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Abstract

Although the use of ensemble methods in machine-learning is ubiqui-
tous due to their proven ability to outperform their constituent algorithms,
ensembles of optimisation algorithms have received relatively little atten-
tion. Existing approaches lag behind machine-learning in both theory and
practice, with no principled design guide-lines available. In this paper, we
address fundamental questions regarding ensemble composition in opti-
misation using the domain of bin-packing as a example; in particular we in-
vestigate the trade-off between accuracy and diversity, and whether diver-
sity metrics can be used as a proxy for constructing an ensemble, propos-
ing a number of novel metrics for comparing algorithm diversity. We find
that randomly composed ensembles can outperform ensembles of high-
performing algorithms under certain conditions and that judicious choice
of diversity metric is required to construct good ensembles. The method
and findings can be generalised to any meta-heuristic ensemble, and lead
to better understanding of how to undertake principled ensemble design.

1 Introduction

In the field of machine-learning, ensemble-methods that combine decisions from
multiple learning algorithms to make accurate predictions have been the fo-
cus of intense research for well over a decade (Valentini and Masulli, 2002),
with a broad range of empirical results underpinned by a sound theoretical
understanding. Ensemble methods have also found favour within the con-
straint satisfaction and satisfiability domains (Kotthoff, 2014), where they are
commonly referred to as portfolio methods. In the latter case, portfolios tend
to be composed from exact solvers, and are evaluated according to run-time
metrics.

1



On the other hand, research in ensemble-methods using meta-heuristic al-
gorithms (in which solution quality rather than run-time is the driving fac-
tor) lags behind machine-learning and satisfiability research in both theory
and practice. Some recent work exists in which algorithm portfolios are con-
structed from multiple, well-known population-based optimisation algorithms
(Vrugt et al., 2009; Peng et al., 2010; Tang et al., 2014; Yuen and Zhang, 2015);
other recent work uses genetic programming to evolve ensembles that contain
novel algorithms (Hart and Sim, 2016; Park et al., 2015), which cooperate to
produce solutions. However, given the detailed theory from machine-learning
that offers insight into how to design good ensembles, current approaches have
a number of weaknesses.

The first concerns size. The most effective classification ensembles contain
hundreds of classifiers (Breiman, 2001), an explicit design decision substanti-
ated by theory. In contrast, the population-based method listed above typically
contain ≤ 5 algorithms. Limiting the size of the pool in this manner places an
upper bound on potential performance. A large number of theoretical studies
in machine learning recognise diversity as a key characteristic of a successful en-
semble Kuncheva and Whitaker (2003): with regard to classification, negatively
correlated classifiers result in reduced error compared uncorrelated classifiers,
which in turn reduce error in comparison to correlated classifiers. Note that
the cited studies refer to functional diversity, that is, classifiers must exhibit dif-
ferences in behaviour, as opposed to being structurally diverse in terms of their
design. Investigating agent-based problem solving methods, Hong and Page
(2004) go even further in showing that diversity can trump ability. The most
common approach in meta-heuristic optimisation is to construct the ensemble
from well-known algorithms, typically those that are high-performing on com-
mon benchmarks (Vrugt et al., 2009; Grobler et al., 2015; Yuen and Zhang, 2015).
This choice almost certainly restricts diversity: most ‘good’ algorithms are la-
belled as such as they tend to perform well across the majority of problems in a
benchmark set. More recent research has seen some effort directed towards se-
lecting good combinations of algorithms for the portfolio, based on notions of
algorithm complementarity (Peng et al., 2010; Yuen and Zhang, 2015). However,
even these approaches still restrict the pool from which algorithms are chosen
to the same small sets of well-known algorithm algorithms previously used,
which as we have pointed out, inevitably comprises diversity. Furthermore,
the concept of diversity or complementarity in meta-heuristic optimisation al-
gorithms is ill-defined. Peng et al. (2010); Yuen and Zhang (2015) both note that
current notions of the concept are vague and that more precise measures and
understanding of complementarity are necessary. In addition, even if precise
definitions are available, in a machine-learning context Tang et al. (2006) illus-
trate that from a practical perspective, selecting the right diversity measure is
not easy.

In order to move the use of ensembles in optimisation forward, some ba-
sic questions need to be answered to gain the necessary insights required to
construct useful ensembles. These include what algorithms to consider for in-
clusion, and how better to select an optimal mix for the ensemble. Specifcally,
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we consider these questions:

• Is there a trade-off between the diversity and accuracy of the component
algorithms in an ensemble? (i.e. do we have to sacrifice accuracy in order
to increase diversity?)

• Under what conditions (if any) does an ensemble composed of func-
tionally diverse algorithms outperform an ensemble of high-quality al-
gorithms?

• Is diversity an appropriate proxy for constructing an ensemble: if so,
what diversity measure is best?

We develop a general methodology to answer these questions, involving
the creation of a very large pool of algorithms of wide-ranging ability that can
be used to construct an ensemble, and a large pool of benchmarks to evalu-
ate performance against. Bin-packing is selected as a representative domain in
combinatorial optimisation, and 1370 instances are collated from the literature
to use as a test-bed. To facilitate generation of a very large set of algorithms,
we define an algorithm as a sequence of well-known packing heuristics, which
is applied repeatedly until a solution is created. Using a sequence of length 3
created from 9 potential packing heuristics, we generate 93 = 729 algorithms.
Note that the method is not restricted to either bin-packing or algorithms cre-
ated as just described. The latter are used to simply facilitate an in-depth ex-
perimental study, and can be replaced by any optimisation algorithm, whether
they operate on a single individual or are population-based, and whether they
are stochastic or deterministic. The goal is not to conduct a comparison of en-
sembles to other methods but instead to gain fundamental insights into how to
construct ensembles for use in optimisation.

The main contributions are as follows. First, we provide empirical evidence
of the conditions under which a random group of algorithms will outperform
a group containing algorithms that are individually strong. We propose new
methods for defining the behavioural diversity of an algorithm and use these
to illustrate the trade-off between diversity and ability. Finally, we examine
a set of metrics for measuring ensemble diversity and use these to construct
novel ensembles, showing that as previously observed in machine-learning,
judicious selection of an appropriate diversity metric is crucial. The paper con-
siderably extends current understanding of ensembles in optimisation by con-
sidering ensembles containing up to 100 members, a set of 729 candidate algo-
rithms, and defining and evaluating explicit measures of diversity. Its method
can be extended to include any type of algorithm in which behavioural diver-
sity can be measured against a reference set of functions.

2 Background

Existing portfolio approaches fall into two categories: those in which the port-
folio is used to solve a single instance, and those in which a large set of in-
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stances are solved.
In the former category, Grobler et al. (2015) describe a portfolio approach

that uses multiple pre-defined population-based algorithms during the search
for a solution to an individual instance of a problem. A budget of evaluations
is divided between the ensemble of algorithms, with a control algorithm de-
termining the most appropriate algorithm to allocate to each member of the
population at a given iteration. At the start, all algorithms in the ensemble are
simultaneously applied to the population, but the number is varied over time
depending on the control strategy used. Four algorithms were used: a genetic
algorithm, particle swarm optimisation algorithm (GCPSO), self-adaptive dif-
ferential evolution algorithm with neighbourhood search (SaNSDE), and the
covariance matrix adapting evolutionary strategy algorithm (CMAES). No spe-
cific rationale is given for the number of algorithms chosen other than that they
are well known high-performing algorithms.

Also in the category of solving single instances, Vrugt and Robinson (2007)
propose an algorithm called AMALGAM that uses simultaneous multi-method
search to give computationally efficient solutions to multiobjective optimisa-
tion problems. Four algorithms are included in the ensemble (NSGA-II, parti-
cle swarm optimisation (PSO) (19), adaptive metropolis search (AMS), and dif-
ferential evolution (DE). The authors state that these choices are based on the
outcome of numerical experiments which demonstrates the four common al-
gorithms are both mutually consistent and complementary, although no detail
is given as to how these terms are defined in practice. They later created a vari-
ant for single-objective optimisation, AMALGAM-SO (Vrugt et al., 2009). This
framework contained both stochastic and deterministic algorithms, including
Covariance Matrix Adaptation (CMAES), an evolutionary strategy, a Genetic
Algorithm (GA), Particle Swarm Optimiser (PSO), and Differential Evolution
(DE). The ensemble was tested on a large set of multi and unimodal functions
with promising results.

Recently, Yuen et al. (2016) proposed another novel multi-EA for solving a
single instance in which multiple algorithms are executed independently with
no exchange of information. Their algorithm predicts the fitness of each algo-
rithm in the portfolio at some common future point by extrapolating the con-
vergence curves of each algorithm. The winning algorithm is chosen and exe-
cuted for one generation, before repeating the process of recalculating conver-
gence curves for each algorithm. Similar to previously approaches, a portfolio
of 4 algorithms is used, containing CMA-ES, a History driven Evolutionary Al-
gorithm (HdEA), Particle Swarm Optimisation (PSO2011) and a self adaptive
Differential Evolution (SaDE). The authors state that these algorithms are cho-
sen because they represent current state of the art methods, and that they have
different strengths and weaknesses, though no further detail is given. Their
approaches is shown to perform better than the sum of its constituent parts
on some instances, providing a synergistic effect. It also outperforms PAP and
AMALAGAM-SO, as well as providing good results on a real-world problem.

In contrast to the above approaches that work in single instances, Peng
et al. (2010) propose a portfolio approach which optimises performance over
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a set of problems. PAP (Population-based Algorithm Portfolio) uses paral-
lel subpopulations, operated on by different algorithms from the portfolio,
with migration between populations. The portfolio contains four similar al-
gorithms to those described above, including self-adaptive differential evolu-
tion with neighbourhood search (SaNSDE), a particle swarm optimiser with
inertia weight (wPSO), generalised generation gap (G3) model with generic
parent-centric recombination (PCX) operator (G3PCX) a and covariance ma-
trix adaptation evolution strategy (CMA-ES). They evaluate ensembles of size
2,3,4 that employ different combinations of algorithms. Analysis of results
showed that some high-performing ensembles of size 2 contained algorithms
that performed well on different problem instances, backing up their intuition
that “constituent algorithms should not only employ different operators, but also ex-
hibit different behaviours on the problem set”. They also note that an ensemble of
relatively “weak algorithms can be stronger than a single state-of- the-art algo-
rithm, e.g, CMA-ES. The authors also attempt to provide a theoretical analysis
to clarify the term ’complementary’. Their treatment results in the insight that
the performance of an algorithm A1 on a problem should be above its average
performance over the problem set when the performance of algorithm A2 is
below its average performance and vice versa. They note that selecting two
appropriate algorithms in this way should be trivial, but it will become in-
creasingly difficult to find new algorithms to add. The authors suggest this
may place some upper bound on the size of the portfolio.

Tang et al. (2014) extend PAP in a new algorithm EPM-PAP, that has an ex-
plicit algorithm selection module for constructing the portfolio. An estimated
performance matrix (EPM) is constructed for each potential candidate, obtained
by running algorithm j on each of the n problems r times. The selection prob-
lem is then formulated as a minimisation problem in which the aim is to select
a portfolio of EAs that when used in a PAP instantiation are least likely be
outperformed by any of the other candidate EAs available for PAP, using the
EPMs to calculate probability. The authors discuss the issue of selecting comple-
mentary algorithms, acknowledging that the use of the term is vague and that a
more precise method of describing an algorithm’s behaviour is required if we
are to gain a clearer understanding of the concept of complementarity.

Addressing the issue posed by Peng et al. (2010) that it becomes increas-
ingly hard to find new algorithms that complement others in the portfolio, Park
et al. (2015) propose a portfolio approach for solving job-shop scheduling prob-
lems in which genetic programming (GP) is used to evolve novel heuristics. A
fixed-size ensemble of heuristics is evolved that collaborate to select the next
operation to schedule. This contrasts to the above approaches in which port-
folio algorithms tend to be executed independently. Their approach provide
re-usable heuristics that are subsequently shown to perform well on unseen
test instances. This model bears close resemblance to many machine-learning
methods in which an ensemble of classifiers vote to determine the class of an
instance (Breiman, 2001).

Another approach that uses genetic programming to create ensembles is
first described in (Sim et al., 2015) in an application to bin-packing, and ex-
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tended to apply to job-shop scheduling in (Hart and Sim, 2016). As with (Park
et al., 2015) their ensembles are applied to large sets of instances. Their method,
dubbed NELLI, grows an ensemble, by using GP to evolve new constructive
heuristics. A new heuristic is only added to the ensemble if it provides a better
result on at least one instance than any other heuristic currently in ensemble.
Each heuristic constructs an entire solution, with a greedy selection process ap-
plied to choose the most appropriate for an instance. Their results show that
the ensembles are self-limiting in size. One possible explanation for this is that
the same difficulty noted by Peng et al. (2010) arises, in that it becomes increas-
ingly hard to evolve a new heuristic that does better on any instance as the
ensemble grows. Alternatively, the terminal set used in the GP may limit the
number of behaviourally distinct heuristics that can arise.

Finally, another ensemble approach in which the ensemble is explicitly grown
is that of Yuen and Zhang (2015). They make use of a ranking method in which
the algorithm with the lowest average rank on a suite of benchmark functions
is added to the ensemble each cycle, where rank is calculated based on the low-
est average number of evaluations. Given q algorithms, the average rankings of
each are calculated, then the q by q covariance matrix of rank determined. The
process determines the next algorithm n to be added to the current portfolio P ,
by choosing the algorithm that minimises the covariance(P, n). The approach
is tested on 25 functions from the CEC competition (Liang et al., 2013). Five
algorithms were available for portfolio selection: CMA-ES, composite differ-
ential evolution CoDE, self-adaptive differential evolution SaDE, PSO and an
artificial bee colony algorithm. The rationale behind this choice is that these al-
gorithms would be the authors’ algorithms of choice if they had to recommend
them to outsiders.

3 Preliminaries

We use the 1-d bin-packing domain to conduct our investigation. A brief back-
ground to the domain and problem instances used are given below.

3.1 BinPacking

The Bin Packing Problem (BPP) is defined as follows (Garey and Johnson,
1979): given a finite set O of numbers (the object sizes), C (the bins’ capac-
ity), find a packing of objects into bins that minimises the number of bins used
N . A trivial fitness function can be defined simply as N . However this leads
to a search landscape that lacks capacity to guide a search algorithm given that
a very small number of optimal points in the space are lost in an exponential
number of points where the fitness is just one unit above the optimum. In ad-
dition, the function does not discriminate between solutions in which the extra
bin is packed to different extents. Hence, Falkenauer (1996) proposed a new
cost function given in equation 1: this yields a value between 0 and 1, in which
higher values indicate better solutions. If all bins are filled exactly to capacity,

6



Table 1: Benchmark bin-packing problems

Data Set capacity (c) n ω #Problems
ds1 100,120,150 50,100,200,500 [1,100],[20,100],[30,100] 36× 20 = 720
ds3 100000 200 [20000,30000] 10
FalU 150 120,250,500,1000 [20,100] 4× 20 = 80
FalT 1 60,120,249,501 [0.25,0.5] 4× 20 = 80

Data Set c n $ (avg weight) δ(%) # Problems
ds2 1000 50,100,200,500 c

3 ,
c
5 ,

c
7 ,

c
9 20,50,90 48× 10 = 480

the fitness is exactly 1; if all bins except the final bin are filled to capacity then
the solution is optimal but has a value less than 1.

fi =

∑i=N
b=1 Fb/C)k

N
(1)

where N is the number of bins actually used in the solution, Fb is the sum
of sizes of the objects placed in bin n, C is the bin capacity, and k is a constant,
k > 1. Here, we set k = 2 in all experiments.

Many benchmark instances are available in the literature. Here, we use an
aggregated set of 1370 instances as defined in table 1 and previously descibed
in Sim et al. (2015).

3.2 Bin-packing Algorithms

Previous work in the hyper-heuristic domain has shown that novel bin-packing
algorithms can be described by sequencing existing deterministic packing rules
(Hart and Ross, 1998; Sim and Hart, 2014). Each rule is a constructive method
that packs one or more items into a bin; superior performance is obtained by
finding useful sequences when compared to packing all items with a single
rule. The evolved sequence can be considered as a novel algorithm. In cases
where the sequences contains deterministic rules, then it is common in the
hyper-heuristic literature to refer to the sequence as a novel heuristic: we adopt
this simpler terminology from now on in preference to the term algorithm,
without loss of generality.

Given k potential rules, and a sequence of length l, then n = kl possible
sequences can be specified. To solve an instance with a heuristic (k1, k2, ..., kn)
then rule k1 is first applied, followed by k2 etc. After applying rule kn, if there
are still remaining items, then rule k1 is reapplied, continuing in this manner
until all items are packed

We select l = 9 deterministic bin-packing rules to form heuristics. The
9 rules chosen were previously used in Sim and Hart (2014); note however,
that any deterministic rules could have been chosen without loss of generality.
Rules 1 to 5 are of the type best-n and work as follows. For n = 1 to 5, best-n
packs the best remaining n items into the available space, i.e. the items that
together best fill the space. Best-1 packs the best single item, and is equivalent
to the well-known first-fit descending rule. Best-2 packs the best remaining 2
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items into the available space etc. If there is no combination of n items that fit
a bin, then the rule fails and a new bin is opened (no items are packed). The
remaining 4 rules are of type best-of-n. These rules attempt to fill the bin as
much as possible. For example, best-of-2 searches considers both single items
and combinations of two items to best fill the bin. If there is a tie, i.e. there are
2 items totalling size 5 or 1 item of size 5 then the single item is chosen, leaving
2 smaller items which should be are easier to pack. If a rule fails to place an
item into an empty bin (e.g. best-3 cannot find any 3 items to fit the empty bin)
then the first-fit descending rule is applied. In the case of ties, all algorithms
give preference to combinations that include larger items, e.g. two items of size
(10,1) are preferred over two items of size (9,2).

We consider sequences of length 3, therefore generating 93 = 729 possible
heuristics. The length of 3 was selected as a reasonable compromise between
generating a set of heuristics that was large enough to be diverse while being
at the upper end of the number of heuristics that might be available in practice
in a given problem domain.

4 Ensembles and Diversity Measures

In common understanding, differences in how people represent problems and
how they go about solving them is known as functional diversity (Hong and
Page, 2004). Similarly, in the field of Evolutionary Robotics, the term behavioural
diversity has been used to describe differences in observed behaviours of robots
with different controllers (Mouret and Doncieux, 2012). The authors note that
on the one hand, several phenotypes can give rise to the same behaviours and
on the other, very close phenotypes result in different behaviours. Thus they
show that it is preferable to maximise the novelty of behaviours rather than a
fitness-based objective function. Mouret and Doncieux (2012) suggest several
approaches to defining a behaviour vector for a robot, with corresponding met-
rics for measuring diversity of behaviour.

In exactly the same way, we propose that behaviour is a more appropriate
method of comparing algorithms: given a large set of problem instances, then
algorithm similarity (or dis-similarity) can be better measured by a vector de-
scribing their behaviour across the set of problems rather than by similarity in
terms of algorithm definition (e.g. operators, population size) or aggregated
fitness metrics such as average solution quality.

4.1 Behavioural Vectors

Given a heuristic h, then assume the heuristic has a fitness fh(i) on each in-
stance i of interest. For each instance, let f∗(i) be its best known fitness (ex-
plained below). For any heuristic, we define two different behavioural vectors:

• The fitness vector Fa, in which each component of the vector is the abso-
lute fitness fh(i) of the heuristic on each instance i
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• The binary vector B in which each component i has a value 1 if heuristic
h achieves the best result on instance i, i.e. fh(i) = f∗(i), and 0 otherwise

The fitness vector can be immediately written for any heuristic based on its
performance over a set of instances. The second vector relies on a comparison
fitness f∗(i) for each instance, the best known fitness. This can be obtained by
considering an oracle, i.e. the best known result for the instance from any al-
gorithm, or best-known lower bound. This is a common approach in machine-
learning (Tang et al., 2006) and is used later in this paper in section 7 when
we consider constructing ensembles based on diversity metrics. An alternative
is to consider a specific subset of heuristics of interest, and set f∗(i) equal to
the best result obtained by the subset. This approach is useful when informa-
tion regarding optimal solutions or performance of other approaches cannot be
obtained. The subset approach is used in section 6.

Euclidean distance is used to measure distance between any two fitness
vectors. For binary vectors B, two distance metrics are considered. Ochiai’s
distance is commonly used in ecological and biological studies (Champely
and Chessel, 2002) when comparing diversity between species, in which pres-
ence/absence of a species at a site is represented in a binary matrix, with one
row for each species. This is defined in equation 2 (Legendre and Legendre,
2012), and is the geometric mean of the ratios of the number of shared species
to the total number of species in each site. For two heuristics (i, j) with vectors
Bi,Bi as described above, then a is the number of heuristics which both win an
instance i i.e. (1,1) pairs; b is the number of instances in which only B1 wins,
and c the the number of instances in which only B2 wins i.e. (0,1) pairs. The
equation given represents dissimilarity (and is therefore equivalent to distance).

dij =
√

1− sij where sij =
a√

(a+ b)(a+ c)
(2)

Note that d= (0,0) pairs denoting that neither heuristic wins an instance is
not counted by this metric.

An alternative metric suitable for binary data is the disagreement measure,
proposed by Skalak (1996) in order to evaluate the diversity between two base
classifiers, and later used by Ho (1998) to construct decision-tree forests. The
measure is defined based on the intuition that two diverse classifiers perform
differently on the same training data (Tang et al., 2006) and is given in equation
3:

dij =
b+ c

(a+ b+ c+ d)
(3)

4.2 Ensembles

As should be clear from section 2, ensembles can be applied in a number of
forms. Simultaneous execution of each member is common in population-
based methods, e.g. (Peng et al., 2010). Another form of simultaneous applica-
tion is the majority-voting method of Park et al. (2015). In contrast, Sim et al.
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(2015) select a single member from the ensemble to solve each problem instance
in a large set, while Yuen et al. (2016) select a different member at each itera-
tion to solve a single instance. Finally, in an agent-based problem-solving task,
Hong and Page (2004) adopt a sequential approach in which each agent in the
ensemble sequentially executes its strategy, although they note their findings
did not depend on whether simultaneous or sequential selection was used.

We adopt the selective approach previously shown to be effective in Sim
et al. (2015) and subsequent publications, in which each member of the ensem-
ble solves a subset of the instances in a large class. A formal definition of the
ensemble is provided below, alongside definitions of heuristic and ensemble
fitness which are used in the remainder of the paper.

4.2.1 Definition and Metrics

An ensemble E contains e heuristics, and is typically applied to a collection of
p problem instances. Each heuristic in the ensemble has an individual fitness
fh defined by equation 4

fh =

i=p∑
i=1

fh,i (4)

where fh,i is the fitness of heuristic h on instance i as specified by the objec-
tive function for the problem, and in this case given by equation 1.

Given an instance i and an ensemble E, let Vi be a set of size |E| containing
the fitness of each heuristic in the ensemble on the instance. The ensemble
returns a fitness f∗i = max(Vi), i.e. a greedy selection method assigns the fitness
of an instance as the best fitness obtained from applying each heuristic in the
ensemble. The collective fitness of the ensemble fE over the complete dataset
is given by equation 5

fE =

i=p∑
i=1

f∗i , where f∗i = max{fh,i : h ∈ E} (5)

Average fitness of ensemble: If the fitness of an individual heuristic h aver-
aged across an entire dataset P containing p instances is fh,P , then for a given
ensemble of E, the average fitness of the heuristics in the ensemble is:

FE =
1

e

i=e∑
i=1

fhi,P (6)

5 Heuristic Analysis

Before conducting an in-depth study of ensembles, it is useful to understand
the nature of the 729 heuristics that will be used to define each ensemble.
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Figure 1: Contrasting behavioural diversity in terms of number of wins (a) and
summed fitness (b) across the set of 729 heuristics

We consider the individual performance of each heuristic across the whole in-
stance set of 1370 instances.

A heuristic can be said to win an instance i if its fitness fh(i) is equal to
the best fitness obtained by any of the 729 heuristics on that instance. Figure 1
shows a histogram giving the frequency of ‘total wins’ across each of the 729
heuristics. 2 heuristics do not win any instances, and therefore can never con-
tribute to an ensemble, given the definition in section 4.2. At the other end of
the spectrum, one heuristic wins 883 of the 1370 instances. The median number
of wins is 115, i.e. approximately 8% of the total. The figure broadly indicates
that many heuristics win a small number of instances, while few heuristics
win a large number. The distribution has a long-tail, denoting a large spread in
performance. In contrast, figure 1(b) indicates frequency in terms of summed
fitness, i.e. according to equation 4. From this, we observe that a large number
of heuristics perform well (although not optimally, as seen in (a)), achieving
a high summed fitness. Heuristics appear to fall into 4 or 5 distinct groups,
centred around the peaks, in which similar summed fitness is observed for
members of each group.

The figures provide sufficient assurance that at a qualitative level, the heuris-
tics themselves are diverse. Therefore, we proceed to evaluate the extent to
which combining them into ensembles provides advantage.

6 Diversity vs Quality in Ensemble Composition

Given the set of heuristics defined above, we conduct empirical experiments to
answer the question “Do groups of functionally diverse heuristics outperform groups
of high-ability heuristics?” with respect to the bin-packing optimisation problem
defined. The extent to which any performance discrepancy is related to heuris-
tic diversity and the trade-off between individual ability and the contribution a
heuristic makes to the collective performance of an ensemble is then analysed.
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Figure 2: Median ensemble fitness for ensembles of size E. The figure shows
ensembles constructed randomly (red) and the elite ensembles constructing
using the best E heuristics (blue)

.

Given a pool H containing the 729 heuristics already described, two types of
ensemble are created:

• The random ensemble Er contains e heuristics randomly selected from H
(uniformly, with replacement)

• The elite ensemble Ee contains the best e heuristics from H , assuming
heuristics are ranked according to individual heuristic performance as
given by equation 4

For both types of ensemble, we create ensembles in which the number of
heuristics e varies from 10-729 in steps of 5. For the random ensembles, 50
random ensembles are selected. This is not necessary for the elite ensembles as
the selected process is deterministic.

6.1 Comparison of random vs elite ensembles

The performance of each ensemble is evaluated on the full set of 1370 instances
according to equation 5. Figure 2 compares the performance of the randomly
composed ensembles Er and the elite ensembles Ee. The figure shows the me-
dian fitness value obtained for the randomly composed ensembles from the
50 randomly selected ensembles. The figure only shows ensembles from size
10-100 as at values of e ≥ 100, the results from the two approaches converge.
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It is clear that the randomly composed ensembles outperform those com-
posed of the best ranked heuristics for n < 95. A Mann-Whitney Wilcoxon
Test is used to test for significance at the 95% confidence level. No signifi-
cant differences are observed between the ensembles Er and Ee at e = 10, and
when e ≥ 95. At all other values of e, significant differences are observed with
p << 0.05 in each case.

The randomly composed ensembles show a smooth increase in fitness as
the size of ensemble is increased. In contrast, the ensembles composed from
the best ranked heuristics show a stepped pattern; at specific points, adding
one or more lower ranked heuristics to the ensemble causes a sudden jump in
fitness. The figure suggests that the heuristics fall into distinct ‘behaviour’
groups. Within each group, heuristics have similar average fitness, due to
working well on the same instances. A lower ranked heuristic in a different
group might perform poorly on those instances on which the higher-ranked
heuristics do well, but better than those heuristics on other instances. Thus,
adding a new heuristic from a different group into the ensemble results in a
sudden large increase in fitness. This is shown in figure 3 in which the same
fitness graph as in figure 2 is superimposed on a graph showing the fitness
of each individual heuristic sorted by rank (where rank 1 is best). The green
lines show that the jumps in ensemble fitness roughly correspond to a sudden
drop in individual fitness between heuristics that are adjacent in the ranking.
Finally, figure 4 shows box plots of fitness obtained from the randomly com-
posed ensembles. At very low e, e.g. an ensemble of size 5, unsurprisingly we
see a wide variation in performance across the 50 experiments suggesting that
a minimum size of ensemble is required before the benefits of random selection
outweigh the risks. Conversely, for e ≥ 35, there is no significant variation in
performance across the 50 experiments, suggesting a single random ensemble
can be selected with confidence.

6.2 Trade off average vs individual quality

Next, we consider the question “Is it necessary to sacrifice quality of an individual
heuristic in order to favour ensemble performance?” Heuristics with very high aver-
age fitness (i.e. close to the maximum value) must perform well on the majority
instances. Therefore, two heuristics with similar high average fitness are likely
to have similar performance on any given instance. Thus, the two heuristics
would have low behavioural diversity and are unlikely to complement each
other in an ensemble in which collective fitness is defined in a greedy manner.
In contrast, low average performance can be obtained if a heuristic performs
well on a few instances, but poorly on most. If we pick two poor heuristics at
random, there is reasonable chance that the instances on which each performs
well will be different.

Figure 5 plots average individual fitness against average ensemble fitness
for the elite ensembles (blue) and random ensembles (black) from size 10-100.
Note the graph is plotted on 2 different x-scales due to the much lower av-
erage fitness values obtained from the random ensembles. A clear pattern is
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Figure 3: The figure shows the average fitness of each heuristic calculated from
equation 4 plotted against its rank, where rank 1 corresponds to the best heuris-
tic. This is overlaid with the data from figure 2. Note that an elite ensemble of
size e contains the e best ranked heuristics

Figure 4: Boxplots indicating the ensemble fitness from the random ensembles
of varying size. Each box refers to 50 experiments.
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Figure 5: Average Individual fitness vs Ensemble Fitness. Note the graph is
plotted on 2 different x-scales. The blue square (top scale) refer to values ob-
tained from the ensembles composed of the best ranked heuristics. The bottom
scale and black circles refer to values obtained from the randomly composed
ensembles

observed from the elite ensembles in which increasing average fitness leads to
lower ensemble fitness, i.e. illustrating the trade-off between individual qual-
ity and ensemble quality and reinforcing the message that functionally diverse
heuristics outperform groups of high-ability heuristics. Although is is clear
that the individual heuristics in high-performing randomly selected ensembles
have lower fitness than individuals in corresponding elite ensembles, the over-
all pattern is less clear. This is due to the stochasticity associated with random
selection of ensembles and the variation in individual heuristic quality. How-
ever, a cluster of points is observed in the top-left quadrant corresponding to
low-individual but high-ensemble fitness.

6.3 Ensemble Diversity

As mentioned previously Hong and Page (2004) noted that in agent-based
computational experiments examining functional diversity, then groups com-
posed of high-ability agents have strikingly lower diversity than randomly se-
lected groups of agents. We investigate whether the same result holds for the
ensembles of bin-packing heuristics.

The two behavioural vectors described in section 4.1 are calculated for each
heuristic in each ensemble, for both random and elite ensembles. The diver-
sity of each ensemble was calculated as the median pair-wise Euclidean dis-
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Figure 6: Ratio of diversity of random ensembles: diversity of elite ensemble
for two different diversity metrics

tance in the case of the fitness vectors Fa and as the median pair-wise Dis-
agree distance between the binary vectors, as defined in equation 3. The re-
sults, shown in figures 6 a) and b) are plotted as the ratio of diversity(random
ensemble):diversity(elite ensemble), therefore showing the relative increase in
diversity gained by using a random ensemble. (Note that the scales on the two
graphs cannot be directly compared but that the ratio should converge to 1 as
the size approaches the maximum of 729. Values greater than 1 indicate the
random ensemble is more diverse).

Using the Euclidean metric, it is clear that the random ensembles are more
diverse. As expected diversity decreases as the size of the ensemble increases,
with small random ensembles significantly more diverse than elite ones of the
same size. The ratio obtained from Disagree metric (which is a coarser met-
ric) converges to approximately 1 at an ensemble size of 100. Although the
general pattern is decreasing diversity with ensemble size, an anomalous re-
gion is observed when the size of the ensemble e = 35. Closer analysis shows
that for random ensembles, the trend is decreasing diversity with increasing
size. However, for the elite ensembles, although diversity decreases from 10
to approximately 30; the first 35 ranked heuristics have very similar profiles.
However, the next group of heuristics have a very different profile than the
earlier ones: this is seen clearly in figure 3 with a jump in fitness, and causes
an increases in diversity as shown in figure 6 (b). As the ensemble increases
in size, the expected decrease in diversity counters any increase from adding
heuristics with different profiles, producing a gradual overall decrease.

7 Ensemble Construction

In the previous section we have shown that a randomly constructed ensem-
ble can deliver better performance that an ensemble consisting of individually
strong optimisers. Results given in the previous section attribute this difference
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to the increased diversity found in random ensembles, in line with the results
from Hong and Page (2004).

In this section, we pursue this more deeply and ask the question “Does ex-
plicitly seeking diversity while constructing an ensemble result in consistently good
performance” and the related question “ What is a good diversity measure for de-
signing an ensemble learning algorithm”

In order to answer this empirically, we use the process defined in Algorithm
1. In essence, an ensemble of size 1 is first created using the heuristic with best
individual fitness (equation 4). New heuristics are then added one at a time
until the required ensemble size is reached by greedily selecting the heuristic
that will maximise the average diversity of the ensemble according to a diver-
sity metric M , based on a set of training instances. Following construction, the
ensemble is applied to an unseen test set and its performance recorded.

The diversity metric is calculated relative to a behavioural vector, as pre-
viously discussed. In addition to the binary vector B and the absolute fitness
vector Fa described in section 4.1, we consider two further candidate vectors,
the relative fitness vector Fr and the ranked vectorR, described below.

7.1 Diversity Metrics

The behaviour vectors B,Fa and R are calculated relative to an oracle matrix
that denotes the best known solution for each instance in P . This is a common
approach in machine-learning, where many authors discuss ensemble diver-
sity in terms of oracle outputs (e.g. Kuncheva (2003), Tang et al. (2006)), and is
also used in an optimisation scenario by Yuen and Zhang (2015). Any method
can be used to generate the oracle, for example using known optima or lower
bounds, an exact algorithm or any specialised meta-heuristic. Here, we run
each of the 729 heuristics on each of the instances in the suite, and set the oracle
value Oi of an instance to the best value found. In addition, for each instance,
we rank the performance of each of the 729 heuristics on each instance (such
that rank 1 is best), and assign rh,i as the rank of heuristic h on instance i.

Thus for each training set t containing a subset of instances, 4 behaviour
vectors containing t components are created:

• The binary vectorB in which each component i is 1 if the heuristic achieves
the oracle result on instance i, and 0 otherwise

• The ranked vector R in which each component i is the oracle ranking of
the heuristic rh,i on each instance i

• The fitness vector Fa containing the absolute fitness of the heuristic on
each instance i

• The fitness vector Fr containing the relative fitness of the heuristic on
each instance i, that is the absolute fitness divided by the oracle value for
i
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For the binary vectors B, diversity between any pair is calculated using the
disagree metric 3 and the Ochiai distance measure 2. For the remaining vectors
R,Fa and Fr, diversity is calculated as the Euclidean distance between any
two vectors.

Algorithm 1 Construct Ensemble Based on Diversity

H ← getAllAvailableHeuristics()
dtrain ← training set # randomly selected from P
dtest ← test set
M ← diversity metric
h∗ ← heuristic with maximum fh on dtrain
s← 1
E ← {h∗}
while s < ensembleSize do

for j in all unselected heuristics do # greedy selection of heuristic
Ej ← E ∪ hj
d(Ej)← calculateAverageDiversity(M, Ej)

end for
h∗ ← heuristic with maximum d(Ej)
E ← E ∪ h∗ # add new heuristic to ensemble
s← s+ 1

end while
fE = calculateF itness(E , dtest)

7.2 Results

Three sizes of training set are considered, containing 50%, 60% and 70% of the
full dataset of 1370 instances. Training sets are selected at random from the
complete set of problem instances P. A test set is formed from the remaining
data in each case. For each size of training set, the four behavioural vectors are
created and an ensemble constructed using the appropriate diversity metrics
in line with Algorithm 1. Each experiment is repeated 50 times with a random
training set selected each time, and the performance on the unseen test sets
recorded.

Figure 7 shows the mean fitness on the test set over the 50 experiments from
ensembles of size 2-100. Results are shown from ensembles constructed using 5
different diversity metrics, and from ensembles constructed randomly. Train-
ing sets containing 50% of the full dataset were used to generate this figure.
Tables 2(a, b, c, ) further detail, showing the mean fitness obtained on the test
set for ensembles of size 10, 20 and 30. For each size of ensemble, the ensem-
ble is constructed repeatedly using each diversity metric. The results shown
give the average performance on the corresponding test sets (averaged over 50
repeated runs) in each case.

Figure 7 shows that the Disagree metric based on differences between the

18



binary vectors B appears to construct the most effective ensembles for all size
of ensemble e. Using this metric, small but effective ensembles can be con-
structed: for values 17 ≤ e ≤ 99, applying a Wilcoxon test shows that there
is no significant difference (95% confidence level) between the result obtained
from constructed ensembles of size e ∈ (17 − 99) and the constructed ensem-
ble of size 100. As the ensemble increases in size, results from the disagree-
constructed ensembles converge with the random ensembles: the disagree-
constructed ensembles provide significantly different results from the randomly
constructed ensembles for ensembles of size 3-42. Interestingly, none of the
other metrics are able to compete with the random construction method. For
low values of e (≤ 11), the metric based on Euclidean distance between the Fr
vectors produces broadly similar performance to random, after which its per-
formance deteriorates. The ensembles constructed using the diversity metric
based on Euclidean distance between the Ranked vectors R do not show sig-
nificantly different performance to the randomly constructed ensembles at any
value of e. Finally, the Ochiai metric, also based on binary vectors B, performs
the most poorly.

The data in tables 2(a-c) provides a more detailed comparison of results for
three different ensembles of size 10, 20 and 30. Results are highlighted where a
Wilcoxon test (95% confidence level) applied to an ensemble constructed using
a diversity metric shows a significant difference from the randomly selected en-
sembles (for cases where the constructed ensemble outperforms the random).
As the size of the training set increases, the benefit of using the Disagree con-
struction metric for larger size of ensemble decreases. As mentioned above,
using a training set containing 50% of the data, the disagree-constructed en-
sembles provide significantly different results from the randomly constructed
ensembles for ensembles of size 3-42. Using training sets containing 60% of the
data, significantly different performance is obtained for ensembles of size 3-35
and for ensembles of size 3-24 using training sets containing 70% of the data.

8 Discussion

We summarise our findings with respect to the research questions identified in
the introductory section below.

Diversity trumps ability Hong and Page (2004) used a general framework
for modelling functionally diverse problem-solving agents, and studied the
tension between the individual abilities of members of a group and its func-
tional diversity. Their investigation led them to identify conditions under which
the gain in individual abilities within the group is more than offset by the func-
tional diversity of the group, leading to the claim that “diversity trumps abil-
ity”1. Experience from machine-learning also demonstrates this, going back to
work from Schapire (1990) who showed that a set of weak learners could be

1Strictly speaking, the claim is better worded as group diversity trumps individual ability
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Table 2: Average fitness on test set of ensembles constructed using 5 different
diversity metrics and at random. Experiments are averaged over 50 test sets,
and values shown for ensembles of size 10,20,30. Bold text used to show results
that are significant at the 5% level compared to the random construction method

(a) Ensemble size = 10

Training Set Ochiai Disagree Euclidean (Fr) Euclidean (Fa) Euclidean (R) Random
50% 0.9263 0.9337 0.9278 0.9301 0.9312 0.9306
60% 0.9263 0.9337 0.9278 0.9303 0.9313 0.9304
70% 0.9262 0.9339 0.9279 0.9303 0.9314 0.931

(b) Ensemble size = 20

Training Set Ochiai Disagree Euclidean (Fr) Euclidean (Fa) Euclidean (R) Random
50% 0.927 0.9341 0.9299 0.9314 0.9325 0.9321
60% 0.9269 0.9341 0.9299 0.9314 0.9325 0.9324
70% 0.9271 0.9342 0.9297 0.9315 0.9326 0.9327

(c) Ensemble size = 30

Training Set Ochiai Disagree Euclidean (Fr) Euclidean (Fa) Eucldiean (R) Random
50% 0.93 0.9342 0.9307 0.9317 0.9329 0.933
60% 0.9301 0.9342 0.9308 0.9317 0.9329 0.9332
70% 0.9305 0.9344 0.9308 0.9318 0.933 0.9335

combined into a strong learner; it is important to recognise that the adjective
weak means that accuracy on the training set is only slightly better than random
guessing, just over 50%.

In optimisation, Peng et al. (2010) show that an ensemble containing two
algorithm — SaNSDE and G3PC — outperforms CMA-ES, with the claim that
“this clearly demonstrates that a combination of some relatively weak algo-
rithms can be stronger than a state-of- the-art algorithm”. Although the ensem-
ble performance is clearly superior, we suggest that this claim is possibly ex-
aggerated, given that for the particular results obtained on 27 functions given
in their paper, it is unclear to what extent SaNSDE can be described as weak
with respect to CMA-ES. Certainly the term weak does not have the same con-
viction as when used in machine-learning: the base algorithms are superior on
some instances and at least competitive on others.

However, in section 6.1 we clearly show that ensembles composed of ran-
domly selected heuristics — inevitably including heuristics with a range of
performance — can outperform those composed of high-performing heuris-
tics, over a specific range of ensemble size. From figure 1, we can claim with
confidence that many of these heuristics are weak: individual heuristic scores
range from winning 0 instances to 883 (figure 1), with heuristics in the bottom
quartile winning fewer than 36 problems. Figure 5 which plots average indi-
vidual fitness against ensemble fitness adds further weight to this point. The
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average fitness of heuristics in the random ensembles ranges between 0.66 and
0.69, yet leads to ensembles with fitness > 0.93. Lack of ability is clearly off-
set by diversity: this is backed up in figure 6 that shows that diversity in the
random ensembles is much high than in elite ensembles, particularly at low
ensemble sizes.

Precise mechanisms for defining behaviour are required Yuen and Zhang
(2015) noted that a clearer understanding of the concept of complementary is
required in order to better construct portfolios. We have proposed four differ-
ent behavioural vectors, with corresponding diversity metrics. The behaviours
can be calculated relative to a subset of algorithms (heuristics) under consider-
ation or relative to an oracle, defining best-known solutions or relevant bounds.

These explicit definitions of behaviour and diversity represent a significant
step beyond the intuitive notions of complementarity previously referred to
(Tang et al., 2014), which the authors themselves acknowledge to be vague.
The proposed methods are applicable for defining behaviour of an algorithm
with respect to a set of problem instances, and therefore for ensembles which
are used to solve classes of problems. Although solution fitness has been used
to define vectors in this instance, this can easily be replaced by (for example)
speed or worst-case behaviour, depending on the application. Alternative def-
initions are necessary for approaches in which the members of an ensemble
collaborate to solve a single instance, e.g. (Grobler et al., 2015). An interesting
future direction here would be to define a reference set of instances for a prob-
lem domain containing a wide range of diverse instances, as a gold-standard
against which diversity of any algorithm could be measured.

Choice of diversity metric matters In relation to the construction of ensem-
bles using diversity as a metric, Tang et al. (2006) pointed out (in a machine-
learning context) that “if one exploits diversity measures as criteria to select the
base classifiers, then the diversity measure is required to be precise, since the
choice of diversity measure will directly influence the final ensemble .....this
is a problem that is important for practical implementation that needs to be
noted.”

Empirical results in section 7.2 that evaluated five different metrics showed
this also holds in optimisation, with the disagree metric operating on the binary
vector providing the best results on an unseen test-set, and the Ochiai metric
performing particularly poorly. However in contrast to Tang et al. (2006) who
are unable to use explicit diversity measures to construct any ensemble that
outperforms common single algorithms from the literature, we find that the
disagree metric leads to ensembles that are better than randomly composed
ones and elite ensembles over a certain range. Thus, it appears with judicious
choice, using diversity metrics in construction is a potential way forward for
the optimisation community.
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9 Conclusion

The algorithm-selection problem — identifying a specific algorithm to apply
to an instance — is non-trivial (Rice, 1976). Ensemble methods offer a solution
to this, by including a range of algorithms and with the potential for achieving
a result that is better than any of the constituent algorithms. However, unlike
in machine-learning, the theory of ensemble design is not well advanced in
optimisation, particularly with respect to using meta-heuristic methods within
the ensemble, rather than exact solvers.

Using a large set of algorithms in conjunction with a large set of problem
instances, we have conducted the first in-depth investigation into the factors
that underpin ensemble performance. We show that diversity trumps individ-
ual ability in certain cases, precise mechanisms for defining behaviour can be
found, and that careful choice of diversity metric is required when using diver-
sity to explicitly construct an ensemble. The new insights shed light on how to
create good ensembles from existing algorithms. However, by harnessing the
power of genetic programming to generate novel algorithms, those insights
could additionally be used to evolve even better ensembles, in which diversity
is maximised.

Although the investigation has been conducted purely in the bin-packing
domain and using ensembles composed of a specific type of algorithm (i.e. a
sequence of rules), we suggest that its findings can be generalised to other do-
mains and to other types of algorithm. With respect to the former point, the
bin-packing rules used to form sequences are simply constructive heuristics:
they can be directly replaced by constructive heuristics appropriate to another
domain (e.g TSP, JSSP) and we would expect the results to be similar. In terms
of the latter, sequences could also be formed from population-based algorithms
or other more complex heuristics to permit evaluation in domains that are not
amenable to the use of simple heuristics. Fruitful directions in which this work
can be pursued are likely to exploit genetic programming which can generate
the large numbers of algorithms that might be required to maximise the po-
tential of the ensemble, or use of hyper-heuristic methods which already are
capable of generating ’new’ algorithms by combining heuristics. Future work
should also consider the application of ensembles to very large instance sets,
themselves containing instances which are as diverse as possible; diversity in
instances will encourage diversity in algorithms and vice versa.
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