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Abstract 

Double Skin Façades (DSFs) are applied in both new and existing buildings, especially in temperate 

climates. Research in this area is steadily growing; however, there is a lack of conclusive results in 

available literature about energy performances related to the DSF, thus limiting a better and more 

informed application of this technology in the Architecture Engineering and Construction (AEC) 

sector. This paper systematically reviews more than 50 articles which have dealt with the energy 

related performance of DSFs in temperate climates and provide a meta-analysis of the numerical 

findings published in the studies examined. Energy related figures are presented separately for 

embodied and operational energy. Specifically, the operational energy end-uses taken into account 

are heating, cooling, lighting, and ventilation. Numerical results in the literature are normalised and 

expressed in form of percentage of maximum energy reduction/increment compared to a base case 

(e.g. a single skin case) used as a reference in the corresponding studies. Such an approach is meant 

to provide a reliable comparison of published figures. Key façade parameters (DSF spatial 

configurations, cavity width and ventilation), building parameters (orientation and climatic areas) 

and the methodological approaches used in the reviewed studies were deployed as clustering 

criteria. Several clustering criteria present extremely spread values, indicating the necessity to 

further investigate, understand, and attempt to reduce such high discrepancies in operational 

energy performances. Additionally, and more importantly, almost no information exists on DSFs life 

cycle energy figures, highlighting an important gap that requires further research.  

Keywords: Double Skin Façade; Operational Energy Reduction; Heating and Cooling Loads; Natural 

Ventilation; Embodied Energy.  
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Abbreviations: 

ach Air Changes per Hour 

AEC Architecture Engineering and Construction 

CO2 Carbon Dioxide 

DGU Double Glazed Unit 

DSF Double Skin Façade 

ETTV Envelope Thermal Transfer Value (W/m²) 

GHG Greenhouse Gas 

IGU Insulated Glazed Unit 

LCA Life Cycle Assessment 

SS Single Skin 

WWR Window to Wall Ratio 

1. Introduction  

The construction sector is responsible for around half of energy consumption, greenhouse gas (GHG) 

emissions, and depletion of natural resources worldwide [1]. Reducing its energy demand while also 

‘greening’ its energy supplies through maximising the use of renewable energy should be of 

paramount importance. Without a resolute and concerted effort, carbon dioxide (CO2) emissions 

related to worldwide energy consumption will double by 2050 [2]. Although much can be done by 

maximising the share of sustainable and renewable sources, it is also true that great opportunities lie 

in reducing demand. Given this context and providing the flexibility they can offer in design, Double 

Skin Façades (DSFs) can introduce significant benefits in reducing the energy demand of a building. 

DSF technology has been defined as one of the best options for an efficient management of the 

interaction between outdoor and indoor spaces [3]. Research on DSFs has been conducted in great 

details from a variety of perspectives, such as shading elements (including plants) in the cavity [4-7], 

airflow analysis and prediction [8-12], fire and smoke spreading issues [13-17], and natural 

ventilation [18-21]. Regardless of the drivers behind the decision to adopt DSF technologies—which 

can range from aesthetic reasons to more technical ones e.g. providing thermal comfort through 

passive cooling/heating, energy saving and reduction of GHG emissions seem to have always been 

amongst the main arguments for such decisions. Interestingly enough, a broad and systematic 

review of energy performance related to DSFs is still missing. This paper aims to fill such a gap, with 

a specific focus on temperate climates. A reduction of energy loads is also expected to turn into 

economic savings, which reinforce the need to better understand the energy reduction potential of 

DSFs. Although some monetary figures do exist [22], they can vary greatly and fall beyond the scope 

of this review. This paper builds on the knowledge capital of existing reviews already published on 

DSFs [3, 23-26]. Specifically, this research has used a systematic approach to review DSF energy 

performance, and has conducted a meta-analysis of the examined literature to normalise and 

present numerical findings in order to determine if significant trends could be mapped to assist DSF 

practitioners and academics alike.  

To do so, a total of 247 articles matching initial search keywords were retrieved and examined 

carefully. Out of those, 55 were found fit for purpose for this review, and therefore investigated in 

greater details and used in this analysis. Selection of papers was carried out using the following 

criteria: 
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(1) it had to address and assess energy-related figures associated with DSF, either related to DSF 

while in use – i.e. the operational energy – or the embodied energy, that is related to all life-

cycle stages other than the operation phase [1, 27-29] 1 ; 

(2) with respect to operational energy, it had to present a base case against which the results 

could be compared in order to understand the comparative performance of DSFs, to enable 

to assess variations in the energy increment or reduction;  

(3) it had to refer to, or be set in, moderate or temperate climates, considered as where there is 

a distinct demand for heating in winter and cooling in summer; 

(4) it had to be published within the last 20 years. 

To further clarify the climatic areas, selected studies have been then classified and clustered 

according to the Köppen-Geiger climate classification [31]. The details of the coding system for the 

climatic areas can be found in Peel et al. [31]. In the selection of studies, greater consideration has 

been given to journal articles. However, some conference publications have also been taken into 

account, since they presented results of experimental investigations or came from key researchers 

and/or leading practitioners in the field.  

2. Defining Dimensions and Essential Concepts of DSFs  

Existing definitions of DSFs are many and, to some extent, far between [33-37].  For the purpose of 

this study: 

A glazed double skin façade is a hybrid system made of an external glazed skin and the actual building façade, 

which constitutes the inner skin. The two layers are separated by an air cavity which has fixed or controllable 

inlets and outlets and may or may not incorporate fixed or controllable shading devices.  

The cavity may either act as a thermal buffer zone, as a ventilation channel or, more often, as a 

combination of the two. It may be naturally or mechanically ventilated, and vary in width and height. 

All these cavity parameters contribute to the defining dimensions of a DSF. The width is generally 

used to distinguish between narrow and wide cavities. Such a distinction is extremely important with 

regard to both operational and embodied energy. For the former, narrower air spaces may 

significantly influence air flow and air velocity whereas for the latter wider cavities often imply a 

higher amount of construction materials which, in turn, increase the embodied energy of the DSF. 

Although some numerical figures to distinguish between the two do exist [38], there is no general 

agreement upon such classification, and in this paper: 

 Narrow cavity is when the width is up to 40cm; and 

 Wide cavity is when the width exceeds 40cm.  

The 40cm limit is determined by the minimum width required to grant access to the cavity for 

maintenance purposes. The height of the cavity is used to define what here is referred to as the 

spatial configuration of the DSF. The types pioneered by Oesterle et al. [34], which have broadly 

been adopted by the others, include: 

 Box windows (BW) 

 Corridor (C) 

                                                           
1 Other authors (see, e.g., Gustavsson and Joelsson [30]; Buyle et al. [32]) consider as embodied energy only the 

energy related to the production and construction phases.   
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 Shaft box (SB), and 

 Multi-storey (MS) 

 

 

Figure 1 - Classification of DSFs - 
(*)

 image courtesy of Sabrina Barbosa [22] - 
(**)

 names of the airflow concepts are after 
Haase et al. [40] 
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In addition to these, the Belgian Building Research Institute [39] adds a fifth type called ‘Louvers 

Façade’ whose outer skin is composed of transparent rotating louvers that, when closed, are capable 

of relatively good airtightness. Other classifying dimensions of a DSF involve the origin of the airflow 

[40] and its destination [40, 41], which eventually define the airflow concepts as summarised by 

Haase et al. [42]. All these key defining elements are grouped into the classification of DSFs given in 

Figure 1. 

The natural ventilation in a DSF is driven by two main forces related to: 

 Pressure differences caused directly by wind action 

 Pressure differences caused by thermal buoyancy2 

The former happens as when wind hits a building two main faces of a building can be identified: the 

windward and the leeward side. Areas on the windward side are characterised by a positive pressure 

which pushes the air into or against the building. Areas on the leeward side have a negative pressure 

which results in a suction of the air out or away from the building [43]. Regarding the latter, thermal 

buoyancy occurs when hot air rises and cool air sinks. More specifically, air density changes when 

temperature changes. Warmer air occupies a greater volume than cooler air. Therefore it is lighter 

than cold air per unit of volume. The pressure difference due to the thermal buoyancy is expressed 

by Eq. 1 [34]: 

thb mp g h T      

Equation 1 - Pressure differences due to thermal buoyancy in a DSF 

Where: 

 Δρ is the air density change due to the temperature change [kg/m3]  

 g is the acceleration due to the gravity force [m/s2] 

 Δh is the actual height of the chimney [m] 

 ΔTm is the mean excess temperature [K]  
 

As shown in the formula, the chimney effect depends upon the temperature difference between 

internal and external air, and the height of the column of air. This clarifies how significant the 

thermal buoyancy is in a DSF and why naturally ventilated DSFs are often found with multi-storey 

configurations. In the mechanically ventilated DSFs, ventilation is achieved by mechanical means, i.e. 

fans, usually installed in the cavity. Such a straightforward formula should not mislead and imply 

simplicity in DSFs behaviour which is hardly the case. To the contrary, DSF is a complex technology 

with many intertwined heat transfer mechanisms and fluid dynamic phenomena [23, 44].  

                                                           
2 Thermal buoyancy is also commonly referred to as stack or chimney effect, being it the principle which drives 

the conventional chimney stack. The three terms are, therefore, synonyms in the DSF context. 
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Figure 2 - Cross section of a DSF and the adjacent indoor space showing the complexity of heat transfer mechanisms and 
fluid dynamic phenomena by Høseggen et al. [44] 

Such a complexity has been represented thoroughly by Høseggen et al. [44] (Figure 2) and partially 

helps understand why energy performances related to DSFs are so varied. More specifically, the 

partitioning of the cavity with its divisions and obstructions; the solar radiation and the way it is 

influenced by shading devices and their position within the cavity; the convection regimes and 

airflow resistances; the frictional resistance of the materials of the inner and outer skins and of the 

obstructions in the cavity and their corresponding heat transfer coefficients; and cavity openings and 

vertical temperature gradient—all contribute to influence the DSF performance [44]. Often, a 

specific DSF is a unique combination of all these elements hence the difficulty in achieving consistent 

and agreed figures on DSFs energy performance. 

3. Embodied Energy Figures 

Research questions regarding life-cycle energy of DSFs, in general, and their embodied energy, in 

particular, firstly appeared nearly 20 years ago [45]. Still, the call for Life Cycle Assessment (LCA) of 

DSFs remain largely unanswered and only few attempts exist that aimed at addressing embodied 

energy figures and life cycle impacts holistically.  

Wadel et al. [46] adopted a simplified LCA in the design of building skins with the specific focus on a 

modular ‘unitised’ double skin façade in 2013. The façade is made of hybrid profiles of recycled 

aluminium and laminated timber, a uniquely produced insulated glass with variable solar factor, and 

opaque enclosures formed of tempered glass, recycled aluminium, recycled carpet boards, sheep 

wool as insulation, cellular vapour barrier, and recycled cellulose fibre plaster board [46]. The figures 

assessed throughout the study are embodied energy per area of façade (MJ/m²), and CO2 emissions 

(kg CO2/m²), where the functional unit is 1 m² of façade with a useful lifespan of 50 years. In the best 

case scenario, the façade is capable of 50% energy consumption and CO2 emissions reduction 
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compared to conventional modular façade. Overall embodied values for the best configuration of 

the façade are 2273.08 MJ/m² for the energy consumption, and 178.64 kg CO2/m² on the carbon 

dioxide emissions side. In terms of lighting and thermal energy, although results are preliminary, 

suggested savings are around 34% [46]. 

In the same year, de Gracia et al. [47] conducted a cradle-to-grave LCA of a ventilated double skin 

façade (VDSF) with phase change materials (PCM) in the cavity. Their LCA utilises the Eco-Indicator 

99 (EI99), an impact assessment method based on endpoints where results from different impact 

categories are normalised and brought together to contribute to a final, single, cumulative score for 

the product/process under examination. The functional units used are the entire two cubicles 

constructed in Spain, one with a VDSF and the other as a reference. The lifetime of the cubicles is 

considered to be 50 years, although sensitivity analyses for 75- and 100-year lifetime scenarios were 

also carried out [47]. Overall results indicate that the VDSF reduces the environmental impact by 

7.5% over 50 years compared to the reference case. The endpoint assessment method EI99 used in 

the study is useful to explain what the main damage categories are. However, it increases the 

difficulties in comparing and assessing results lacking clarity, for instance about embodied energy 

figures.  

These contributions represent the only existing detailed studies on DSF life-cycle. Moreover, they 

refer to specific façade typologies, which are innovative products but do not represent the current 

practice of DSFs in the AEC industry. A less type-specific environmental impact assessment of office 

façades has been done by Kolokotroni et al. [48], where embodied energy and EI99 have also been 

used as assessment methods and the DSF has been found to have the highest embodied energy 

(2120 MJ/m²) but the lowest endpoint score for both naturally-ventilated and air-conditioned offices 

[48]. A specific DSF configuration is just one among many other façade options they assessed for 

both naturally-ventilated and air-conditioned offices, and therefore there seems to be a trade-off 

between the depth and the breadth of the study.    

The scarcity of embodied figures or, more specifically, life-cycle studies about DSFs may well be due 

to the greater share that operational energy tends to have when compared to embodied energy. In 

this respect, detailed LCA studies concluded that “optimization of operations phase performance 

should still be the primary emphasis for design, until it is evident that there is a significant shift in 

distribution of life-cycle burdens” [49, p. 1061]. However, due to increased efficiency in insulating 

materials and advancement of disciplines such as passive design, the balance between operational 

and embodied energy is changing significantly, and environmental burdens are shifting. In this 

regard, recent research suggests a major role of façade elements, which constitute “a substantial 

volume of the total consumption of materials used in a building and the need for maintenance of the 

façade [which] makes it especially interesting from a life cycle perspective” [50, p. 139]. Therefore, 

the focus on embodied energy and life-cycle energy performance of DSFs seems to be a growing 

area for further investigations. 

4. Operational Energy Performances 

Papers dealing with operational energy performances are reviewed in this section. This research has 

systematically reviewed four energy end-uses, namely heating, cooling, lighting, and ventilation, as 

those normally influenced by a building façade performance. It is important to note that, where 

multiple scenarios were assessed in a study, the result of interest for this paper was the ‘best’ case 
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scenario to understand the maximum energy saving potential of the DSF. Similarly, when the DSF 

proved to increase energy consumption, the highest value has been considered. Additionally, type of 

the study, main orientation, cavity ventilation, DSF spatial configuration, cavity width, and presence 

of shading devices in the cavity are all parameters which have been considered and reviewed as 

well. A summary of the systematic review is shown in Table 1. In terms of types of study the three 

following categories have been identified and deployed throughout the paper: 

(1) Mathematical, where results are obtained by means of equations to address and 

solve thermal and fluid-dynamic problems; 

(2) Experimental, where findings result from laboratory activities or monitoring of real 

DSFs; and 

(3) Simulation, where a Building Energy Simulation (BES) software tool (e.g. IES VE, 

Energy Plus, etc.) or a Computational Fluid Dynamic (CFD) software tool (e.g. Fluent, 

Flovent, etc.) have been utilised. 
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Table 1 - Summary of the main studies reviewed 

Ref. Location Type of study 
Köppen-

Geiger zone 
Main 

Orientation 
Cavity Ventilation 

DSF Spatial 
Configuration 

Cavity width [m] 
Shading Devices in 

the Cavity 

[55] Belgrade, Serbia Mathematical Cfb W Natural C 0.6 N 

[67] Tokyo 
Simulation, 

Mathematical 
Cfa S Mixed MS 2 Y 

[52] Italy 
Experimental, 

Simulation 
Cfa S 

Natural, 
Mechanical 

C 0.3, 0.5, 0.7 Y 

[72] Venice, Italy Simulation Cfa SW Natural MS 0.65 N 

[79] Florence Mathematical Cfa S Natural MS 
0.07 - 0.15 - 0.25 - 

0.35 
N 

[59] Germany, Austria Experimental Cfb E, S, W 
Natural, 

Mechanical 
MS N/A Y 

[62] Ankara, Turkey Simulation Csa SW-NE 
Natural, 

Mechanical 
MS, SB, C N/A N 

[66] Instanbul, Turkey Simulation Cfa 
41° N ; 28° E 

(the DSF wraps 
the building) 

Natural MS 
0.3 - 0.6 - 0.9 - 1.2 

- 1.5 
Y 

[56] 
Yongin, South 

Korea 

Experimental 
(monitoring), 

Simulation 
Dwa S Natural MS 1 N 

[65] Lab Experimental 
 

N, S, W, E Natural MS 1.2 N 

[82] 
Stuttgart, 
Germany 

Experimental 
(laboratory and 

monitoring), 
Simulation 

Cfb SW, SE 
Natural, 

Mechanical 
BW 0.5 Y 

[80] Barcelona, Spain Mathematical Csa S Natural BW 0.1 Y 

[60] Lab 
Experimental, 

Simulation  
S 

Natural, 
Mechanical 

BW 0.15 Y 

[57] Teheran, Iran Mathematical Bsk W, S, SW Natural MS 0.3 N 

[83] Belgium Simulation Cfb S 
Natural, and 

Mixed 
MS 1.2 Y 

[58] Belgium Simulation Cfb S 
Natural, and 

Mixed 
MS 1.2 Y 
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Ref. Location Type of study 
Köppen-

Geiger zone 
Main 

Orientation 
Cavity Ventilation 

DSF Spatial 
Configuration 

Cavity width [m] 
Shading Devices in 

the Cavity 

[91] Belgium Simulation Cfb N, S Natural MS 1.2 Y 

[6] Belgium Simulation Cfb N, S, W, E Natural MS 1.2 Y 

[70] Belgium Simulation Cfb N-S, E-W Natural MS 1.2 Y 

[92] Belgium Simulation Cfb N, S Natural MS 1.2 Y 

[84] 
Prague, Czech 

Republic 
Simulation Cfb S 

Natural, 
Mechanical 

MS 0.64 Y 

[44] 
Trondheim, 

Norway 
Simulation Dfc E Mechanical MS N/A Y 

[87] 
Germany (28 

different 
buildings) 

Experimental 
(monitoring) 

Cfb various various MS,SB, C, BW various various 

[74] 
Ansan, South 

Korea 

Experimental 
(monitoring), 

Simulation 
Cfa E, W Natural MS 0.5 Y 

[61] Central Korea Simulation Dwa S Natural MS 0.3, 0.6, 0.9, 1.2 Y 

[71] 
Ansan, South 

Korea 

Experimental 
(monitoring), 

Simulation 
Cfa SW** Natural C 0.5 Y 

[48] UK 
Simulation, 

Mathematical 
Cfb N, S, E, W 

Natural and 
Mixed 

MS 0.2 and 0.8 N 

[69] London, UK Simulation Cfb S Natural MS w N 

[68] Brussels, Belgium 
Experimental 
(monitoring) 

Cfb NE-SW Mechanical MS 0.143 Y 

[90] 
Dusseldorf, 
Germany 

Experimental Cfb NE/SW Mixed C 0.9-1.4 Y 

[53] UK N/A Cfb various various various various various 

[85] UK 
Experimental, 
Mathematical 

Cfb S  Natural C Narrow (0.1 - 0.3) Y 

[77] Crete, Greece Simulation Csa SE-NW Natural MS 1 Y 

[54] Denver, USA N/A Cfa N-S  Natural MS Narrow   N 
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Ref. Location Type of study 
Köppen-

Geiger zone 
Main 

Orientation 
Cavity Ventilation 

DSF Spatial 
Configuration 

Cavity width [m] 
Shading Devices in 

the Cavity 

[22] Atlanta (US) 
Experimental, 
Mathematical 

Cfa S Natural BW N/A Y 

[73] Germany 
Experimental 
(monitoring) 

Cfb E/W Natural MS 0.5 Y 

[51] Madrid, Spain Mathematical Bsk S 
Natural and 
Mechanical 

MS 0.9 N 

[86] 
Budapest, 
Hungary 

Simulation Cfb W Natural MS av. 600mm Y 

[93] Belgium 
Experimental, 
Mathematical 

Cfb SW 
Natural and 
Mechanical 

BW N/A Y 

[40] Belgium 
Mathematical, 

Simulation 
Cfb N, S, E, W 

 Natural and 
Mechanical 

C, BW N/A Y 

[76] Belgium Simulation Cfb NE-SW 
Natural, 

Mechanical 
C, BW N/A Y 

[11] France Simulation Cfb N/A Mechanical BW 0.2 Y 

[89] various locations Simulation various zones various various various various various 

[78] 
Delft, The 

Netherlands 
Experimental, 

Simulation 
Cfb S 

Natural, 
Mechanical 

BW 0.6 Y 

[7] 
Delft, The 

Netherlands 
Experimental, 
Mathematical 

Cfb S Mechanical BW N/A Y 

[81] Japan 
Experimental 
(monitoring), 
Mathematical 

Cfa W Natural C 1.4 Y 

[88] Brussels 
Simulation, 

Experimental 
Cfb E/W Mixed MS 1.4 N 

[63] Japan 
Experimental, 
Mathematical 

Cfa E-W, N-S Natural C 1.23 N 

[64] Istanbul, Turkey Mathematical Cfa S 
Natural, 

Mechanical, and 
Mixed 

C, MS N/A N 

[75] London, UK Simulation Cfb S Natural MS 0.9 Y 
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4.1 Heating  

The reduction of heating loads is among the most widely used supporting arguments for a DSF in temperate 

climates. Solar radiation enters the closed cavity passing through the glass which transforms the radiation into heat. 

The heat is then trapped in the cavity and warms up the air creating convectional airflow patterns (Figure 1 – Air 

Buffer). Such a working mechanism is already beneficial since it reduces heat losses through the inner skin of the 

building. Furthermore, where the quality of air is satisfactory, the warmer air in the cavity can also be supplied to 

indoor spaces (Figure 1 – Supply Air and Internal Air Curtain).  

Such a reduction in heating load can then be enhanced by other façade parameters. For instance, Perez-Grande et al. 

[51] focused on thermal aspects related to glass selection concluding that appropriate glass choices can reduce the 

thermal load by up to 90%. Baldinelli [52] showed that savings due to reduction in heating loads can be as high as 

65% for a DSF compared to a fully glazed single skin façade. Similar results have also been achieved in broader 

contexts, i.e. the UK, when DSFs have been compared to advanced single skins [53]. Comparable findings in the UK 

have been reported by Kolokotroni et al. [48] who showed a 70% decrement in heating loads. Significant 50% and 

40% reductions of heating loads have been found by Pappas [54] and Andjelkovic et al. [55] respectively, due to the 

greenhouse effect when DSFs are compared to single skin solutions. Similarly, results in this range have been 

obtained by Choi et al. [56] in Korea, Ghadamian et al. [57] in Iran, Gratia and De Herde [58] in Belgium, Blumenberg 

et al. [59] in Germany and Austria, and Fallahi et al. [60] in a lab-based experiment. It is worth mentioning that DSFs 

suggested significant energy savings, even within a renovation or refurbishment context, of 38% in case of a 

residential building studied by Kim et al. [61], and of 45% in an office building analysed by Cakmanus [62]. 

A second group of consistent results is within the 20%-30% reduction range. Such investigations span from field 

experiments in residential houses in Japan [63] to the use of DSFs in new buildings or as a renovation strategy for 

existing ones in Turkey [64]. In a comparative study about ETTV of a DSF and of a traditional double glazed 

installation, Chou et al. [65] observed a reduction of 32.9% when the WWR equals to 0.5. Similar numerical results 

are also achieved in studies more focused on comparisons between DSFs and single skin options [44, 66-70]. 

Comparable savings have been observed by 18.7% during winter months in Korea [71], by 20.5% in the restoration of 

industrial buildings in Italy [72], and by 18% in real monitoring of three DSF buildings in Germany [73].  

More modest heating loads reduction (14.71%) have been found by Kim et al. [74] where it is recommended to avoid 

the DSF to face east if enough solar radiation is to be received and a sufficient ventilation rate achieved. In a study 

on DSFs in different locations [75], a 7.47% reduction has been found in the case of London. Likewise, DSF was found 

to be only 5% more efficient than a non-optimised IGU and an optimised IGU turned out to actually be more efficient 

than DSF [76]. In few cases DSFs underperformed single skin solutions. Saelens et al. [40] found that in the heating 

season the DSF requires 20% more energy than a traditional IGU. Similarly, another study suggests that the DSF is 

actually pejorative in terms of heating loads, with a value as significant as 28% [77]. The normalised data from the 

studies reviewed, in the form of percentage of heating loads reduction, are ranked from the highest to the lowest in 

Figure 3. 
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Figure 3 - Ranked maximum values of heating loads reduction attributable to a DSF in the studies examined 

4.2 Cooling 

Cooling savings attributed to DSF correspond either to the supply of fresh air with little or no help of mechanical 

means or the extraction of the heat from the occupied spaces through the stack effect (Figure 1 – Supply Air and 

Exhaust Air respectively). Additionally, even when indoor spaces have no ventilation onto the cavity, the DSF can still 

act as a natural fan which cools off the inner skin (Figure 1 – External Air Curtain). A particular advantage of the DSF 

is that all these working principles can also be applied at night due to the additional security that the second skin 

bears, thus allowing for a significant exploitation of night cooling strategies.  

In this respect, Stec and van Paassen [78] investigated ventilation strategies and their potential to reduce energy 

consumption where both night cooling and natural ventilation are suggested to significantly cut back on cooling 

loads, with numerical results as high as 70%. Even higher results of up to 93.3% are suggested when the 

performance of a DSF is compared against that of a fully glazed façade [52]. Similarly, reduction remains impressively 

high (86.6%) when the comparison is against a conventional façade with a WWR of 0.5 [52]. From the practitioner 

side, Kragh reports numerical reductions within a 30%-40% range in two cases, one in the UK and one in Belgium [68, 

69]. Similar findings show reductions of 37.8% in Iran [57] and 38% by in central Korea [61]. It is worth noting that 

the two cases that showed negative performance on heating loads, perform instead very well when cooling is 

considered with basically identical values of 31.9% [77] and 32% [40] respectively. Balocco [79] studied the influence 

of cavity width on the cooling potential of the DSF, finding that a cavity of 35 cm leads to the maximum reduction of 

27.5%. Faggembauu et al. [80] also evaluated the influence of different parameters, such as position of shading 

devices and low-e glazing, achieving a maximum reduction of 27% of indoor gains and cooling loads. In examining 

the energy performance of DSFs with thermal mass in the cavity, Fallahi et al. [60] obtained a 26% reduction in the 

case of a mechanically ventilated façade. Very similar experimental results have been achieved  in Japan where a 

25% reduction of solar heat gain of the indoor spaces was observed [81]. Numerical findings in such a range are also 

observed in European studies specifically focused on cooling issues [6, 82]. Cooling reduction potential of using 

plants as shading elements in the cavity points at a 19% decrement [7]. Findings from Kolokotroni et al. [48], Hensen 

et al. [83], and Xu and Ojima [63] all fall in the same range. The least significant reduction of cooling loads related to 

a DSF has been found to be of 9.5% by Ballestini et al. [72] where the energy savings potential of a multi-storey 
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naturally ventilated DSF was evaluated for the rehabilitation of old industrial buildings in Italy. Finally, there is a case 

where DSF was actually found to worsen the cooling loads of the building with a 41% increment [70]. It should be 

noted that although the latter is the only case in which numerical results prove a worse situation cooling-wise, there 

are agreed and well-argued concerns about overheating issues within the studies reviewed here [6, 12, 60, 80, 84, 

85]. Such a phenomenon also highlights summer indoor comfort issues related to DSFs. Empirical field studies on a 

large number of real buildings seem to indicate that DSFs can be slightly better than single skins in terms of thermal 

comfort [86] but such an aspect falls outside the scope of this review. Figure 4 shows normalised data from the 

papers reviewed for this study in the form of cooling loads percentage reduction – findings are ranked from highest 

to lowest.  

 

Figure 4 - Ranked maximum values of cooling loads reduction attributable to a DSF in the studies examined 

4.3 Lighting 

Not many studies exist about the impact DSFs have on artificial lighting and/or daylighting. Viljoen et al. [87] 

investigated daylighting implications of refurbishing an existing office building in Brussels with a DSF with a cavity of 

1.4m equipped with walkways. The scenarios they assessed differ in walkways and sky conditions and, as a result, up 

to 64% of the floor area could be daylit for 50% of the year to 300 lux or more, and up to 80% of the area could be 

fully daylit for 35% of the year in a 9am to 5pm Monday to Friday working schedule assumption [87]. Quite to the 

contrary, Shameri et al. [88] investigated the daylighting performances of 12 DSF systems by means of IES VE and 

found that none of the DSF models meet the standard for indoor illuminance of at least 200 lux within 75% of the 

office floor area. Given such a small number of existing studies and the broad difference of their results, DSF’s 

impact on energy consumption and GHG emissions pertaining to artificial lighting or otherwise potential savings due 

to daylighting cannot be verified until subject to further and broader investigations.   

4.4 Ventilation 

Despite having a major impact, ventilation is addressed very much in conjunction to cooling and very few studies 

have focused on it on its own. Here ventilation is considered as the possibility to supply fresh, good-quality air into 

the occupied spaces by through the DSF and it is reported in terms of percentage of the year during which the DSF 

can meet such expectation. In reporting findings from monitoring of real DSF buildings, Pasquay [73] provides 

evidence of the possibility to ventilate a building by means of a DSF for the full year. Promising results of 60% are 
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also reported by Blumenberg et al. [59] and Lang and Herzog [89]. However, there are also less positive findings that 

suggest the need for mechanical means to ventilate the building for more than half a year [71, 78]. The difficulty of 

ventilation via DSFs has been assessed also by Gratia and De Herde [90] who studied the effects of wind direction, 

building orientation, openings size, and cross vs. single-sided ventilation in a DSF prototypical building. However, in a 

later study [91], the same authors assess the feasibility to naturally ventilate a building through a DSF where they 

suggest that maximum attention has to be paid, at the design stage, to inlet openings [90, 91] and inlet 

temperatures [92] as key parameters.  

5. Normalised Data for Operational Energy 

Numerical findings from the studies reviewed in this paper have been normalised and 

presented as a percentage of reduction/increase in terms of operational energy 

consumption in comparison to a base case. Previous sections have highlighted that 

existing DSF studies in temperate climates chiefly vary according to: 

 Spatial configuration of the DSF 

 Width of the DSF 

 Ventilation of the DSF 

 Methodological approach to studying the DSF 

 More specific climates within the broader spectrum of temperate or 

moderate climates 

Therefore, these have been selected as the classifying criteria to cluster and present 

the normalised data. Box and whiskers plots, which have been previously successfully 

used to show normalised review data [93], are deployed to graphically present the 

clustered results in this study.  

The legend chosen is shown in Figure 5. Due to the limited number of studies related 

to lighting, ventilation, and embodied energy, these plots are only provided for 

heating and cooling loads. Additionally, out of all DSF spatial configurations and 

climatic areas found in the studies only the most common ones have been reported, 

namely Multi-Storey (MS) and Corridor (C), and temperate hot (Cfa) and warm (Cfb) 

summers—respectively.  

5.1 Heating Loads 

Figure 6 shows the box and whiskers plots for heating loads reduction potential.  

Although data normalisation has been carried out to ensure that statistical comparison makes sense, it is important 

to bear in mind that every study has its own peculiarities and it would not be possible to fully account for all of them, 

e.g. variation in the glass types analysed. Nonetheless, such a meta-analytic representation can be helpful to identify 

existing trends and to disclose associations not yet detected. In this respect, it seems that simulation results are in 

line with experimental findings. Additionally, simulation has proven capable to assess cases in which the DSF has had 

an adverse effect to the building it was applied to. Quite to the contrary, mathematical and analytical approaches 

tend to overestimate the saving potential. In case of mixed methods results are more like those obtained from 

simulation.  

Regarding cavity ventilation, mechanically ventilated cavities show an interquartile range much more limited 

compared to those naturally ventilated. This is not unexpected as mechanical means give greater control over 

ventilation in the cavity. However, the energy consumed by those fans nearly halves the maximum saving potential 

of mechanically ventilated cavities over naturally ventilated ones. Broader interquartile ranges are also observed for 

Figure 5 - Legend for the box 
and whiskers plots 
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wide cavities and multi-storey spatial configurations. These two clusters are in fact the only two showing outliers 

that fall outside the 9th – 91st percentile range. Such configurations are often found in combination with natural 

ventilation strategies which greatly rely on design effectiveness and weather conditions to work properly and these 

two criteria could partially explain why results are so spread. However, more significant savings seem to be 

achievable when a combination of the two strategies, i.e. mixed ventilation, is used, although this should be 

holistically evaluated from a life cycle perspective to take into account the augmented embodied energy that fans 

and their integration into the HVAC system bear.   

 

Figure 6 - Heating Loads Reduction Potential - Box and Whiskers Plot 

5.2 Cooling Loads 

Figure 7 shows the box and whiskers plots for cooling loads reduction potential. 

According to these plots, cooling loads present more condensed and consistent figures. The plots show that there 

are no outliers in any of the clustering dimension, and the interquartile range is consistent across all. The results 

from mechanically ventilated cavities are very condensed compared to their naturally ventilated counterparts and a 

combination of the two strategies seems to promise higher energy savings. Similar to what was observed for heating 

loads, DSFs showed adverse effects on cooling loads as well, and simulation proved the only effective approach to 

point this out.  Likewise, multi-storey and wide cavities seem to be characterised by a greater range of variation and, 

this could be attributed to a combined use with natural ventilation strategies which generally bear a higher 

variability of the operational behaviour of a DSF.  
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Figure 7 - Cooling Loads Reduction Potential – Box and Whiskers plot 

6. Conclusions 

This paper has reviewed energy performances related to double skin façades (DSFs) in temperate climates. Both 

embodied and operational energy figures have been considered, although very little information was found on the 

former. Regarding operational energy, four energy end-uses have been considered, i.e. (1) heating, (2) cooling, (3) 

lighting, and (4) ventilation. Key parameters such as the spatial configuration of the DSF, the cavity width and 

ventilation, the orientation, the climatic zone according to the Köppen-Geiger classification, and the type of study 

have all been considered, reviewed, and used as clustering criteria. Numerical results from the studies considered, 

have been normalised in the form of a percentage. Normalised data have then been reported in form of box and 

whiskers plots for the criteria considered in the two cases for which enough information was available, namely 

heating and cooling loads. A fair few concluding remarks can be summarised from this review as follows: 

(1) The vast majority of existing DSF studies focus on operational energy. Embodied energy figures and, more 

specifically, life cycle assessment of DSFs should be urgently considered by scholars and practitioners alike. 

This is because environmental benefits and consequently sustainability of DSF technologies can only be 

strictly substantiated once augmented impacts of embodied energy pertaining to all life cycle stages are 

accounted for. 

(2) Amongst the operational energy end-uses here considered, lighting and to some extent ventilation are the 

least considered in literature. While ventilation is very often linked to cooling studies, lighting and more 

specifically daylighting represent an interesting avenue for further research. 
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(3) Recently, there has been a growing tendency to apply DSFs in refurbishment, and existing studies cover a 

broad variation of buildings type. Given that a DSF in refurbishment can combine the benefits of operational 

energy savings with those of reduced environmental impacts related to demolition and reconstruction, such 

applications require more investigations; more specifically in developed countries where the existing 

building stock gets replaced at a very slow pace of about 1% per year. 

(4) Normalised results in terms of heating and cooling loads reduction show broad range of variations, i.e. in 

both cases, from 90% of energy reduction potential down to an adverse increment of 30% or more. Some 

classifying criteria emerged from the literature review as mainly responsible for that significant variation; 

those such as DSF spatial configuration (a), cavity width (b) and its ventilation (c), climatic zone (d), and the 

methodological approach to the study (e).  

(5) Numerical findings from the literature reviewed for this study have been normalised and clustered around 

the aforementioned criteria. The box and whiskers plots have been chosen to present research findings. 

They helped identify existing trends and areas for further research. For instance, some categories such as 

wide cavities and multi-storey spatial configurations show a higher variability than the others. Although 

some educated speculations have been made within this paper as to why results appear that way, such 

speculation do not substitute more robust, in-depth, and systematic investigations. 

(6) Results related to reduction of cooling loads deviate less than those of heating loads. With reference to a 

single clustering criterion, similar trends can be observed for experimental studies, mechanically ventilated 

cavities, and narrow cavities. In all these three clusters, normalised results show a smaller range of variation 

than their counterparts.  

(7)  Simulation seems to be a reliable and valid approach to modelling and studying DSFs. In both heating and 

cooling load scenarios simulation slightly underestimates experimental results, thus representing a ‘safe’ 

approach. Additionally, and again in both cases, it has been through simulations that the adverse effects on 

energy consumption could be identified and assessed. 
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