNLKESSDFVASSYVRLGGLMDDPAATGGDNPHKVAMLGLTFDDVLLLPAASDVV 
Mycobact    (1) MSRGMSGLEDSSDLVVSPYVRMGGLTTDPVPTGGDDPHKVAMLGLTFDDVLLLPAASDVV 
Nocardia    (1) -----------------------------------------MLGLTFDDVLLLPAASDLI 
RHA1        (1) ----------------------MTSSAGHVHTGGDDPNKVAMLGLTYDDVLLLPAASNVI 
                61                                                       120 
SQ1         (1) ------------------------------------------------------------ 
M.leprae   (61) PATADISSQLTKKIRLKVPLVSSAMDTVTEARMAIAMARAGGMGVLHRNLPVGEQAGQVE 
Mycobact   (61) PATADTSSQLTKKIRLKVPLVSSAMDTVTESRMAIAMARAGGMGVLHRNLPVAEQAGQVE 
Nocardia   (20) PSSVETSSRLTREIRLRTPLVSSAMDTVTEARMAIAMARAGGMGVLHRNLSAADQAAQVE 
RHA1       (39) PGQVDTSSQLTRDIRLRVPLVSSAMDTVTEARMAIAMARAGGMGVLHRNLSVEAQAGQVE 
                121                                                      180 
SQ1         (1) ------------------------------------------------------------ 
M.leprae  (121) TVKRSEAGMVTDPVTCRPDNTLAQVGALCARFRISGLPVVDDSGALAGIITNRDMRFEVD 
Mycobact  (121) MVKRSEAGMVTDPVTCRPDNTLAQVDALCARFRISGLPVVDDDGALVGIITNRDMRFEVD 
Nocardia   (80) TVKRSEAGMVTDPVTCRPTDTLAEVDAMCARFRISGLPVVDETGALVGIITNRDMRFEVD 
RHA1       (99) TVKRSEAGMVTDPVTCKPSDTLAEVDAKCARFRISGLPVTDEAGQLVGIITNRDMRFEVD 
                181                                                      240 
SQ1         (1) ------------------------------------------------------------ 
M.leprae  (181) QSKQVAEVMTKTPLITAAEGVSADAALGLLRRNKIEKLPVVDGHGRLTGLITVKDFVKTE 
Mycobact  (181) QSKQVAEVMTKAPLITAQEGVSASAALGLLRRNKIEKLPVVDGRGRLTGLITVKDFVKTE 
Nocardia  (140) QNRRVADVMTKAPLITAQEGVTAEAALGLLRRHKVEKLPIVDGNGRLRGLITVKDFVKTD 
RHA1      (159) QNRAVSEVMTKAPLITAQEGVTAEVALGLLRRHKIEKLPIVDGQGKLTGLITVKDFVKTE 
                241                                                      300 
SQ1         (1) ------------------------------------------------------------ 
M.leprae  (241) QHPLATKDNDGRLLVGAAVGVGGDAWVRAMMLVDAGVDVLIVDTAHAHNRLVLDMVGKLK 
Mycobact  (241) QHPLATKDSDGRLLVGAAVGVGGDAWVRAMMLVDAGVDVLVVDTAHAHNRLVLDMVGKLK 
Nocardia  (200) QYPNATKDRDGRLLVGAAVGVGEDAWSRAMTLADAGVDVLVVDTAHGHQSQVLQMVAKVK 
RHA1      (219) QHPDATKDRDGRLLVGAAVGVGDEAWSRAMALTDAGVDVLVVDSAHGHSAGVLDMISKLK 
                301                                                      360 
SQ1         (1) --------IIGGNVATRAGALALVEAGVDAVKVGVGPGSICTTRVIAGVGAPQVTAILEA 
M.leprae  (301) VEIGDRVQVIGGNVATRSAAAALVEAGADAVKVGVGPGSTCTTRVVAGVGAPQITAILEA 
Mycobact  (301) SEVGDRVEVVGGNVATRSAAAALVDAGADAVKVGVGPGSICTTRVVAGVGAPQITAILEA 
Nocardia  (260) AEVGDRIQVVGGNIATRAGAAALVEAGADAVKVGVGPGSICTTRVVAGVGAPQITAILEA 
RHA1      (279) AEVDERVQIIGGNVATRSGAAALIEAGVDAVKVGVGPGSICTTRVIAGVGAPQITAILEA 
                361                                                      420 
SQ1        (53) VAACRPLGVPVIADGGLQFSGDIAKALAAGASTAMLGSLLAGTAESPGELILVGGKQFKS 
M.leprae  (361) VAACGPAGVPVIADGGLQYSGDIAKALAAGASTTMLGSLLAGTAEAPGELIFVNGKQFKS 
Mycobact  (361) VAACRPAGVPVIADGGLQYSGDIAKALAAGASTAMLGSLLAGTAEAPGELIFVNGKQYKS 
Nocardia  (320) VAACKPAGVPVIADGGIQFSGDIAKAIAAGASTVMLGSLLAGTAESPGELILVGGKQFKS 
RHA1      (339) VAAAKPHGVPVIADGGLQFSGDIAKALAAGASTAMLGSLLAGTAESPGELILVNGKQYKS 
                421                                                      480 
SQ1       (113) YRGMGSLGAMQSRGEAKSYSKDRYFQDDVLSEDKLVPEGIEGRVPFRGPLSQVTHQLTGG 
M.leprae  (421) YRGMGSLGAMQGRGGDKSYSKDRYFADDALSEDKLVPEGIEGRVPFRGPLSSVIHQLVGG 
Mycobact  (421) YRGMGSLGAMRGRGGATSYSKDRYFADDALSEDKLVPEGIEGRVPFRGPLSSVIHQLTGG 
Nocardia  (380) YRGMGSLGAMQGRGQAKSFSKDRYFQDDVLAEDKLVPEGIEGRVPFRGPVNQVIHQLVGG 
RHA1      (399) YRGMGSLGAMQSRGAAKSYSKDRYFQDDVLSEDKLVPEGIEGRVAFRGPLSQVTHQLTGG 
                481                                            530 
SQ1       (173) LRAAMGYTGSATIEHLQNAQFVQITAAGLKESHPHDITMTVEAPNYTAR- 
M.leprae  (481) LRAAMGYTGSPTIEVLQQAQFVRITPAGLKESHPHDVAMTVEAPNYYPR- 
Mycobact  (481) LRAAMGYTGSPTIEVLQQAQFVRITPAGLKESHPHDVAMTVEAPNYYAR- 
Nocardia  (440) LRAAMGYTGSQSIADLQEAQFVQITAAGLKESHPHDITMTVEAPNYTGRS 
RHA1      (459) LRAAMGYTGASSIEELQNAQFVQITAAGLKESHPHDITMTVEAPNYTAR- 

 
 
Figure 4.11. Alignment of a putative IMP dehydrogenase sequence from R. 
erythropolis SQ1 with sequences from Rhodococcus sp. RHA1 (guaB1), Nocardia 
farcinica IFM 10152 (guaB), and Mycobacterium leprae TN (guaB2).  
Mycobact is the sequence of a IMP dehydrogenase found in M. tuberculosis H37Rv, M. 
tuberculosis CDC 1551 and M. bovis AF2122/97 (guaB2). Grey background, >50 % 
identity; green background, identical residues. 
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Figure 4.12. Position of the inositol-5′-monophosphate dehydrogenase in the 
purine metabolism pathway [adapted from the Rhodococcus sp. RHA1 pathway 
from KEGG (Kanehisa et al., 2006)]. 
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It should be noted, however, that in mutant 10D3 the transposon did not insert into the 

putative guaB of R. erythropolis SQ1, but 42 bp downstream of it. It is therefore 

unlikely that the function of the putative guaB is disrupted in this mutant. This was 

confirmed by growing mutant 10D3 in chemically defined medium lacking guanine. 

The mutant grew like the wild-type, and the addition of guanine to the medium 

(100 µg ml−1) did not have any noticeable effect on the growth (data not shown). 

However, it should be noted that the step catalysed by the IMP dehydrogenase can also 

easily be circumvented via the synthesis of hypoxanthine as shown in Figure 4.12.  

 

Many actinobacteria possess several copies of the guaB gene. According to the KEGG 

gene database Corynebacterium glutamicum, M. tuberculosis, M. bovis and M. leprae 

have three, and Nocardia farcinica, Streptomyces coelicolor and Rhodococcus sp. 

RHA1 each contain at least two copies. The putative guaB of R. erythropolis SQ1 was 

found to be most similar to guaB1 of Rhodococcus RHA1 and guaB2 of M. tuberculosis 

CDC1551 and H37Rv. In these and other organisms the guaB genes appear to be part of 

an operon, as determined using the genome visualisation program BacMap (Stothard et 

al., 2005). In N. farcinica IFM 10152, Rhodococcus sp. RHA1 and M. tuberculosis 

H37Rv, the guaB (guaB1 for RHA1 and guaB2 for H37Rv) gene is upstream of a 

second putative IMP dehydrogenase gene (corresponding to the ro_06200 in 

Rhodococcus RHA1, guaB3 in M. tuberculosis H37Rv and nfa8960 in N. farcinica). 

These two genes are then followed by a putative cholesterol oxidase gene in 

Rhodococcus RHA1 and M. tuberculosis H37Rv, and by guaA (bifunctional GMP 

synthase/glutamine amidotransferase protein) in N. farcinica (see Figure 4.13). A closer 

examination of the sequence information obtained from mutant 10D3 revealed that, in 

R. erythropolis SQ1, ORF2 (located immediately downstream of the putative guaB, 
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ORF4) possesses high similarity to the translated guaB1 of Rhodococcus RHA1 with a 

score of 3×10−38 when using BLASTX. 
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Figure 4.13. Schematic representation of the gua operon of E. coli K12, N. 
farcinica IFM 10152, M. tuberculosis H37Rv and Rhodococcus RHA1.  
The putative guaB found in R. erythropolis SQ1 is most similar to guaB1, guaB2 and 
the first guaB in the N. farcinica operon. guaB and IMDH, IMP dehydrogenase; choD, 
cholesterol oxidase; guaA, GMP synthase. 
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4.4.3. Putative thioredoxin mutant: 1H1 

Mutant 1H1 failed to survive long-term starvation in flasks. When grown in flasks in 

CDM 0.1 % glucose, mutant 1H1 was found to behave like the wild-type (Section 4.3). 

However, in CDM 1 % glucose, the mutant behaved according to the wild-type until 

approximately 20 days into stationary phase, then the culturability dropped to 1.6 % of 

the maximum at 27 days.  

 

Genomic DNA of the mutant was isolated and restricted with a panel of enzymes and 

then subjected to religation and iPCR. A 1 kb amplicon was obtained when BamHI-

restricted DNA was used as the DNA template for iPCR. This fragment was cloned and 

sequenced. For reasons that remain to be elucidated, sequence information could only 

be obtained for one side flanking the transposon insertion site. Hence, the sequence 

obtained was short (844 bp) compared to that obtained for the other mutants 

(>1200 bp). The details of the open reading frames identified are provided (Figure 

4.15). 

 

When the sequence was run against the non-redundant database at NCBI using 

BLASTX, strong similarity was found between the protein sequence encoded by ORF 1 

and the sequence of an hypothetical protein of several actinomycetes, including 

Rhodococcus RHA1 (92 % amino acid identity), Nocardia farcinica (82 % identity), 

Mycobacterium ulcerans (69 % identity) and M. tuberculosis H37Rv (67 % identity). 

This protein was identified as a phosphoglycerate mutase in Saccharopolyspora 

erythraea, M. tuberculosis CDC1551 and Streptomyces avermitilis.  

 

BLASTX identified the area corresponding to nucleotides 644–844 as similar to several 

putative thioredoxins/redoxins in Rhodococcus RHA1 (E-score = 5×10−27), Nocardia 
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farcinica (2×10−19) and several Mycobacterium species (minimum 2×10−22, 

M. vanbaalenii PYR-1), as well as a putative cytochrome c biogenesis protein in 

Nocardia farcinica IFM 10152 (E-score = 2×10−22). It is not clear whether this 

sequence is part of an ORF, but it should be noted that the transposon insertion occurs 

at position 844 (Fig. 4.15) The ORF could potentially start at 575 bp, where an ATT 

triplet codes for isoleucine and is in-frame for coding of the putative thioredoxin. This 

would be an unusual start codon, ATT has been predicted to be start codon for four 

genes in E. coli (Makita et al., 2007), but has been demonstrated to be start codon only 

for infC and pcnB (Butler et al., 1987; Jasiecki & Wegrzyn, 2006). The only ATG 

codon in this area of the sequence is at 620 bp, but it is not in-frame for coding of the 

putative thioredoxin. Alignment and closer analysis of the sequence revealed that, 

although there is similarity to a segment of the N-terminal end of several thioredoxins, 

the most N-terminal residues have very low similarity to other thioredoxins 

(Figure 4.14). The putative thioredoxins identified above are very similar to DsbE from 

M. tuberculosis, which is involved in cytochrome maturation (Goulding et al., 2004). 

Interestingly, other genes involved in cytochrome production have been identified as 

important in starvation survival, such as cta in S. aureus (Clements et al., 1999b), and 

in resuming growth after stationary phase, such as cydC (surB) in E. coli (Siegele & 

Kolter, 1993; Siegele et al., 1996). 
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           1                                                         60 
SQ1    (1) --------------------MISRRIAAAFAAAASAMLLLSSCATGDDAVAQGG-TFDFV 
RHA1   (1) --------------------MSRGRFAGLLAVICTAAVSLTACASGDDAVAQGG-TFDFV 
Mgil   (1) -------------------MNRVVAFGRTLMAACAATAVFAGCATGSDAVAQGG-TFEFV 
Nfar1  (1) ---------MRRPASFPAHRSAPVRVVAALLACVALVAGLAGCSTGTDAVATGG-TFEFV 
Nfar2  (1) MTHLRTTKAARHGHRYGRARHRQLRLLAAMALVIAAVTAVISCASGSDSVATGGGTFDFV 
           61                                                       120 
SQ1   (39) SPGGQTKIFYDPPSDRGTIGKLSGPDLMNEGQKVGVDDFEGKVVVLNVWGQW-------- 
RHA1  (40) SPGGQTEIFYDPPADRGTIGTVSGPDLMTEGKTTSLDDFEGQVVVLNVWGQWCGPCRGEA 
Mgil  (41) APGGQTDIFYDPPQERGTPGPLSGPDLMDTDRTISLDDFAGKVVVINVWGQWCGPCRTEI 
Nfar1 (51) SPGGKTDIFYDPPAARGTIGELSGPDLMTDGKTISVADHPGQVVVLNIWGQWCGPCRAEA 
Nfar2 (61) SPGGQTDIFYDPPESRGKIGVLAGPDLMAEDKTVSVSDYTGQVVVINLWGQWCGPCRAEA 
           121                                                      180 
SQ1   (91) ------------------------------------------------------------ 
RHA1 (100) NDLEQVYEETKDQGVSFLGINVRDNQQDKAQDFVIDNKVSYPSIYDPAMRTMIALGQNYP 
Mgil (101) TELQKVYDATRDRGVAFLGIDVRDNNIDAPRDFIIDRAITFPSIYDPPMRTMIAFGGRYP 
Nfar1(111) PALERVYEATRDSGVVFLGINVRDFQQDKARDFVTDNKVGYPSIYDPAMRTLLALGGNFP 
Nfar2(121) DDLERAYAATKASGVQFVGINVRDQQRDKAQDFVIDNKVSYPSIYDPPMRTLVALGGSYP 
           181                                    222 
SQ1   (91) ------------------------------------------ 
RHA1 (160) TSVIPTTIVLDREHRVAAVFLKELLAEDLKPVVERVAQES-- 
Mgil (161) TTVIPSTVVLDREHRVAAVFLRELLAQDLQPVVERLAAEQ-- 
Nfar1(171) TSVIPTTLVLDREHRVAAVFLRTLLAEDLQPVVQRIAEEGRQ 
Nfar2(181) TSVIPSTLILDRKQRVAAVFLRALLTSDLQPVIERLAAEQ-- 

 

Figure 4.14. Alignment of a putative thioredoxin from R. erythropolis SQ1 with 
sequences from Rhodococcus sp. RHA1, Mycobacterium gilvum and Nocardia 
farcinica IFM 10152.  
SQ1, translation of sequence from 572–844 nt; RHA1, putative thioredoxin; Mgil, alkyl 
hydroperoxide reductase; Nfar1, putative cytochrome c biogenesis protein; Nfar2, 
putative thioredoxin. All have a similar putative protein disulfide reductases 
(thioredoxin) function with important roles in cytochrome maturation. 
Grey background, >50 % identity; green background, identical residues. 
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No significant similarity could be found for ORF 2, whether by using BLASTX or 

BLASTP. 

 

Phosphoglycerate mutase reversibly catalyses the transfer of a phosphate group from C2 

to C3 of phosphoglycerate (Fothergill-Gilmore & Watson, 2006). It is at the junction of 

glycolysis and neoglucogenesis, allowing the degradation of glucose into pyruvate and 

vice-versa. Phosphoglycerate mutases form a large family, many members of which 

have a wide range of substrates (e.g. phosphoglucomutase, involved in both glucose and 

galactose metabolism; (Berg et al., 2002). The gene coding for the putative 

phosphoglycerate mutase is upstream of a thioredoxin protein gene and a cytochrome c 

biogenesis protein gene in the organisms with high similarity to ORF 1 of 

R. erythropolis SQ1. These genes are cssX and ccdA in Saccharopolyspora erythraea 

NRRL 2338, MUL_0625 and ccsA in Mycobacterium ulcerans Agy99, and Rv0526 and 

ccdA in M. tuberculosis H37Rv, respectively. It is not known whether these genes are 

organised in operons.  
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Open reading frame Position Strand Size 

ORF 1 3–572 Sense 570 bp 

ORF 2 391–711 Antisense 321 bp 

 
Figure 4.15. Schematic representation of the 844 bp sequence retrieved for mutant 
1H1. The BamHI restriction site used to retrieve the sequence is shown, as well as 
putative open reading frames predicted by ORF finder and the transposon insertion site. 
Size, position and strand of the ORFs identified in the sequence are shown in the table. 
ORFs were identified with the ORF Finder function of Vector NTI (Invitrogen, 
http://www.invitrogen.com). 
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4.4.4. Histidine and Serine/Glycine auxotrophic mutants  

In addition to characterising potential starvation and/or stationary phase survival 

mutants, mutants that displayed different growth behaviour patterns than the R. 

erythropolis SQ1 parent strain were also investigated. These mutants were found to 

grow well on LB, but poorly on CDM IIA.  

 

4.4.4.1. Histidine auxotrophic hisA mutants: 1B3, 3B10, 4G11 and 
10E4. 

 Nucleotide sequence analysis 

The cloned inverse PCR products were obtained from EcoRI-digested DNA for mutants 

1B3 (1317 bp) and 4G11 (1267 bp), and from NarI-digested DNA for mutants 3B10 

and 10E4 (both 1039 bp). Alignment of the four sequences obtained for these mutants 

showed that there was strong similarity between them. Using AlignX (part of Vector 

NTI) with standard settings (gap opening penalty = 15; gap extension penalty = 6.66 

and gap separation penalty range = 8), the nucleotide identity was calculated to be 99 % 

for all four sequences. The identity variation was introduced by differences in the size 

of the fragments obtained, due to the use of different restriction enzymes in the initial 

stage of the analyses, i.e. EcoRI for mutants 1B3 and 4G11, and NarI for mutants 3B10 

and 10E4 (Figure 4.16). 
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                  1                                                                   70 
     10E4     (1) ---------------------------------------------------------------------- 
     3B10     (1) ---------------------------------------------------------------------- 
      1B3     (1) GTCGAGAACGTGCGTTGTCGGCAACGCAGTTCCACCCCGAGAATCCGGTGACGCAGGCGCCGAGTTGCTG 
     4G11     (1) ---------------------------------------------------CGCAGGCGCCGAGTTGCTG 
Consensus     (1) GTCGAGAACGTGCGTTGTCGGCAACGCAGTTCCACCCCGAGAATCCGGTGACGCAGGCGCCGAGTTGCTG 
 
                  71                                                                 140 
     10E4     (1) ---------------------------------------------------------------------- 
     3B10     (1) ---------------------------------------------------------------------- 
      1B3    (71) AGCAACTGGGTGCAGAGTTTGTGACCGGGGGATCCGGACCGAACCGCGGTGACGATT-CTCCCTCGCCCG 
     4G11    (20) AGCAACTGGGTGCAGAGTTTGTGACCGGGGGATCCGGACCGAACCGCGGTGACGATTTCTCCCTCGCCCG 
Consensus    (71) AGCAACTGGGTGCAGAGTTTGTGACCGGGGGATCCGGACCGAACCGCGGTGACGATT CTCCCTCGCCCG 
 
                  141                                                                210 
     10E4     (1) -------------------GGCGCCGCTGTGGCTGCGCTGGCGGTCGCAACCGTCGTCATCGTTGTTCTC 
     3B10     (1) -------------------GGCGCCGCTGTGGCTGCGCTGGCGGTCGCAACCGTCGTCATCGTTGTTCTC 
      1B3   (140) TCTGGCGTTGTTCTCGCTCGGCGCCGCTGTGGCTGCGCTGGCGGTCGCAACCGTCGTCATCGTTGTTCTC 
     4G11    (90) TCTGGCGTTGTTCTCGCTCGGCGCCGCTGTGGCTGCGCTGGCGGTCGCAACCGTCGTCATCGTTGTTCTC 
Consensus   (141) TCTGGCGTTGTTCTCGCTCGGCGCCGCTGTGGCTGCGCTGGCGGTCGCAACCGTCGTCATCGTTGTTCTC 
 
                  211                                                                280 
     10E4    (52) AAACCATCGCCGGGCGTCGGCCTCGTGATCGGTCTCGTGGGGGTCGTCGCTGCGATTGCGGCAATGGGCG 
     3B10    (52) AAACCATCGCCGGGCGTCGGCCTCGTGATCGGTCTCGTGGGGGTCGTCGCTGCGATTGCGGCAATGGGCG 
      1B3   (210) AAACCATCGCCGGGCGTCGGCCTCGTGATCGGTCTCGTGGGGGTCGTCGCTGCGATTGCGGCAATGGGCG 
     4G11   (160) AAACCATCGCCGGGCGTCGGCCTCGTGATCGGTCTCGTGGGGGTCGTCGCTGCGATTGCGGCAATGGGCG 
Consensus   (211) AAACCATCGCCGGGCGTCGGCCTCGTGATCGGTCTCGTGGGGGTCGTCGCTGCGATTGCGGCAATGGGCG 
 
                  281                                                                350 
     10E4   (122) TCGTATCCAAGCGGATGACCCGAAAAGCGTTCGGTGACCCGGAAGACGGTTCGAGGTCCTGACCTACTAG 
     3B10   (122) TCGTATCCAAGCGGATGACCCGAAAAGCGTTCGGTGACCCGGAAGACGGTTCGAGGTCCTGACCTACTAG 
      1B3   (280) TCGTATCCAAGCGGATGACCCGAAAAGCGTTCGGTGACCCGGAAGACGGTTCGAGGTCCTGACCTACTAG 
     4G11   (230) TCGTATCCAAGCGGATGACCCGAAAAGCGTTCGGTGACCCGGAAGACGGTTCGAGGTCCTGACCTACTAG 
Consensus   (281) TCGTATCCAAGCGGATGACCCGAAAAGCGTTCGGTGACCCGGAAGACGGTTCGAGGTCCTGACCTACTAG 
 
                  351                                                                420 
     10E4   (192) GGTTACCGCACGTGAGCCTGGTCCTTTTGCCTGCTGTAGATGTCGTCAACGGTGAAGCTGTTCGCCTCGT 
     3B10   (192) GGTTACCGCACGTGAGCCTGGTCCTTTTGCCTGCTGTAGATGTCGTCAACGGTGAAGCTGTTCGCCTCGT 
      1B3   (350) GGTTACCGCACGTGAGCCTGGTCCTTTTGCCTGCTGTAGATGTCGTCAACGGTGAAGCTGTTCGCCTCGT 
     4G11   (300) GGTTACCGCACGTGAGCCTGGTCCTTTTGCCTGCTGTAGATGTCGTCAACGGTGAAGCTGTTCGCCTCGT 
Consensus   (351) GGTTACCGCACGTGAGCCTGGTCCTTTTGCCTGCTGTAGATGTCGTCAACGGTGAAGCTGTTCGCCTCGT 
 
                  421                                                                490 
     10E4   (262) GCAAGGAGAGGCGGGAAGTGAGACCGGTTACGGGTCGCCCCGCGACGCTGCTCTTGCGTGGCAGAACGAC 
     3B10   (262) GCAAGGAGAGGCGGGAAGTGAGACCGGTTACGGGTCGCCCCGCGACGCTGCTCTTGCGTGGCAGAACGAC 
      1B3   (420) GCAAGGAGAGGCGGGAAGTGAGACCGGTTACGGGTCGCCCCGCGACGCTGCTCTTGCGTGGCAGAACGAC 
     4G11   (370) GCAAGGAGAGGCGGGAAGTGAGACCGGTTACGGGTCGCCCCGCGACGCTGCTCTTGCGTGGCAGAACGAC 
Consensus   (421) GCAAGGAGAGGCGGGAAGTGAGACCGGTTACGGGTCGCCCCGCGACGCTGCTCTTGCGTGGCAGAACGAC 
 
                  491                                                                560 
     10E4   (332) GGTGCCGAATGGGTGCATCTTGTCGACCTCGACGCTGCTTTCGGGCGTGGGTCCAACAGTGAACTGTTGG 
     3B10   (332) GGTGCCGAATGGGTGCATCTTGTCGACCTCGACGCTGCTTTCGGGCGTGGGTCCAACAGTGAACTGTTGG 
      1B3   (490) GGTGCCGAATGGGTGCATCTTGTCGACCTCGACGCTGCTTTCGGGCGTGGGTCCAACAGTGAACTGTTGG 
     4G11   (440) GGTGCCGAATGGGTGCATCTTGTCGACCTCGACGCTGCTTTCGGGCGTGGGTCCAACAGTGAACTGTTGG 
Consensus   (491) GGTGCCGAATGGGTGCATCTTGTCGACCTCGACGCTGCTTTCGGGCGTGGGTCCAACAGTGAACTGTTGG 
 
                  561                                                                630 
     10E4   (402) CCGGCGTCATCGGCGACCTGACGGTCAAGGTGGAACTGTCCGGTGGAATCCGCGACGACGCTTCCCTGGA 
     3B10   (402) CCGGCGTCATCGGCGACCTGACGGTCAAGGTGGAACTGTCCGGTGGAATCCGCGACGACGCTTCCCTGGA 
      1B3   (560) CCGGCGTCATCGGCGACCTGACGGTCAAGGTGGAACTGTCCGGTGGAATCCGCGACGACGCTTCCCTGGA 
     4G11   (510) CCGGCGTCATCGGCGACCTGACGGTCAAGGTGGAACTGTCCGGTGGAATCCGCGACGACGCTTCCCTGGA 
Consensus   (561) CCGGCGTCATCGGCGACCTGACGGTCAAGGTGGAACTGTCCGGTGGAATCCGCGACGACGCTTCCCTGGA 
 
                  631                                                                700 
     10E4   (472) AGCCGCACTGGCCACCGGCTGTGCTCGCGTGAATCTCGGTACTGCCGCTATCGAGGATCCCGAGTGGTGT 
     3B10   (472) AGCCGCACTGGCCACCGGCTGTGCTCGCGTGAATCTCGGTACTGCCGCTACCGAGGATCCCGAGTGGTGT 
      1B3   (630) AGCCGCACTGGCCACCGGCTGTGCTCGCGTGAATCTCGGTACTGCCGCTATCGAGGATCCCGAGTGGTGT 
     4G11   (580) AGCCGCACTGGCCACCGGCTGTGCTCGCGTGAATCTCGGTACTGCCGCTATCGAGGATCCCGAGTGGTGT 
Consensus   (631) AGCCGCACTGGCCACCGGCTGTGCTCGCGTGAATCTCGGTACTGCCGCTATCGAGGATCCCGAGTGGTGT 
 
                  701                                                                770 
     10E4   (542) GCGCGTGCATTGGCCAAGTACGGCGACAAGATCGCTGTCGGCCTCGATGTTCGTCTCGTCGACGGTCAGT 
     3B10   (542) GCGCGTGCATTGGCCAAGTACGGCGACAAGATCGCTGTCGGCCTCGATGTTCGTCTCGTCGACGGTCAGT 
      1B3   (700) GCGCGTGCATTGGCCAAGTACGGCGACAAGATCGCTGTCGGCCTCGATGTTCGTCTCGTCGACGGTCAGT 
     4G11   (650) GCGCGTGCATTGGCCAAGTACGGCGACAAGATCGCTGTCGGCCTCGATGTTCGTCTCGTCGACGGTCAGT 
Consensus   (701) GCGCGTGCATTGGCCAAGTACGGCGACAAGATCGCTGTCGGCCTCGATGTTCGTCTCGTCGACGGTCAGT 
 
 
 
Continued next page 
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                  771                                                                840 
     10E4   (612) ACCGCACCCGTGGTCGCGGCTGGGTCACCGACGGCGGCGATCTGTGGGAGACCCTCGCGCGTCTGGACCG 
     3B10   (612) ACCGCACCCGTGGTCGCGGCTGGGTCACCGACGGCGGCGATCTGTGGGAGACCCTCGCGCGTCTGGACCG 
      1B3   (770) ACCGCACCCGTGGTCGCGGCTGGGTCACCGACGGCGGCGATCTGTGGGAGACCCTCGCGCGTCTGGACCG 
     4G11   (720) ACCGCACCCGTGGTCGCGGCTGGGTCACCGACGGCGGCGATCTGTGGGAGACCCTCGCGCGTCTGGACCG 
Consensus   (771) ACCGCACCCGTGGTCGCGGCTGGGTCACCGACGGCGGCGATCTGTGGGAGACCCTCGCGCGTCTGGACCG 
 
                  841                                                                910 
     10E4   (682) TGACGGCTGCACTCGTTACGTCGTCACCGACGTCTCCAAGGACGGCACACTCACCGGTCCCAATCTCGAA 
     3B10   (682) TGACGGCTGCACTCGTTACGTCGTCACCGACGTCTCCAAGGACGGCACACTCACCGGTCCCAATCTCGAA 
      1B3   (840) TGACGGCTGCACTCGTTACGTCGTCACCGACGTCTCCAAGGACGGCACACTCACCGGTCCCAATCTCGAA 
     4G11   (790) TGACGGCTGCACTCGTTACGTCGTCACCGACGTCTCCAAGGACGGCACACTCACCGGTCCCAATCTCGAA 
Consensus   (841) TGACGGCTGCACTCGTTACGTCGTCACCGACGTCTCCAAGGACGGCACACTCACCGGTCCCAATCTCGAA 
 
                  911                                                                980 
     10E4   (752) CTTCCCAGCCAGGTCTGCGCGGTCACCGACGCGCACGTCGTCGCCTCCGGTGGTGTGTCGACCATCGAGG 
     3B10   (752) CTTCCCAGCCAGGTCTGCGCGGTCACCGACGCGCACGTCGTCGCCTCCGGTGGTGTGTCGACCATCGAGG 
      1B3   (910) CTTCTCAGCCAGGTCTGCGCGGTCACCGACGCGCACGTCGTCGCCTCCGGTGGTGTGTCGACCATCGAGG 
     4G11   (860) CTTCCCAGCCAGGTCTGCGCGGTCACCGACGCGCACGTCGTCGCCTCCGGTGGTGTGTCGACCATCGAGG 
Consensus   (911) CTTCCCAGCCAGGTCTGCGCGGTCACCGACGCGCACGTCGTCGCCTCCGGTGGTGTGTCGACCATCGAGG 
 
                  981                                                               1050 
     10E4   (822) ATCTACTCGCCATTTCCAGCCTGGTTGATCAGGGTGTCGAGGGCGCGATCGTGGGCAAGGCATTGTATGC 
     3B10   (822) ATCTACTCGCCATTTCCAGCCTGGTTGATCAGGGTGTCGAGGGCGCGATCGTGGGCAAGGCATTGTATGC 
      1B3   (980) ATCTACTCGCCATTTCCAGCCTGGTTGATCAGGGTGTCGAGGGTGCGATCGTGGGCAAGGCATTGTATGC 
     4G11   (930) ATCTACTCGCCATTTCCAGCCTGGTTGATCAGGGTGTCGAGGGCGCGATCGTGGGCAAGGCATTGTATGC 
Consensus   (981) ATCTACTCGCCATTTCCAGCCTGGTTGATCAGGGTGTCGAGGGCGCGATCGTGGGCAAGGCATTGTATGC 
 
                  1051                                                              1120 
     10E4   (892) CGGTCGCTTCACTCTCCCCGAAGCACTGGCAGCAGTTTCCGGATAGATTTTCCAGATGACTCCGACGCGT 
     3B10   (892) CGGTCGCTTCACTCTCCCCGAAGCACTGGCAGCAGTTTCCGGATAGATTTTCCAGATGACTCCGACGCGT 
      1B3  (1050) CGGTCGCTCCACTCTCCCCGAAGCACTGGCAGCAGTTTCCGGATAGATTTTCCAGATGACTCCGACGCGT 
     4G11  (1000) CGGTCGCTTCACTCTCCCCGAAGCACTGGCAGCAGTTTCCGGATAGATTTTCCAGATGACTCCGACGCGT 
Consensus  (1051) CGGTCGCTTCACTCTCCCCGAAGCACTGGCAGCAGTTTCCGGATAGATTTTCCAGATGACTCCGACGCGT 
 
                  1121                                                              1190 
     10E4   (962) GACCTCGATGAACTTCTCGCGATTGCGGGTCGGCTTCTCGACGGCGTCCACGATCAGTTCGTCTCCGGTG 
     3B10   (962) GACCTCGACGAACTTCTCGCGATTGCGGGTCGGCTTCTCGACGGCGTCCACGATCAGTTCGTCTCCGGTG 
      1B3  (1120) GACCTCGACGAACTTCTCGCGATTGCGGGTCGGCTTCTCGACGGCGTCCACGATCAGTTCGTCTCCGGTG 
     4G11  (1070) GACCTCGACGAACTTCTCGCGATTGCGGGTCGGCTTCTCGACGGCGTCCACGATCAGTTCGTCTCCGGTG 
Consensus  (1121) GACCTCGACGAACTTCTCGCGATTGCGGGTCGGCTTCTCGACGGCGTCCACGATCAGTTCGTCTCCGGTG 
 
                  1191                                                              1260 
     10E4  (1032) TCGGCGCC-------------------------------------------------------------- 
     3B10  (1032) TCGGCGCC-------------------------------------------------------------- 
      1B3  (1190) TCGGCGCCCCGAGTGCGGTCCGCAAGGGCTGGGGTGATTTTGCCACCGAGGTCGATCTTGCGCTCGAGAA 
     4G11  (1140) TCGGCGCCCCGAGTGCGGTCCGCAAGGGCTGGGGTGATTTTGCCACCGAGGTCGATCTTGCGCTCGAGAA 
Consensus  (1191) TCGGCGCCCCGAGTGCGGTCCGCAAGGGCTGGGGTGATTTTGCCACCGAGGTCGATCTTGCGCTCGAGAA 
 
                  1261                                                  1318 
     10E4  (1040) ---------------------------------------------------------- 
     3B10  (1040) ---------------------------------------------------------- 
      1B3  (1260) GCGGTTGACCGCGGAGTTGTTCGAGCAGACCGGCATCGAGGTGCACGGCGAGGAATTC 
     4G11  (1210) GCGGTTGACCGCGGAGTTGTTCGAGCAGACCGGCATCGAGGTGCACGGCGAGGAATTC 
Consensus  (1261) GCGGTTGACCGCGGAGTTGTTCGAGCAGACCGGCATCGAGGTGCACGGCGAGGAATTC 

 

Figure 4.16. Alignment of the sequences obtained from mutants 1B3, 3B10, 4G11 
and 10E4.  
The transposon insertion site is highlighted in red and the 9 nt sequence duplicated upon 
transposon insertion is in bold. The NarI and EcoRI restriction enzyme recognition sites 
are highlighted in green, and the nucleotides differing between sequences are in yellow 
(at positions 128, 680, 916, 1024, 1059 and 1129 using the consensus sequence as the 
reference).  
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It is clear from the alignment that mutants 1B3, 3B10, 4G11 and 10E4 are clones, or 

that multiple mutants have been isolated in which the transposon insertion took place at 

the same site.  

 

Open reading frames (ORF) were identified with the ORF Finder (part of Vector NTI). 

The default settings were used, with a minimum ORF size of 100 codons. Four ORFs 

were found – their relative positions and sizes are shown in Figure 4.17, together with 

the transposon insertion site and the enzyme restriction sites used to recover the 

sequences by iPCR. The consensus sequence was searched against the NCBI database 

using BLASTX. All the sequences identified as having high scores were obtained 

against the protein translated from sequence 383 to approximately 1100 bp in frame +2. 

This correlates with ORF 1 (Figure 4.16). The region immediately upstream of ORF 1 

was analysed for transcription promoter sequences and is shown below: 

TGCGGCAATGGGCGTCGTATCCAAGCGGATGACCCGAAAAGCGTTCGGTG 

                                                                                                    −10                      +1 

It should be noted that, while it not the most efficient or common start codon, GTG is 

encountered in many prokaryotes (Kozak, 1983). This is particularly true of high G+C 

genome organisms, in particular in Mycobacterium (Rison et al., 2007). The putative 

transcription start is highlighted in red, and the −10 area in green. Although there is a 

poly-dA at −10, it was not possible to find any −35 structure. 
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Open reading frame Position Strand Size 

ORF 1 313–1092 Sense 780 bp 

ORF 2 662–1105 Sense 444 bp 

ORF 3 355–981 Antisense 627 bp 

ORF 4 985–1305 Antisense 321 bp 

 
Figure 4.17. Schematic representation of the genomic area (1317 bp) disrupted in 
mutants 1B3, 3B10, 4G11 and 10E4.  
The restriction enzymes used to retrieve the sequences are shown, as well as the 
transposon insertion site and putative open reading frames. Size, position and strand of 
the ORFs identified in the consensus sequence are shown in the table. 
ORFs were identified with the ORF Finder function of Vector NTI (Invitrogen, 
http://www.invitrogen.com). 
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 Translated ORF analysis 

All four open reading frames identified in the consensus sequence were translated using 

the bacterial genetic code, and then run against the non-redundant protein database at 

NCBI using BLASTP. The 260 amino acid protein obtained by translating ORF 1 was 

the only one yielding significant scores and E-values, confirming what had been 

determined with BLASTX. All results returned were either HisA or HisA/TrpF 

proteins; HisA is involved in histidine synthesis and HisA/TrpF in both histidine and 

tryptophan synthesis. Interestingly, both HisA and the bi-functional HisA/TrpF are the 

same size - 240 to 260 amino acids. The alignment of the putative HisA from 

R. erythropolis SQ1 with other HisA and HisA/TrpF sequences is shown in Figure 4.17. 

 

There is experimental evidence for the activity of HisA from Streptomyces coelicolor 

A3, and HisA/TrpF of Mycobacterium tuberculosis H37Rv (Barona-Gómez & 

Hodgson, 2003). HisA is a phosphoribosylformimino-5-aminoimidazole carboxamide 

ribonucleotide (ProFAR) isomerase (EC 5.3.1.16), catalysing the fourth enzymatic step 

between phosphoribosyl pyrophosphate (PRPP) and L-histidine (see Figure 4.19a, 

adapted from KEGG) in the histidine biosynthesis pathway. It mediates transformation 

of the phosphoribosyl-formimino-AICAR-phosphate (ProFAR) into phosphoribulosyl-

formimino-AICAR-phosphate (PRFAR) via an Amadori rearrangement, consisting of 

the rearrangement of the aminoaldose ProFAR into the aminoketose, PRFAR. This also 

results in the opening of the ribose ring (illustrated in Figure 4.19b) (Henn-Sax et al., 

2002).  
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          1                                                         60 
SQ1   (1) VTRKTVRGPDLLGLPHVSLVLLPAVDVVNGEAVRLVQGEAGSETGYGSPRDAALAWQNDG 
RHA1  (1) ----------------MSLVLLPAVDVVNGEAVRLVQGEAGSETGYGSPRDAALAWQNDG 
Noc   (1) ----------------MSLVLLPAVDVANGEAVRLVQGEAGSETSYGSPRDAALAWQEAG 
PYR   (1) ---MTSVNP--SSSKPSALILLPAVDVVEGRAVRLVQGQAGSETEYGSALDAAMTWQRDG 
MCS   (1) ----MSVVPEKSVSEKRPLILLPAVDVVEGRAVRLVQGKAGSETEYGSALDAALGWQRDG 
          61                                                       120 
SQ1  (61) AEWVHLVDLDAAFGRGSNSELLAGVIGDLTVKVELSGGIRDDASLEAALATGCARVNLGT 
RHA1 (45) AEWVHIVDLDAAFGRGSNRELLADVVGELDVQVELSGGIRDDASLEAALATGCGRVNLGT 
Noc  (45) AEWVHLVDLDAAFGRGSNRELLAKVVGELDVKVELSGGIRDDDSLEAALATGCARVNLGT 
PYR-1(56) AEWIHLVDLDAAFGRGSNRELLAEVVGKLDVAVELSGGIRDDDSLAAALATGCARVNLGT 
MCS  (57) AEWIHLVDLDAAFGRGSNRELLADVVGRLDVAVELSGGIRDDESLEAALATGCARVNIGT 
          121                                                      180 
SQ1 (121) AAIEDPEWCARALAKYGDKIAVGLDVRLVDGQYRTRGRGWVTDGGDLWETLARLDRDGCT 
RHA1(105) AAIENPEWCARAIAKYGEKIAVGLDVRLVDGEYQLRGRGWVTEGGNLWETLARLDKDGCS 
Noc (105) AALEDPQWCARAIAKHGERIAVGLDVRIIDGDYRLRGRGWVSDGGDLWEVLERLERDGCS 
PYR (116) AALENPQWCAKVVAEHGDKVAVGLDVKIVDGQHRLRGRGWETDGGDLWTVLDRLDGEGCS 
MCS (117) AALENPQWCAKVVAEFGDKVAVGLDVKIVDDQHRLRGRGWETDGGDLWEVLDRLDSEGCS 
          181                                                      240 
SQ1 (181) RYVVTDVSKDGTLTGPNLELPSQVCAVTDAHVVASGGVSTIEDLLAISSLVDQGVEGAIV 
RHA1(165) RYVVTDVSKDGTLTGPNLELLAQVCAATDAPVVASGGVSTIDDLRAIAGLVDQGVEGSIV 
Noc (165) RYVVTDVTKDGTLTGPNLELLSEVCAATEAPVIASGGVSAIEDLVAIAGLVPEGVEGAIV 
PYR (176) RFVVTDVTKDGTLNGPNLELLTQVCERTDAPVIASGGVSSLDDLRAIATLTDRGVEGAIV 
MCS (177) RYVVTDVTKDGTLQGPNLDLLGRVADRTDAPVIASGGVSSLDDLRAIATLTDRGVEGAIV 
           241              260 
SQ1 (241) GKALYAGRFTLPEALAAVSG 
RHA1(225) GKALYAGRFTLPEALAAVSG 
Noc (225) GKALYAGRFTLPEALAAVR- 
PYR (236) GKALYAGRFTLPQALDAVGP 
MCS (237) GKALYAGRFTLPEALAAMGQ 
 
 
Figure 4.18. Alignment of a putative HisA sequence from R. erythropolis SQ1 with 
HisA sequences from Rhodococcus sp. RHA1 and Nocardia farcinica IFM 10152 
(Noc), and with HisA/TrpF sequences from Mycobacterium vanbaalenii PYR-1 
(PYR) and Mycobacterium sp. MCS.  
Grey background, >50 % identity; green background, identical residues. 
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(a) 

 

(b) 

 

Figure 4.19. Function of HisA in the synthesis of histidine. (a) Position of HisA 
(highlighted in red) in the histidine anabolic pathway [adapted from KEGG (Kanehisa 
et al., 2006)]. (b) Amadori rearrangement catalysed by HisA. A similar reaction is 
catalysed by TrpF. Adapted from Barona-Gómez and Hodgson (2003). 
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This creates a link between the pentose phosphate pathway, purine metabolism and 

histidine metabolism. Interestingly, HisA is closely similar to the HisA/TrpF protein 

from Mycobacterium that is involved in both histidine and tryptophan synthesis. Both 

M. tuberculosis and Streptomyces coelicolor have a single enzyme to catalyse the 

Amadori rearrangement described in Figure 4.19b in both the histidine and tryptophan 

biosynthesis pathways (Barona-Gómez & Hodgson, 2003; Nester & Montoya, 1976).  

 

The data above suggests that mutants 1B3, 3B10, 4G11 and 10E4 could be auxotrophic 

for histidine, and possibly for tryptophan also. To verify this, an overnight LB culture of 

each mutant was washed twice in saline and inoculated in CDM II 1 % glucose 

supplemented or not with histidine and/or tryptophan. Mutants 1B3, 3B10, 4G11 and 

10E4 were shown to grow on CDM supplemented with histidine, but not on 

unsupplemented CDM or medium supplemented with tryptophan alone (data not 

shown). This would suggest that the putative gene disrupted by transposon mutagenesis 

does indeed code for HisA, and that this protein does not have any function similar to 

that of TrpF. 
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4.4.4.2. Histidine auxotrophic hisB mutant: 3B4 

Similar to the mutants described in the previous section, mutant 3B4 was found to grow 

poorly on chemically defined media. This was most obvious on CDM IIA 1 % glucose, 

where growth was observed only at day 8 (section 4.1.2). On CDM IIA 0.1 % glucose, 

mutant 3B4 grew normally up to 8 days, then failed to produce growth at day 14 and 

produced only weak growth at day 22. Mutant 3B4 was therefore grown overnight in 

LB and its genomic DNA was isolated. It was then restricted with EcoR1, and inverse 

PCR was performed. A fragment of 2.4 kb was obtained, which was then cloned and 

sequenced, and the sequence analysed as described in Section 4.4. Comparison against 

the non-redundant database at the NCBI with BLASTX identified HisB, a putative 

imidazole-glycerol-phosphate dehydratase, encoded by an open reading frame of 

611 bp. This sequence also corresponds to ORF 1, one of the open reading frames 

identified using ORF finder (Figure 4.20, Table 4.7). 

 

This observation was confirmed when each ORF was translated using the bacterial 

genetic code and then analysed against the non-redundant protein database at the NCBI 

using BLASTP. The only translated ORF to yield significant scores and E-values was 

ORF 1 (lowest E-value 2×10−96). The translated protein is 204 amino acids long and is 

highly similar (65.1 % identity) to the HisB of other Corynebacterineae. The putative 

protein sequence is shown aligned with similar sequences in Figure 4.21. There is 

experimental evidence for this protein in N. farcinica IFM 10152 (accession no. 

Q5YYP8) (Ishikawa et al., 2004). The C-terminal part of HisB encodes an 

imidazoleglycerol-phosphate dehydratase function (Alifano et al., 1996), that 

dehydrates D-erythro-1-(imidazol-4-yl) glycerol 3-phosphate into 3-(imidazol-4-yl)-2-

oxopropyl phosphate, the sixth step in the biosynthesis of histidine from phosphoribosyl 
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pyrophosphate (PRPP) (Figure 4.22). The N-terminal part of HisB has a phosphatase 

activity that transforms L-histidinol-P into L-histidinol (Alifano et al., 1996). 
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Open reading frame Position Strand Size 

ORF 1 19–630 Sense 612 bp 

ORF 2 83–442 Sense 360 bp 

ORF 3 64–591 Antisense 528 bp 

ORF 4 525–866 Antisense 342 bp 

ORF 5 709–1011 Antisense 303 bp 

ORF 6 692–1054 Antisense 363 bp 

 

Figure 4.20. Schematic representation of the 1232 bp sequence retrieved from 
mutant 3B4.  
The EcoR1 restriction sites used to retrieve the sequence are shown, as well as the open 
reading frames predicted by ORF finder and the transposon insertion site. Size, position 
and strand of the ORFs identified in the sequence are shown in the table. 
ORFs were identified with the ORF Finder function of Vector NTI (Invitrogen, 
http://www.invitrogen.com). 
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           1                                                         60 
SQ1    (1) -------MSDRIARIERTTRESSIVVELNLDGTGIVDVSTGVPFFDHMLNALGTHASFDL 
K-10   (1) ---MTAVQAARRARIERRTKESDIVIELDLDGTGRVDVETGVPFYDHMLTALGSHASFDL 
H37Rv  (1) MTTTQTAKASRRARIERRTRESDIVIELDLDGTGQVAVDTGVPFYDHMLTALGSHASFDL 
Noc    (1) --MTDTTLRHRTARVERVTKESSIVVELDLDGTGRTDISTGVPFYDHMLTALGAHASFDL 
RHA1   (1) -------MTDRIARVERTTKESSITVELNLDGTGIVDVSTGVPFFDHMLTALGSHASFDL 
           61                                                       120 
SQ1   (54) DVKAKGDVEIDAHHTVEDTAIVFGQALGQALSDKKGIRRFGDAFIPMDETLAHASVDVSG 
K-10  (58) TVRTTGDVEIEAHHTIEDTAIALGAALGQALGDKRGIRRFGDAFIPMDETLAHAAVDVSG 
H37Rv (61) TVRATGDVEIEAHHTIEDTAIALGTALGQALGDKRGIRRFGDAFIPMDETLAHAAVDLSG 
Noc   (59) SVRAEGDIQIEAHHTVEDTAIVFGQALGKALGDKAGIRRFGDAFIPMDETLAHAAVDVSG 
RHA1  (54) TVHAKGDIEIEAHHTVEDTSIVLGQALGQALGDKKGIRRFGDAFIPMDETLAHASVDVSG 
           121                                                      180 
SQ1  (114) RPYCVHTGEPDYMVHSVIGG-------YPGVPYHAVINRHVFESIALNARIALHVRVLYG 
K-10 (118) RPYCVHSGEPDHLQHSTIAG--------SSVPYHTVINRHVFESLAMNARIALHVRVLYG 
H37Rv(121) RPYCVHTGEPDHLQHTTIAG--------SSVPYHTVINRHVFESLAANARIALHVRVLYG 
Noc  (119) RPYCVHTGEPEHLLHAVIPGSPVRGTGEPGAPYSTVLNRHVFESIALNARIALHVRVLYG 
RHA1 (114) RPYCVHTGEPEHLLHSVIGG-------YPGVPYATVINRHVFESIALNARIALHVRVLYG 
               181                                218 
SQ1  (167) RDQHHITEAEYKAVARALREAVEPDPRVSGVPSTKGTL 
K-10 (170) RDPHHITEAQYKAVARALRQAVEPDPRVSDVPSTKGVL 
H37Rv(173) RDPHHITEAQYKAVARALRQAVEPDPRVSGVPSTKGAL 
Noc  (179) RDQHHVTEAEFKAVARALRAAVEFDPRVSGVPSTKGTL 
RHA1 (167) RDQHHITEAEFKAVARALREAVEPDPRVTGVPSTKGSL 

 
 
Figure 4.21. Alignment of a putative HisB sequence from R. erythropolis SQ1 with 
HisB sequences from Rhodococcus sp. RHA1, Nocardia farcinica IFM 10152 (Noc), 
Mycobacterium avium subsp. paratuberculosis K-10 and M. tuberculosis H37Rv. 
Grey background, >50 % identity; green background, identical residues. 
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Figure 4.22. Steps catalysed by HisB (highlighted in red) in the histidine anabolic 
pathway [adapted from KEGG (Kanehisa et al., 2006)]. 
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HisB is encoded by the gene hisB, and is part of the his operon. Histidine metabolism 

has been a focus point of genetics for over forty years, contributing to the early 

hypothesis that prokaryotes possess genes arranged in operons. The histidine operon has 

since been shown to be present in most bacteria studied, including the actinomycete 

Streptomyces coelicolor (Alifano et al., 1996), Mycobacterium smegmatis and M. 

tuberculosis (Parish et al., 1997). The organisation of the his operon is remarkably 

similar across genus and species, as illustrated in Figure 4.23, and  has been commented 

on extensively in the literature (Price et al., 2006). From a genomic perspective, hisB is 

found upstream of hisH and hisA. It is interesting to note that Rhodococcus sp. RHA1, 

M. smegmatis and M. tuberculosis carry an inositol-monophosphatase between hisA and 

hisF which is involved in cell-wall synthesis (Parish et al., 1997). Although the genes 

hisB, hisH and hisA are found in the same order in all organisms studied so far (Alifano 

et al., 1996), interestingly, the hisBHA sequence is interrupted in Nocardia farcinica 

IFM 10152, Streptomyces avermitilis MA-4680 and Rhodococcus sp. RHA1 (Ishikawa 

et al., 2004; McLeod et al., 2006; Omura et al., 2001). In Nocardia, the ORF nfa18490 

lies between hisH and hisA. In Streptomyces, the ORF SAV6156 lies between hisB and 

hisH. These two ORFs bear no similarity and are of unknown function. Rhodococcus 

sp. RHA1 seems to be quite unique in having two ORFs inserted between hisB and hisH 

(ro01020 and ro01027) as well as one between hisH and hisA (ro01025). In 

R. erythropolis SQ1, the remaining 598 nucleotides of sequence information obtained 

for mutant 3B4 located downstream of the putative hisB gene are highly similar (over 

70 % identity) to the corresponding sequence in Rhodococcus RHA1. This would 

suggest that Rhodococcus RHA1 and R. erythropolis SQ1 share a similar organisation 

for the his operon. Predicted proteins encoded by ORF nfa18490, SAV6156, 

RHA1_ro01025 and RHA1_ro01028 are of unknown function, while RHA1_ro01027 is 

a putative major facilitator family transporter (McLeod et al., 2006). 
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As was observed for the hisA mutants, the hisB mutant is auxotrophic for histidine in 

that normal growth was achieved when CDM II was supplemented with histidine (data 

not shown).  
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Figure 4.23. Histidine synthesis operons of E. coli K-12, M. tuberculosis H37Rv and 
Rhodococcus sp. RHA1. The purple arrows show open reading frames encoding 
proteins of unknown function. impA (M. tuberculosis) and suhB (Rhodococcus) both 
encode an inositol-monophosphatase specific to actinobacteria. 
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4.4.5. Serine/glycine auxotrophic serA mutant: 6E6 

Mutant 6E6 failed to grow after 14 days incubation in either CDM 1 % glucose or 

CDM 0.1 % glucose. In contrast, wild-type R. erythropolis SQ1 gave strong growth at 

each sampling point. However, the wild-type phenotype was observed when mutant 

6E6 was grown in LB broth. DNA from mutant 6E6 was isolated and processed in the 

same way as the mutants previously described and an 831 bp sequence was retrieved 

(Figure 4.24). Although sequence data was obtained for regions both upstream and 

downstream of the transposon insertion point, only one restriction site could be located 

in the sequence obtained. A similar situation arose with mutants 1B3 and 4G11 

restricted with EcoRI (section 4.4.1). Interestingly, a 10 bp repeat sequence, 

TCCTCGCTCT, was observed at the transposon insertion point.  

 

The nucleotide sequence obtained was translated and analysed using BLASTX against 

the non-redundant protein database at NCBI. Strong similarity was found between the 

sequence encoded by ORF 1 and the sequence of the D-3-phosphoglycerate 

dehydrogenase (PGDH, encoded by serA genes) of several mycobacteria (scores >300 

and E-values <2×10−80). Each ORF was translated using the bacterial genetic code and 

submitted to a BLASTP search. ORF 1 was found to be the only one with significant 

similarity to proteins in the database, specifically to the D-3-phosphoglycerate 

dehydrogenase (EC 1.1.1.95, SerA).  

 

The 831 bp sequence obtained codes for the C-terminal 271 amino acids only, 

corresponding to approximately half the size of SerA proteins reported to date (505–

531 aa). The sequence from 1 to 831 bp was therefore translated in frame +1 to yield a 

276 amino acid sequence that was aligned using Align to the best BLAST hits (Figure 

4.25). An identity of 63 % was calculated (using Align) between the amino acid 
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sequence obtained from R. erythropolis SQ1 and the C-terminal 276 amino acids of 

SerA from M. tuberculosis H37Rv. 
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Open reading frame Position Strand Size 

ORF 1 16–828 Sense 813 bp 

ORF 2 33–380 Sense 348 bp 

ORF 3 41–430 Sense 390 bp 

 
Figure 4.24. Schematic representation of the 831 bp sequence retrieved for mutant 
6E6.  
The NarI restriction site used to retrieve the sequence is shown, as well as putative open 
reading frames predicted by ORF finder and the transposon insertion site. Size, position 
and strand of the ORFs identified in sequence are shown in the table. 
ORFs were identified with the ORF Finder function of Vector NTI (Invitrogen, 
http://www.invitrogen.com). 
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           1                                                         60 
SQ1    (1) ------------------------------------------------------------ 
H37Rv  (1) --MVSLPVVLIADKLAPSTVAALGDQVEVRWVDGPDRDKLLAAVPEADALLVRSATTVDA 
PYR-1  (1) ---MSLPVVLIADKLAQSTVEALGDQVEVRWVDGPDREKLLAAVADADALLVRSATTVDA 
Noc    (1) MSQAGRPVVLIADKLAQSTVDALGDGVEVRWVDGPDRPALLAAVPEADALLVRSATTVDA 
RHA1   (1) MSQPGRPVVLIADKLAPSTVEALGDGVEVRWVDGPDRPALLAAVPEADAILVRSATTVDA 
           61                                                       120 
SQ1    (1) ------------------------------------------------------------ 
H37Rv (59) EVLAAAPKLKIVARAGVGLDNVDVDAATARGVLVVNAPTSNIHSAAEHALALLLAASRQI 
PYR-1 (58) EVLAAAPKLKIVARAGVGLDNVDVDAATARGVLVVNAPTSNIHSAAEHALALLLAAARQI 
Noc   (61) EVLEAGKNLKIVARAGVGLDNVDVPAATERGVMVVNAPTSNIHTAAEHAVTLLLAAARQI 
RHA1  (61) EVLAAGTKLKIVARAGVGLDNVDVAAATERGVMVVNAPTSNIHTAAEHAVALMLATARQI 
           121                                                      180 
SQ1    (1) ------------------------------------------------------------ 
H37Rv(119) PAADASLREHTWKRSSFSGTEIFGKTVGVVGLGRIGQLVAQRIAAFGAYVVAYDPYVSPA 
PYR-1(118) PAADATLREHSWKRSSFSGTEIFGKTVGVVGLGRIGQLVAQRLAAFGAHITAYDPYVSHA 
Noc  (121) PAADATLREHTWQRSKFNGVEIYGKTVGVVGLGRIGQLFAARLAAFETKIIAYDPYVSPA 
RHA1 (121) PAADATLRDREWKRSKFNGVEIFGKTVGVVGLGRIGQLFAQRLAAFETHVIAYDPYVSAA 
           181                                                      240 
SQ1    (1) ------------------------------------------------------------ 
H37Rv(179) RAAQLGIELLSLDDLLARADFISVHLPKTPETAGLIDKEALAKTKPGVIIVNAARGGLVD 
PYR-1(178) RAAQLGIELLTLDELLGRADFISVHLPKTKETAGLIGKEALAKTKPGVIIVNAARGGLID 
Noc  (181) RAAQLGIELVTLDELLGRADLISVHLPKTPETKGLLSKEKLALTKKGVIIVNAARGGLID 
RHA1 (181) RAAQLGIELVTLDELLERADLISVHLPKTPETKGLLGTENLAKTKKGVVIVNAARGGLID 
           241                                                      300 
SQ1    (1) -------------------VFSTEPCTDSKLFELDNVVVTPHLGASTSEAQDRAGIDVAK 
H37Rv(239) EAALADAITGGHVRAAGLDVFATEPCTDSPLFELAQVVVTPHLGASTAEAQDRAGTDVAE 
PYR-1(238) EAALADAINSGHVRGAGLDVFSTEPCTDSPLFELPQVVVTPHLGASTVEAQDRAGTDVAA 
Noc  (241) EQALADAITSGHVRAAGIDVFETEPCTDSPLFELPQVVVTPHLGASTTEAQDRAGTDVAK 
RHA1 (241) EAALAEAIKSGHVRAAGLDVFETEPCTDSPLFDLPEVVVTPHLGASTTEAQDRAGTDVAK 
           301                                                      360 
SQ1   (42) SVLLALAGEFVPEAVNVSGGPVGEEVAPWLELVRKLGLLAATLSPEAVQTVQVVATGELS 
H37Rv(299) SVRLALAGEFVPDAVNVGGGVVNEEVAPWLDLVRKLGVLAGVLSDELPVSLSVQVRGELA 
PYR-1(298) SVKLALAGEFVPDAVNVGGGAVGEEVAPWLDLVRKLGLLVGVLSSEPPVSLQVQVQGELA 
Noc  (301) SVLLALAGEFVPGAVNVTGGAVSDEVAPWLEIVRKQGALVGALSDELPVSVEVQVRGELA 
RHA1 (301) SVLLALAGDFVPDAVNVSGGAVGEEVAPWLEIVRKQGVLIGALSGELPVNLSVDVRGELA 
           361                                                      420 
SQ1  (102) AETVDILGLAALRGVFSASSDEAVTFVNAPALAEQRGVTVSVEKHSEALAHRSAVEVRAV 
H37Rv(359) AEEVEVLRLSALRGLFSAVIEDAVTFVNAPALAAERGVTAEICKASESPNHRSVVDVRAV 
PYR-1(358) SEEVEVLKLSALRGLFSAVIEHPVTFVNAPALASERGVEASITTATESANHRSVVDVRAV 
Noc  (361) AEDVAVLELSALRGIFSALVEDQVTFVNAPALAKERGISVEVTTASESPSHRSVVDLRAV 
RHA1 (361) SEDVEVLALSALRGVFSAVIEDAVTFVNAPALAEERGVTAEVTKAAESPNHRSVVDLRAV 
           421                                                      480 
SQ1  (162) AADGTVTSVTGALTGLQQVEKIVNINGRSFDLRAEGHNIVVH-YSDRPGVLGVLGTVLGN 
H37Rv(419) GADGSVVTVSGTLYGPQLSQKIVQINGRHFDLRAQGINLIIH-YVDRPGALGKIGTLLGT 
PYR-1(418) AADGSTVNVAGTLTGPQLVEKIVQINGRNLELRAEGVNLIIN-YDDQPGALGKIGTLLGG 
Noc  (421) FGDGRTLNVAGTLTEPQQVQKIVNINGRNYDMRAEGLNLAVLNYDDRPGALGKIGTRLGE 
RHA1 (421) FGDGSVINVSGTLTGPQQVEKIVNINGRNFELRAEGLNLVVN-YTDQPGALGKIGTQLGN 
           481                                              532 
SQ1  (221) AGVDILAAALSQDAEGEGATVILRVDRVVGDAEVEAIVSQLDARVAQVDLS- 
H37Rv(478) AGVNIQAAQLSEDAEGPGATILLRLDQDVPDDVRTAIAAAVDAYKLEVVDLS 
PYR-1(477) AAVNILAAQLSQDADGIGATVMLRLDREVPGEVLAAIGRDVNAVTLEVVDLT 
Noc  (481) ADIDILAAQLSQDIDKEGATVILRVNKPVPADVQTAIAEAVGAAKIALVDLF 
RHA1  480) AGIDIQAAQLSQDAEGEGATILLRVDREVPSEVRDAISTAVGATKIELVNLA 

 
 
Figure 4.25. Alignment of a putative SerA sequence from R. erythropolis SQ1 with 
sequences from Rhodococcus sp. RHA1, M. tuberculosis strain H37Rv, M. 
vanbaalenii PYR-1 and N. farcinica IFM 10152.  
Grey background, >50 % identity; green background, identical residues. 
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SerA catalyses the conversion of D-3-phosphoglycerate to 3-phospho-hydroxypyruvic 

acid (or hydroxypyruvic acid phosphate) and vice versa. It is one of the first steps in the 

biosynthesis of serine from glycerate (Figure 4.26) (Ichihara & Greenberg, 1957; Walsh 

& Sallach, 1966). Since SerA appears essential to the synthesis of serine in 

M. tuberculosis (Sassetti et al., 2003) and could be involved in the biosynthesis of 

glycine and threonine, a short supplementation study was performed. Growth of mutant 

6E6 was assessed in CDM II 1% glucose broth supplemented with glycine, serine, 

threonine, and combinations of these amino acids (all at concentrations of 100 μg ml−1) 

(Table 4.6). It is interesting to see that both serine and glycine restored the ability of the 

mutant to grow in chemically defined medium, presumably because of the possibility to 

synthesise serine from glycine (EC 2.1.2.1, Figure 4.25). The seemingly complete 

inhibition of growth by threonine was not completely unexpected, considering its toxic 

effects on other organisms (Eccleston & Kelly, 1973; Lamb & Bott, 1979).  
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Figure 4.26. Position of phosphoglycerate dehydrogenase in a simplified glycine, 
serine and threonine metabolism pathway [adapted from the Rhodococcus sp. 
RHA1 pathway from KEGG (Kanehisa et al., 2006)]. 
 

 



191 

 

 

 

 

 

 

 

Growth medium (CDM II 1% glucose) Growth density 

Non-supplemented – 

+ threonine – 

+ serine ++ 

+ glycine +++ 

+ glycine + serine +++ 

+ glycine + threonine – 

+ serine + threonine – 

+ glycine + serine + threonine – 

 

Table 4.6. Growth of mutant 6E6 in CDM 1% glucose broth supplemented with 
serine, glycine and threonine (100 μg ml−1).  
–, no visible growth; + to +++, increasing growth. 
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A gene database search (NCBI) revealed that there are at least two genes with the same 

putative function in Rhodococcus sp. RHA1, serA2 and serA3, and a further three 

putative serA genes (RHA1_ro04630, RHA1_ro01308 and RHA1_ro02790). Since 

mutant 6E6 is auxotrophic for serine/glycine, it seems that only the gene disrupted by 

transposon insertion is expressed in CDM IIA, in other words the additional gene copies 

are not fulfilling the activity of the inactivated gene under these growth conditions. The 

possession of multiple serA or serA-like genes is common. For instance, two serA genes 

are found in M. tuberculosis H37Rv and M. bovis AF2122/97 (serA1 and serA2); one 

gene with proven function, in addition to a putative gene are found in Nocardia 

farcinica IFM 10152 (serA and nfa13640) and M. tuberculosis CDC1551 (serA, 

identical to serA1 from M. tuberculosis and M. bovis and MT0753).  
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Although the starvation or non-growth state is probably the most common physiological 

state of bacteria (Morita, 1993), it has been studied in relatively few organisms. In spite 

of its importance in pathogenesis, bioremediation and several industrial processes, 

limited research has been performed on members of the genus Rhodococcus under 

starvation conditions. The objectives of this study were to analyse the physiological 

adaptation of Rhodococcus to starvation/stationary phase, and to generate a bank of 

mutants to identify genetic elements involved in this adaptation. The study organism, 

R. erythropolis SQ1, was chosen based on ease of growth in chemically defined 

medium, antibiotic sensitivity profile (of relevance as selective pressure in DNA 

transformation experiments) and transformation efficiency by electroporation.  

 

In this study, it was shown that, similar to Vibrio, S. aureus and M. tuberculosis 

(Jenkins et al., 1988; Nyka, 1974; Nyström, 1999; Watson et al., 1998b), 

R. erythropolis SQ1 can survive carbon starvation or nutrient-induced stationary phase 

for a prolonged period of time. It was found that R. erythropolis SQ1 can survive for at 

least 43 days in LB and distilled water, and at least 65 days in chemically defined 

medium (CDM) containing high (1 % w/v, 55 mM) or low (0.1 % w/v, 5.5 mM) 

concentrations of glucose. Interestingly, growth in a low-energy medium (5.5 mM 

glucose medium) enabled 100 % of the cells in culture (approx. 1.2×109 CFU/ml) to 

form colonies on agar, even after 65 days static incubation (data not shown). Viable cell 

counts, measured by plating on LB agar, remained more or less constant (variation 

≤1 log), regardless of the medium in which the cells were grown. Other organisms were 

shown to survive long periods of time under similar conditions, e.g. Listeria 

monocytogenes, Staphylococcus aureus, Mycobacterium tuberculosis and Rhodococcus 

rhodochrous (Herbert & Foster, 2001; Shleeva et al., 2002; Watson et al., 1998b). It 

was verified that, during long-term stationary phase, the glucose was exhausted from 
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chemically defined medium (<0.1 mM, as measured by a colorimetric method) between 

6 and 7 incubation in 0.1 % CDM, and between 7 and 13 days incubation in 1 % CDM, 

respectively. This shows that R. erythropolis SQ1 could survive for long stretches of 

time in a medium in which there was no source of energy. Additional samples would be 

necessary to pinpoint the exact time at which glucose was depleted from the medium. 

The growth rate in exponential phase was found to be much lower when R. erythropolis 

SQ1 was grown in 0.1 % CDM than when grown in 1 % CDM (approx. 0.094 hr−1 vs 

0.17 hr−1, respectively). More frequent sampling would have however been necessary 

for a more accurate figure to be determined. The observations reported in this study are 

true of R. erythropolis grown with glucose as the sole carbon source. It would be 

interesting in the future to compare behaviours using alternative carbon and/or energy 

sources. The modified chemically defined medium described in this work could also be 

applied to studies investigating other growth-limiting nutrients or elements, such as 

nitrogen and phosphorous, or trace metals and vitamins. Furthermore, it would be of 

interest to study the physiological status of immobilised cells, as these have been 

proposed for use in several industrial processes (see e.g. Begoña Prieto et al., 2002; 

Kitova et al., 2002; Kitova et al., 2004; Naito et al., 2001; Pirog et al., 2005; Prieto et 

al., 2002).  

 

Interestingly, the culturability of R. erythropolis SQ1 dropped dramatically (by 4 logs) 

when flasks were transferred from shaking to static incubation, but did not disappear 

altogether, as cells could still yield colonies on LB agar (approx. 4×105 CFU/ml). This 

behaviour was observed only in high-glucose (1 %) medium. Transfer to static 

incubation is used to produce dormant cells in M. tuberculosis and M. bovis growing in 

Dubos Tween–albumin broth (0.75 % glucose, w/v) (Lim et al., 1999; Wayne & Hayes, 

1996). The same effect was observed in Rhodococcus rhodochrous grown in modified 
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Sauton’s medium (approx. 6 % glycerol, v/v) (Shleeva et al., 2004; Shleeva et al., 

2002). Significantly, R. erythropolis SQ1 grown in CDM 0.1 % glucose did not exhibit 

any drop in culturability upon transfer to static incubation. It can be hypothesised that 

the lower concentrations of carbon source/energy primed the bacteria for viability in 

low-oxygen conditions. Previous and current studies on R. erythropolis have focussed 

on high-oxygen conditions for industrial processes (Gomez et al., 2006; Kretschmer & 

Wagner, 1980a; Kretschmer & Wagner, 1980b; Santos et al., 2006). Further work on 

the survival of R. erythropolis in microaerophilic and/or anaerobic conditions would 

shed light on its survival in for example the deep sea (Heald et al., 2001). 

 

An association between carbon starvation, or entry into stationary phase, and increased 

resistance to a range of environmental stresses has been reported for several bacterial 

genera including Vibrio, Staphylococcus aureus and mycobacteria (Clements & Foster, 

1998; Kjelleberg et al., 1993; Nyka, 1974). The second objective of this study was to 

determine whether glucose-starved R. erythropolis SQ1 possesses enhanced resistance 

to heat and oxidative stress. The most dramatic increase in resistance was to heat shock: 

after 5 min exposure to 57 °C, no exponential phase cells survived, whereas nearly 

40 % of early stationary phase cells did. The resistance afforded by carbon starvation to 

oxidative stress was less dramatic, with almost 50 % of exponential phase cells 

surviving 5 min in the presence of 400 mM tBHP, compared with 63 % of early 

stationary phase cells. After 10 min of oxidative stress, 40 % of early stationary phase 

cells survived, vs 7 % of exponential phase cells. These results are broadly similar to 

those obtained in other organisms, e.g. Staphylococcus aureus and Escherichia coli 

(Jenkins et al., 1988; Watson et al., 1998b), although like-for-like comparisons are 

difficult due to the differences in protocol and the fact that different bacteria have 

different innate sensitivities to stress. Although the tBHP concentration used in this 
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study was found to be adequate to investigate the cross-protection afforded by entry into 

stationary phase/starvation, further investigations could be carried out with different 

concentrations, in particular in the 200–500 mM range. This would help in determining 

the mode of the killing effect of tBHP on R. erythropolis SQ1, as it has been 

demonstrated previously that hydrogen peroxide has a bimodal killing effect on cells of 

E. coli (Imlay & Linn, 1986). 

 

To investigate whether protein synthesis was involved in the stress resistance 

mechanisms, chloramphenicol, a bacteriostatic antibiotic that inhibits protein synthesis, 

was added to the test sample before exposure to the stress. Interestingly, for 

R. erythropolis SQ1, chloramphenicol treatment did not significantly reduce the degree 

of resistance of exponential or early stationary cultures to heat shock. This is in contrast 

to previous studies performed on E. coli in which it was found to restore exponential-

phase sensitivity to stationary phase E. coli (Jenkins et al., 1988). It is possible that, in 

the experiments performed in this study, the timing of exposure to chloramphenicol was 

not optimal for observation of induction of cross protection and its inhibition by 

chloramphenicol. The fact that no reduction in heat shock resistance was observed 

would lead one to conclude that the proteins that protect against heat shock have 

already been synthesised prior to chloramphenicol treatment. Since exponential phase 

cells were however sensitive to a heat shock of 57 °C, it is probable that the heat shock 

proteins were synthesised between the two sampling points, at 2 and 6 days of growth.  

 

For oxidative stress, on the other hand, chloramphenicol treatment decreased 

exponential phase R. erythropolis resistance to tBHP. A transitory effect was observed 

in chloramphenicol-treated early stationary phase cells, their sensitivity to tBHP at 

5 min exposure was the same as untreated exponential phase cells. However, cell 
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resistance to tBHP at 10 and 15 min was similar to that of untreated early stationary 

phase cells. It is unclear how resistance to oxidative stress could be restored in the 

absence of protein synthesis. The point made above about the time of sampling is also 

valid here. It is well-known that different enzymes are produced by bacteria to protect 

against peroxides and superoxides, the most well known are catalase and superoxide 

dismutase, respectively. tBHP is a peroxide, it is quite possible that a superoxide such 

as veratrate would elicit a different response in R. erythropolis SQ1. 

 

Taken together, these results show that R. erythropolis SQ1 reacts to carbon depletion 

in the medium by triggering a starvation survival response, resulting in long-term 

survival and cross-protection. As long as aeration is maintained in liquid culture, the 

cells can form colonies on agar plates. The inability to form colonies on agar plates was 

observed only in high-energy medium (55 mM glucose medium), and only when the 

cells where transferred to static incubation in early stationary phase.  

 

The behaviour of the cells treated with chloramphenicol can be explained in several 

ways. Firstly, it is possible that the experimental setup was not appropriate, although the 

concentration of chloramphenicol used was shown to inhibit R. erythropolis SQ1 

growth both on agar and in broth, and was shown to act instantly by continuously 

monitoring the OD600nm of a test culture while chloramphenicol was added at various 

concentrations. Secondly, it is possible that heat protection proteins (e.g. chaperones) 

are constitutively expressed in high concentration in R. erythropolis SQ1 grown in low-

energy medium (5.5 mM glucose); growth in low-energy medium was shown to protect 

the cells against static incubation, and this may have other cross-protecting effects. This 

could be investigated by increasing the quantity of glucose in the medium. Under the 
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conditions used in this study, chloramphenicol did inhibit the development of resistance 

to oxidative stress, particularly noticeable in the case of exponential phase cells.  

 

The next step in the study was to generate a mutant bank that could be screened for 

stationary phase survival deficient mutants, in order to then identify the genes involved. 

Once electroporation settings and recovery conditions had been optimised, the 

generation of the mutant bank was rather straightforward. The Tn<KAN2> kit 

(Epicentre) was selected for generation of a mutant bank of R. erythropolis SQ1 since it 

had been used previously to generate mutants of R. rhodochrous, R. equi and 

R. erythropolis (Fernandes et al., 2001; Mangan & Meijer, 2001; Tanaka et al., 2002) 

with no particular problems reported. The number of mutants obtained in this study was 

comparable to that obtained for R. equi and R. rhodochrous (approx. 600 and 1500, 

respectively, Fernandes et al., 2001; Mangan & Meijer, 2001), but disappointing 

compared with that obtained for R. erythropolis KA2-5-1 (approx. 46,000, Tanaka et 

al., 2002). 

 

Following a simple growth experiment in microtitre plates, it was possible to isolate 

mutants with growth defects. All mutants generated were screened for stationary 

phase/starvation survival using a method similar to that of Uhde et al. (1997). The 

results for each mutant were recorded on the basis of appearance of growth on LB agar 

after 1, 8, 14 and 22 days incubation in CDM 1 and 0.1 % glucose broth. Mutants were 

selected for further study based on the extent and presence of growth in stationary 

phase. From 898 mutants screened, four mutants, 1B2, 1H1, 4G6 and 10D3, were of 

particular interest with regards to stationary phase/starvation survival. When grown in 

500 ml glass flasks in 100 ml CDM 1 or 0.1 % glucose and compared with the 

behaviour of the wild-type R. erythropolis SQ1 grown under the same conditions the 
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following observations were made. The culturability of mutants 4G6 and 10D3 dropped 

to 0.01 and 0.1 % of the maximum CFU/ml at 27 days incubation, respectively, when 

grown in 1 % glucose medium. A drop in culturability was also observed in 1 % 

glucose medium for mutants 1B2 and 1H1, to 3 and 2.5 % of the maximum CFU/ml at 

27 days incubation, respectively. Interestingly, no significant drop in culturability could 

be observed for any of these four mutants when grown in CDM 0.1 % glucose. 

 

One aim of this study was to identify genetic elements involved in the stationary phase 

and starvation survival of R. erythropolis SQ1. An essential step was therefore to isolate 

DNA from the mutants. Many protocols reported in the literature for the isolation of 

genomic DNA from Rhodococcus are based on phenol extractions and proteinase K 

treatment (see e.g. Treadway et al., 1999; Veselý et al., 2003). Interestingly, protocols 

include lysozyme, even though it has been reported that several rhodococci are resistant 

to lysozyme (Mitani et al., 2005; Solovykh et al., 2004). In this study it was found that, 

although it was possible to lyse R. erythropolis SQ1 cells with similar methods, the 

amount of protein present in the samples of some mutants made it very difficult to 

isolate clean genomic DNA. Large volumes of reagents and enzyme were required, and 

it was not possible to design a standard protocol that could be used for all mutants. 

Therefore a kit (FastDNA SPIN kit for soil; Qbiogene) using a mechanical cell 

disruption method (glass beads) and a resin-based DNA purification method was used, 

as advised by Dr Herron, University of Strathclyde, Glasgow, yielding consistently 

higher quality genomic DNA for further molecular manipulation. 

 

In order to recover the sequences flanking the transposon insertion site in each of these 

mutants, several approaches were tested. Among these were two methods, arbitrarily 

primed PCR (AP-PCR) and random amplification of transposon ends PCR (RATE-
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PCR), using either degenerate primers or non-stringent binding conditions, respectively 

(Caetano-Anollés, 1993; Ducey & Dyer, 2002). In the first method, PCR is performed 

on the template with degenerate primers, a smear of amplified DNA is produced, as 

verified by agarose electrophoresis, and specific primers are then used to amplify the 

sequence of interest. This technique has been successfully applied to Pseudomonas 

fluorescens and Vibrio cholerae for example (Burrus & Waldor, 2003; O'Toole & 

Kolter, 1998), but the amplicons are usually short (200–400 bp). Short sequences could 

be generated with mutant 4G11, but were deemed too short to give a good overview of 

the genome segment that had been disrupted by transposon insertion.  

 

RATE-PCR has been used to recover transposon-flanking DNA from Neisseria 

gonorrhoeae (Ducey & Dyer, 2002). This method relies on lowering the annealing 

temperature during PCR, so that non-specific binding occurs. When applied to the 

analyses of mutants in this study, many bands of varying sizes were produced for each 

PCR, but not all were amplicons of the transposon-flanking DNA. By the random 

nature of this technique, the results could not be reproduced, in that bands obtained in 

repeated PCR reactions in fact consisted of different amplicons. These problems might 

also be related to the discrepancy in G+C content between the primer and the 

rhodococcal DNA. The primer is specific to an end of the transposon and therefore has 

a G+C content of approximately 50 %, vs approximately 70 % for Rhodococcus DNA. 

It would therefore seem logical that low-G+C areas of the rhodococcal DNA would be 

amplified preferentially, even if the transposon inserted elsewhere.  

 

Since neither of the above methods was successful, a third method was tested based on 

the use of inverse PCR. This yielded much better results (sequences of up to 1 kb were 

obtained) and allowed DNA amplification products from 9 mutants (out of 16 selected) 
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to be cloned and sequenced. The limitation of this method was finding for each mutant 

a restriction enzyme that yields transposon-containing fragments of an appropriate size 

for religation and subsequent PCR amplification. This meant that many restriction 

endonucleases had to be systematically tested on each mutant, as there was no easy or 

rapid way in which to predict which enzyme would yield the appropriate fragments. An 

added difficulty was the amplification of a low-copy number, high G+C DNA 

sequence. Although modern Taq polymerase kits are very efficient and effective, some 

DNA regions could still not be amplified and/or sequenced, even using “high-fidelity” 

or “high G+C” enzymes (e.g. for mutant 1B2, attempts made were made with YB-

GCMix, Yorbio; Deep VentR, NEB; GC-rich PCR system, Roche). For such 

recalcitrant mutants there are additional alternative methods that could still be tested 

such as ligation-mediated PCR (LMPCR, Prod'hom et al., 1998). For LMPCR, the 

target DNA is digested with a restriction enzyme that cuts both within and outwith a 

known sequence, e.g. a transposon. An asymmetric, double-stranded, non-

phosphorylated linker is then ligated to the restricted DNA. During the first PCR step, 

only a primer specific to the known sequence is used, thereby amplifying only the 

sequence that flanks the known sequence. A standard PCR is then performed, with 

primers specific to the known sequence and to the linker. Amplicons of mycobacterial 

sequences of up to 2.8 kb in size have been produced with this method (Prod'hom et al., 

1998). However, the issues mentioned above regarding restriction fragment size, PCR 

amplification and sequencing of complex sequences would still apply, as it has been 

demonstrated that the failure rate of PCR increases with G+C content and length of the 

target sequence (Benita et al., 2003).  

 

An alternative method would be to use a transposon like EZ::Tn5 <R6Kγori/KAN-2> 

(Epicentre) (it should be noted that this became available during the later stages of this 
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project). As can be seen from the name of the transposon, it has been modified to 

include a plasmid origin of replication, ori. It is therefore possible to extract the 

genomic DNA from mutants of interest, restrict it, perform a self-ligation and 

electroporate the resulting plasmids into E. coli. When applied to a study of 

Rhodococcus erythropolis AN12 (Yang, 2006; Yang et al., 2007a), two such plasmids, 

of 11 and 16 kb, were recovered. The use of this transposome bypasses the PCR step 

that was so problematic in the iPCR approach described above.  

 

Starvation/stationary phase mutants were selected on the basis of non-recovery of 

growth on LB agar after incubation in chemically defined medium containing 1 or 

0.1 % glucose (w/v). Sixteen mutants, exhibiting weak or no growth on LB agar in at 

least one stage of growth in chemically defined medium, were selected for further 

study. Sequence data was obtained for nine mutants. Sequence analysis of several of the 

mutants revealed transposon insertion in biosynthetic genes that rendered them 

auxotrophic for histidine (insertions in hisA or hisB in the case of mutants 1B3, 3B10, 

4G11, 10E4 and 3B4) and serine/glycine (insertion in serA, mutant 6E6). Addition of 

histidine in the growth medium restored wild-type growth in the mutants, thereby 

confirming the function of the genes disrupted. It is not clear whether mutants 1B3, 

3B10, 4G11 and 10E4 are the result of separate transposon insertion events or clones of 

each other. Since the insertion was in the same locus for all four mutants, the clone 

explanation is probably the most likely. These auxotrophic mutants probably featured in 

the screening experiment because of carry-over of organic material from the master 

plate during replica plating. Since the volumes of medium used were small (200 μl), 

even very small amounts of carry-over would enable growth. The histidine mutants had 

inserts in genes that, in other organisms, are part of an operon. Interestingly, it seems 

that Rhodococcus RHA1 contains genes of unknown or unrelated functions in the his 
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operon. More sequence data would be necessary to determine whether these genes are 

also in an operon in R. erythropolis SQ1. This is however very likely, as this operon is 

ancient and conserved in many species, including actinobacteria (Price et al., 2006). 

Various studies on the regulation of the his operon have revealed that, as expected, the 

histidine synthesis genes were repressed under stationary phase/starvation conditions in 

E. coli (hisF; Franchini & Egli, 2006) and M. tuberculosis (hisA and hisI2; Betts et al., 

2002). Surprisingly, the entire his operon was up-regulated in B. subtilis 

(hisZGDBHAFI; Eymann et al., 2002). 

 

The serine/glycine auxotroph mutant (6E6) resulted from transposon insertion in a serA 

gene homologue. The protein encoded by serA is a D-3-phosphoglycerate 

dehydrogenase that catalyses the first step of synthesis of serine from pyruvate. Since 

this pathway then leads to the synthesis of glycine and threonine, growth of the mutant 

was therefore tested in chemically defined medium containing serine, glycine, threonine 

or combinations of these amino acids. The growth of the serine/glycine auxotrophic 

mutant could be restored by addition of either serine or glycine, singly or together, but 

was completely inhibited by threonine. It is possible that the aspartokinase of 

R. erythropolis SQ1 is inhibited by threonine, as was described for Methylococcus 

capsulatus (Eccleston & Kelly, 1973), thereby disrupting the synthesis of aspartic acid 

and aspartate-based amino acids (lysine, methionine, threonine and isoleucine). 

Eccleston and Kelly (1973) have described how methionine can relieve the inhibition 

caused by threonine but this was not attempted in this study. In a microarray experiment 

monitoring gene expression of E. coli grown in glucose-limited continuous culture, it 

was found that the gene serA was down-regulated at both 40 and 500 hours incubation 

(Franchini & Egli, 2006). 
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One of the mutants that could not survive stationary phase was 4G6, with a transposon 

insertion in the gene uvrB. UvrB, the excinuclease ABC subunit B, is an essential part 

of the DNA excision repair mechanism; therefore it is not surprising that this mutant 

would have difficulty in surviving stationary phase. It is known that, as cells stop 

growing, they accumulate mutations in the DNA (Bridges, 1998; Kivisaar, 2003). The 

role of uvrB in stationary phase mutations is unclear, as it has been shown that uvrB 

mutants accumulate mutations during stationary phase in E. coli (Vidal et al., 1998), but 

the opposite was observed in Pseudomonas putida (Tark et al., 2008). Furthermore, a 

Mycobacterium tuberculosis uvrB mutant was found to be extremely sensitive to nitric 

oxide, and UvrB was essential for resistance to reactive oxygen and reactive nitrogen 

intermediates. The stationary phase survival of this mutant however was not 

investigated (Darwin & Nathan, 2005). Interestingly, loss of viability was observed in 

the uvrB R. erythropolis SQ1 mutant grown in CDM 1 % glucose, but not in 

CDM 0.1 % glucose. Two explanations can be advanced for this discrepancy. Firstly, 

the high cell concentration obtained in CDM 1 % glucose might mean that high levels 

of oxidants and waste compounds have accumulated in the growth medium. As cells die 

and lyse, even more of these compounds would be released, hence increasing their 

concentration still further. Secondly, it is possible that growth in 0.1 % glucose induced 

expression of alternative DNA repair mechanisms, or of DNA-protecting proteins such 

as Dps, as has been shown in Mycobacterium smegmatis (Gupta et al., 2002). 

 

Mutant 10D3 was found to have the same growth profile as the UvrB mutant, although 

the transposon insertion does not seem to have disrupted a gene. The transposon is 

inserted immediately downstream of a putative guaB gene. Similar guaB genes are 

present in other organisms, but are not part of an operon, and are usually followed by 

another IMP dehydrogenase (guaB-like) and/or a cholesterol oxidase. The functions of 
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these genes are unclear however, so the function disturbed in R. erythropolis SQ1 

mutant 10D3 is unknown. It is possible that the decrease in viability of this mutant was 

due not to the disruption of a gene or regulatory sequence, but to overexpression of the 

kanamycin resistance gene of the transposon. The transposon inserted downstream of 

the guaB gene, a gene essential to the growth of the organism (Gil et al., 2004). It is 

therefore possible that the KAN2 gene came under regulation of the guaB promoter, 

resulting in overproduction of the kanamycin resistance protein (aminoglycoside 3′-

phosphotransferase). Over-expression of foreign proteins has been shown to inhibit 

bacterial growth and induce an incomplete starvation survival response (Kurland & 

Dong, 1996), that could affect the long-term stationary phase survival of cells grown in 

CDM 1 % glucose. However, this seems unlikely, since the genes guaB and guaA were 

repressed in E. coli grown for 40 h in continuous culture in medium containing 0.01 % 

glucose (Franchini & Egli, 2006), and guaB was repressed in Bacillus subtilis in which 

stationary phase was artificially induced by the addition of norvaline (Eymann et al., 

2002). Alternatively, the insertion could have affected the expression of the sequence 

downstream of the transposon insertion. Interestingly, the loss of culturability was 

observed only in CDM 1 %, but not in 0.1 % glucose. 

 

Mutant 1H1 was found to lose viability when grown in CDM 1 %. Interestingly, 

although the flanking sequence from mutant 1H1 could be amplified by iPCR using 

standard Taq polymerase and cloned, and subsequently amplified from the clone, it was 

not possible to obtain sequence data for one flanking sequence, despite several attempts. 

The transposon is inserted 272 nt downstream of a gene encoding a putative 

phosphoglycerate mutase. The mutase identified is probably a fructose-2,6-

bisphosphatase involved in five-carbon sugar metabolism. Unfortunately sequence 

information was not obtained for the sequence downstream of the transposon insertion 
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site; although in other organisms thioredoxin and cytochrome c biogenesis genes have 

been identified. Closer analysis of the 200 nucleotide sequence immediately upstream 

of the transposon did reveal significant homology to putative thioredoxins and 

cytochrome c biogenesis proteins of Rhodococcus RHA1 and Nocardia. It should be 

noted that in other actinobacteria such as Saccharopolyspora erythraea, Mycobacterium 

ulcerans and M. tuberculosis, it was found that the phosphoglycerate mutase gene is 

situated upstream of a putative thioredoxin protein/cytochrome c biogenesis protein 

gene, in the same orientation. It is therefore possible that polar effects of transposon 

insertion could disturb the expression of these two genes. Interestingly, the 

phosphoglycerate mutase genes pgm and yibO were found to be increasingly expressed 

in norvaline-induced stationary phase in B. subtilis (Eymann et al., 2002) and in 500 h 

0.01 % glucose continuous culture E. coli (Franchini & Egli, 2006). Indeed, many 

thioredoxin-related genes have been found to be induced by stationary phase; they are 

shown in Table 5.1. Thioredoxins are involved in many processes in bacteria, in 

particular DNA synthesis, protein repair, sulphur assimilation, cell division, energy 

transduction, transcriptional regulation and oxidative stress response (for a review, see 

Zeller & Klug, 2006). During oxidative stress response, thioredoxins reduce disulfide 

bonds and scavenge reactive oxygen species. Interestingly, DsbE (a disulfide 

oxidoreductase) is involved in the maturation of cytochrome c in E. coli (Fabianek et 

al., 1998). Cytochrome c itself also seems to be involved in maintaining peroxidase and 

catalase activity in the periplasm (Goodhew et al., 1990). 

 

There are relatively few rigorous studies in which carbon limitation is definitely the 

stationary phase-triggering factor (see e.g. van Overbeek et al., 1997). In many cases 

this is because the organism studied requires amino acid supplementation for growth 

(for example Seymour et al., 1996). The ability of R. erythropolis SQ1 to grow in a 
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rather simple chemically defined medium where all important elements are supplied by 

inorganic salts is therefore important. The list of vitamins used as supplements in this 

study could probably be reduced drastically by further modification of the medium. 

However, it should be noted that, in the medium used in this study the concentration of 

vitamins used is so low that it is unlikely to support measurable growth. It is 

nonetheless challenging to screen for mutants deficient in carbon-starvation survival. 

This is due in no small part to the fact that many of these mutations are probably lethal, 

given the importance of carbon in every biological process. Different protocols could be 

used, that simulate “real-world” conditions more closely. For instance, the mutants 

could have been replica-plated to chemically defined medium agar plates containing 

decreasing quantities of glucose, or a selection of carbon sources. Investigation of 

longer term survival would also be interesting, although the growth advantage in 

stationary phase (GASP) phenotype would certainly eventually arise (Zinser & Kolter, 

1999; Zinser & Kolter, 2004). 

 

In all the mutants for which sequence information could be obtained, the transposon 

insertion was accompanied by the duplication of a short stretch of the target sequence 

(Figure 5.1). For all the mutants (with one exception), a textbook 9 bp repeated 

sequence, typical of Tn5 insertion sites (Goryshin et al., 1998), was observed. Only 

mutant 6E6 contained a 10 bp repeat, which could be explained by slippage of the 

transposase–DNA complex during insertion. Interestingly, 10 bp is the kind of 

duplication seen at the insertion site of IS1166, as observed in R. erythropolis AJ270 

and AJ300 (O'Mahony et al., 2005). Also, in mutant 4G6 (UvrB mutant) an imperfect 

duplication was observed, in that only 7 out of 9 bp were identical. It is however 

plausible that this is a PCR artefact, rather than something directly resulting from the 

insertion mechanism. Interestingly, symmetry of the duplicated sequence was observed 
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in a comprehensive study of Tn5 insertion in Streptomyces coelicolor, e.g. 

GCCCNGGGC (Herron et al., 2004), but no such symmetry was found in 

R. rhodochrous or R. equi Tn5 insertion sites (Fernandes et al., 2001; Mangan & 

Meijer, 2001). This symmetry therefore seems to be limited to Streptomyces coelicolor. 
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Gene Function Organism Reference 

yfcF GST enzyme with thioredoxin-like domain E. coli Weber et al. (2005) 

yncG GST with C-terminal thioredoxin-like and GST 

domains 

E. coli Weber et al. (2005) 

ygjK GST enzyme with thioredoxin-like domain E. coli Weber et al. (2005) 

dsbG Thiosulfide reductase E. coli Weber et al. (2005) 

dsbE Disulfide oxidoreductase E. coli Franchini & Egli (2006) 

yumC Thioredoxin reductase B. subtilis Eymann et al. (2002) 

trxA Thioredoxin B. subtilis Hecker & Völker (1998) 

trxC Thioredoxin M. tuberculosis Betts et al. (2002) 

Table 5.1. Thioredoxin-related genes up-regulated during starvation/stationary 
phase. GST, Glutathione S-transferase. 
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Figure 5.1. Transposon insertion sites identified in mutants 1B3, 3B10, 4G6, 10E4, 
3B4, 10D3, 6E6 and 4G6. The 9 bp (10 bp for 6E6) repeats either side of the insertion 
site are shown in bold type. 
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In conclusion, R. erythropolis SQ1 was shown to be a good candidate for a model or 

test organism for this study, in particular because of its ease of culture and ease of 

molecular manipulation. It presents a classic starvation/stationary phase survival 

response, with the associated increase in resistance to various external stresses.  

 

A mutant bank was also generated, that will be available for future screening of other 

phenotypes, and a method developed to recover transposon flanking sequences. The 

mutants identified as being deficient in stationary phase/starvation survival had a 

transposon insertion in genes uvrB (nucleotide excision repair), hisA and hisB (histidine 

synthesis), serA (serine/glycine synthesis) and a putative thioredoxin (cytochrome c 

biogenesis). For one of the mutants (mutant 10D3) the transposon insertion was not 

within a gene but upstream of IMDH (IMP dehydrogenase) and downstream of guaB 

(guanine synthesis).  

 

Similar genes have been identified in stationary/starvation deficient mutants of other 

organisms. Some of those genes are involved in amino acid metabolism, such as hprT 

(hypoxanthine-guanine phosphoribosyl transferase) in Staphylococcus aureus (Watson 

et al., 1998a), lysE (exporter of lysine and arginine) in Mycobacterium smegmatis 

(Smeulders et al., 2004) and ilvE (branched-chain amino acid aminotransferase) in 

Sinorhizobium meliloti (Uhde et al., 1997). Others are cytochrome-associated, e.g. cydC 

(cytochrome d oxidase) in E. coli (Siegele et al., 1996), cox (cytochrome c oxidase) in 

Sinorhizobium meliloti (Uhde et al., 1997) and ctaA (haem A synthase, involved in 

synthesis of cytochromes aa3 and caa3) in Staphylococcus aureus (Clements et al., 

1999b; Watson et al., 1998a). More work should be performed in order to understand 

the function of these genes in stationary phase/starvation survival in Rhodococcus and 

also to identify additional implicated genes.  



213 

 

Few complete genome sequences of rhodococci are available to date. However, it 

should be noted that the availability of the Rhodococcus RHA1 genome sequence 

(McLeod et al., 2006) has been invaluable to the interpretation of the short stretches of 

DNA sequence retrieved from mutants analysed during the course of this project. The 

only other genome sequence partially available is that of R. equi 103S 

(http://www.sanger.ac.uk/Projects/R_equi/). R. erythropolis RR4 and R. opacus B4 are 

currently being sequenced at the National Institute of Technology and Evaluation in 

Japan (http://www.bio.nite.go.jp/ngac/e/project-e.html). With additional sequence data, 

it will be possible to use a site-directed mutagenesis strategy and/or microarrays to 

progress in this field. 

 

Several sigma factors have already been identified in Rhodococcus RHA1 [σA, σB; 

McLeod et al. (2006)], the sequences of which could be used to identify the 

corresponding genes in R. erythropolis SQ1. A homologue of relA can also be found in 

Rhodococcus RHA1, the putative protein sequence of which has high identity (>93 %) 

with that of M. tuberculosis H37Rv, and would therefore be a prime candidate for site-

directed mutagenesis. Until sequencing of R. erythropolis RR4 and R. opacus B4 is 

completed, it should be possible to identify an equivalent gene in R. erythropolis SQ1 

by careful design of primers for PCR amplification.  

 

The “resuscitation factor” identified in M. tuberculosis could be another target 

(Mukamolova et al., 1998). Five rpf genes have been identified in M. tuberculosis so far 

(Mukamolova et al., 2002), and some mutagenesis work has started in M. tuberculosis 

and Micrococcus luteus (Downing et al., 2004; Mukamolova et al., 2006). Some limited 

http://www.sanger.ac.uk/Projects/R_equi/�
http://www.bio.nite.go.jp/ngac/e/project-e.html�
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studies have also been performed on R. rhodochrous (Shleeva et al., 2002; Voloshin et 

al., 2005). It should be noted that the procedure to generate ‘non-culturable’ cells of 

R. rhodochrous is the exact opposite of that observed in this study for R. erythropolis 

SQ1, i.e. shaking vs stationary incubation. Comparison of the two species would 

provide more information on the role of Rpf in rhodococci. 

 

Other genes of interest for site-directed mutagenesis would be dps, encoding a DNA-

protecting protein (Gupta & Chatterji, 2003), and ppk, encoding a polyphosphate kinase 

(Hirsch & Elliott, 2002). 

 

All the genes highlighted previously for site-directed mutagenesis would also be 

suitable for microarray study. This would allow the study of the expression of the 

stationary phase/starvation genes when cells are used in industrial processes, e.g. when 

in a resting state or even isolated from polymer-bound cells. 
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