
Computing Conference 2017

18-20 July 2017 | London, UK

Employing Machine Learning Techniques for

Detection and Classification of Phishing Emails
*Naghmeh Moradpoor (1st auther)

School of Computing (SoC)

Edinburgh Napier University (ENU)

Edinburgh, UK

*n.moradpoor@napier.ac.uk

Benjamin Clavie (2nd auther)
School of Computing

Edinburgh Napier University (ENU)

Edinburgh, UK

benjaminclavie@gmail.com

Bill Buchanan (3rd auther)
School of Computing (SoC)

Edinburgh Napier University (ENU)

Edinburgh, UK

b.buchanan@napier.ac.uk

Abstract—A phishing email is a legitimate-looking email which

is designed to fool the recipient into believing that it is a genuine

email, and either reveals sensitive information or downloads

malicious software through clicking on malicious links contained

in the body of the email. Given that phishing emails cost UK

consumers £174m in 2015, this paper proposal is driven by a

problem whose resolution will have a great impact on people’s

lives in the UK and in the world. In this paper, we proposed a

Neural Network (NN)-based model for detections and

classifications of phishing emails using publically available email

datasets for both benign and phishing emails. The results of the

experiments are presented in order to demonstrate the

effectiveness of the model in terms of accuracy, true-positive rate,

false-positive rate, network performance and error histogram.

Keywords— Intrusion Detection and Classification, Phishing

Emails, Spam Emails, Machine Learning, Artificial Intelligence,

Neural Networks, Cybersecurity, Cyberattacks, Web Attacks

I. INTRODUCTION

The Raytheon kill chain model outlines that an attack goes

through the stages of Reconnaissance; Weaponization;

Delivery; Exploitation; Installation; Command & Control; and

Actions on Objectives [17]. While many different types of

malware exist, the usage of phishing emails is one of most

popular methods of delivering and comprising hosts and user

accounts. Normally this involves tricking the user with a valid

looking email message which tricks them into entering their

user credentials, or to open a document which contains a

malicious element.

The phishing emails normally contain graphics, text or

design elements that tricks the user into thinking that it is from

a credible and trusted source. Overall there are very few

elements of an email that can be truly trusted, especially without

examining the SMTP header information, as the sender of the

email can be easily changed, and email messages can be

mocked up with the same design elements as the spoofed

organization. The usage of secure emails with signatures has

never really taken-off, and thus there are very few visual signs

that an email may be a phishing email. So while protocols such

as Pretty Good Privacy (PGP) provide the authentication of the

sender of an email, the usage of digital certificates and key rings

are often cumbersome.

Recent cases of phishing emails from the HMRC in the UK

[18] has shown that the phishing emails are often well crafted

and increasingly targeted, with the usage of the Cascading Style

Sheet (CSS) and graphics from the spoofed organization, and

where the user is tricked into clicking on a link which redirects

to a malicious site.

One example of tricking the user is to inform them that

their user details has changed on their corporate email account,

and for them to log-in to review the changes. Once they click

on an obfuscated link, they are re-directed to the malicious site,

which gathers their details, and then redirects them back to the

corporate site. As far as the user is concerned they had just put

in the incorrect details, but have just given away their login

credentials.

In this paper, we employed word embedding or

vectorisation [4] and proposed a neural network-based model

for detection and classification of phishing emails. Our model

made from six components and uses six features and ten-fold

cross validation for training, validation, and testing. The input

features are extracted from two publically available email

datasets for both benign and phishing emails.

The remainder of this paper is organised as follows. In

Sections II, we review the related work for the phishing email

detections and classifications. Our proposed neural network-

based model for detection and classification of phishing emails

along with the implementations are detailed in Sections III

which is trailed by the captured results in section IV. This is

followed by conclusions of the work in Section V,

acknowledgment, and references.

II. RELATED WORK

In this section, existing work related to phishing email
detection and classification techniques and methodologies are
addressed as follows.

Computing Conference 2017

18-20 July 2017 | London, UK

In [6], the authors proposed a method to detect and filter

phishing emails by employing Stochastic Learning-Based Weak
Estimators (SLWE) in real life environment. SLWE approach
was studied and implemented based on Naive Bayes
classification for filtering phishing emails that are unpredictable
in nature. They used two different datasets: 1,200 real benign
emails and 600 real phishing emails. To evaluate the
effectiveness of their proposal, they compared their captured
results from SLWE approach with Maximum Likelihood
Estimator (MLE). MLE is a popular and widely used estimation
scheme. Their results revealed that SLWE-based Naive Bayes
approach outperforms the MLE scheme regarding accuracy.
However, their proposed method suffers from an enormous
number of features, which can affect system performance, and
unlimited training, which can consume large amounts of storage.

In [7], the authors proposed a lexical URL analysis technique
in order to enhance the classification accuracy for phishing
emails. In their proposal, which is a continuous work to their
previous publications [8-9], they constructed two feature sets of
47 features and 48 features. Then, they ran feature subsets on the
two feature sets. The idea behind running feature subsets on two
feature sets is to stop unnecessary features from increasing the
time and space complexity of the classifier. This also stops the
accuracy degradation for the classifier. They used the publicly
available benign and phishing datasets in order to evaluate their
proposal. This includes 4,150 benign emails and 4,116 phishing
emails. Addressing their captured results, their proposed lexical
URL analysis technique proved to be effective in enhancing the
classification performance.

In [10], the authors proposed a framework called Phishing
Evolving Neural Fuzzy Framework (PENFF) in order to detect
and predict unknown “zero-day” phishing emails. PENFF is
based on adopted Evolving Fuzzy Neural Network (EFuNN).
Their proposal includes: Email Dataset, Pre-processing, Email
Object Similarity, EFuNN, and PENFF. In their experiments,
they used 2,000 real benign emails besides 2,000 real phishing
emails. They also took into account sixteen features for phishing
emails each represented in binary (0 or 1). Addressing their
captured results, their proposed framework proved its ability to
detect phishing emails and provide classification with low error
rate.

In [11], the authors proposed a real-time hybrid Neuro-Fuzzy
Scheme in order to detect phishing websites and protect the
customers performing online transaction. Their model takes five
inputs: “Legitimate site rules”, “User-behavior profile”,
“PhishTank”, “User-specific sites” and “Pop-Ups from emails”
as well as 288 features. They also applied 2-fold cross-validation
for training and testing. Addressing their captured results, their
proposal can be effective in detecting phishing sites with a high
accuracy in real-time. Their results also offered a better
performance when they compared with the previously reported
research.

In [12], the authors proposed a Neural Network-based
framework to predict phishing websites. They used Anti-
Phishing Working Group and PhishTank in order to extract
phishing website features. They employed the extracted features
in order to train and test their model. They also discovered that

phishing websites lived only for 2.25 days before taken down.
However, they have not presented any formal results therefore it
is hard to review the effectiveness of their proposed model.

In [13], the authors proposed an intelligent model to detect
phishing emails by employing a pre-processing phase. The pre-
processing phase extracts a set of features by taking into account
different email parts and then uses J48 algorithm for
classification. They used 23 features and ten-fold cross
validation for training, validation, and testing. Their primary
focus was to enhance the email classification accuracy by using
a pre-processing phase and determine the best algorithm that can
be used. For this, they compared ten different classification
algorithms where random forest achieved the highest accuracy
of 98.87% when the pre-processing phase applied.

In [14], the authors proposed an online phishing detection
toolbar for transactions. The toolbar runs continuously in the
background of Internet Explorer web browser checking all
websites users request against a dataset in a real-time manner.
Their proposal is a feature-based online toolbar that uses six sets
of inputs. They also combined a voice generating user warning
interface with a text directives and color status to detect phishing
websites and alert users from phishing attacks. They evaluated
their online phishing detection toolbar by using 200 phishing
websites, 200 suspicious websites, and 200 legitimate websites.
Reflecting on their captured results, their proposed toolbar
demonstrated 96% accuracy.

In this paper, we used word embedding or vectorisation and
proposed a neural network-based model for phishing email
detection and classification. Word embedding is a common
name for a set of language modelling and feature learning
techniques in Natural Language Processing (NLP) where words
or phrases from the vocabulary are mapped to vectors of real
numbers [4]. Our proposed model built from six elements and
uses six features and ten-fold cross validation for training,
validation, and testing. The input features are extracted from two
publically available email datasets: “SpamAssassin” [1] for
benign emails and “Phishcorpus” [2] for phishing emails. In our
model, we conduct email purifications which is a compulsory
phase before the vectorisation stage.

III. DESIGN AND IMPLEMENTATIONS

In this section, we explain the components of our proposed
neural network-based model for detection and classification of
phishing emails. This includes discussions on six distinct
components of: “Emails”, “Email Classifier”, “Email Parser”,
“Email Sanitiser”, “Email Vectoriser”, and “Neural Network
Model”, Figure 1. We also explain how we developed each
module and what tools and techniques we have used.

A. The “Emails” Component
As depicted in Figure 1, the “Emails” component includes

all the real benign and real phishing emails used for our model.
We used “SpamAssassin” dataset [1] for benign emails and
“Phishcorpus” dataset [2] for phishing emails. The
SpamAssassin dataset is a public mail corpus which includes a
selection of mail messages and suitable for use in testing spam
filtering system. This dataset includes both benign and spam
emails.

Computing Conference 2017

18-20 July 2017 | London, UK

Figure 1. Components of the proposed model for detection and classification of phishing emails

 In this paper, we only used the benign emails from this
dataset which are identified by “_ham” suffix in [1]. This
includes “_easy_ham”, “_hard_ham”, and “_easy_ham_2”
directories. The “_easy_ham” directories include benign or
non-spam messages which are quite easy to differentiate from
spam messages since they do not contain any spam signatures
such as HTML. The “_hard_ham” directories also include
benign or non-spam messages but they are closer to typical
spam messages in many respects such as: use of HTML,
unusual HTML markup, colored text, and spam sounding
phrases. And finally, we have “_easy_ham_2” directories
which also include benign or non-spam messages but it is a
more recent addition to the SpamAssassin dataset. Each
directory has been compressed and the messages in
SpamAssassin dataset have been named by a message number
and their MD5 checksum value. There is also another
directory in the path named as: “obsolete” which contains the
older version of the messages but we did not use them in this
paper. In this paper, we used total of 6,656 benign emails form
SpamAssassin dataset.

Phishcorpus dataset is also a public mail corpus which
includes a collection of phishing emails for several years with
slight header modifications. They are located with “.mbox”
suffix in [2]. Mbox stands for MailBox and is the most
common format of storing email in hard drives. All the
messages for each mailbox are stored as a single, long, text
file in a string of concatenated e-mail messages, starting with
the “From” header of the message. In this paper, we employed
all the “.mbox” files from the Phishcorpus dataset [2]. This
gives a total of 7,714 phishing emails for our implementation.

B. The “Email Classifier” Component
The “Email Classifier” component is accountable for

classifying each email as either a benign email or a phishing
email. Basically, this component deals with all the email
datasets used in this paper. This includes the benign emails
from Spamcorpus and the phishing emails form Phishcorpus
datasets. We implemented a python scrip that scans through
the both datasets and identifies type of each email as either a
benign or a phishing where “0” represents benign class and
“1” represents phishing class. For each email, the email type
is then saved in a BOOLEAN variable. The emails classifier’s
functionality is mathematically defined as follows.

Let an email characteristic 𝑒𝑖 is defined by a random
variable 𝐸𝑖 as follows:

Ei=

{
1, 𝑖𝑓 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑒𝑚𝑎𝑖𝑙 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟𝑠

0, 𝑖𝑓 𝑛𝑜𝑡 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑒𝑚𝑎𝑖𝑙 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

 Let C be a random variable indicating a given email class
which can be either benign or phishing:

C𝜖 {benign, phishing}

Each email (benign/phishing) is assigned with a vector
defined by 𝑒− = (𝑒1, 𝑒2, , … , 𝑒𝑛) with ei being the result of the
i-th random variable 𝐸𝑖 . This is also called features.

C. The “Email Parser” Component
The “Email Parser” component, Figure 1, is accountable

for parsing a given email in order to find:

1) number of the web links;
2) if the email is an HTML email or a simple text;
3) if there is any JavaScript in the email; and
4) number of the email’s parts (e.g. attachment, HTML

text, plain text, and so on).

In our implementation, the email parsing procedure is
done by coding a Python script. For each email in each dataset,
the script pinpoints the number of the web links in the email
body, whether it is an HTML email or a simple text, whether
there is any JavaScript in the email’s body or not, and number
of the email’s parts. Then, the number of the web links is
saved in an INTEGER variable and if the email is an HTML
email, the logical value of “1” will be assigned to a
BOOLEAN variable. However, if the email is a simple text
message, this BOOLEAN variable will be assigned with “0”.
Likewise, if the email contains any JavaScript, the logical
value of “1” will be assigned to another BOOLEAN variable.
And finally, the number of the email’s parts is counted and
saved in another INTEGER variable.

These INTEGER and BOOLEAN values are the four
features that help our neural network-based model to
distinguish between a benign email and a phishing email
through the learning process.

D. The “Email Sanitiser” Component
The “Email Sanitiser” component, as shown in Figure 1,

purifies a given email and makes it ready for vectorisation.
This includes: uppercase to lowercase conversion, UTF8

Computing Conference 2017

18-20 July 2017 | London, UK

encoding, stopword (e.g. ‘to’, ‘the’, ‘a’, and ‘an’) removal,
special character (e.g. ‘£’, ‘$’, ‘*’, and ‘&’) removal, and
HTML to simple text conversion.

In our implementation, the email sanitation is done by
developing a Python script that probes and then purifies each
and every single email that we used in this paper. This
includes all the benign emails from Spamcorpus dataset and
all the phishing emails from Phishcorpus dataset. After the
sensitization, a given email will be converted into a list
containing all the remaining words which is now ready for
vectorisation.

The email purification is compulsory for vectorisation,
which is also known as word embedding, where words or
phrases from the vocabulary are mapped to vectors of real
numbers in a low-dimensional space relative to the vocabulary
size [4]. Vectorisation process is detailed in the next section.

E. The “Email Vectoriser” Component
The “Email Vectoriser” component is accountable for two

tasks: 1) word embedding/vectorisation and 2) vector average
calculation. Word embedding/vectorisation is the collective
name for a set of language modelling and feature learning
techniques in Natural Language Processing (NLP) where
words or phrases from the vocabulary are mapped to vectors
of real numbers [4].

For task1, the “Email Vectoriser” component used
Word2Vec [5] which is a group of related models that are used
to produce word embedding. These models are two-layer
neural networks that are trained to reconstruct linguistic
contexts of words. In our implementation, Word2Vec takes
the message, which is a list containing all the words that
remain after the sanitisation, and produces a high dimensional
space, with each unique word in the list being assigned a
corresponding vector in the space. Once all the words have
been vectorised, the “Email Vectoriser” component runs the
task2 which sums the vectors for a message and calculates the
average. The average will be saved in a LONG variable.

To do task1 and task2 successfully, we imported the
Word2Vec module into our Python script and added extra
codes in order to: 1) vectorise each message and 2) calculate
the vector average, respectively. This is done for all the benign
emails from Spamcorpus dataset and all the phishing emails
from Phishcorpus dataset

Once we pass through all the five modules of: “Emails”,
“Email Classifier”, “Email Parser”, “Email Sanitiser” and
“Email Vectoriser” for a given email, all the variables that
indicate: the email type (benign, phishing), the number of web
links in the email body, whether or not the email is a html
email, whether or not there is JavaScript in the email, the
number of the email’s parts, and the vector average will be
imported into our “.csv” dataset. The “.csv” dataset will be
used for training, validating and also testing our neural
network-based model. This is discussed in the next section.

F. The “Neural Network Model” Component
The “Neural Network Model” component, Figure 1, deals

with the emails that have already been: classified into benign
or phishing by the “Email Classifier”, parsed by the “Email

Parser”, purified by the “Email Sanitiser”, and finally
vectorised by the “Email Vectoriser”. All the emails then feed
into our Neural Network (NN) model in the form of .csv
dataset. For each email, our CSV dataset carries six features:
vector average; the number of the web links in the email body;
whether the email is an HTML email or not; whether there is
JavaScript in the email or not; number of the email’s parts;
and email type (benign/phishing).

A given NN model includes x inputs and y outputs
connected by direct arrows via n hidden layers or neurons. The
arrows are single arrows which are pointed from left to right
(x towards y), Figure 2 [15]. Each arrow can have different
value. The values are called connection weights or simply
weights. There are many algorithms that can help a neural
network model to learn the weights. Generally, a neural
network model starts with two sets of data: a set of random
inputs and a set of desired outputs. On the first run, the NN
model takes the inputs and generates a random set as outputs.
Obviously as the weights are selected randomly in the first
round, there will be a difference between the generated
outputs and the desired outputs. The difference is called the
network error [16]. When the NN model identifies the error, it
tries to adjust the weights in order to generate outputs closer
to the desired outputs. The process continues until the NN
model produces outputs which have the smallest error when it
compares with the desired outputs.

In our proposal, the neural network model has three
modules: training, validation, and testing. For simplicity we
combined validation and testing modules. They are defined as
follows.

1) Training module
The Training module includes three components of:

“Input Matrix”, “Target Matrix”, and “Fitness Network” as
follows.

 “Input Matrix”: this matrix contains all the benign emails

from Spamcorpus dataset and all the phishing emails

from Phishcorpus dataset that the NN model uses in

training stage. These emails have been already: parsed

by the “Email Parser”, sanitised by the “Email Sanitiser”,

and vectorised by the “Email Vectoriser”, Figure.1. In

our implementation, this matrix is a logical 14,370 x 5

matrix which represents a matrix with 14,370 rows and

5 columns. 14,370 represents the total number of the

emails in our implementation, which is 6,656 for benign

Figure 2. An artificial neural network model [15]

https://en.wikipedia.org/wiki/Feature_learning

Computing Conference 2017

18-20 July 2017 | London, UK

Figure 3. Network Architecture for the proposed Neural Network model

emails and 7,714 for phishing emails precisely. 5

represents the size of the assigned vectors to the emails

which carries five features for each email: the number of

links in the email body, whether or not the email is an

HTML email, whether or not there is JavaScript in the

email, the number of the email’s parts, and the vector

average.

 “Target Matrix”: this matrix includes all the decisions

(benign or phishing) for all the emails. These decisions

are for each and every email stored in the “Input Matrix”.

In our implementation, this matrix is a logical 14,370 x 1

matrix where 14,370 represent the total number of the

emails while 1 represents the size of the assigned

decision vector to each email which either carries 0

(benign) or 1(phishing) as a value.

 “Fitness Network”: this is the NN model with n layers

with x inputs and y outputs where the data from ‘Input’

and ‘Target’ matrixes are used for training, validation,

and testing, respectively. In our implementation, our NN

model has 10 hidden nodes or 10 layers/neurons where

70% of the data from ‘Input’ and ‘Target’ matrices are

used for training, 15% for validation, and 15% for testing

2) Validation and Testing modules
The Validation and Testing modules of the NN model

includes two components of “Sample Matrix” and “Output
Matrix” as follows.

 “Sample Matrix”: this matrix contains sample data from

the “Input Matrix”. The trained NN model uses the data

in the “Sample Matrix” as inputs during the testing

phase. In our implementation, this matrix is a logical n x

5 matrix contains n sample data from the “Input Matrix”.

 “Output Matrix”: this matrix contains output data for the

data in the “Sample Matrix”. The trained NN model

predicts the output values for the “Sample Matrix” and

stores them in the “Output Matrix”. In our

implementation, this matrix is a logical n x 1 matrix

contains output data for the emails represented in

“Sample Matrix”. The trained NN model predicts the

output value, in terms of an email being benign or

phishing, for each email in the “Sample Matrix”. These

predictions will be stored in the “Output Matrix” and will

be used to evaluate the performance of the neural

network.

We used 70% of the entire dataset, which includes all the
benign emails from Spamcorpus dataset and all the
phishingemails from Phishcorpus dataset, for training, 15%
for validation and 15% for testing. We used MATLAB [3] to
develop, train, validate and then test our neural network
model. Our developed NN model has 10 hidden layers, 5 input
features, 1 output layer, and 1 output features, Figure 3. The
captured results are discussed in the next section.

IV. RESULTS

The two datasets, which includes 14,370 emails and
14,370 decisions (benign/phishing), are used in order to train,
validate, and test our neural network-based model for
detection and classification of phishing emails. We used 70%,
15%, and 15% of this data for training, validation, and testing,
all respectively. As it was discussed in the previous section,
we implemented our proposal in MATLAB [3]. Our NN
model has 10 hidden layers, 5 input features, 1 output layer,
and one output features (Figure 3). The results are captured,
represented, and analyzed in in terms of: Confusion Matrix;
Receiver Operating Characteristic (ROC); Network
performance; and Error Histogram, as follows.

The Confusion Matrices for all three phases of training,
validation, and testing are illustrated in figures 4 to 6, each
respectively. We also illustrate the overall Confusion Matrix
for all three phases in Figure 7. Addressing our proposal, we
have two output classes and two target classes: Class 0 which
represents benign emails and Class 1 which represents
phishing emails. For each class, the number of the correct
responses is presented in a green square and the number of the
incorrect responses is presented in red square. The grey square
represents the percentages of the accuracies (upper numbers)
and inaccuracies (bottom numbers) for output and target
classes. The blue square displays the overall percentages of
the accuracies (upper numbers) and inaccuracies (bottom
numbers) for each phases of training, validation, and testing.

For instance in Figure 7, which shows the overall
Confusion Matrix for all three phases, our model was
successful to classify 6,237 benign emails and 7,015 phishing

Computing Conference 2017

18-20 July 2017 | London, UK

emails correctly. By taking into account the initial 6,656
benign emails and the initial 7,714 phishing emails, this
classification gives us 89.9% and 94.4% accuracies and 10.1%
and 5.6% inaccuracies for benign and phishing email
classifications, both respectively. Therefore, the overall
accuracies and inaccuracies come to 92.2% and 7.8%,
respectively.

The Receiver Operating Characteristic (ROC) curves for
three phases of: training; validation; and testing, are shown in
Figures 8 to 10, respectively. We also took the overall ROC
curve in Figure 11 where all three phases are combined. The
ROC curve is a plot of the true-positive rate or sensitivity
against the false-positive rate or specificity. In our
implementations, the true-positive rate is the percentages of
the benign emails correctly classified as benign and the
percentages of the phishing emails correctly classified as
phishing. Additionally, the false-positive rate is the
percentages of the benign emails incorrectly classified as
phishing emails and the percentages of the phishing emails
incorrectly identified as benign emails.

A perfect neural network would show points in the upper-
left corner, with 100% sensitivity (i.e. predicting all benign
emails as benign and all phishing emails as phishing) and
100% specificity (i.e. not predicting any benign email as
phishing and not predicting any phishing email as benign).
Addressing Figure 8 to Figure 11, our neural network
performs well.

The network performance for all three phases of training,
validation, and testing is depicted in Figure 12. This is
measured in terms of mean squared error and is illustrated in
log scale. The mean squared error is the difference between
output values and target values. This is also called a network
error. Thus the lower values are better, and zero means there
is no error in the network. Addressing Figure 12, our model
reached its best performance at almost 39 milliseconds from
the start of the simulation for all three phases of training,
validation, and testing.

For additional verification of the network performance, we
captured the error histogram where the blue bars represent
training data, the green bars represent validation data, and the
red bars represent testing data. Addressing Figure 13, we
realized that the highest error falls between -0.15 and 0.14
points with the maximum error at 0.04 point for the entire
scenario.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated the performance of our
proposed neural network-based model for detection and
classification of phishing emails. For our model, we used real
benign emails from “SpamAssassin” dataset and real phishing
emails from “Phishcorpus” dataset. The datasets include
emails with different level of difficulties. For instance, in
“SapmAssassin” dataset, some of the benign emails are fairly
easy to separate from phishing emails as they don’t have any
phishing email signatures. Conversely, other benign emails
are closer to typical phishing emails in many aspects such as
having: HTML markup, colored text, and phishing sounding

Figure 4. Confusion matrix for training phase

Figure 5. Confusion matrix for validation phase

Figure 6. Confusion matrix for testing phase

Computing Conference 2017

18-20 July 2017 | London, UK

Figure 7. Confusion matrix for three phases

Figure
8. ROC for training phase

Figure 9. ROC for validation phases

Figure 10. ROC for testing phase

Figure 11. ROC for all three phases

Figure 12. Network performance

Computing Conference 2017

18-20 July 2017 | London, UK

Figure 13. Error Histogram

phrases. Therefore, there was a great chance for our model to
falsely detect the benign emails as phishing and vice versa.
This could also lead to wrong classifications. We used Python
and MATLAB to implement our model and measure the
effectiveness of our proposal in terms of accuracy, true-
positive rate, false positive-rate, network performance, and
error histogram. The results were captured, represented, and
analysed in three groups of: confusion matrix, ROC, and
network performance. Addressing the captured results, our
proposed neural network-based model for detection and
classification of the phishing emails presented a satisfactory
performance in terms of accuracy, true-positive rate, false-
positive rate, and network performance.

In future work, we plan to on further developing the word
embedding techniques. We intend on using alternative
methods provided by the current research on word embedding
in order to attempt to vectorise entire documents at once rather
than averaging the vectors of the words contained in an email.

We have noticed during the writing of this paper that there
currently is a lack of recent, relatively large phishing and
benign e-mail datasets available publicly. Therefore, we also
intend on gathering e-mails in order to create such a dataset.
This would both allow us to better train our vector model on
additional data as well as ensure that it is able to distinguish
modern phishing emails from benign emails.

ACKNOWLEDGMENT

The authors would wish to acknowledge the support of the
Edinburgh Napier University and The Cyber Academy for
funding this work.

REFERENCES

[1] Spamassassin dataset; Retrieved July 14, 2016, from:
https://spamassassin.apache.org/publiccorpus

[2] Phishcorpus dataset; Retrieved July 14, 2016, from
https://monkey.org/~jose/phishing

[3] MathWorks, T. (1994). MathWorks – makers of MATLAB and
Simulink - MathWorks United Kingdom. Retrieved July 14, 2016,
from http://www.mathworks.co.uk

[4] Word embedding or vectorisation; Retrieved July 14, 2016, from:
https://en.wikipedia.org/wiki/Word_embedding

[5] Word2Vec; Retrieved July 14, 2016, from:
http://deeplearning4j.org/word2vec

[6] Zhan, J.Thomas, L., "Phishing detection using stochastic learning-
based weak estimators," in Computational Intelligence in Cyber
Security (CICS), 2011 IEEE Symposium on, pp. 55-59, 2011.

[7] Khonji, M.Iraqi, Y.Jones, A., "Enhancing Phishing E-Mail Classifiers:
A Lexical URL Analysis Approach," International Journal for
Information Security Research (IJISR), vol. 2,no.1/2, 2012

[8] Khonji, M., Iraqi, Y., and Jones, A., “Lexical url analysis for
discriminating phishing and legitimate websites”, In Proceedings of the
8th Annual Collaboration, Electronic messaging, Anti-Abuse and
Spam Conference, CEAS ’11, pages 109–115, New York, NY, USA,
2011. ACM.

[9] M. Khonji, A. Jones, and Y. Iraqi, “A study of feature subset evaluators
and feature subset searching methods for phishing classification,” in
Proceedings of the 8th Annual Collaboration, Electronic messaging,
Anti-Abuse and Spam Conference, ser. CEAS ’11. New York, NY,
USA: ACM, 2011, pp. 135–144.

[10] Ammar Almomani, Tat-Chee Wan, Altyeb Altaher, "Evolving Fuzzy
Neural Network for Phishing Emails Detection," Journal of Computer
Science, vol. 8,no.7, pp. 1099-1107, 2012.

[11] Barraclough, P.A., Hossain, M.A., Tahir, M.A., Sexton, G. and Aslam,
N., 2013. Intelligent phishing detection and protection scheme for
online transactions. Expert Systems with Applications, 40(11),
pp.4697-4706. Vancouver

[12] Martin, A., Anutthamaa, N. B., Sathyavathy, M., Marie Francois, M.
S., & Venkatesan, 2011, “A framework for predicting phishing
websites using neural networks”, International Journal of Computer
Science Issues (IJCSI), 2(8).

[13] Smadi, S., Aslam, N., Zhang, L., Alasem, R. and Hossain, M.A., 2015,
December. Detection of phishing emails using data mining algorithms.
In 2015 9th International Conference on Software, Knowledge,
Information Management and Applications (SKIMA) (pp. 1-8). IEEE.
Vancouver.

[14] Barraclough, P. A., Graham Sexton, and Nauman Aslam. "Online
phishing detection toolbar for transactions." Science and Information
Conference (SAI), 2015. IEEE, 2015.

[15] Moradpoor, N. (2015, September). SQL-IDS: evaluation of SQLi
attack detection and classification based on machine learning
techniques. InProceedings of the 8th International Conference on
Security of Information and Networks (pp. 258-266). ACM.

[16] Moradpoor, N. (2015). A Pattern Recognition Neural Network Model
for Detection and Classification of SQL Injection Attacks. World
Academy of Science, Engineering and Technology, International
Journal of Computer, Electrical, Automation, Control and Information
Engineering, 9(6), 1355-1365.

[17] Raytheon Kill Chain Model; Retrieved July 14, 2016, from:
http://cyber.lockheedmartin.com/solutions/cyber-kill-chain

[18] Avoid and report internet scams and phishing; Retrieved July 14,
2016, from: https://www.gov.uk/report-suspicious-emails-websites-
phishing

